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Abstract. Proximal algorithms have gained popularity in recent years in large-scale and dis-
tributed optimization problems. One such problem is the phase retrieval problem, for which proximal
operators have been proposed recently. The phase retrieval problem commonly refers to the task of
recovering a target signal based on the magnitude of linear projections of that signal onto known vec-
tors, usually under the presence of noise. A more general problem is the multispectral phase retrieval
problem, where sums of these magnitudes are observed instead. In this paper we study the proximal
operator for this problem, which appears in applications like X-ray solution scattering. We show that
despite its non-convexity, all local minimizers are global minimizers, guaranteeing the optimality of
simple descent techniques. An efficient linear time exact Newton method is proposed based on the
structure of the problem’s Hessian. Initialization criteria are discussed and the computational per-
formance of the proposed algorithm is compared to that of traditional descent methods. The studied
proximal operator can be used in a distributed and parallel scenarios using an ADMM scheme and
allows for exploiting the spectral characteristics of the problem’s measurement matrices, known in
many physical sensing applications, in a way that is not possible with non-splitted optimization al-
gorithms. The dependency of the proximal operator on the rank of these matrices, instead of their
dimension, can greatly reduce the memory and computation requirements for problems of moderate
to large size (N > 104) when these measurement matrices admit a low-rank representation.
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1. Introduction. Proximal algorithms have gained popularity in recent years
due to their ability to solve large-scale and distributed optimization problems effi-
ciently [15]. When the problem to be solved can be cast as a collection of additive
terms sharing a common variable x, one can reformulate it as a consensus optimization
problem[15, 1]:

min
x

T∑
t

ft(x) ≡ min
x

T∑
t

ft(xt) s.t. xt = z ∀t(1.1)

where each additive term depends on its own variable xt and each of these variables
is forced to agree with the consensus variable z. This formulation can be iteratively
solved in a distributed manner using an Alternate Direction Method of Multipliers
(ADMM) [1], where at each iteration a proximal (prox ) operator of the form 1.2 is
solved, together with an update on the consensus and additional dual variables.

(1.2) proxf (u) = min
x

f(x) + ||x− u||22.

In this work we explore how to solve problems of the type 1.2 stemming from applying
ADMM to problems of the form:

(1.3) min
y∈CM

T∑
t

(
(Aty)

H
(Aty)− bt

)2

for At ∈ CM×Kt and bt ∈ R+ for t = 1, . . . , T , which can be seen as an instance of

1.1 where ft =
(

(Aty)
H

(Aty)− bt
)2

.
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Problems like 1.3 arise, among other places, in multispectral phase retrieval appli-
cations. Phase retrieval commonly refers to the problem of recovering of a complex
signal y ∈ CM from the measurement of the squared projections onto the vectors
ai ∈ CM , i.e. find y such that | < ai, y > |2 = bi for all i = 1, . . . , Q [18]. Despite
being a classic problem in the signal processing world [10, 7, 8], the field of phase
retrieval has experienced an increase in interest in recent years, thanks to the devel-
opment of algorithms relying on semi-definite programming [3, 4, 20, 9], Wirtinger
flow [2, 5] or sparse reconstructions [14, 17].

A more general problem than classic phase retrieval arises when the measurements
bt are not single projections, but the sum of several of squared projections, i.e.
bt =

∑Kt

k (< at,k, y >)
2
. These multispectral phase retrieval problems arise in ap-

plications like X-ray solution scattering [13] and fiber diffraction [16] , where the
contributions of many spectral components sum incoherently in the detector. In this
work we present an efficient algorithm to solve the prox operator of each of the additive
terms in 1.3:

(1.4) proxf (w) = min
y∈CM

(
(Ay)

H
(Ay)− b

)2

+ ||y − w||22.

Since this problem must be solved in turn for each term in the consensus sum, effi-
ciency becomes of particular importance.

