
DIFFUSION PARAMETER ESTIMATION FOR THE
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THEODOROS MANIKAS AND ANASTASIA PAPAVASILIOU

Abstract. We construct a novel estimator for the diffusion coefficient of the limit-
ing homogenized equation, when observing the slow dynamics of a multiscale model,
in the case when the slow dynamics are of bounded variation. Previous research
suggests subsampling the data on fixed intervals and computing the corresponding
quadratic variation (see, for example, [28]). However, to achieve optimality, this
approach requires knowledge of scale separation variable ε. Instead, we suggest
computing the quadratic variation corresponding to the local extrema of the slow
process. Our approach results to a natural subsampling and avoids the issue of
choosing a subsampling rate. We prove that the estimator is asymptotically un-
biased and we numerically demonstrate that its L2-error is smaller than the one
achieved in [28].

1. Introduction

It is often the case that the most accurate models for describing the dynamics of phys-
ical or human-driven activity are multiscale in nature. For example, high-frequency
financial data often exhibits multiscale characteristics in the sense that disparate
structural features are associated with different time scales. These features are usu-
ally described by the term market microstructure noise, which contains all different
types of market inconsistencies such as non-synchronous trading and bid-ask spread.
In [32], the author describes each of these effects and gives a comprehensive review.
Processes exhibiting multiscale characteristics also appear in other application ar-
eas, such as molecular dynamics [30], atmospheric sciences or oceanography (see, for
example, [24, 23] and [18, 19]) and network traffic data [1].

Finding a coarse-grained model that can effectively describe the dynamics of the
initial multiscale model is an important problem and a highly active research area in
applied mathematics. This is mainly due to the fact that such models are much more
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efficient to use in practice. Once the coarse-grained model has been extracted, the
corresponding free parameters need to be estimated by fitting the model to the data.
In this framework, the problem that one is confronted with is the mismatch between
the coarse-grained model and the data generated by the full multiscale system.

The parameter estimation problem in the context of multiscale diffusions can be
separated into four different cases, depending on (i) whether the limiting equation is
the averaging or homogenization limit and (ii) whether we are interested in estimating
the drift or the diffusion coefficient of the limiting equation. In [28], the authors
study all problems but for particular types of diffusions where we can get closed
form estimators for the unknown parameters of the limiting equation. In [26], the
authors discuss the problem in a general context but only for drift estimation. In both
papers, the authors suggest using the Maximum Likelihood estimators corresponding
to the limiting model with observation of the slow variable that have been sufficiently
subsampled. This methodology has been applied to molecular dynamics (see [27])
and high-frequency data (see [31]).

In this paper, we are concerned with the estimation of the diffusion coefficient of the
homogenization limit. This has be addressed in [28], where the authors show that the
quadratic variation on subsampled data at intervals of size δ converges in law to the
limiting diffusion coefficient as ε→ 0, provided that δ = εα, for α ∈ (0, 1). They also

show that the L2-error is minimized for α = 1
2

and is of order O(ε
2
3 ). Some further

discussion of these estimators and their properties can be found in [36]. However,
the scale separation variable ε is not known, so one cannot be sure that a chosen δ
leads to the right result, let alone choose the optimal subsampling rate.

This problem has also been addressed in [25]. The estimator proposed there is
the total p–variation, defined as the supremum of finite quadratic sums over all
possible partitions. It was shown that the estimator is asymptotically unbiased and
its L2-error is of order O(ε), thus improving the L2-error of [28], while avoiding
the issues related to choosing a subsampling rate. However, due to the technical
difficulties related to dealing with the total p-variation, the paper only discusses
the diffusion estimation problem for a mutliscale Ornstein-Uhlenbeck process, with
the slow dynamics being of bounded variation (the slow dynamics are often called
‘natural Brownian motion’)

In this paper, we build upon ideas in [25]. Our estimator, however, is simpler to work
with as it does not involve a supremum, making it both more practical and easier to
work with. Moreover, in [25] the author assumes continuous observation of the slow
process while we make the more realistic assumption of discrete observations. We
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consider mutliscale diffusions whose slow dynamics are of bounded variation and the
diffusion coefficient of the homogenized is constant.

The remainder of the paper is organised as follows. In section 2, we describe the
precise class of models and we state the statistical inference question that we are
interested in. We, then, suggest a novel estimator. In section 3, we prove that our
estimator is asymptotically unbiased in the case of the Ornstein-Uhlenbeck (OU)
model within the context of the general family of models that we consider. In section
4, we study the properties of the estimator for a more general class of models than
the OU. Finally, in section 5, we present a numerical investigation of the properties
of our estimator. In particular, we investigate the behaviour of the L2 error and we
numerically demonstrate that it is of order O(ε).

2. Setting

We consider the following system of stochastic differential equations:

dxεt =
1

ε
f(yεt)dt,(1a)

dyεt =
1

ε2
g(yεt)dt+

β(yεt)

ε
dVt,(1b)

where V is standard Brownian motion, defined on the filtered probability space
(Ω, {Ft}t>0,P). We are interested in the case where the ‘slow’ component of the
process, xε, converges in distribution to the solution of a stochastic differential equa-
tion

(2) dXt = σdWt, X(0) = x0,

where σ is a constant depending on f, g and β and W is also standard Brownian
motion. This convergence holds under appropriate assumptions to be discussed later
(see [29]). We call this equation ‘the homogenized equation’ and its solution X the
‘homogenization limit’.

In this paper, we restrict our study to the case where both xε and its limit X are
one-dimensional processes. Our goal is to estimate the diffusion coefficient σ2 of
the homogenized equation from discrete observations of the slow process xε. More
precisely, let us assume that we observe {xεti , i = 0, . . . , n}, for ti = iδ and nδ = T .
We want to construct an estimator for the diffusion coefficient σ2, such that as
n→∞, the approximation error is of order O(ε). Note that ε is a fixed variable that
is inherent to the process and we have no control over while we have some control over
n (how often to sample or for how long). For the rest of the paper, however, we will
assume that T is fixed and equal to T = 1, so n → ∞ is equivalent to δ → 0. Note
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that while the grid points ti depend on δ (or, equivalently, n), to ease the notation
we will not explicitly show this dependence unless there is a risk of ambiguity.

