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Abstract. Magnetic resonance elastography (MRE) is a powerful technique for noninvasive
determination of the biomechanical properties of tissue, with important applications in disease di-
agnosis. A typical experimental scenario is to induce waves in the tissue by time-harmonic external
mechanical oscillation and then measure the tissue’s displacement at fixed spatial positions 8 times
during a complete time-period, extracting the dominant frequency signal from the discrete Fourier
transform in time. Accurate reconstruction of the tissue’s elastic moduli from MRE data is a chal-
lenging inverse problem, and we derive and analyze two new methods which address different aspects.
The first of these concerns the time signal: using only the dominant frequency component loses in-
formation for noisy data and typically gives a complex value for the (real) shear modulus, which
is then hard to interpret. Our new reconstruction method is based on the Fourier time-interpolant
of the displacement: it uses all the measured information and automatically gives a real value of
shear modulus up to rounding error. This derivation is for homogeneous materials, and our second
new method (stacked frequency wave inversion, SFWI) concerns the inhomogeneous shear modulus
in the time-harmonic case. The underlying problem is ill-conditioned because the coefficient of the
shear modulus in the governing equations can be zero or small, and the SFWI approach overcomes
this by combining approximations at different frequencies into a single overdetermined matrix–vector
equation. Careful numerical tests confirm that both these new algorithms perform well.
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1. Introduction. Magnetic resonance elastography (MRE) is a powerful tech-
nique for noninvasive determination of the biomechanical properties of tissue, with
important applications in disease diagnosis (as described e.g. by [17, 8, 7, 5]). Waves
are induced in the tissue (typically by external mechanical excitation) and the result-
ing tissue displacement is measured at fixed sites inside it using phase-contrast MRI.
This is unlike surface-based mechanical tests which can induce and measure mechan-
ical strain only at surfaces, and thus MRE provides a far richer data source. Despite
this, accurate reconstruction of the tissue’s elastic moduli is still a challenging inverse
problem, with many different methods proposed (see e.g. [15, 18, 17, 19, 8]).

Here we propose and analyze a new method which is based on and closely related
to the recently introduced heterogeneous multifrequency direct inversion (HMDI)
method [5]. The advantages of the new method, which we term stacked frequency
wave inversion (SFWI), are that it needs only first derivatives of the wave displace-
ment (HMDI uses second derivatives) and the shear modulus is obtained directly from
a least squares solve. The “frequency domain” (time-harmonic) version of SFWI is de-
scribed and analyzed in Secs. 4–5, but in practice MRE data are sampled at (typically)
8 times per time-period and the dominant frequency signal induced by the mechanical
oscillations is extracted from the discrete Fourier transform (DFT) in time. The two
main disadvantages of this approach are (i) that it results in a loss of information
for noisy data, and (ii) using only one Fourier component typically gives a complex
value for the (real) shear modulus, which is then hard to interpret. In Sec. 2 we
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describe a new reconstruction method which is based on the Fourier time-interpolant
of the displacement. It uses all the measured information and automatically gives a
real value of shear modulus up to rounding error. Our derivation is for the homo-
geneous (constant modulus) problem and we thoroughly test it on “synthetic” and
experimental data. Future work will extend the method to a SFWI algorithm for the
inhomogeneous reconstruction problem, but we note that several existing methods
use a “locally homogeneous” assumption (as described in e.g. [5, Sec. 1]) to which
this new Fourier interpolant approach could be applied directly.

Unsurprisingly our results show that the shear modulus inverse problem is sen-
sitive to noise in both the homogeneous and inhomogeneous case. In some sense
signal denoising is the “elephant in the room” of MRE reconstruction, with published
methods often being applied to highly polished data, with little information on the
procedures which have been applied (note that full details of processing are given in
[5]). It is clear that denoising is essential to obtain reliable results from experimental
data, although it is hard to test its impact on synthetic data to which noise has been
artificially added. For example, simply adding in a “random” error and then filtering
it out again before running a reconstruction algorithm is unlikely to yield any insight
as to the algorithm’s performance on experimental data, with or without denoising.
For this reason our synthetic simulations just consider the effect of added noise on
the end result, rather than the effect of added noise with denoising.

It is well-known that waves are attenuated as they pass through tissue, and the ab-
sorption of energy is typically frequency-dependent (see e.g. [12]). This phenomenon
can be modeled (at least for some frequency ranges) by adding in non-local terms
which involve fractional derivatives in time or space. We do not consider this aspect
here, focusing attention on methods to calculate parameters for the elastic wave equa-
tion. Suppose that measurements are taken in ΩL ⊂ Rd for d = 2 or 3, where L is
a typical length scale – in applications ΩL is a rectangle or box with sides of length
O(L). The displacement u(x, t) of an elastic material at time t of a point originally
at x ∈ ΩL satisfies the momentum balance equations

(1.1) ρ ü = divT ,

where ρ is the material’s density, an overdot denotes the total derivative with respect
to time, T is the stress tensor corresponding to the displacement u, and we assume
that body forces such as gravity are small enough to be ignored. The divergence of a
tensor is the vector with α th component (divT )α = ∂Tαβ/∂xβ = Tαβ,β (the comma
denotes a space derivative), and we use the summation convention in which a repeated
index (here β) means that the expression is summed from 1 : d.

The displacement u is assumed to be small enough for a linear model to be valid,
and we also assume that the material is isotropic (i.e. there is not a preferred direction,
unlike muscle fibers). In this case the stress is Tαβ = λuγ,γ δαβ +µ (uα,β + uβ,α) and
(1.1) is the elastic wave equation (EWE)

(1.2) ρ üα = (µ (uα,β + uβ,α)) ,β + (λuβ ,β ) ,α for α = 1 : d ,

where λ(x) and µ(x) are Lamé material parameters (µ is the shear modulus).
In the homogeneous case (i.e. both λ and µ are constant) the EWE admits lon-

gitudinal and transverse plane wave solutions: a longitudinal (pressure) wave with
speed cp =

√
(λ+ 2µ)/ρ and transverse (shear) waves with speed cs =

√
µ/ρ. Both

ρ and λ are approximately constant in soft tissues – as noted in [13], traditional ul-
trasound imaging uses the constant value cp = 1540m/s. At the typical frequencies
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used in MRE (up to a few hundred Hz), this gives a wavelength of the order of several
metres, which is undetectable and so longitudinal waves are removed from (1.2) in
MRE applications. The Helmholtz decomposition [10] gives u ∈ Rd for d = 2 : 3 as
the sum of a gradient and a curl, and filtering out the gradient part of u in (1.2) gives
the shear wave equation (SWE)

(1.3) ρ üα = (µ (uα,β + uβ,α)) ,β for α = 1 : d ,

where now divu = 0. We follow [15] in using this simplified version of the MRE
problem, but note that it is a less accurate model than the approach of [17], where
p ≡ λ divu is taken to be an unknown pressure term and measured values of u are
used to determine both µ and p from (1.2). An alternative approach using the full
equation (1.2) for piecewise homogeneous materials is developed in [2].