Unlike many of the widely used prox operators [6], 1.4 can’t be solved in closed
form except in very special cases (e.g. Ki = 1 or Ai = I [19]) and in general needs
to be solved iteratively. To that end, in this work we present an efficient algorithm
to globally optimize 1.4. We prove that, despite its non-convexity, all minimizers of
1.4 are equivalent in objective function value and moreover, under mild conditions,
1.4 has a unique minimizer. We propose a Newton algorithm to reach any of these
global minimizers and exploit the structure of 1.4 to compute each of the Newton
iterates in linear time (as opposed to the general O(N3) cost), resulting in a very
computationally efficient approach to minimize 1.4.

The structure of the paper is as follows. In Section 2 we recast 1.4 into a prob-
lem over the reals and prove the equivalence of all minimizers and the uniqueness of
the minimizer in the case w > 0. In Section 3 we present the proposed algorithm
to solve 1.4, together with guidelines to select a good starting point for the iterative
algorithm. In Section 4 we report results from numerical simulations comparing the
performance of the proposed approach to standard implementations of gradient de-
scent and Newton method and analyze the sensitivity of the algorithm performance
to the spectral and norm properties of Ai and w. Finally, in Section 5 we discuss the
implications of the proposed method and future work.

2. Global Optimization of the Prox Operator. In this section we prove the
existence of a unique minimum for the prox operator presented in 1.4. We start by
recasting 1.4 as a problem of the form:

(P1) min
x∈RN

(
xTx− b

)2
+ ||x− u||2Σ

to which we will refer as P1 for the rest of this work.



A PROX OPERATOR FOR MULTISPECTRAL PHASE RETRIEVAL 3

2.1. Recasting. We start the recasting by noting that 1.4 has an equivalent
representation over the reals:
(2.1)

min
y∈CM

(
(Ay)

H
(Ay)− b

)2

+||y−w||22 ≡ min
yR,yI ∈RM

([
yR
yI

]T
Q

[
yR
yI

]
− b

)2

+||
[
yR
yI

]
−
[
wR
wI

]
||22

where yR and yI are the real and imaginary parts of y, wR and wI are the real and
imaginary parts of w and the symmetric matrix Q is of the form:

(2.2) Q =

[
ATRAR +ATI AI 0

0 ATRAR +ATI AI

]
for AR = Re (A) and AI = Im (A). Taking the singular value decomposition (SVD)
of Q: Q = UQΣQU

T
Q and writing:

(2.3) ỹ = UTQ

[
yR
yI

]
w̃ = UTQ

[
wR
wI

]
we get the optimization problem:
(2.4)

min
yR,yI ∈RM

([
yR
yI

]T
Q

[
yR
yI

]
− d

)2

+||
[
yR
yI

]
−
[
wR
wI

]
||22 ≡ min

ỹ

(
ỹTΣQỹ − d

)
+||ỹ−w̃||22

We assume in the following that ΣQ is full rank. If that were not the case, the
components of x̃ on the nullspace of ΣQ can be trivially set to w̃ for the optimum

solution. Setting N = 2M and denoting x ∈ RN = SΣ
1/2
Q ỹ, u ∈ RN = SΣ

1/2
Q w̃ and

Σ = Σ−1
Q , where S = diag

(
sign

(
Σ

1/2
Q w̃

))
we get the final form:

(2.5) min
ỹ

(
ỹTΣQỹ − b

)
+ ||ỹ − w̃||22 ≡ min

x∈RN

(
xTx− b

)2
+ ||x− u||2Σ

with Σ � 0 and u ≥ 0.

2.2. Proof of Global Optimality. Starting from P1, the structure of the proof
is as follows: first we present an equivalent problem to P1 over R2N (which we will
refer to as P2) with a convex objective function and N non-convex quadratic equality
constraints. These equality constraints are then relaxed to convex inequality con-
straints, resulting in the convex relaxation P2C of the problem P2. In Lemma 2.1 we
show that the proposed convex relaxation is exact, i.e. optimizing P2C is equivalent
to minimizing P2, and thus P1.

In Lemmas 2.2 and 2.3 we discuss the locations of the minimizers of P1. More
specifically, in Lemma 2.2 we show that if w > 0, then all minimizers are in the
non-negative orthant, while in Lemma 2.3 we tackle the case when w is non-negative
but not positive, where minimizers can exist outside the non-negative orthant. We
show that each of them will have the same objective value as another minimizer in
the non-negative orthant. In Lemma 2.4 we use the KKT conditions for P2C to show
that any minimizer in the non-negative orthant of P1 has a one to one correspondence
with a local minimizer of P2C with the same objective value.