If we observed the homogenized equation X rather than the slow process xε, then
it is well known that σ2 can be efficiently estimated from the normalised Quadratic
Variation, appropriately discretized to only depend on the discrete observations,
i.e.

(3) D2 (X)n =
n∑
i=1

(∆Xti)
2

where ∆Xti := Xti − Xti−1
for ti ∈ Dn = {kδ, k = 0, . . . , n}. Then, we know that

D2 (X)n → σ2 almost surely, as n → ∞. However, if instead we use the bounded
variation process xε, the corresponding quadratic variation D2 (xε)n converges a.s. to
0. Thus, because of the mismatch between model and data, the standard estimator
is not longer useful.

To avoid this problem, in [25], the author suggests using the total 2-variation of the
process (see [21]) rather than the quadratic variation, defined as

(4) DTotal
2 (xε)n = sup

D([0,T ])

 ∑
τi∈D([0,T ])

(xετi − x
ε
τi−1

)2

 ,

where the supremum is over all finite partitions of [0, T ]. By taking the supremum
over all finite partitions, the total 2-variation can only be zero if the path xε is
constant, so it maintains much more information than quadratic variation. In the
case of a piecewise linear path, the supremum is achieved at a subset of the extremal
points of the path [12]. However, this is still computationally very inefficient and
a cause of technical difficulties, which is what limited [25] to the analysis to the
mutliscale Ornstein-Uhlenbeck model. Moreover, this estimator assumes continuous
observation of the slow process xε, which is unrealistic.

In this paper, we construct a novel estimator that we will call the Extrema Quadratic
Variation, whose construction is based on a simplification of the total 2-variation.
First, we approximate the slow process xε by its linear interpolation on the observa-
tions that we will denote by xε(n), so that the estimator only depends on available
data. Then, instead of computing the total 2-variation by identifying the subset of
the extremal points where the supremum is achieved, we consider all extremal points.
More precisely, the Extrema Quadratic Variation is defined as follows:

Definition 2.1. Let x : [0, T ] → R be a real–valued continuous path and let x(n)
be the piecewise linear interpolation of x on the homogeneous grid Dn = {iδ, i =
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0, . . . , n} with nδ = T . We define the Extrema Quadratic Variation (ExtQV) of the
path on grid Dn as

(5) DExt
2 (x)n =

∑
τi∈En([0,T ])

(xτi − xτi−1
)2,

where En([0, T ]) = {0 = τ0, τ1, ..., τk = T} is the set of local extremal points of x(n).
We say that a point ti in Dn is an extremal point and we write ti ∈ En([0, T ]) if
∆xti∆xti+1

=
(
xti − xti−1

) (
xti+1

− xti
)
< 0.

The computation of the quadratic variation requires the consideration of all the in-
crements of the original path whereas the extrema quadratic variation only considers
the increments of the extremal path. Note that as ε gets smaller, the process xε

gets closer to X, which is a process of finite Quadratic Variation and thus, we ex-
pect the number of local extremal points to increase. Thus, the Extrema Quadratic
Variation provides a natural subsampling of the process which depends on unknown
ε. This is why we expect it to outperform the Quadratic Variation estimator on the
subsampled process suggested in [28].

In Figure 1 we illustrate graphically an example of an extremal path. The black line
is the linear interpolation of the original path x on the grin Dn and the red line is
the corresponding extremal path.

t

x(n)

t0,τ0 t1 t2 t3 t4 t5 t6 t7 t8

τ1

∆x(n)τ1

τ2

∆x(n)τ2

τ3

∆x(n)τ3

Figure 1. Graphical representation of an extremal path: the original
path (black line) and the extremal path (red line).
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An alternative way to compute DExt
2 (x)n that appears to be very useful in the an-

alytic computation of the expectation is presented below. By definition, DExt
2 (x)n

is the sum of squared returns of the original process plus two times the product of
those increments such that the consecutive products of the increments between these
two are all positive. So, by expanding the squares, DExt

2 (x)n can be written as:

DExt
2 (x)n = D2(x)n + 2

j−1∑
i=1

n∑
j=2

(
∆xti∆xtj

i−1∏
k=j

1R+

(
∆xtk∆xtk+1

))
,(6)

Note that the event of {∆xtk∆xtk+1>0,k=j,...,i−1 can be written as the union of events
{∆xtk > 0, k = j, . . . , i} and {∆xtk < 0, k = j, . . . , i}, i.e. increments having the
same sign is the same as all increments being either positive or negative. This will
allow us to simplify computations further.

3. A toy example

In order to build intuition about the behaviour of the Extrema Quadratic Variation
estimator defined in 2.1 , we start by studying its properties in the context of a
system that is a spacial case (1) and also a special case or the Ornstein-Uhlenbeck
model. More specifically, we consider the following model

dxεt =
σ

ε
yεtdt,(7a)

dyεt = − 1

ε2
yεtdt+

1

ε
dWt,(7b)

where W denotes the standard one-dimensional Brownian motion defined on the
filtered probability space (Ω, {Ft}t>0,P), σ ∈ R+ is a positive constant and 0 < ε <<
1 denotes a small parameter that controls the scale separation. The fast dynamics
are described by an Ornstein-Uhlenbeck process whose invariant distribution is the
Gaussian distribution N (0, 1

2
). We will assume that y0 is also a random variable with

the invariant distribution N (0, 1
2
), so that process yε is stationary.

