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1. Introduction

This thesis studies numerical methods for solution of resonance problems
related to pronunciation of vowels. Vowels, as all human speech, are
produced by the vocal folds and the vocal tract. As air flows past the
vibrating vocal folds, a periodic glottal pulse is generated. The vocal tract
changes its shape to amplify certain frequency components of this pulse
to produce different phonation. In the case of vowels, this means that a
standing wave is formed in the vocal tract (VT) cavity corresponding to
a certain frequency. As more energy is fed into the cavity in form of the
glottal pulse, the amplitude of the standing wave increases. The interest
then lies in finding out which frequencies get amplified given a vocal tract
configuration.

Studying standing waves occurring in sustained phonation of vowels
leads to an acoustic resonance problem. Our interest lies specifically in
determining the three lowest resonance frequencies within the oral cavity,
as each vowel can be distinguished based on them [4, 6]. Determining the
resonant frequencies involves solving an eigenvalue problem related to a
linear second order PDE. This PDE is typically discretised using Finite
Element Method (FEM). Such is the case in Publications II and III, where
speech production related resonance computations are carried out.

An essential component of computing resonances of the oral cavity is
a geometric representation of the vocal tract. In our case, this means a
connected mesh of tetrahedrons approximating the VT air volume. For
this purpose, the VT is imaged using Magnetic Resonance Imaging (MRI).
Our research group has been collecting 3D MRI data of different vowel
configurations for several years, resulting in excess of a thousand samples
from various test subjects [1]. Since the amount of data is too large for
manual labour, there is a need for automated processing.

A tetrahedral mesh approximating the VT air volume can’t be directly
extracted from MRI data as there is no boundary for the VT at the open
mouth. Instead, a surface mesh consisting of connected triangles approxi-
mating the boundaries of the VT air volume is extracted, see Figure 1.1.
This is a non–trivial task, as is explained in Section 2. An automated
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algorithm for this purpose is introduced in Publication I. In addition to

Figure 1.1. A sagittal plane from a 3D MR image, and the triangular surface mesh
extracted from the full image.

computational speech modelling, surface meshes of vocal tracts can be
used as models for additive manufacturing. This is demonstrated in Publi-
cation II, where frequency responses are measured from 3D printed vocal
tract models.

A sufficiently fine FEM discretisation for observing the relevant phe-
nomena in the model often results in equations with a large number of
degrees of freedom, causing substantial computational costs and memory
requirements. For instance, during MRI measurements, the test subject
is lying inside an MRI machine, and the sound data is simultaneously
recorded. An illustrative picture of the process is shown in Figure 2.1. In
this case, the acoustic environment needs to be modelled in order to get a
reasonable correspondence between characteristics of the recorded sound
data and the computed resonances. However, the air volume inside the
MRI head coil is significantly larger than the one in the vocal tract. As the
environment also remains constant throughout the measurements, there is
an incentive to pre-compute its effects on the resonances in order to reduce
the complexity of computing the resonances of each vocal tract geometry.

In Publication IV, a domain decomposition method is introduced for pre-
computing the effects of a subdomain interacting through an interface in
numerical solution of eigenvalue problems. This is relevant when coupling
multiple components into a system, see [11]. The method is based on
approximating the eigenfunctions in a suitably chosen low-dimensional
space.

In Publication V, the aforementioned method is refined into a parallel
solver of FE-discretised eigenvalue problems. This method allows for
distributed solution of eigenvalue problems using an arbitrary number of
subdomains. Similar to the method in Publication IV, a low-dimensional
basis is computed for each subdomain, and the bases are combined to form
a global low-dimensional approximation space.

10



2. Medical imaging and vocal tract
geometry extraction

Figure 2.1. Left: Preparing a subject for an MRI scan. The equipment for sound recording
is being placed on the head coil. Right: An illustration of a vocal tract
geometry coupled with an exterior acoustic geometry through a spherical
interface shown in green.

We briefly discuss aspects related to obtaining a three-dimensional medical
image of a VT. As subjects cannot be exposed to ionising radiation for non-
clinical reasons, computed tomography, which is typically used when high
resolution is needed, cannot be used. Ultrasound imaging is a harmless
approach used, e.g., in tracking tongue movement [10]. Unfortunately, the
low definition and the difficulties in imaging the entire VT makes this
method infeasible.

MRI is a non-invasive imaging technique used in many clinical applica-
tions. As there is no ionising radiation involved, the procedure is safe to
conduct on healthy patients in order to obtain control data, and to repeat
the multiple times for the same subject, as is required when performing
several instances of each vowel phonation.