4 B. ROIG-SOLVAS, L. MAKOWSKI, AND D. H. BROOKS

Finally, in Theorem 2.5 we show that all minimizers of P1 are equivalent in objective
value and thus all minimizer are global. To do so, we use the convexity of P2C and
Lemma 2.4 to show that all minimizers in the non-negative orthant of P1 share the
same objective value and using Lemmas 2.2 and 2.3 we extend this proposition to all
minimizers of P1. Corollary 2.6 provides a stronger statement in the case of u > 0,
where we show that in that case the minimizer of P1 is unique.

We start the proof by stating the optimization problems P2 and P2C. First we unravel
all the terms in P1:

(2.6) min
x∈RN

(
xTx

)2
+ b2 − 2b

(
xTx

)
+ xTΣx+ uTΣu− 2uTΣx

Next we add the redundant variable z ∈ RN such that zi = (xi)
2
. Under this

constraint, we have that xTx = 1T z and xTΣx = σT z, where σ is the vector of
diagonal values of the matrix Σ. Applying these changes and dropping the terms that
are constant with respect to x ans z, we get P2:

min
x,z∈RN

zT
(
11T

)
z + (σ − 2b1)

T
z − 2uTΣx

s.t. zi = (xi)
2 ∀i

(P2)

We note that this objective is quadratic in z and linear in x and thus convex. The
convex relaxation P2C is given by replacing the equalities zi = (xi)

2
by convex in-

equalities zi ≥ (xi)
2
, resulting in the relaxed problem:

min
x,z∈RN

zT
(
11T

)
z + (σ − 2b1)

T
x− 2uTΣx

s.t. zi ≥ (xi)
2 ∀i

(P2C)

The positive-definiteness of Σ and the non-negativity of u guarantee that this relax-
ation is exact, as shown in the following Lemma:

Lemma 2.1. P2C has a minimizer that satisfies the constraints zi ≥ (xi)
2 ∀i with

equality. If u > 0, this minimizer is unique.

Proof. To prove this it suffices to show that given the linear relationship between
x and −2uTΣ and the non-positivity of −2uTΣ by construction, increasing x can
never increase the objective function. For those indices i for which ui > 0, increasing
xi will always decrease the objective and thus x∗i reaches its upper bound, resulting
in z∗i = (x∗i )

2. For the rest of the indices, for which ui = 0, xi plays no role in P2C
and we only require it to be feasible, leading to x∗i ∈ [−

√
z∗i ,
√
z∗i ]. As a result, the

pair [x∗, z∗] with z∗i = (x∗i )
2 is a minimizer of P2C.

Next we discuss the location of the minimizers of P1 in RN . We start with the
case u > 0:

Lemma 2.2. If u > 0, all minimizers of P1 are non-negative.

Proof. Assume by contradiction that there exists an x with an index k such that
xk < 0 and x locally minimizes P1, i.e. ∇fP1(x) = 0 and ∇2fP1(x) � 0. The
stationarity condition equates to:

(2.7)
(
4(xTx− b) I + 2Σ

)
x∗ = 2Σu ⇐⇒

(
2(xTx− b) + σi

)
xi = σiui ∀i
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Given that xk < 0 and σkuk > 0 by assumption, we have that
(
2(xTx− b) + σk

)
< 0.

Next we analyze the Hessian of P1 at x. This Hessian presents a diagonal plus rank
1 structure given by:

(2.8) ∇2fP1
(x) =

(
4(xTx− b) I + 2Σ

)
+ 8xxT

Writing the diagonal component as D =
(
4(xTx− b) I + 2Σ

)
and its eigenvalues as

di with di ≤ di+1, and the eigenvalues of ∇2fP1
(x) as λ with λi ≤ λi+1, we have that

[11]:

(2.9) di ≤ λi ≤ di+1.