It is easy to see that the slow process xε can be equivalently expressed as the solution
of the following SDE

(8) dxεt = σ (dWt − εdyεt) .
Therefore, allowing ε→ 0 we deduce that the corresponding homogenization limit is
the solution to

(9) dXt = σdWt, X0 = x0.

In this case, the convergence holds pathwise in L2 [36].
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We will show that, in this case, the Extrema Quadratic Variation estimator is asymp-
totically unbiased. More precisely, we prove the following:

Theorem 3.1. Let xε : [0, T ]→ R be a real–valued path described by Eq.(7). Then,

(10) lim
ε→0

lim
n→∞

E
[
DExt

2 (xε)n
]

= σ2.

Before proving the theorem, we prove the following lemma that allows us to write
the increment of the slow process xε in terms of the fast process yε.

Lemma 3.2. Let (xε, yε) satisfy (7). Then, we can write

(11) ∆xεtk := xεtk − x
ε
tk−1

= σ

(
ε(1− e

δ
ε2 )yε(tk−1)−

∫ tk

tk−1

(
e−

(tk−u)
ε2 − 1

)
dWu

)
.

Proof. First, using (8), we get

∆xεtk = σ
(
∆Wtk − ε∆yεtk

)
.

Using the known formula for the solution of (7b) (which can be easily verified using
Itô’s formula), we write

(12) yεtk = e−δ/ε
2

yεtk−1
+

1

ε

∫ tk

tk−1

e−
(tk−u)
ε2 dWu.

The result follows. �

Corollary 3.3. Let (xε, yε) satisfy (7). Then, if yεt is stationary, the sequence of
increments {∆xεti}

n
i=1 is also stationary irrespectively of x0. Moreover, the increments

{∆xεti}
n
i=1 are mean zero Gaussian random variables.

Proof of Theorem 3.1. Using the expression in (6), we get

(13) E
(
DExt

2 (xε)n
)

= E (D2(x
ε)n)+2

n∑
i=2

i−1∑
j=1

E

(
∆xεti∆x

ε
tj

i−1∏
k=j

1R+

(
∆xεtk∆x

ε
tk+1

))
.

Since xε is a bounded variation process, it is not hard to show that

lim
n→∞

E (D2(x
ε)n) = 0.

Moreover, using corollary 3.3, i.e. the stationarity and symmetry of increments, we
deduce that

2
n∑
i=2

i−1∑
j=1

E
(

∆xεti∆x
ε
tj
1Cn(i,j) (x(n)))

)
= 4

n∑
k=2

(n+1−k)E

(
∆xεt1∆x

ε
tk

k∏
j=1

1R+

(
∆xεtj

))
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Thus, to prove the theorem we need to show that

(14) lim
ε→0

lim
n→∞

4
n∑
k=2

(n+ 1− k)E

(
∆xεt1∆x

ε
tk

k∏
j=1

1R+

(
∆xεtj

))
= σ2.

Using lemma 3.2, we write

∆xεt1∆x
ε
tk

= σ2

(
ε2(1− e−

δ
ε2 )2yεt0y

ε
tk−1

−ε(1− e−
δ
ε2 )yεt0

∫ tk

tk−1

(
e−

(tk−u)
ε2 − 1

)
dWu

−ε(1− e−
δ
ε2 )yεtk−1

∫ t1

t0

(
e−

(t1−u)
ε2 − 1

)
dWu

+

∫ t1

t0

(
e−

(t1−u)
ε2 − 1

)
dWu

∫ tk

tk−1

(
e−

(tk−u)
ε2 − 1

)
dWu

)
.(15)

First, we show that
(16)

lim
n→∞

4ε(1−e−
δ
ε2 )

n∑
k=2

(n+1−k)E

(
yεt0

∫ tk

tk−1

(
e−

(tk−u)
ε2 − 1

)
dWu

k∏
j=1

1R+

(
∆xεtj

))
= 0,

by obtaining an appropriate bound for the expectation. We write

E
(
yεt0
∫ tk
tk−1

(
e−

(tk−u)
ε2 − 1

)
dWu

∏k
j=1 1R+

(
∆xεtj

))
≤

≤ E
(
yεt0
∫ tk
tk−1

(
e−

(tk−u)
ε2 − 1

)
dWu

)
≤

≤ E
((
yεt0
)2) 1

2 E
((∫ tk

tk−1

(
e−

(tk−u)
ε2 − 1

)
dWu

)2) 1
2

=

= 1√
2
E
(∫ tk

tk−1

(
e−

(tk−u)
ε2 − 1

)2
du

) 1
2

= 1√
2

(
δ + 1

2
ε2(−3− e−

2δ
ε2 + 4e−

δ
ε2 )
) 1

2 ∼ O(δ
3
2 ),

where the first inequality follows from the monotonicity of expectation, the second
from Cauchy-Schwartz and the last equality from Itô isometry and the stationarity
of yε. Noting that δ = 1

n
, we can bound the sum in (16) is bounded by

C(ε)
1

n

n∑
k=2

(n+ 1− k)
1

n
3
2

,
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for some constant C(ε) that depends only on ε. Taking n → ∞, we get (16). In a
similar manner, we can show that
(17)

lim
n→∞

4ε(1−e−
δ
ε2 )

n∑
k=2

(n+1−k)E

(
yεtk−1

∫ t1

t0

(
e−

(t1−u)
ε2 − 1

)
dWu

k∏
j=1

1R+

(
∆xεtj

))
= 0,

and
(18)

lim
n→∞

4
n∑
k=2

(n+1−k)E

(∫ t1

t0

(
e−

(t1−u)
ε2 − 1

)
dWu

∫ tk

tk−1

(
e−

(tk−v)
ε2 − 1

)
dWv

k∏
j=1

1R+

(
∆xεtj

))
= 0,

Thus, from (15), (16), (17), (18), it follows that to show (14), we only need to show

(19) lim
ε→0

lim
n→∞

4ε2(1− e−
δ
ε2 )2

n∑
k=2

(n+ 1− k)E

(
yεt0y

ε
tk−1

k∏
j=1

1R+

(
∆xεtj

))
= 1

From lemma 3.2, it follows that

(20) ∆xεtj > 0 ⇐⇒ ytj−1
>

∫ tj
tj−1

(
e−

(tj−u)
ε2 − 1

)
dWu

ε(1− e−
δ
ε2 )

:= Mj.