The MRI data is stored as a three-dimensional array with a single in-
tensity value for each element, or voxel, in the array. Additionally, the
data contains information on the coordinates of each voxel, allowing for a
correctly scaled reconstruction of the imaged object(s).

There are three challenges related to using MRI to obtain image data for
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modelling vowel phonations. The first one is related to the physics of MRI:
Only parts of the body containing water can be distinguished from air in
the images, see [9]. As osseous tissue, such as bones and teeth, contains
few water molecules, such tissue has poor contrast. For this reason, a
significant challenge in extracting VT geometries from MR images is to
prevent extracting the lower and upper jaw bone structures along with the
VT air volume.

The second challenge with medical imaging is the fact that not every
image is going to be perfect. More so in this case, where a strict protocol for
the positioning of the patient does not exist, as an MRI of the vocal tract is
not a standard procedure at the time of writing of this thesis. Additionally,
phonation is by nature a non-static event, as the vocal folds are constantly
vibrating. This along with the vibration of the uvula creates unavoidable
motion artefacts.

The third challenge is related to coupling the extracted VT geometry to
the exterior acoustic space, which is outlined in Sections 2.1 and 2.2.

2.1 Geometry extraction

As the goal of this thesis is to compute resonances of the vocal tract, it is
necessary to first acquire three-dimensional computational geometries of
the VT. For this purpose, Publication I describes an algorithm for extracting
triangulated surfaces from Magnetic Resonance Imaging (MRI) data. The
acquisition of this data is detailed in [1]. The same extraction algorithm is
used in Publications II, III, and IV to produce the triangulated geometries
used to generate tetrahedral meshes.

The previously used algorithm to extract a surface triangulation of the
VT from the MRI data relied on manually extracted artefact models of
the lower and upper jaws for each patient [2]. The artefact models were
automatically aligned for every separate image, and the resulting air
volume was extracted. The two challenges posed by this approach were
the amount of manual labour required to construct the artefact models,
as well as the challenges posed by the alignment process, since slight
misalignment caused the extraction to fail substantially.

The approach discussed in Publication I was designed to be as robust as
possible. Due to the large amount of MRI data available, it is preferable
to extract a rough representation of the VT air volume from each sample
so that the results can be studied in a statistical sense. The central idea
in the algorithm is to refine a coarse binary voxel mask that blocks any
osseous tissue while preserving the air volume of the VT. Pre-processing is
applied to the MRI voxel data in order to increase contrast and improve
edge definition. Coarse anatomical landmarks such as the location of the
tip of the nose and the lower chin are used to estimate the location of
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the mouth. An initial mask is created by iteratively smoothing the pre-
processed image data and extracting a series of binary masks using seeded
region growing. the surface area of the extracted masks are computed, and
the change in surface area is monitored. A large change in the extracted
surface area indicates that the tooth canals leading to the upper and lower
jaw bones have been blocked.

The initial mask is then used up to a certain depth as a guide to obtain
a more refined mask. This process is repeated using the most recently
created mask and raising the threshold intensity as necessary until the
mask contains the VT air volume at least up to the vocal folds.

2.2 Coupling with the exterior model

Due to the constrained space inside the MRI machine, particularly within
the head coil, the acoustics of the MRI machine needs to be accounted for
in the modelling process. To this end, we received a 3D CAD model of the
Siemens Avanto head coil from Siemens Healthineers. A tetrahedral mesh
of the air volume within the coil was created with a generic head model
positioned inside, shown in Figure 4.1. In order to conveniently couple
meshes of different vocal tract configurations with the exterior mesh, a
spherical interface surface is placed around the mouth to act as a boundary
of the exterior acoustic space. The extracted VT geometries were then
stitched to a copy of this interface in order to connect the two meshes.
Since generating the tetrahedral mesh of the VT is not a straightforward
operation, some interface triangles may get removed during the process.
Thus, it is convenient to use Nitsche’s method and discretise the two
meshes separately, as the interface surface triangulations need not match.
This approach is used in Publication III.

Figure 2.2. A top-down view of the interface and a triangulated VT geometry to which the
interface is attached.

The VT surface model also needs to be processed in order to generate

13



Medical imaging and vocal tract geometry extraction

a suitable mesh. A 2D triangulation is generated between the bound-
ary edges of the interface and the boundary edges near the mouth of the
extracted triangulated VT. An approximation of the facial features is ob-
tained by solving a two-dimensional Poisson problem with a constant load
and boundary conditions indicating the third coordinate. The spherical
interface and an example of an extracted VT surface that is compatible
with the interface are shown in Figure 2.2.