It is known that µ varies widely in body tissues and reported values of the shear
wave speed [16, Table 4] place it roughly in the range 1–20 m/s, giving a measurable
wavelength at typical MRE oscillation frequencies. Our MRE reconstruction problem
is then to determine the (inhomogeneous) shear modulus µ from (1.3) using space–
time measurements of u. As noted above, a typical experimental scenario is to vibrate
the tissue at a known frequency f (for example by placing the subject on a vibrating
surface), measuring u at fixed spatial positions in ΩL at 8 time-steps per period, and
the dominant frequency data is typically extracted by taking the DFT in time of the
measured displacement and then fitted to the frequency domain PDE obtained by
replacing ü by (2πf)2u in (1.3). We first nondimensionalize the SWE (1.3), setting:

x = L x̃ , t = t̃/(2π f) , µ(x) = µ0 µ̃(x̃) , and u(x, t) = ũ(x̃, t̃) ,

where µ0 is a constant of the same order of magnitude as µ, so that µ̃(x̃) is an O(1)
quantity. Dropping the tildes from all terms then gives the nondimensionalized SWE

(1.4) üα = c2 (µ (uα,β + uβ,α)) ,β for α = 1 : d , for (x, t) ∈ Ω1 × (0, 2π) ,

where

(1.5) c2 =
µ0

ρL2(2π f)2
.

We derive and analyze the new SFWI method for the inhomogeneous reconstruc-
tion problem of µ from u in Secs 4–5 for the frequency domain case

(1.6) − uα = c2 (µ (uα,β + uβ,α)) ,β for α = 1 : d , for x ∈ Ω1 .

Before this we consider the homogeneous version of the time-dependent problem (1.4).

2. Homogeneous reconstruction problem. In the homogeneous case we set
the scaling parameter µ0 equal to the (constant) shear modulus, and the problem is
then to determine the wave speed c in

(2.1) ü = c2
(
∇2 u+ grad (divu)

)
from data measurements, and then µ0 follows from (1.5). Note that we have assumed
that divu = 0 in the derivation of (1.3) from (1.2), but we explicitly include the final
term in (2.1) because the corresponding term in the inhomogeneous equation (1.4)
is nonzero. Keeping the equation in this form also makes it easier to see how the
pressure term in the more accurate model of [17] could be incorporated.
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The displacement u in MRE reconstructions is typically sampled at 8 times per
time-period (which is far too coarse a timestep to use in a central difference approxi-
mation of ü in (2.1)) and it is standard practice to take its DFT and use the Fourier
component which corresponds to the underlying oscillation frequency. This throws
away potentially useful information and typically gives a complex value of the real
quantity µ0, and instead we derive a new MRE inversion procedure which uses Fourier
interpolation in time. The new method is extensively tested on “synthetic” problems
in 1D and 2D space and also used for 3D MRE data in Sec 3.

2.1. Homogeneous problem in 1D. The 1D model problem is to find csq ≈ c2
to best fit measured values of the 2π-periodic in time function u(x, t) which satisfies
the underlying equation

(2.2) utt = c2 uxx , x ∈ (0, 1) .

Our strategy is to replace u in (2.2) by its (time) Fourier interpolant, and we first de-
scribe this construction, which follows the approach of Trefethen [20], before detailing
the full approximation method for csq.

Fourier interpolant in time. Suppose that v ∈ C[0, 2π] is a 2π-periodic func-
tion measured at tm = mh for m = 0 : M − 1 where h = 2π/M , and set vm = v(tm).
The discrete Fourier transform (DFT) of v is

{
v̂` : ` = −M/2 + 1 : M/2

}
, where

v̂` =

M−1∑
m=0

e−i`tm vm , ` = −M/2 + 1 : M/2

and the inverse DFT is

vm =
1

M

M/2∑
`=−M/2

′ ei`tm v̂` , m = 0 : M − 1 ,

where v̂−M/2 = v̂M/2 and the prime on the sum indicates that terms with ` = ±M/2
are multiplied by 1

2 . The Fourier interpolant of v is V (t) defined by

V (t) =
1

M

M/2∑
`=−M/2

′ ei`t v̂` .

It is an analytic function of t and V (tm) = v(tm) for each m by construction. Differ-
entiating twice in time at t = tm gives

(2.3) V̈ (tm) =
1

M

M/2∑
`=−M/2+1

(
−`2

)
ei`tm v̂` , m = 0 : M − 1 .

As noted in [20, Ch. 3], if the way the DFT is implemented assumes a different ordering
of the wavenumbers then the vector of multipliers of the components −`2 will also
need to be reordered. For example, if using Matlab’s fft function to overwrite the
M -component data vector v, then the vector of multipliers of the components ei`tm in
(2.3) is given by the command -lsq.*v where lsq = [0:M/2,-M/2+1:1].^2 . Other
implementations may require a different ordering.
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Least squares approximation of c2. The measured displacement is the average
value over a voxel, and so in 1D space it corresponds to the average over an interval
of length ∆x = 1/J , i.e. the measurement umj ≈ u(xj−1/2, tm), where xr = r∆x.
Approximating u in (2.2) by its Fourier interpolant U at each space–time measurement
point (xj−1/2, tm) and Uxx by a second central difference gives

1

M

M/2∑
`=−M/2+1

(
`2 û`j + c2

δ11

∆x2
û`j

)
ei`tm ≈ 0 for each m and j ,

where δ11 gj = gj+1 − 2 gj + gj−1. Hence csq ≈ c2 is the best least squares solution of

`2 û`j + csq
δ11

∆x2
û`j = 0 over ` and j .