With this notation, one can easily check that

1R+

(
∆xεtj

)
= 1R+

(
ytj−1

−Mj

)
≤ 1R+

(
ytj−1

)
+ 1R+

(
|Mj| − |ytj−1

|
)

Then, the expectation in the sum of (19) can be bounded by

E
(
yεt0y

ε
tk−1

∏k
j=1 1R+

(
∆xεtj

))
≤

E
(
yεt0y

ε
tk−1

∏k
j=1 1R+

(
yεtj−1

))
+ E

(
yεt0y

ε
tk−1

∏k
j=1 1R+

(
|Mj| − |ytj−1

|
))
.(21)

Using Cauchy-Schwartz, the second expectation in the bound can be further bounded
by

E
(
yεt0y

ε
tk−1

∏k
j=1 1R+

(
|Mj| − |ytj−1

|
))

E
(
(yεt0)

2
) 1

2 E
(

(yεtk−1
)2
∏k

j=1 1R+

(
|Mj| − |ytj−1

|
)) 1

2 ≤ 1√
2
E
(
(M2

k−1
) 1

2(22)
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Using upper bounds (21) and (22) in (19), we see that one of the terms converges to
zero as in (16). Thus, it remains to show that

(23) lim
ε→0

lim
n→∞

4ε2(1− e−
δ
ε2 )2

n∑
k=2

(n+ 1− k)E

(
yεt0y

ε
tk−1

k∏
j=1

1R+

(
yεtj−1

))
= 1.

Let τ δ,εyt0 be the first time that the discretised process {ytk ; k ∈ N} becomes negative,

starting from yt0 , i.e.

(24) τ δ,εyt0 = min{k ∈ N; ytk < 0}.

Then, given yt0 > 0,
k−1∏
j=1

1R+

(
yεtj

)
= 1(tk−1,+∞)(τ

δ,ε
yt0

),

or, equivalently,
k−1∏
j=0

1R+

(
yεtj

)
= 1R+

(
yεt0
)
· 1(tk−1,+∞)

(
τ δ,εyt0

)
Then, the expectation in (23) can be written as

E

(
yεt0y

ε
tk−1

k∏
j=1

1R+

(
yεtj−1

))
= E

(
yεt01R+

(
yεt0
)
· yεtk−1

1(tk−1,+∞)

(
τ δ,εyt0

))
= E

(
yεt01R+

(
yεt0
)
· yεtk−1

)
− E

(
yεt01R+

(
yεt0
)
· yεtk−1

1[0,tk−1]

(
τ δ,εyt0

))
.(25)

The first expectation above can be written as

E
(
yεt01R+

(
yεt0
)
· yεtk−1

)
= E

(
yεt01R+

(
yεt0
)
E
(
yεtk−1
|yt0
))

= e−
tk−1

ε2 E
(
(yεt0)

21R+

(
yεt0
))

=
1

4
e−

tk−1

ε2 ,

since yεt0 ∼ N
(
0, 1

2

)
(we have assumed stationarity). Remember that T = 1, tk = kδ

and δ = 1
n
. Then, using the above result, we get that

4ε2(1− e−
δ
ε2 )2

n∑
k=2

(n+ 1− k)E
(
yεt01R+

(
yεt0
)
· yεtk−1

)
=

= ε2(1− e−
1
nε2 )2

n∑
k=2

(n+ 1− k)e−
(k−1)

nε2 → 1 + ε2
(
e−1/ε

2 − 1
)

= 1 +O(ε2),
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as n→∞. Thus,

lim
ε→0

lim
n→∞

4ε2(1− e−
δ
ε2 )2

n∑
k=2

(n+ 1− k)E
(
yεt01R+

(
yεt0
)
· yεtk−1

)
= 1.

From this result and the decomposition of the expectation given in (25), it follows
that to prove (23), it is only left to show that

lim
ε→0

lim
n→∞

∣∣∣∣∣4ε2(1− e− δ
ε2 )2

n∑
k=2

(n+ 1− k)E
(
yεt01R+

(
yεt0
)
· yεtk−1

1[0,tk−1]

(
τ δ,εyt0

))∣∣∣∣∣ = 0.

We can restrict our study to the case where the stopping time τ δ,εyt0 is bounded by

tk−1, i.e. τ δ,εyt0 ≤ tk−1. Then

E
(
yεtk−1
|τ δ,εyt0

)
= yε

τδ,εyt0
e−

tk−1−τ
δ,ε
yt0

ε2 .

Thus,∣∣∣∣∣4ε2(1− e− δ
ε2 )2

n∑
k=2

(n+ 1− k)E
(
yεt01R+

(
yεt0
)
· yεtk−1

1[0,tk−1]

(
τ δ,εyt0

))∣∣∣∣∣ ≤
4ε2(1− e−

δ
ε2 )2

n∑
k=2

(n+ 1− k)E
(
yεt01R+

(
yεt0
)
|yε
τδ,εyt0
|
)
≤

4ε2(1− e−
δ
ε2 )2

n∑
k=2

(n+ 1− k)E
(
(yεt0)

21R+

(
yεt0
)) 1

2 E
(

(yε
τδ,εyt0

)2
) 1

2

=

=

(
2ε2(1− e−

δ
ε2 )2

n∑
k=2

(n+ 1− k)

)
E
(

(yε
τδ,εyt0

)2
) 1

2

.

First, a straight forward computation gives

lim
n→∞

2ε2(1− e−
δ
ε2 )2

n∑
k=2

(n+ 1− k) =
1

ε2
.