14



3. Acoustic eigenvalue problems

3.1 Helmholtz equation

We briefly present the two common PDE’s in acoustics and their relation
to each other. Let Ω ⊂ Rd, d = 2, 3 be a domain. The wave equation is a
second order linear PDE,

c2∆p =
∂2p

∂t2
, in Ω,

where c is the speed of sound in the media and p = p(x, t) is a scalar field
corresponding to the pressure deviation. This equation is used to model
the propagation of waves in different media.

To study standing waves, we assume that the pressure field p is of the
form p(x, t) = eiωtu(x) where ω = 2πf is called the angular frequency. This
is called the time-harmonic ansatz. Inserting the ansatz into the wave
equation yields

c2∆u = −ω2u, in Ω.

This is known as the Helmholtz equation. Denoting λ = ω/c, we arrive at
an eigenvalue problem: Find λ and u such that

∆u = −λ2u, in Ω. (3.1)

Let ∂Ω = ΓN ∪ΓD ∪ΓR. The commonly used boundary conditions in speech
modelling are homogeneous Neumann, homogeneous Dirichlet, and Robin
boundary conditions, defined as

∂u

∂n
= 0, on ΓN ,

u = 0, on ΓD,

∂u

∂n
+ λu = 0, on ΓR,

(3.2)

where ΓN , ΓD, and ΓR denote the Neumann, Dirichlet, and Robin boundary
sections, respectively.
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Acoustic eigenvalue problems

3.2 Finite element discretisation

We now take a look at numerically solving the eigenvalue problem given
in (3.1) with the boundary conditions (3.2). Since the acoustic eigenvalue
problem is posed in a complicated domain, it is discretised using finite
element method. FEM utilises the variational formulation of (3.1): Find
(λ, u) ∈ C× V such that
∫︂

Ω
∇u · ∇v dx+ λ

∫︂

ΓR

uv dx = λ2
∫︂

Ω
uv dx, for all v ∈ V ⊂ H1(Ω). (3.3)

The space V depends on the boundary conditions posed on the problem. For
instance, a homogeneous Dirichlet condition ∂Ω = ΓD results in V = H1

0 (Ω),
whereas Neumann boundary condition ∂Ω = ΓN yields V = H1(Ω).

Robin type boundary conditions are relevant in acoustic applications.
For instance, a boundary condition corresponding to ΓR is posed at the
termination of the trachea at or slightly below the vocal folds in VT reso-
nance computations [3], as is done in Publication III. If ΓR ̸= ∅, (3.3) is a
quadratic eigenvalue problem whose numerical solution and mathematical
analysis is complicated. In this thesis, the case ΓR = ∅ is considered for the
sake of simplicity. Problem (3.3) then reduces to finding (µ, u) ∈ R+ × V
such that

∫︂

Ω
∇u · ∇v dx = µ

∫︂

Ω
uv dx, for all v ∈ V ⊂ H1(Ω). (3.4)

The eigenvalues are obtained from the relation µ = λ2, λ ≥ 0.
Problem (3.4) is numerically solved using finite element method. In FEM,

the space V is replaced by a finite dimensional space Vh ⊂ V. This yields
the discretised problem: Find (λh, uh) ∈ R+ × Vh such that

∫︂

Ω
∇uh · ∇vh dx = λh

∫︂

Ω
uhvh dx, for each vh ∈ Vh. (3.5)

As Vh we use the space of piecewise linear functions over a triangular
(d = 2) or tetrahedral (d = 3) partition of Ω with basis {φj}nj=1, φj : Ω→ R.
Expanding uh and vh in this basis, (3.5) is equivalent to

Ax = λhMx, (3.6)

where A,M ∈ Rn×n, Aij =
∫︁
Ω∇φj · ∇φi dx, Mij =

∫︁
Ω φjφi dx, are called the

stiffness and mass matrices, respectively. If ΓD ̸= ∅, these matrices are
sparse, symmetric, and positive definite. The vector x ∈ Rn is the coordi-
nate vector of the eigenfunction uh =

∑︁n
j=1 xiφi. The set of eigenvalues

of (3.6) is denoted by σ(A,M).
Cholesky decomposition is used to transform (3.6) to a standard eigen-

value problem. For a symmetric positive definite matrix A ∈ Rn×n, the
(lower triangular) decomposition is

A = LLT .
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Besides being efficient to compute, the decomposition also produces sparse
matrices, although with some fill-in. This property is crucial when dealing
with large sparse matrices due to memory constraints. Hence, Cholesky
decomposition is commonly used to solve linear systems of equations.
Problem (3.6) can be written as a standard eigenvalue problem using the
Cholesky decomposition M = LLT :

Ây =
1

λ
y, where y = LTx, Â = LTA−1L. (3.7)

Note that an inverse formulation is used in order to find the lowest eigen-
values of (3.6) when using power iteration.