To calculate csq we multiply this expression by the complex conjugate û
`

j and sum

over all indices j for which the term δ11 û
`
j makes sense (j = 2 : J − 1) to give the

least squares problem:

(2.4) find csq ≈ c2 to minimize ‖a csq − b‖ ,

where a, b ∈ RM have components

(2.5) a` = −
J−1∑
j=2

(
δ11

∆x2
û`j

)
û
`

j , b` = `2
J−1∑
j=2

∣∣û`j∣∣2 for ` = −M/2 + 1 : M/2 .

In practice (using floating point arithmetic) it can be more accurate to use “summation
by parts” to replace the first sum by the product of first differences:

(2.6) −
J−1∑
j=2

(
δ11

∆x2
û`j

)
û
`

j =

J−2∑
j=2

∣∣Dû`j∣∣2 +Dû`1
û
`

2

∆x
−Dû`J−1

û
`

J−1

∆x
,

where D û`j =
(
û`j+1 − û`j

)
/∆x . We always do this, but because the formula for a

term like a` is far simpler written as a second difference (especially in higher space
dimensions), we will not in general give the equivalent first difference form explicitly.

Note that the approximation c∗sq of c2 given by the Helmholtz approach (1.6)
is obtained from a single Fourier component of (2.4) rather than the least squares
solution over all M Fourier components, i.e. it is

(2.7) c∗sq = b`∗/a`∗

for the dominant frequency `∗.

2.2. Homogeneous problem in 2D. The 2D homogeneous model problem
uses measured values of u ∈ R2 in (2.1) to determine csq ≈ c2. We use a similar
approach as for 1D: find an exact 2π-periodic in time solution of (2.1); add synthetic
noise; approximate the (noisy) u in time by its Fourier interpolant and approximate
the space derivatives in (2.1) by finite differences; and construct a least squares ap-
proximation csq of c2. We use square pixels of side ∆x = 1/J1 on a J1 × J2 spatial
grid and as in 1D we approximate the two spatial components of u in time by their
Fourier interpolants and use second central difference operators to approximate ∂αα
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terms. The approximation used for mixed partial derivatives is ∂12 g ≈ δ12 g/∆x
2 ,

where

δ12 gp,q = [gp+1,q+1 − gp−1,q+1 − (gp+1,q−1 − gp−1,q−1)] /4 .

Using these approximations in (2.1) leads to an expression like (2.6) for each spa-
tial component of u and taking the scalar product with the complex conjugate of(
û`1[j,k], û

`
2[j,k]

)
and summing over j = 2 : J1 − 1 and k = 2 : J2 − 1 again gives the

least squares problem (2.4) for csq ≈ c2, where now for each ` we have a` = a
[1]
` + a

[2]
`

for

a
[1]
` =

−1

∆x2

J1−1∑
j=2

J2−1∑
k=2

(
2 δ11 û

`
1[j,k] + δ22 û

`
1[j,k] + δ12 û

`
2[j,k]

)
û
`

1[j,k] ,

a
[2]
` =

−1

∆x2

J1−1∑
j=2

J2−1∑
k=2

(
δ11 û

`
2[j,k] + 2 δ22 û

`
2[j,k] + δ12 û

`
1[j,k]

)
û
`

2[j,k] ,

and b` =

J1−1∑
j=2

J2−1∑
k=2

(∣∣∣û`1[j,k]

∣∣∣2 +
∣∣∣û`2[j,k]

∣∣∣2) .

3. Numerical results for the homogeneous problem. We now present nu-
merical test results for the time-dependent homogeneous problem. We use ‘synthetic’
data (with and without added noise) in one and two space dimensions and unsmoothed
MRE measurements in 3D. The simplicity of the 1D case allows the algorithm to be
extensively tested, with and without added noise, revealing insights that are useful
for higher space dimensions. It is well-known that noisy MRE data can cause the
computed solution to be severely underestimated (see e.g. [4]), and we investigate
how this depends on the underlying wave speed.

3.1. Results for synthetic 1D data. The function u(x, t) = cos(t+x/c) is an
exact 2π-periodic solution of (2.2), and we consider a noisy version of it setting

(3.1) umj = cos(tm + xj−1/2/c) + εmj , j = 1 : J, m = 0 : M − 1 ,

where each εmj ∈ [−ε, ε] for 0 ≤ ε ≤ 0.1 is a pseudo-random error term to simulate
experimental error. We use these values of umj to calculate the vectors a and b in (2.5)

and then find csq ≈ c2 which satisfies (2.4). The absolute error in c2 is EA = csq− c2,
and the relative error is ER = EA/c2.

We first examine the behavior of the calculated value csq with no added noise
(i.e. (3.1) with ε = 0). In this case u is analytic and M = 8 is enough to capture
its complete time behavior, and the calculated value csq does not change as M is
increased. Figure 3.1 illustrates the behavior of csq with J = 1/∆x – the leading term
of the absolute error is ∆x2/12 and further investigation indicates EA ≈ ∆x2/12 +
α∆x4/c2 for a (real) constant α independent of both c and J .
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Fig. 3.1. Error plots for csq reconstructed from the data (3.1) with ε = 0 and M = 8.
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Fig. 3.2. Absolute error EA with c2 = 10−4 and M = 8 for 100 simulations at each synthetic
noise level ε.
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Fig. 3.3. Absolute error EA with c2 = 10−2 and M = 8 for 100 simulations at each synthetic
noise level ε.
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When ε > 0 the underlying function u is no longer analytic, but increasing M still
makes very little difference to the reconstruction accuracy and we fix M = 8. The
dependence of the absolute error EA on J and ε is illustrated in Figs 3.2–3.3, and each
plot shows EA at 100 simulations for a given noise level ε, calculated directly from the
data (3.1) with no filtering or smoothing. When ε is small compared with ∆x, then
the results are similar to the ε = 0 case above with EA = O(∆x2), but |EA| increases
rapidly with increasing noise level ε, and typically then behaves worse as the mesh
is refined (because the approximation error in the first derivative terms D û`j in (2.5)
is proportional to ε/∆x). The onset of this rapid growth of |EA| with ε depends on
c2, with small values of c2 (corresponding to a high spatial wavelength) giving better
results. For example, the error when c2 = 10−4 reduces as J is increased (the bottom
plot of Fig. 3.2 shows a 1% relative error at 10% noise), whereas when c2 = 10−2 the
error is about ten times larger when J = 200 than it is at J = 50. In all cases the
rapidly growing error corresponds to an underestimate of the true solution. It is
well-known in the MRE community that noisy data causes the shear modulus to be
underestimated (see e.g. [4]), and our simulations allow this to be quantified. Fixing
J = 100 and M = 8, we calculate the average value of csq over 100 runs at each of a
set of noise levels ε ≤ 1 and wave speeds c2 = 10−k for k = 0 : 4. The ‘critical’ noise
level εcr at each wave speed is defined to be that at which the relative error in csq
first reaches 0.1 (i.e. 10%), and a log–log plot of εcr against c2 (see Fig. 3.7) shows
that εcr ≈ A1 c