It is left to show that limn→∞ E
(

(yε
τδ,εyt0

)2
)

= 0. This follows directly from the

continuity of the diffusion paths with probability 1. First, it follows that τ δ,εyt0 → τ εyt0
as δ → 0 (n→∞) with probability 1, where τ εyt0 is the first time that the continuous

process becomes zero. Then, it follows that yε
τδ,εyt0

→ yετεyt0
and by definition, yετεyt0

= 0,

as n→∞, with probability 1.
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�

4. Main Result

In the section, we extend the results of section 3 to the general setting of section 2.
More precisely, we consider the fast/slow systems of SDEs described in (1), where
(xε, yε) ∈ R×Rd, V is the standard d–dimensional Browinan motion. Moreover, we
will assume the following

Assumption 4.1. Functions f(·), g(·) and β(·) are such that the following hold

1. Ergodicity: yε is an ergodic process with invariant distribution ρ∞.

2. Stationarity: yε0 distributed according to the invariant distribution ρ∞.

3. The diffusion operator L corresponding to (1b) for ε = 1 is essentially self-
adjoined, which implies that the transition semigroup will be bounded oper-
ators, contracting in L2.

4. Function f(·) is square-integrable with respect to ρ∞ and twice differentiable.

5. Centering condition:

(26) E (f(yε0)) =

∫
Rd
f(y)ρ∞(y)dy = 0.

Assumptions 3 and 4 above are needed, so that the functions on which the semigroup
operators act are in the domain of the operators. Assumption 5 is necessary for the
homogenization limit to exist. Under this assumptions, it is a well-known result (see
[29]) that as ε → 0, the process xε converges weakly to the process X solving the
following SDE

(27) dXt = σdWt, X0 = x0,

where W is a standard Brownian motion. The diffusion coefficient σ, which is con-
stant for this class of models, is given by

(28) σ2 = 2

∫
Rd
f(y)Φ(y)ρ∞(y)dy = 2E [f(yε0)Φ(yε0)] .

Function Φ(·) above is the solution to the Poisson problem

(LΦ) (y) = −f(y),∫
Rd

Φ(y)ρ∞(y)dy = 0.(29)
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Notice that for this particular model, the homogenized SDE (27) does not contain a
drift coefficient.

As before, our goal is to find an efficient estimator for σ2, given xε. We will prove that
the (ExtQV) estimator defined in 2.1 for (xε, yε) satisfying (1) is an asymptotically
unbiased estimator of the diffusion coefficient of the limiting diffusion process σ2.
More precisely, we will prove the following

Theorem 4.2. Let xε : [0, T ] → R be a real–valued path described by (1). Then,
subject to technical assumptions given in 4.1 and assumption (31) of lemma 4.3, the
following holds:

(30) lim
ε→0

lim
n→∞

E
[(
DExt

2 (x)n
)]

= 2E [f(yε0)Φ(yε0)] .

First, we prove the following

Lemma 4.3. Suppose that (xε, yε) satisfy (1). As before, let Dn = {kδ, k = 0, . . . , n}
be the homogeneous grid of [0, T ], for T = 1 and δ = 1

n
. Then, we can write

∆xεti := xεti − x
ε
ti−1

=
δ

ε
f(yεti−1

) +Rti−1,ti(y
ε),

where

E
∣∣∣Rε

ti−1,ti
(yε)

∣∣∣ ≤ Cδ
3
2 ,

for some constant C > 0 depending on f, g, β and ε, assuming that

(31) E |A(yεt)| ≤ CA and E
(
B(yεt)

2
)
≤ CB

uniformly on t ∈ [0, 1], where A : Rd → R and B : Rd → R are given by

A(y) = Of(y)∗g(y) +
1

2
Tr (β(y)∗H(f)(y)β(y))

and

B(y) = Of(y)∗g(y),

for z∗ denoting the transpose of any vector z ∈ Rd, Tr (·) denoting the trace of a
matrix and H(f) denoting the Hessian of the function f : Rd → R.

Proof. First, we write

∆xεti =

∫ ti

ti−1

dxεu =

∫ ti

ti−1

1

ε
f(yεu)du =

∫ ti

ti−1

1

ε

(
f(yεti) +

∫ u

ti−1

df(yεs)

)
du

=
δ

ε
f(yεti−1

) +Rti−1,ti(y
ε),
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where

Rti−1,ti(y
ε) =

1

ε

∫ ti

ti−1

∫ u

ti−1

df(yεs)du

Using Itô’s formula for df(yεs), Rti−1,ti(y
ε) can be written as

Rti−1,ti =
1

ε

∫ ti

ti−1

∫ u

ti−1

(
1

ε2
A(yεs)ds+

1

ε
B(yεs)dVs

)
.

The result follows from (31) and Itô’s isometry. �

Now, we are ready to prove the theorem, following the same steps as the proof of
theorem 3.1.

Proof. Following exactly the same arguments as in theorem 3.1, we can show that it
is sufficient to prove that
(32)

lim
ε→0

lim
n→∞

2
n∑
k=2

(n+ 1− k)E

(
∆xεt1∆x

ε
tk

k−1∏
j=1

1R+

(
∆xεtj∆x

ε
tj+1

))
= 2E [f(yε0)Φ(yε0)] .

Note that, while we can still assume stationarity of increments, we cannot assume
symmetry, which is why we now need to consider both cases of all positive or all neg-
ative increments. Again, using the same arguments as in theorem 3.1 in conjunction
with lemma 4.3, (32) can be further reduced to
(33)

lim
ε→0

lim
n→∞

n∑
k=2

n+ 1− k
n2ε2

E

(
f(yεt0)f(yεtk−1

)
k−1∏
j=1

1R+

(
f(yεtj−1

)f(yεtj)
))

= E [f(yε0)Φ(yε0)] .