We remind the reader that the diagonal entries of Σ are the inverse of the eigenvalues
of Q. Given the block structure of Q in Equation 2.2, one can see that all eigenvalues
of Q will have a multiplicity of at least 2. It follows that the eigenvalues of Σ, and
thus of D, will also have multiplicity 2 or greater. Combining this with the fact that
the lowest eigenvalue of D is negative by assumption (as there exists an index k for
which

(
2(xTx− b) + σk

)
< 0, i.e. D is diagonal and one of its entries is negative), we

have that at least 2 eigenvalues of D will be negative, i.e d1 = d2 < 0.

By 2.9, the smallest eigenvalue of ∇2fP1(x) will be bounded above by d2, result-
ing in λ1 < 0. It follows then that ∇2fP1(x) 6� 0, which contradicts the assumption
that x is a local optimum of P1. All stationary points with xk < 0 must then be
either saddle points or local maximizers, as the Hessian at those points will be ei-
ther indefinite or negative semi-definite. As a result, any minimizer of P1 must have
x ≥ 0.

For the case when u has some entries equal to 0, we get the weaker proposition:

Lemma 2.3. If u ≥ 0 and u 6> 0, then any local minimizer x with an index k
such that xk < 0 has an equivalent minimizer x̂ : fP1

(x) = fP1
(x̂) in the non-negative

orthant of the form x̂ = |x|
Proof. As in Lemma 1, x must satisfy ∇fP1

(x) = 0 and ∇2fP1
(x) � 0 to be a

local minimizer of P1. For each k for which xk < 0, we must have that uk = 0. Other-
wise, to satisfy the stationarity condition, one would have that

(
2(xTx− b) + σk

)
< 0

and, as shown in Lemma 1, that implies the existence of negative eigenvalues of the
Hessian, contradicting the positive-semidefiniteness assumption.

Since uk = 0 for each xk < 0, it is easy to verify that fP1
(x) = fP1

(x̂), as the
function becomes invariant to changing the sign of xk, and that the stationarity con-
dition and the semidefinitieness of the Hessian are also trivially satisfied, concluding
the proof.

Next we tie the minimizers of P1 with those of P2C. We do so in the following Lemma:

Lemma 2.4. If x ≥ 0 is a minimizer of P1, then the pair [x, z] with zi = x2
i is a

minimizer of P2C.

Proof. The pair [x, z] must satisfy the KKT conditions of P2C to minimize it.
Writing the constraints in the standard form gi(x, z) ≤ 0 for gi(x, z) = x2

i − zi, the
KKT conditions for this problem are:

∇xfP2C
(x∗, z∗) = −

∑
µ∗i∇xgi(x∗, z∗)

∇zfP2C
(x∗, z∗) = −

∑
µ∗i∇zgi(x∗, z∗)

(Stationarity)
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(Primal Feasibility) gi(x
∗, z∗) ≤ 0

(Dual Feasibility) µ∗i ≥ 0

(Comp. Slackness) µ∗i gi(x
∗, z∗) = 0

Primal feasibility and complementary slackness are satisfied by assumption, as the
equality zi = x2

i is equivalent to stating gi(x, z) = 0 for all i. Developing the station-
arity condition for y yields:

∇xfP2C
(x∗, z∗) = −

∑
µ∗i∇xgi(x∗, z∗)

−2Σu = −2 diag(µ∗)x∗

Σu = diag(x∗)µ∗

(2.10)

As x is a minimizer of P1, it must satisfy the stationarity condition 2.7 for P1. Com-
bining both stationarity conditions for P1 and P2C results in µi =

(
2(xTx− b) + σi

)
.