−1 for A1 independent of c.
Note that the formulation (2.4) automatically gives a real value of csq (up to

rounding error), but this is not true for c∗sq given by (2.7). Although the scatter plots
for the error in the real part of c∗sq look qualitatively similar to Figs 3.2–3.3, the ratio
of the imaginary and real parts of c∗sq in these simulations can vary significantly. For
example, Fig. 3.4 shows this ratio plotted against ε when c2 = 0.01 – it ranges from
10−5 to 103. A high ratio makes the calculated value of csq (and hence µ0) very hard
to interpret.
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Fig. 3.4. Ratio of the imaginary and real parts of the absolute error in c∗sq when c2 = 10−2,
J = 50 and M = 8 for 100 simulations at each synthetic noise level ε.

3.2. Results for synthetic 2D data. The 1D solution u(x, t) = (cos(t +
x1/(c

√
2)), 0)T also satisfies the 2D version of (2.1), but we now investigate fully 2D

solutions with and without added noise. The function u(x, t) = r cos(t + ν · x/c)
satisfies (2.1) when ν = (cos θ, sin θ) and r = (sin θ,− cos θ) for any incidence angle θ.
The rectangular space domain is x ∈ [0, R1] × [0, R2], where we set R1 = 1 (so L in
(1.5) is the x1-length of ΩL). It is typical for MRE measurements to use square rather
than rectangular pixels in the xy-plane. Numerical tests indicate that the method’s
behavior on rectangular pixels is as would be expected from the 1D and square 2D
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results, and for simplicity we only present results for square pixels. The measured
displacement is then the average value over a square of side ∆x where ∆x = 1/J1 and
we record it at the midpoint, setting

uα[j,k](tm) = rα cos
(
tm +

ν · xj−1/2,k−1/2

c

)
+ εmj,k ,

where xr,s = (r∆x, s∆x), R2 = J2 ∆x and each εmj,k ∈ [−ε, ε] is an added noise term
to simulate experimental error.

We first examine the dependence of the absolute error EA on the space mesh size
∆x and incidence angle θ with no added noise (ε = 0). The results do not appear
to depend on c2 or the domain’s aspect ratio R2/R1, and a sample plot is shown in
Fig. 3.5. The leading term of the error is again proportional to ∆x2, with a constant
of proportionality which is independent of c2 but it does depend on θ. This is because
the effective mesh spacing “seen” by the wave depends on its incidence angle – if it
is aligned with the mesh (θ = 0 or π/2) then the perpendicular distance between
consecutive mesh points is ∆x, but if θ = π/4 then the mesh points are aligned
diagonally and their perpendicular distance appears to be ∆x/

√
2 apart. See e.g. [9]

for more information on wave propagation through anisotropic meshes.
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Fig. 3.5. Absolute error EA against incidence angle θ for a unit square of mesh size ∆x = 1/J
when c2 = 10−2 and M = 8.

Fig. 3.6 shows EA at 100 simulations for a given noise level ε, calculated from
unsmoothed data at incidence angle θ = 1.3, and using M = 8 and J1 = J2 = 100 at
two values of c2. These 2D errors are more tightly clustered at each noise level than
the similar 1D plots in Figs. 3.2–3.3 and for small values of ε there is a small positive
error EA. As in 1D the error drops through zero as ε increases, rapidly becoming
large and negative – the bottom plot shows a relative error of ER ≈ 0.8 (i.e. 80%)
when ε = 0.1 (10% noise). The size of the relative error depends on c2, with lower
speeds (higher spatial frequencies) giving better results, again as in 1D. E.g. a 10%
noise level corresponds to about a 20% relative error when c2 = 10−3, and noise levels
of more than 10% are needed to show this behavior when c2 = 10−4. The relationship
between the error and noise is illustrated in Fig. 3.7; as for the 1D simulations we set
J1 = J2 = 100, M = 8 and calculate the average value of csq over 100 runs at each of
a set of noise levels ε ≤ 1 and wave speeds c2 = 10−k for k = 0 : 4. The ‘critical’ noise
level εcr at each wave speed shown in the Figure is again that at which the relative
error in csq first reaches 0.1, and the 2D results are εcr ≈ A2 c

−1 where the constant
A2 is almost exactly half the 1D constant A1. In both 1D and 2D the relative error
is very sensitive to increasing noise, with the calculated value csq rapidly decreasing
for ε > εcr.
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Fig. 3.6. Absolute error EA for a unit square of mesh size ∆x = 0.01 when θ = 1.3 and M = 8
for 100 simulations at each synthetic noise level ε with c2 = 10−4 (top) and c2 = 10−2 (bottom).
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Fig. 3.7. Critical noise level εcr at which ER, the relative error in csq, first becomes 10%
plotted against c2 for the 1D and 2D simulations. See text for details of the parameters used.

3.3. Homogeneous problem in 3D. The physical problem for which we have
experimental displacement values is that of a cube of size 95× 95× 95 mm3 of homo-
geneous ultrasound gel whose density is close to that for water, which is vibrated at a
constant frequency f . Full details of the experimental procedure are given in [7]. Eight
(M = 8) measurements are taken per time period at frequencies f = 30 : 5 : 60 Hz,
giving seven experimental runs in total. The voxel dimensions are 1× 1× 2 mm, and
the full data set covers 128 × 96 × 21 voxels (and hence includes “noise” measure-
ments in the air as well as measurements from within the cube). Our calculations
are based on a data subset of Nv = 75× 68× 21 voxels giving the x1 physical length
L = 75 mm. The measured displacements are nondimensionalized as described in
Sec. 1, with the three components of u(·, tm) assumed to be at the center of each voxel
for m = 0 : M − 1. These samples are all raw data which has not been smoothed,
but have been “unwrapped” (from an acquisition in an interval of length 2π) by the
Laplacian unwrapper – this suppresses constant offsets or first order gradients (details
are given in [7]).