Let τ δ,ε be the first time that the discretised process {f(yεtk); k ∈ N} changes sign,
i.e.

(34) τ δ,ε = min{k ∈ N; f(yεt0)f(yεtk) ≤ 0}.

Then, the event of “all {f(yεti), i = 0, . . . , k − 1} have the same sign” is the same as
the event “time when process f(yεti) changes sign is greater or equal to tk”, i.e.

k−1∏
j=1

1R+

(
f(yεtj−1

)f(yεtj)
)

= 1[tk,+∞)(τ
δ,ε).
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Thus, we can write

E

(
f(yεt0)f(yεtk−1

)
k−1∏
j=1

1R+

(
f(yεtj−1

)f(yεtj)
))

= E
(
f(yεt0)f(yεtk−1

)1[tk,+∞)(τ
δ,ε)
)

= E
(
f(yεt0)f(yεtk−1

)
)
− E

(
f(yεt0)f(yεtk−1

)1[0,tk)(τ
δ,ε)
)
.(35)

By replacing (35) into (33), the proof is further reduced to proving

(36) lim
ε→0

lim
n→∞

n∑
k=2

n+ 1− k
n2ε2

E
(
f(yεt0)f(yεtk−1

)
)

= E [f(yε0)Φ(yε0)]

and

(37) lim
ε→0

lim
n→∞

n∑
k=2

n+ 1− k
n2ε2

E
(
f(yεt0)f(yεtk−1

)1[0,tk)(τ
δ,ε)
)

= 0.

To complete the proof, we need to write the conditional expectation in terms of the
solution of the backward Kolmogorov equation expressed in terms of the semi-group
generated by the diffusion operator L corresponding to (1b), scaled to ε = 1, i.e.

(38) E (f(yεt)|yεs) = (e
−L(t−s)

ε2 f)(yεs).

This is well defined, based on assumptions 3 and 4 of (4.1). To prove (37), we first
note that the above formula will still hold when we condition on a stopping time, or,
more precisely,

E (f(yεt)|yετδ,ε) = (e
−L(t−s)

ε2 f)(yετδ,ε).

We also note that the semigroup is a contraction in L2, i.e.

E
(
f(yεt)

2
)
≤ E

(
f(yετδ,ε)

2
)
,

for τ δ,ε < t. Thus,∣∣∣E(f(yεt0)1[0,tk))(τ
δ,ε)f(yεtk−1

)
)∣∣∣ ≤ E

(
|f(yεt0)| · |E

(
f(yεtk−1

)|τ δ,ε
)
|
)

≤ E
(
|f(yεt0)| · |f(yετδ,ε)|

)
≤ E

(
f(yεt0)

2
) 1

2 E
(
f(yετδ,ε)

2
) 1

2 ,

and, consequently,∣∣∣∣∣
n∑
k=2

n+ 1− k
n2ε2

E
(
f(yεt0)f(yεtk−1

)1[0,tk)(τ
δ,ε)
)∣∣∣∣∣ ≤

(
n∑
k=2

n+ 1− k
n2ε2

)
E
(
f(yεt0)

2
) 1

2 E
(
f(yετδ,ε)

2
) 1

2
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It is easy to see that

lim
n→∞

(
n∑
k=2

n+ 1− k
n2ε2

)
E
(
f(yεt0)

2
) 1

2 = C(ε) <∞,

and thus it remains to show that

lim
n→∞

E
(
f(yετδ,ε)

2
)

= 0.

This follows from the almost sure continuity of the paths f(yt), which implies that
τ δ,ε → τ ε with probability 1 as δ → 0 (or n→∞), where τ ε = min{t > 0 : f(yt) = 0}.
Continuity also implies that f(yτδ,ε)→ f(yτε) with probability 1 as δ → 0, and thus

lim
n→∞

E
(
f(yετδ,ε)

2
)

= E
(
f(yετε)

2
)

= 0,

since f(yετε) = 0, by the definition of τ ε.

Finally, it remains to show (36). Using (38), we write

E
(
f(yεt0)f(yεtk−1

)
)

= E
(
f(yεt0)E

(
f(yεtk−1

)|yt0
))

= E
(
f(yεt0)(e

−L(k−1)

nε2 f)(yε0)
)
,

Using the dominated convergence theorem, we can write the left-hand-side of (36)
as

lim
ε→0

lim
n→∞

n∑
k=2

n+ 1− k
n2ε2

E
(
f(yεt0)(e

−L(k−1)

nε2 f)(yε0)
)

=

= E

(
f(yεt0) lim

ε→0
lim
n→∞

n∑
k=2

n+ 1− k
n2ε2

(e
−L(k−1)

nε2 f)(yε0)

)
.

Let Ψ : Rd → R be defined as

Ψ(y) = lim
ε→0

lim
n→∞

n∑
k=2

n+ 1− k
n2ε2

(e
−L(k−1)

nε2 f)(y) = lim
ε→0

lim
n→∞

n−1∑
k=1

n− k
n2ε2

(e
−Lk
nε2 f)(y)
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If we can show that Ψ solves the Poisson problem (29), then the proof would be
complete. First, we note that

E (Ψ(y0)) = E

(
lim
ε→0

lim
n→∞

n−1∑
k=1

n− k
n2ε2

(e
−Lk
nε2 f)(y0)

)

= lim
ε→0

lim
n→∞

n−1∑
k=1

n− k
n2ε2

E
(

(e
−Lk
nε2 f)(y0)

)
= lim

ε→0
lim
n→∞

n−1∑
k=1

n− k
n2ε2

E
(
f(yεtk)

)
= lim

ε→0
lim
n→∞

n−1∑
k=1

n− k
n2ε2

E (f(yε0)) = 0,

where we used the dominated convergence theorem to go from the first line to the
second, the tower property and (38) (for s = 0, t = tk) to go from second line to the
third and stationarity to go from the third line to the fourth. Finally, we write

Ψ = lim
ε→0

lim
n→∞

n−1∑
k=1

n− k
n2ε2

e
−Lk
nε2 f

= lim
ε→0

lim
n→∞

n−1∑
k=1

n− k
n2ε2

∞∑
m=0

1

m!
(
k

nε2
)m(−L)mf

= lim
ε→0

∞∑
m=0

1

m!