The assumption ∇2fP1
(x) � 0 necessarily implies that

(
2(xTx− b) + σi

)
≥ 0, as in

Lemma 2.2, so we are guaranteed that the choice µi =
(
2(xTx− b) + σi

)
satisfies

both the stationarity condition for x and the dual feasibility condition in P2C. The
only condition left to check is the stationarity with respect to z. Developing the
stationarity condition for z and using the above µ identity we get:

∇zfP2C
(x∗, z∗) = −

∑
µ∗i∇zgi(x∗, z∗)

2
(
11T

)
z∗ + (σ − 2b1) = µ∗

diag(x∗) (2
(
11T

)
z∗ + (σ − 2b1)) = diag(x∗) µ∗

diag(2
(
1T z∗ − b

)
1 + σ)x∗ = Σu(

2(x∗Tx∗ − b) I + Σ
)
x∗ = Σu

(2.11)

The last equation is equivalent to requiring y to be a stationarity point of P1, which
it is by assumption, so we can conclude that the pair [x, z] satisfies all the KKT
conditions of P2C and is thus a minimizer of P2C, which finishes the proof.

Combining Lemmas 2.2, 2.3 and 2.4 and the convexity of P2C, we postulate that:

Theorem 2.5. Every local minimizer of P1 is a global minimizer.

Proof. By Lemma 2.4, all local minimizers in the non-negative orthant of P1 are
local minimizers of P2C and by convexity of P2C, all local minimizers of P2C must
have equal objective value. As fP2C

(x, z) = fP1
(x) whenever x ≥ 0 and zi = x2

i , it
follows that all local minimizers in the non-negative orthant of P1 will also have the
same objective function value and thus will be global minimizers of P1. Finally, by
2.3, any minimizer outside of the non-negative orthant will have the same objective
value as at least one minimizer in the non-negative orthant, which extends the status
of global minimizers to all local minima of P1.

Corollary 2.6. If u > 0, the minimizer is unique.

Proof. We prove this corollary by proving a more general statement, i.e. if u > 0,
there exists only one stationary point in the non-negative orthant. By contradiction,
assume that there exist two different points x̂ and x̃, x̂ 6= x̃, such that they both are
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stationary points of P1, i.e. ∇fP1
(x̂) = 0 and ∇fP1

(x̃) = 0. Assume without loss
of generality that ||x̂||22 ≥ ||x̃||22. The stationarity condition gives us the following
characterization of x̂ and x̃:

(2.12) x̂i =
σiui

(2(x̂T x̂− b) + σi)
, x̃i =

σiui
(2(x̃T x̃− b) + σi)

, ∀i

Given the non-negativity of the left-hand sides of these expressions and the positivity
of the numerators of the right-hand sides, it follows that the denominators can’t be
negative. The condition ||x̂||22 ≥ ||x̃||22 can be broken into the conditions: ||x̂||22 = ||x̃||22
and ||x̂||22 > ||x̃||22. For the former, we note that if ||x̂||22 = ||x̃||22, then the right-
hand sides of the expressions above are equal, and thus we have that x̂ = x̃, which
contradicts the initial assumption that x̂ and x̃ are different. For the latter, we have
that:
(2.13)

||x̂||22 > ||x̃||22 =⇒ x̃i =
σiui

(2(x̃T x̃− b) + σi)
>

σiui
(2(x̂T x̂− b) + σi)

= x̂i =⇒ ||x̂||22 < ||x̃||22

which is a contradiction. It follows thus that x̂ and x̃ cannot be stationary points
unless they are equal, which proves that uniqueness of the non-negative stationary
point. Given that, by Lemma 1, when u > 0 all minimizers of P1 are in the non-
negative orthant, and that P1 must have a minimizer because it is bounded below, at
least one minimizer must exist in the non-negative orthant. As every minimizer is a
stationary point and that stationary point is unique, it follows that the minimizer of
P1 must also be unique.

3. An Efficient Solver for the Prox Operator. The equivalence of a all local
minimizers allows us to use simple descent methods to reach the global solution of
P1. Between the three equivalent problems P1, P2 and P2C, we focus on P1 due
to its simplicity, as it lacks any constraints and the size of its variable space is N as
opposed to 2N . We begin by computing the gradient ∇x and the Hessian ∇2

x of P1:

(3.1) ∇x =
(
4(xTx− b) I

)
x+ 2Σ (x− u)

(3.2) ∇2
x = 8xxT + 4(xTx− b) I + 2Σ

The Hessian matrix in 3.2 can be separated into a (full-rank) diagonal component and
a rank 1 matrix. Under this structure, the inverse of ∇2

x can be computed in linear
time using the Sherman-Morrison formula to perform rank 1 updates on the inverse
of matrix [12]:

(S-M)
(
A+ uvT

)−1
= A−1 − A−1uvTA−1

1 + vTA−1u

This property allows us to add second-order information in our optimization at the
same cost as a first-order gradient descent. We propose to minimize P1 using the
Newton method together with the S-M update:

xk+1 = xk − α
(
∇2
xk

)−1∇xk

= xk − α
(

8xkxk
T

+ 4(xk
T
xk − b) I + 2Σ

)−1

∇xk

(3.3)
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Introducing the vector ξk = 2σ + 4(xk
T
xk − b)1 containing the diagonal elements of

∇2
xK , the element-wise quotient operator � and the mapping diag(x) that maps from

RN vectors to RN×N diagonal matrices, we get that:

xk+1 = xk − α

(
diag

(
1� ξk

)
− 8

diag
(
1� ξk

)
xkxk

T
diag

(
1� ξk

)
1 + xk

T
diag (1� ξk)xk

)
∇xk

= xk − α

∇xk � ξk −

(
8xk

T (∇xk � ξk
))

1 + 8xk
T

(xk � ξk)

(
xk � ξk

)(3.4)

which involves only element-wise vector computations and can be computed in linear
time.

Next we explore two additional factors of the optimization of P1: the choice of the
starting iterate x0 and the size of the descent direction αk. For the choice of the first
iterate, we study the structure of the optimizer x∗ and develop element-wise and norm
bounds for x∗ that we can apply to x0. We start by setting the gradient in Equation
3.1 to 0:

(3.5)
(

4(x∗Tx∗ − b) I
)
x∗ = 2Σ (u− x∗)

We assume from now on that x∗ ≥ 0. As shown in Section 2, either there is a unique
optimizer for P1, which is non-negative, or there are multiple equivalent minimizers,
for which one of them is non-negative, so we focus our discussion on norm and element
bounds on the non-negative case. Under that assumption, all the elements on the left
hand side (LHS) of 3.5 share the same sign as x∗Tx∗ − b. Assuming the LHS to be
positive, i.e. x∗Tx∗ > b, leads to u > x∗, which in turn leads to uTu > x∗Tx∗ > b.
Similarly, when the LHS is negative we get b > x∗Tx∗ > uTu and x∗ > u. We see
that these conditions rely on the relationship of b and u, leading to:

If uTu > b =⇒ uTu > x∗Tx∗ > b and ui > x∗i

If b > uTu =⇒ b > x∗Tx∗ > uTu and x∗i > ui
(3.6)

Analyzing equation 3.5 element-wise, we get:

(3.7) x∗i =
σi ui

σi + 2
(
x∗Tx∗ − b

)
As the LHS has been shown to be non-negative and the numerator in the RHS is non-
negative by construction, it follows that the RHS denominator must be non-negative
too. This results in the following lower bound on the norm of x∗:

(3.8) σi+2
(
x∗Tx∗ − b

)
≥ 0 =⇒ x∗Tx∗ ≥ b− σi

2
∀i =⇒ x∗Tx∗ ≥ b− σ−

2

where σ− is the minimum diagonal entry of Σ. This bound is only useful for the case
b > uTu, as otherwise Equation 3.6 gives a tighter bound x∗Tx∗ > b. Applying this
inequality to Equation 3.7 we derive an element-wise upper bound on x∗:

(3.9) x∗i =
σi ui

σi + 2
(
x∗Tx∗ − b

) ≤ σi ui
σi − σ−

We summarize these bounds in the following table:
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Case Norm Bounds Element-wise Bounds

uTu > b uTu > x∗Tx∗ > b ui > xi
b > uTu b > x∗Tx∗ > max(uTu, b− σ−

2 ) σi

σi−σ−
ui > xi > ui

Regarding the choice of the step size α, we propose an alternative to the trivial choice
α = 1 that relies on computing the optimal step size in the descent direction at each
iteration. We use the fact that P1 is a quartic problem and thus optimizing it over a
line involves the minimization of a univariate quartic polynomial:

α∗ = argmin
α∈R

((
xk + α∆xk

)T (
xk + α∆xk

)
− b
)2

+ ||
(
xk + α∆xk

)
− u||2Σ

= argmin
α∈R

a4 α
4 + a3 α

3 + a2 α
2 + a1 α + a0

(3.10)

for appropriate values of a0, . . . , a4. The optimal α can be obtained by differentiating
the quartic polynomial in 3.10 and keeping the real negative root with the smallest
absolute value of the resulting cubic, which can be found via a closed form expression.