The algorithm for calculating csq ≈ c2 from 3D data values is an obvious extension
of that in 2D, but now the terms a` and b` are summed over three spatial indices.
Before presenting results on csq we first briefly discuss how to evaluate the quality of
the data.
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Analysis of data quality. The time behavior of perfect (nondimensionalized)
data at a fixed point in space takes the form v(t) = A + cos(t + B) for constants A
and B. Measuring it at tm, m = 0 : M−1 and taking its DFT as described in Sec. 2.1
gives the M-component complex vector v̂ where v̂±1 are complex conjugates which
contain the signal information, v̂0 depends on the translation A and the remaining
M − 3 components v̂` for |`| > 1 are all zero. Thus the quantity

1

(M − 3)|v̂1|
∑
|`|>1

|v̂`|

gives an indication of how “good” (i.e. how close to exact periodic) the data values
are. This is important because equations (2.4) and (1.6) are both derived under the
assumption that the measurements are time-periodic. If this is far from being the
case, then it is unclear what the calculated values csq or c∗sq actually mean. For each
data run we sum up this quality indicator for the three spatial components of u at
all voxels and divide by the total number of terms (3 × Nv) to obtain the “quality
index”, which is a measure of the signal-to-noise ratio (SNR). It is plotted in Fig. 3.8
(top) against (physical) oscillation frequency f : the measurements at 50 Hz appear
to be closest to being periodic. Note that there are other ways to evaluate the SNR,
for more information see e.g. [4].
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Fig. 3.8. Top: Quality index against (physical) frequency f . Bottom: Calculated value of
(physical) µ0 against f . Our results are consistent with those (calculated from rheometric data)
given in [7, Fig. 4].

Results. We exclude the component with ` = 0 in the 3D analogue of (2.5)) in the
least squares calculation for experimental data. It is a zero-frequency (constant) mode
for which b0 = 0 by definition and a0 should also be zero because all its terms involve
second differences applied to a constant. Fig. 3.8 (lower) shows the calculated value of
the physical shear modulus µ0 at each experimental run. This is consistent with the
values of µ0 (called |G∗|) calculated for this type of gel from rheometric data given in
[7, Fig. 4]. For example, the “most periodic” sample at 50 Hz gives µ0 = 0.73 KPa,
which is within the error bars given in [7] for the rheometric measurements.

4. Inhomogeneous problem: stacked frequency wave inversion. We now
describe and analyze our new SFWI method for the inhomogeneous MRE reconstruc-
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tion problem. For simplicity we restrict attention to the frequency domain version
(1.6), rather than (1.4). The nondimensionalized function µ(x) in (1.6) is an O(1)
quantity, and we look at examples in which it is piecewise constant, with inclusions
of µ > 1 embedded in a background material for which µ = 1. We rewrite (1.6) as

(4.1) − ω2 uα = (µ (uα,β + uβ,α)) ,β for α = 1 : d , for x ∈ Ω1 ,

where the nondimensionalized frequency is ω = 2πfL
√
ρ/µ0. As in Sec. 2 we analyze

the problem in 1D and 2D space, with numerical test results given in Sec. 5; 3D results
for the related HMDI method are presented in [5].

4.1. SFWI in 1D space. The 1D model problem is to find µ(x) given the
nondimensionalized frequency ω and measured values of u(x) such that

(4.2) − ω2 u = (µu′)
′
, x ∈ (0, 1) ,

where ′ denotes d/dx. This is a first order ODE in µ, which needs one other piece
of information, such as a boundary condition, in order to give a unique solution. For
example, if uk(x) are measurements at ωk for k = 1 : 2 with both u′k(0) 6= 0, then the
general solution of (4.2) can be written as

µ(x)u′k(x) = µ(0)u′k(0)− ω2
k

∫ x

0

uk(s) ds

and µ(0) can be eliminated to obtain µ(x) in terms of the uk. However this is not a
practical solution method for noisy data (it gives an ill-conditioned set of equations
and poor results). The SFWI approach overcomes this by combining approximations
of (4.2) at different frequencies into a single overdetermined matrix–vector equation
(see also [3]). Our underlying approximation of (4.2) uses finite volumes based on a
staggered grid (u and µ are recorded at different grid points), as illustrated in Fig. 4.1.
The measured displacement is the average over an interval of length ∆x = 1/J , and
u is regarded as being measured at interval midpoints (blue stars). The µ grid points
are interior interval endpoints, i.e. µj ≈ µ(xj) for j = 1 : J − 1 (red circles).

Fig. 4.1. Staggered grid for 1D approximation of (4.2) on [0, 1]: the grid points for u are
denoted by blue stars, and those for µ by red circles

Equation (4.2) is integrated between each pair of red circles to give

(4.3) [µ(x)u′(x)]
xj+1

xj
= −ω2

∫ xj+1

xj

u(x) dx , j = 1 : J − 2 .

Then using a central difference approximation for the derivative u′ and the midpoint
rule to approximate the integral term gives the underdetermined linear system

(4.4) Aµ = b

for µ = (µ1, . . . , µJ−1)T , where bj = ω2 ∆xu(xj+1/2) for j = 1 : J − 2 and A ∈
R(J−2)×(J−1) is the bidiagonal matrix with entries

A =


a1 −a2 0 0 . . . 0 0
0 a2 −a3 0 . . . 0 0
...

...
. . .

. . .
. . .

. . .
...

0 0 0 0 . . . aJ−2 −aJ−1


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with aj =
(
u(xj+1/2)− u(xj−1/2)

)
/∆x ≈ u′(xj) .

We first investigate the structure of the linear system (4.4), summarizing the key
results below.