(
lim
n→∞

n−1∑
k=1

n− k
n2ε2

(
k

nε2
)m

)
(−L)mf

= lim
ε→0

∞∑
m=0

1

m!

1

(m+ 1)(m+ 2)ε2(m+1)
(−L)mf

= lim
ε→0

ε2
∞∑
m=0

1

(m+ 2)!

(
1

ε2

)(m+2)

(−L)mf,

where we used the definition of the exponential of an operator to go from the first
line to the second, the fact that limits exists to go from the second line to the third
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and the appropriate limit identity to go from the third line to the fourth. Finally,

L2Ψ = L2

(
lim
ε→0

ε2
∞∑
m=0

1

(m+ 2)!

(
1

ε2

)(m+2)

(−L)m

)
f

= lim
ε→0

ε2
∞∑
m=0

1

(m+ 2)!

(
1

ε2

)(m+2)

(−L)(m+2)f

= lim
ε→0

ε2
∞∑
m=2

1

m!

(
1

ε2

)m
(−L)mf

= lim
ε→0

ε2

(
∞∑
m=0

1

m!

(
− 1

ε2

)m
Lm − I − 1

ε2
L

)
f

= lim
ε→0

ε2
(
e
−L
ε2 − I

)
f − Lf,

where we used the continuity of the operator, which allows us to apply it before the
limits. Using the contraction property, we can show that

lim
ε→0

ε2
(
e
−L
ε2 − I

)
f = 0

in L2. Thus,

L2Ψ = −Lf,
which is also satisfied by Φ. We conclude that Ψ = Φ, as solution is unique. �

5. Numerical Results

In this section we present numerical results for the performance of the (ExtQV)
estimator when it is applied to different examples of multiscale models.

Example 5.1. We start our numerical study from the the toy example that was
introduced in (7). Initially, we present numerical evidence supporting the unbiased-
ness of our proposed estimator. We also examine how the choice of the parameter ε,
the step size δ = T/n and the value of σ affects the accuracy of the (ExtQV). Unless
stated otherwise, T = 1.

We generate 1000 realisations of the path xε with step δ = 1
n
, using the Euler–

Maruyama scheme. For each realisation we evaluate the (ExtQV). We approximate
the expectation by the average of these values.

Table 1 presents the values of the expectation of the (ExtQV) for ε = (0.05, 0.10, 0.15, 0.20),
n = (103, 104, 105, 106, 107) and for σ = 1. The last line of the table corresponds to
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the theoretical value of the (ExtQV) as n→∞ which is given by

lim
n→∞

E
[
DExt

2 (xεn)2T
]

= σ2
(

1 + ε2
(

1− e−1/ε2
))

.

E
[
DExt

2 (xε)2n
] ε

0.05 0.10 0.15 0.20

n = 103 1.4971 1.1956 1.0706 1.0556
n = 104 1.1317 1.0569 1.0327 0.9639
n = 105 1.0400 0.9997 1.0003 0.9682
n = 106 1.0085 0.9861 0.9599 0.9447
n = 107 0.9908 0.9904 0.9665 0.9515

Theoretical Value 0.9975 0.9900 0.9775 0.9600

Table 1. Expectation of the (ExtQV) for different n’s and ε’s and
for σ = 1.

Furthermore, we examine the squared L2 error of the (ExtQV), i.e.

E
[(

E
(
DExt

2 (xεn)T
)2 − σ2

)2]
.

Table 2 shows the squared L2–error for different n’s, ε’s and for fixed σ = 1. These
numerical results indicate that the squared L2 error of our estimator is of order O(ε2).
This can be seen more clearly in the log–log plot in figure 2.

E
[(
DExt

2 (xεn)2T − σ2
)2] ε

0.05 0.10 0.15 0.20

n = 103 0.2985 0.1785 0.1792 0.3638
n = 104 0.0476 0.1250 0.2650 0.3548
n = 105 0.0306 0.1154 0.2380 0.3800
n = 106 0.0273 0.10 0.1986 0.3874
n = 107 0.0261 0.1008 0.1992 0.3824

Table 2. L2–error of the (ExtQV) for different n’s and ε’s and for σ = 1.
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Figure 2. Log–log plot between the ration of the L2–error corre-
sponding to kε and L2–error corresponding to ε with respect to log(kε).

Example 5.2. Consider the following fast/slow system of SDEs

dx =
σ

ε
y3dt, x(0) = x0,(39a)

dy = − y
ε2
dt+

√
2

ε
dV, y(0) = y0,(39b)

where V is the standard Brownian motion and has initial conditions x0 and y0. The
invariant density, ρ∞, of the fast process in (39b) is the standard normal. Without
loss of generality, we assume σ = 1 so that the corresponding homogenised SDE is
given by

dX = (2 · E [f(y)Φ(y)])1/2 dW =
√

22dW,

where W is a standard Brownian motion and is independent of V .

Again, our objective is to examine the performance of the (ExtQV) estimator as an
estimator of the diffusion coefficient of the homogenised equation. Table 3 shows
the values of the expectation of the (ExtQV) and its corresponding L2–error when
it is applied to the model (39). For this table we fix the value of σ to σ = 0.1
and we consider five values of ε = (0.20, 0.15, 0.10, 0.05, 0.01) and four values of
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n = (104, 105, 106, 107). The corresponding diffusion coefficient of the homogenised
equation in this case is Σ2 = 0.01 · 22 = 0.22. As it can be seen from Table 3, as
the value of n increases and the value of ε decreases, the expectation of the (ExtQV)
tends to the real value of the homogenized diffusion coefficient. Furthermore, for
decreasing n and ε the L2–error decreases as well and tends to zero.