4. Numerical Experiments. In this section we compare the proposed method
to solve P1 with conventional implementations of the Newton Method and gradi-
ent descent. All three methods are implemented with both a unit step update and
the optimal step-length update presented in Section 3 and are tested with a random
initialization as well as with a warm start using the bounds derived in Section 3.
Pseudo-code for the tested methods is shown in Algorithm 4.1:



10 B. ROIG-SOLVAS, L. MAKOWSKI, AND D. H. BROOKS

Algorithm 4.1 Pseudo-code for the tested methods

1: Sample u, Σ and x0 as per Algorithm 4.2
2: if Warm Start then

3: x0 = u
√

b
uTu

4: end if
5: tol = 10−6

6: max-iter = 5 · 104

7: k = 0
8: while

(
∇Txk∇xk

)
> tol && k < max-iter do

9: if Gradient Descent then
10: ∆xk = −∇xk

11: else if Newton then
12: ∆xk = −

(
∇2
xk

)−1∇xk

13: else if S-M Newton then
14: ξk = 2σ + 4(xk

T
xk − b)1

15: ∆xk = −
(
∇xk � ξk −

(
8xkT (∇xk�ξk)

)
1+8xkT (xk�ξk)

(
xk � ξk

))
16: end if
17: if Unit Step then
18: α = 1
19: else if Optimal Step then

20: α = minα f
(
xk + α∆xk

)
for f(x) =

(
xTx− b

)2
+ ρ

2 (x− u)TΣ(x− u)
21: end if
22: xk+1 = xk + α∆xk

23: k = k + 1
24: end while

The methods were tested for 20 different values of problem dimension N , ranging
from N = 10 to 2000, spaced in logarithmically uniform intervals. For each N , the
methods were tested for 50 Monte Carlo simulations with different sampled values of
u, Σ and x0.

The geometry of P1 depends, among other things, on the relationship between b and
||u||22 and the condition number and Frobenius norm of Σ. To analyze the sensitivity
of the proposed method to these factors, u was sampled from a uniform distribution
and scaled to having a squared norm ranging from 1/10 to 10 times that of b, while
Σ was sampled to have linearly decaying eigenvalues of multiplicity 2, with a squared
Frobenius norm ranging from 1/10 to 10 times that of b and a condition number
ranging from 1 to 1000. Setting b = 100, we get the following sampling scheme:
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Fig. 1. Average execution time and iteration count vs. dimension N across methods: Each data
point is the average of 50 Monte Carlo Simulations as explained above. The different methods are
represented by the marker shapes (square, triangle and circle for Newton Method, Gradient Descent
and the proposed S-M Newton method, respectively), while the step-size is shown in the color of the
marker (white for unit step, cyan for optimal step). Finally, dotted lines show experiments run with
a random initial point, while solid lines denote those initialized with a warm start, as explained in
the text.

Algorithm 4.2 Pseudo-code for Monte Carlo sampling

p ∼ U (0, 3) , q, r1, r2 ∼ U (1, 3)

s1, s2 ∼ U (0, 1)
N

b = 100
t = {t ∈ RN

2 : ti = 1 + i−1
N
2 −1

10p ∀ i ∈ [1, N2 ]}

σ = [t, t]
√

10q

||[t,t]||22
Σ = diag (σ)

u = s1

√
10r1

||s1||22

x0 = s2

√
10r2

||s2||22

The results of the Monte Carlo simulations are presented in Figure 1, where ex-
ecution time and iteration count are shown as a function of the problem dimension
N in a log-log plot. The proposed approach, in circular markers, outperforms both
gradient descent and standard Newton in all modalities. The computational com-
plexity of the compared approaches becomes evident in Figure 1.a, where the Newton
method (in square markers) presents a much steeper increase in complexity due to
the O(N3) cost of the Hessian inversion, compared to the linear complexity of the
other two methods.