Lemma 4.1. The matrix A in (4.4) has the following properties.
1. AAT is invertible on its range, R(AAT ).
2. Equation (4.4) has a solution if and only if b ∈ R(AAT ), and if b ∈ R(AAT )

then the general solution of (4.4) is

(4.5) µ = ATz + ν ,

where z ∈ RJ−2 is the unique solution of AATz = b and Aν = 0.

The proof is straightforward using the following standard result:

Theorem 4.2 (Decomposition; see e.g. [14]). Suppose that B ∈ Rm×n with
m ≤ n. Then Rn is the direct sum of the range of BT and the null space of B, i.e.

(4.6) Rn = R(BT )⊕N (B) .

Proof of Lemma 4.1.
1. Suppose that AATz = 0 for some z ∈ R(AAT ). Then z ∈ R(AAT ) ∩
N (AAT ) = {0} by applying Theorem 4.2 to B = AAT . Thus AAT is invert-
ible on R(AAT ).

2. It follows from Theorem 4.2 that RJ−1 = R(AT )⊕N (A), and so if µ ∈ RJ−1

then µ = ATz + ν for some z ∈ RJ−2 and ν ∈ N (A). Hence Aµ = AATz ,
and if b 6∈ R(AAT ) then (4.4) cannot have a solution. If b ∈ R(AAT ) then
invertibility of AAT guarantees a unique solution z of AATz = b.

Characterizing N (A) is straightforward as described below.

Lemma 4.3. If
∏J−1
j=1 aj 6= 0 then dim (N (A)) = 1 and N (A) = sp {ν∗} for

ν∗ = (1/a1, . . . , 1/aJ−1)T . If
∏J−1
j=1 aj = 0 then the orthonormal vectors ek with

ak = 0 form a basis for N (A).

Proof. Suppose 0 6= ν ∈ N (A), then it follows from the structure of A that
aj νj − aj+1 νj+1 = 0 for each j = 1 : J − 2, and so aj νj = c for some constant c. If
none of the aj are zero then the only nonzero solution is ν = cν∗. If one or more of
the aj are zero then c = 0 and so if ak 6= 0 then the corresponding component νk of
ν must be zero.

For regions of constant µ(x) the function u(x) is oscillatory (trigonometric) and
hence it is likely that several aj ≈ u′(xj) will be close to zero, withN (A) very sensitive
to small perturbations. This means that any attempt to eliminate the null vectors ν
from (4.5) using two or more experimental measurements will be doomed to failure.
Instead the new SFWI approach combines expressions of the form (4.4) to produce
a least squares (overdetermined) system for µ. Suppose that q measurements at a

range of frequencies produce the underdetermined systems A(k)µ = b(k) for k = 1 : q.
Setting

(4.7) Â =

 A(1)

...
A(q)

 and b̂ =

 b(1)

...

b(q)


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gives the least squares formulation

min
µ∈RJ−1

∥∥∥Âµ− b̂∥∥∥ ,
where ‖ · ‖ is the 2−norm. Its solution µLS satisfies

ÂT ÂµLS = ÂT b̂

(although there are more efficient ways to compute it, see e.g. [11]). We will assume

that the matrix ÂT Â has full rank (in practice this is normally the case even for q = 2)
and examine the error in µLS. The (exact) µ(x) satisfies (4.3) for j = 1 : J − 2, and
we set µex ∈ RJ−1 to be the vector whose jth component is µ(xj), and write (4.3)

at frequency ω = ωk as A(k)µex = b(k). Stacking these (exact) matrices and vectors
as in the approximate case described above then gives the linear system Aµex = b in
Rq(J−2)×(J−1) which µex solves exactly. This means that

b̂− Âµex = b̂− b+
(
A− Â

)
µex and so

(4.8) ÂT Â (µLS − µex) = ÂT
(
b̂− Âµex

)
= ÂT

(
b̂− b

)
+ ÂT

(
A− Â

)
µex .

It is straightforward to verify that the matrix
(
ÂT Â

)−1

ÂT is bounded by 1/σ where

σ is the smallest singular value of Â and this gives the bound

‖µLS − µex‖ ≤ σ−1
(
‖b̂− b‖+ max |µ(x)| ‖A− Â‖

)
.

Both norm terms on the right-hand side of this inequality involve the difference be-
tween u in (4.3) and its measurement (noise), and the error involved in approximating

the derivative and integral terms in (4.5) to obtain the entries in Â and b̂ respectively.
See also [1] for MRE inversion error bounds.

4.2. SFWI in 2D space. In 2D space µ(x) solves the 2-component system
(4.1), and as in 1D we approximate these equations on a staggered grid at different
frequencies, stacking up q > 1 underdetermined systems into an overdetermined least
squares problem. For simplicity we restrict attention to the case for which Ω1 is the
unit square; it is split into a J × J square mesh and again the components of u are
measured at the mesh midpoints (blue stars in Fig. 4.2). The µ nodes are interior
edge midpoints (red circles).

Each component of (4.1) is integrated over each interior square (those bounded
by red solid lines in Fig. 4.2), with Ωj,k denoting the ∆x × ∆x square centered at
xj+1/2,k+1/2. Using the midpoint rule to approximate the left-hand integral and the
divergence theorem for the right-hand side gives

−ω2∆x2uα(xj+1/2,k+1/2) ≈
∫
∂Ωj,k

µ (uα,β + uβ,α) nβ ,

where n is the outward unit normal. The midpoint rule is used for the four line
integrals on the right-hand side, and any corner components of u are obtained by
averaging over the four nearest neighbor midpoint values. For example, when α = 1
the resulting scheme is

ω2∆x2u1
j+1/2,k+1/2 = T 1

j,k µj,k+1/2 − T 2
j,k µj+1,k+1/2 + T 3

j,k µj+1/2,k − T 4
j,k µj+1/2,k+1 ,
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Fig. 4.2. Staggered grid for 2D approximation of (4.1) on the unit square: the grid points for
u are denoted by blue stars, and those for µ by red circles

where

T 1
j,k = 2

(
u1
j+1/2,k+1/2 − u

1
j−1/2,k+1/2

)
, T 2

j,k = 2
(
u1
j+3/2,k+1/2 − u

1
j+1/2,k+1/2

)
,

T 3
j,k = u1

j+1/2,k+1/2−u
1
j+1/2,k−1/2+

1

4

(
u2
j+3/2,k+1/2 − u

2
j−1/2,k−1/2 + u2

j+3/2,k−1/2 − u
2
j−1/2,k−1/2

)
T 4
j,k = u1

j+1/2,k+3/2−u
1
j+1/2,k+1/2+

1

4

(
u2
j+3/2,k+3/2 − u

2
j−1/2,k+3/2 + u2

j+3/2,k+1/2 − u
2
j−1/2,k+1/2

)
,

and for simplicity we write uβ(xj+1/2,k+1/2) as uβj+1/2,k+1/2.