ε 0.20 0.15 0.10 0.05 0.01

n = 104 E
[
DExt

2 (xn)2T
]

0.1938 0.2087 0.2177 0.2368 1.6072
L2-error 0.1260 0.0486 0.0237 0.0071 1.9342

n = 105 E
[
DExt

2 (xn)2T
]

0.2059 0.2086 0.2176 0.2281 0.2638
L2-error 0.0860 0.0611 0.0257 0.0078 0.0023

n = 106 E
[
DExt

2 (xn)2T
]

0.1927 0.2047 0.2169 0.2217 0.2284
L2-error 0.0630 0.0439 0.0268 0.0071 0.0004

n = 107 E
[
DExt

2 (xn)2T
]

0.2119 0.2075 0.211 0.2330 0.2209
L2-error 0.0986 0.0434 0.0235 0.0073 0.0003

Table 3. Expectation and L2–error of the (ExtQV) for different ε’s,
n’s and for σ = 0.10.

Example 5.3. Consider the following multiscale system of SDEs

dx =
σ

ε

(
1− y2

)
dt,

dy = − 1

ε2
ydt+

√
2

ε
dV,

where V is the standard Browian motion and initial conditions x0 and y0. For this
example the corresponding homogenized SDE has the following form

(40) dX = σ
√

2dW.

Similarly to what we have done in the previous examples, we examine the (ExtQV)
for four values of n and five values of ε and the results are shown in Table 4.

In the next example, we modify our context in the sense that the fast dynamics are
not described by an (OU) process.

Example 5.4. Consider the following multiscale system

dx = σ
sin(y)

ε
dt,(41a)

dy = −sin(y)

ε2
dt+

1

ε
dW,(41b)
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ε 0.20 0.15 0.10 0.05 0.01

n = 104 E
[
DExt

2 (xn)2T
]

2.0426 2.0364 2.2174 2.3837 16.6118
L2-error 5.4799 3.0374 2.1654 0.5906 213.9965

n = 105 E
[
DExt

2 (xn)2T
]

1.9373 1.9752 2.0926 2.1041 2.6470
L2-error 4.2892 3.2262 1.4939 0.3571 0.4380

n = 106 E
[
DExt

2 (xn)2T
]

1.9120 2.0136 1.9397 2.0416 2.1744
L2-error 4.9281 2.9718 1.2007 0.3632 0.0463

n = 107 E
[
DExt

2 (xn)2T
]

1.9312 1.9721 2.0525 2.0061 2.0546
L2-error 6.3127 3.3509 1.6203 0.3273 0.0176

Table 4. Expectation and L2–error of the (ExtQV) for different ε’s,
n’s and for σ = 1.

for which the corresponding homogenised SDE is

(42) dX = σdW.

Table 5 illustrates the expectation of the (ExtQV) and its corresponding L2–error
when applied to the model (41) for σ =

√
0.5. As in the previous examples, we

consider five values of ε = (0.20, 0.15, 0.10, 0.05, 0.01) and three values of n =
(104, 105, 106). For σ =

√
0.5, the corresponding homogenised diffusion coefficient

is equal to 0.5. Similarly to the previous examples, we observe that as the value of n
increases and the value of ε decreases both the expectation of the (ExtQV) and the
L2–error tend to the desired quantity, that is the real value of the homogenised and
coefficient and zero respectively.

ε 0.20 0.15 0.10 0.05 0.01

n = 104 E
[
DExt

2 (xn)2T
]

0.3889 0.4023 0.4320 0.4604 0.8046
L2–error 0.0571 0.0391 0.0198 0.0059 0.0932

n = 105 E
[
DExt

2 (xn)2T
]

0.3707 0.3878 0.3974 0.4055 0.4336
L2–error 0.0599 0.0408 0.0243 0.0123 0.0046

n = 106 E
[
DExt

2 (xn)2T
]

0.3761 0.4005 0.4064 0.4201 0.4990
L2–error 0.0577 0.0393 0.0228 0.0102 0.0002

Table 5. Expectation and L2–error of the (ExtQV) for different ε’s,
n’s and σ =

√
0.5.

Finally, in the example below we demonstrate that our proposed estimator can be
also applied in cases where the corresponding homogenised equation contains a drift
term.
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Example 5.5. Consider the following fast/slow system

dx =
σ

ε
ydt+ sin(x)dt,(43a)

dy = − 1

ε2
ydt+

1

ε
dV.(43b)

The corresponding homogenized SDE is

(44) dX = sin(X)dt+ σdW.

Similar numerical studies are performed for this model and Table 6 shows the Ex-
pectation and L2–error of the (ExQV) for the same values of n and ε considered
in the previous examples. The results, presented in table 6, indicate that the drift
coefficient does not affect the behaviour of our proposed estimator.

ε 0.20 0.15 0.10 0.05 0.01

n = 104 E
[
DExt

2 (xn)2T
]

1.1429 1.1112 1.1039 1.1289 2.2738
L2-error 0.4890 0.3055 0.1462 0.0505 1.6949

n = 105 E
[
DExt

2 (xn)2T
]

1.1258 1.0709 1.0559 1.0491 1.2194
L2-error 0.5250 0.2695 0.1312 0.0.12 0.0497

n = 106 E
[
DExt

2 (xn)2T
]

1.1488 1.0808 1.0282 1.0446 1.2196
L2-error 0.5822 0.2649 0.1115 0.0439 0.0164

n = 107 E
[
DExt

2 (xn)2T
]

1.1476 1.0728 1.0430 1.0595 1.2185
L2-error 0.5661 0.2778 0.1097 0.0356 0.0167

Table 6. Expectation and L2–error of the (ExtQV) for the model in
Example 5.5 for different ε’s, n’s and for σ = 1.
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