The use of warm start, denoted by the plots in solid lines in Figure 1, produces
both lower execution time and iteration count in all cases when compared to the ran-
dom start, in dotted lines. Regarding the choice of step size, the use of the optimal
step size reduces the number of iterations in almost all cases, as shown in Figure
1.b. However, the effect on execution time varies between methods: for the proposed
method, the use of a unit step achieves a faster converge than the optimal step, due to



12 B. ROIG-SOLVAS, L. MAKOWSKI, AND D. H. BROOKS

Fig. 2. Effect of ||u||22, cond(Σ) and ||Σ||2F on the running time of the proposed method.
50 values of N were selected, spaced in log-uniform intervals between N = 10 and N = 2000.
500 experiments were carried out for each N , sampling u and Σ at random as in Algorithm 4.2.
The proposed method was run for each experiment, using the unit step and the warm initialization
proposed in 4.1. Each experiment is plotted with respect to its dimension N and its running time,
where incremental displacements where added on the horizontal axis to improve visualization. Colors
and colorbars indicate ||u||22, cond(Σ) and ||Σ||2F in panels a, b and c, respectively.

the extra computation present in the latter approach, while for the Newton method,
where each iterate requires a costly matrix inversion, the extra cost of computing
the optimal step is negligible in comparison and the Newton method converges more
rapidly to the optimizer when using the optimal step size.

The difference in convergence rates between gradient descent and the Newton meth-
ods are evident in Figure 1.b. In fact, most of the executions for the gradient descent
experiments (90% and 60% for random and warm start, respectively, and N = 2000)
stopped due to the iteration limit set in Algorithm 4.1, before the tolerance was
reached, as can be seen by the progressive approach of both gradient descent curves
in Figure 1.b towards the 50000 iteration ceiling, further illustrating the slow conver-
gence rate of gradient descent for this problem.

In Figure 2 we report on the effect on execution time of the problem parameters
||u||22, cond(Σ) and ||Σ||2F . To do so, we discretized the range N = [10, 2000] in 50
log-uniform steps and ran 500 experiments for each value of N , sampling u and Σ at
random as in Algorithm 4.2. All experiments were run with the fastest configuration
found in the previous experiments, i.e. using the warm start presented in Algorithm
4.1 and unit step size. Figure 2 shows the execution time of each experiment as a
function of dimension N , where each experiment is colored based on ||u||22, cond(Σ)
and ||Σ||2F , respectively, in each panel.

The execution time has a clear dependence on ||u||22, decreasing as ||u||22 approaches
b. As shown in the bounds developed in Section 3, ||x∗||22 is always bounded between
b and ||u||22, so it is to be expected that x0 converges faster to x∗ as these bounds
become tighter. The condition number also shows a clear correlation with the exe-
cution time, where convergence is faster as Σ approaches a multiple of the identity
matrix (we note that P1 can be solved in closed form when Σ = cI [19]). However,
as evidenced by Figure 2.c, no clear patterns appear in the interaction between ||Σ||2F
and execution time.
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5. Conclusions. In this paper we have studied the general form of the prox
operator [6] that arises from the multispectral phase retrieval problem 1.3. We have
shown that all minimizers of the prox operator 1.4 are equivalent in objective value,
guaranteeing the global optimality of any local minima reached by simple descent
techniques despite the non-convexity of the problem. We then analyzed the structure
of the Hessian of the prox operator and shown that it can be inverted in linear time
due to its diagonal plus rank 1 structure. Thus, an exact Newton method can be
implemented that is efficient both in the number of iterates needed to achieve opti-
mality and in the cost of each of these iterates. We also studied the properties of
the minimizer of 1.4 in order to derive initial iterates that are close to the optimal
solution. We report on the performance of the proposed method and compare it to
that for regular implementations of the gradient descent and Newton methods, and
show that the proposed approach achieved superior performance in all experimental
scenarios studied.
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