In total there are 2 (J − 2)2 equations for the NJ ≡ 2 (J − 1) (J − 2) components
of the vector of µ values, and the underdetermined linear system matrix analogous to
A in (4.4) is again sparse, with 4 nonzero entries per row. As in 1D we stack up q
of these matrix-vector equations, obtained at different frequencies, and calculate its
least squares solution µLS ∈ R2 (J−1) (J−2).

5. Inhomogeneous problem: SFWI results. We now provide numerical test
results for the SFWI algorithm using synthetic data in 1D and 2D space. The 1D test
results are important in quantifying the algorithm’s behavior in the presence of noise
because exact solutions to the inhomogeneous problem are not available in higher
space dimensions.

5.1. Numerical results for synthetic 1D data. All tests assume that the
(exact) µ(x) is piecewise constant on [0, 1] with

(5.1) µ(x) =

{
1 , x ∈ [0, a) ∪ (b, 1]
µI , x ∈ (a, b)

and construct the unique u ∈ C1[0, 1] which satisfies (4.2) subject to given boundary
conditions u(0) = uL and u(1) = uR. These boundary conditions are fixed in some
simulations and varied randomly in others. To simulate experimental error we set the
nodal u values to be uj = u(xj−1/2) + εj , j = 1 : J , where again each εj ∈ (−ε, ε)
is a pseudo-random noise term. Tests show that varying the interval parameters (a, b)
makes little difference to the results and we fix a = 0.35 and b = 0.69.

The root mean square (RMS) error in µ(x) is E =
‖µLS − µex‖√

J − 1
and we first

investigate how it depends on the inclusion value µI for a very accurate approximation
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(large J) at multiple frequencies when ε = 0. Fig. 5.1 shows that for high resolution
the error E is at a minimum when µI = 1 (i.e. the material is homogeneous), and

when µI > 1 then E ∝ µ2
I . Each entry of Â in this plot has the same boundary values

(uL = −1.156, uR = 0.292), but using boundary values randomly chosen in [−2, 2]
makes no observable difference.
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Fig. 5.1. RMS error in µ(x) plotted against µI using the frequencies ωk = [10 : 10 : 150] when
J = 50 (green dot-dash), J = 200 (blue solid) and J = 1000 (red dash).
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Fig. 5.2. RMS error E plotted against the maximum frequency ωmax for different values of
minimum frequency ωmin using the frequencies ωk = [ωmin : 10 : ωmax] when J = 64 and noise-level
ε = 0.
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Fig. 5.3. Plot of calculated µLS (red solid line) obtained using ωk = {40, 50, 60, 70} when
J = 64 and noise-level ε = 0. The exact value µex is shown as a a black dashed line.

All further test results use a fixed value of µI = 3 in order to facilitate com-
parisons. In the first of these we look at the effect of varying the maximum and
minimum frequencies used to generate Â and b̂ from (4.7), and results (with J = 64,
ε = 0 and fixed boundary values) are given in Fig. 5.2. The frequencies ωk = [ωmin :

10 : ωmax] are used to generate Â and b̂, and the graph shows a higher error when
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Fig. 5.4. Plot of L1-error E1 in µLS against noise-level ε obtained using ωk = [40 : 10 : 80]
when J = 64. There are 100 simulations at each value of ε.
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Fig. 5.5. Plot of 100 simulations of calculated µLS (red dotted lines) obtained using ωk =
[40 : 10 : 80] when J = 64 and at noise-levels ε = 0.02 (top) and ε = 0.04 (bottom). The exact value
µex is shown as a a black solid line in each plot.

(ωmin, ωmax) = (20, 60) than (40, 60) even though the first of these includes all the
frequencies used by the second. This indicates that including a frequency that is “too
low” (relative to the mesh spacing) may make the error worse. Using frequencies that
are “too high” (relative to the mesh spacing) can be similarly problematic, giving a
solution profile that overestimates the value of µ, and can sometimes be jaggy. The
calculated value of µLS for “intermediate” frequency values is shown in Fig. 5.3. This
plot was generated using fixed boundary values, but using random boundary values
gives similar results. Note that the 1D test problem has a low information content
compared with 2D (see below), and far higher frequencies need to be used to obtain
reasonable results in 1D.

The L1-norm is a better characterization than E of the error that is “seen” in a
plot like Fig. 5.3 and we define

E1 =
1

J − 1

J−1∑
j=1

∣∣∣(µLS − µex)j

∣∣∣ .
Fig. 5.4 shows the effect of noise, using randomly varied boundary conditions for u
(the plot is the result of 100 simulations at each value of ε) using ωk = [40 : 10 : 80].
Varying the boundary conditions makes little difference, and plots of 100 simulations
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for µLS at each of ε = 0.02 and ε = 0.04 over these five frequencies with fixed boundary
conditions is shown in Fig. 5.5.

5.2. Numerical results for synthetic 2D data. The additional difficulty in
2D simulations is in calculating u for a given inhomogeneous µ(x). This has to be done
numerically, and so it is impossible to exactly quantify the noise in a given simulation.
All the test results shown below use a piecewise constant µ(x) with background value
1 and value µI = 3 in a rectangular inclusion with diagonal corners (0.35, 0.42) and
(0.69, 0.65). The function u(x) which satisfies (4.1) for this µ is calculated using the
Matlab PDE toolbox on a regular grid of 2J2

f triangular elements with Jf = 256
(the maximum size allowed by local computer memory requirements), and synthetic
noise of size ε is added, as for 1D. For ease of comparison all simulations use the
same boundary conditions for u(x), corresponding to the same incident wave field.
The approximation accuracy of the solution u(x) of (4.1) strongly degrades as the
nondimensionalized frequency ω increases, but it is notable that calculations using
moderate or very low values of ω all give very similar results when ε = 0.

Fig. 5.6. Plot of µLS calculated using ω = 1.1, 2.7, 4.0 when J = 64 and ε = 0.

Fig. 5.6 shows the least-squares solution µLS obtained from the three values ω =
1.1, 2.7, 4.0 and sample test results for the Lp errors for p = 1, 2 and ∞ when ε = 0
are given in Table 5.1, where the errors are defined as follows:

Ep =

 1

NJ

J−2∑
j=1

J−1∑
k=1

∣∣∣µ(e)
j+1/2,k

∣∣∣p +
∣∣∣µ(e)
k,j+1/2

∣∣∣p
1/p

for p = 1 : 2

and E∞ = max
{∣∣∣µ(e)

j+1/2,k

∣∣∣ , ∣∣∣µ(e)
k,j+1/2

∣∣∣ : j = 1 : J − 2, k = 1 : J − 1
}
, where µ(e) =

µex − µLS. Although the values of E∞ appear very high, this only illustrates that
the L∞ norm is not an appropriate error measure for a discontinuous function: the
reconstructed values µLS are just slightly offset from the true position, as shown in
Fig. 5.7.
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ω values used E1 E2 E∞
1.1, 2.7, 4.0 0.024 0.122 1.87
4.0, 7.2, 10.0 0.023 0.121 1.72
10, 17.6, 31.2, 40, 50 0.032 0.102 1.72
17.6, 31.2, 40, 50 0.032 0.102 1.72
31.2, 40, 50 0.033 0.103 1.72

Table 5.1
Calculated errors in µLS using various frequencies when J = 64 and ε = 0.

Fig. 5.7. Plot of error µ(e) calculated using ω = 1.1, 2.7, 4.0 when J = 64 and ε = 0

Calculations with only low values of ω are very susceptible to added noise, as
indicated by Table 5.2. Any values of E1 larger than about 0.2 correspond to an
unacceptably bad solution, and the lower frequency calculations (top two rows) are
much worse than this even for ε = 10−4. The results in the bottom three rows are
acceptable up to ε ≈ 0.01.

ω values used ε = 10−4 ε = 10−3 ε = 10−2

(J = 64) E1 E2 E1 E2 E1 E2

1.1, 2.7, 4.0 0.463 0.682 1.074 1.249 1.166 1.292
4.0, 7.2, 10.0 0.059 0.163 0.678 0.946 1.022 1.251
10, 17.6, 31.2, 40, 50 0.032 0.103 0.035 0.105 0.172 0.352
17.6, 31.2, 40, 50 0.032 0.102 0.035 0.105 0.163 0.325
31.2, 40, 50 0.033 0.103 0.036 0.105 0.160 0.322

Table 5.2
Calculated errors in µLS at three different values of added noise.

6. Discussion and conclusions. Reconstructing the elastic shear modulus
µ(x) is a challenging inverse problem even with the rich data source provided by
MRE. We have considered two aspects of the problem here: (i) how to use the full
time signal instead of a single Fourier component (when µ is constant), and (ii) the
overdetermined SFWI method for the inhomogeneous case (in the frequency domain).
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MRE measurements are typically taken in small enough space voxels for central
differences to give a reasonable approximation of space derivatives, but the relatively
coarse timestep size means that an additional assumption of (near) periodicity in time
is necessary. The advantages of the Fourier time-interpolant approach (i) are that it
uses all the information present in the experimental measurements of u(x, t) and it is
guaranteed to give a real value of the real quantity µ. It is well-known that noisy MRE
data causes the shear modulus to be underestimated and the numerical test results of
Sec. 3 quantify this, showing that the solution is insensitive to low values of additional
noise, but that when the noise level exceeds a ‘critical’ value, then the error in the
calculated shear modulus increases rapidly. This critical noise level is proportional to
1/c where c is the wave speed in (2.1), and the constant of proportionality in 2D is
half that for 1D.

The underlying problem (1.6) is ill-conditioned because the coefficients of the
shear modulus can be zero or small, and the SFWI method overcomes this by com-
bining approximations at different frequencies into a single overdetermined matrix–
vector equation. Because the individual matrices are derived at different frequencies
they have different “problematic” coefficients (i.e. those equal or close to zero) and
the overall stacked matrix has full rank if enough frequencies are used. Note that
there is a higher information content in the problem as the space dimension increases
and so the method should work better (i.e. for lower nondimensionalized frequencies)
in 3D space than in 2D space (our numerical tests confirm that it works better in 2D
space than 1D). This is in contrast to the forward problem of trying to compute the
solution u of (1.4) or (1.6) from µ. Our method is designed for MRE inverse prob-
lems in which µ is not known anywhere in the material, including at the boundaries.
In another type of problem where µ is known somewhere in the material then these
values could be be built in as a constraint, or a different formulation might be better.

One obvious extension to the methods described here is to develop a method
which uses the SFWI formulation combined with a Fourier interpolant in time for the
full time-dependent inhomogeneous reconstruction problem, and this is the focus of
current work. Another is to extend our methods to deal with the more sophisticated
and accurate model used by McLaughlin et al in [17] in which p ≡ λ divu is taken to
be an unknown pressure term in (1.2) and measured values of u are used to determine
both µ and p.

The frequency-dependent behavior of µ which is illustrated in Fig. 3.8 is typical
(see also [7, Figs 4, 9]) but we have not considered this aspect here, just focusing
our attention on (1.4). However it does need to be addressed in further development
of methods like SFWI which use measurements obtained at different frequencies. A
‘rough and ready’ approach could be to use (1.4) but assume that the shear mod-
ulus has a specified type of frequency-dependence, e.g. µ = (f/f0)α µ1(x) and then
use a similar method to SFWI to obtain µ1, f0 and α, but more sophisticated frac-
tional derivative models which take account of the frequency-dependent behavior are
available [12]. Another important consideration is the effect of noise and denoising
strategies on the calculated result µLS. Knowledge of the type of noise present in real
measurements is crucial for this: it is likely that the noise in the displacement field u
will be temporally and/or spatially correlated to some extent, and an an investigation
of models such as the (temporal) Ornstein-Uhlenbeck or (spatial) Q-Wiener processes
as described in [6, Sec. 2] may be useful.
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