3.3 Rayleigh-Ritz method

Modern eigenvalue solvers are typically of Ritz type. Given a generalised
eigenvalue problem Ax = λMx, A,M ∈ Rn×n, x ∈ Rn where A and M

are symmetric, positive definite matrices, the number of unkowns can be
reduced at the cost of accuracy of the solution, or when the interest lies on
eigenvalues within a specific interval. LetW ⊂ Rn, and {vj}kj=1 be a basis
ofW. The Ritz eigenpairs (λ̃, x̃) ∈ R× Rk are given by

VTAVx̃ = λ̃VTMVx̃, (3.8)

where we call V =
[︂
v1, . . . ,vk

]︂
∈ Rn×k the method matrix, and W the

method subspace. We denote the family of eigenvalues satisfying (3.8) by
σW(A,M). Similarly, when {vj}kj=1 is an orthonormal basis, the standard
eigenvalue problem (3.7) can be written in the subspaceW as

VT ÂVỹ =
1

λ̃
ỹ. (3.9)

The quality of the approximation of the pairs (λ̃,Vx̃) ∈ R+×W compared
to the eigenpairs of the original problem depends on the method subspace.
An a priori error estimate for the relative eigenvalue error similar to [5]
is used: Let (λ,x) satisfy Ax = λMx and xTMx = 1. There exists λ̃ ∈
σW(A,M) such that

|λ− λ̃|
λ

≤ C(λ) min
v∈W

∥x− v∥2A, (3.10)

where ∥ · ∥A = ∥A1/2 · ∥2. The Rayleigh-Ritz method can also be used to
approximately solve continuous eigenvalue problems, e.g., problem (3.3).
One example is using FEM discretisation to approximate the eigenfunc-
tions in a finite dimensional space. An essentially indentical error estimate
to (3.10) is given in [5].

According to (3.10), the spaceW should be chosen to accurately approxi-
mate the eigenvectors corresponding to the eigenvalues of interest.
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A useful example of the Rayleigh-Ritz method is given via Krylov spaces.
For a matrix A ∈ Rn×n, b ∈ Rn, a Krylov space of degree k is defined as

Kk(A,b) := span{b,Ab,A2b, . . . ,Ak−1b}.

As k increases, the vector Ak−1b approaches the eigenvector of A corre-
sponding to its largest eigenvalue. The initial vector b is typically chosen
randomly. When solving for the smallest eigenvalues, the space Kk(A−1,b)

is used to compute their reciprocals. If A is a large and sparse matrix,
computing its inverse is typically prohibitively expensive. Instead, a suit-
able factorisation of A is used to compute the vector A−1v using back
substitution.

A Krylov subspace for computing the smallest eigenvalues is Kk(Â
−1
,b).

Note that the Cholesky factor needs to be stored to recover the eigenvectors.
An orthogonal basis for the Krylov space is obtained using Arnoldi itera-

tion. If A is Hermitian, the process leads to the Lanczos iteration, where
the matrix V∗AV ∈ Rk×k is tridiagonal.

The a priori error bounds for the eigenvalues of the projected eigenvalue
problem for the Lanczos iteration are discussed in [8]. In short, one needs
to compute a larger dimensional Krylov space than the amount of largest
eigenvalues sought for. For instance, Matlab uses a factor of 2 for the
dimension.
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4. Domain decomposition

The goal in Publications IV and V is to speed up the solution of (3.3) when
the interest lies in eigenvalues on the spectral interval of interest (0,Λ).
An example of such a problem occurs when studying the pronunciation of

Ω1

Ω2

Γ

Figure 4.1. An example of a domain decomposition where a vocal tract is connected to an
exterior acoustic space defined by the head and the MRI head coil. The joining
interface is denoted by Γ.

vowels where the interest lies in the lowest resonant frequencies within
the oral cavity. Both methods introduced in these publications are Ritz
type domain decomposition methods. The domain Ω is split into smaller
subdomains, and a local Ritz space is constructed separately for each
subdomain. The method subspace is then obtained by combining the local
Ritz spaces.

The local Ritz spaces are constructed using a representation mapping
which expresses the eigenfunction u in a subdomain U as a λ-dependent
linear mapping acting on u|

∂ ˆ︁U . Here ˆ︁U is an extended subdomain related
to U . Since the eigenvalues and eigenfunctions are unknown, the local Ritz
space is obtained by studying the range of the representation mapping.
Due to singularities with respect to λ, the representation mapping is split
into singular and analytical parts. The range of the singular part is finite
dimensional and easy to compute. The non-linearity of the analytical
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part with respect to λ is treated with interpolation. We call this approach
Condensed Pole Interpolation (CPI). The dimension of the local Ritz space
is kept small using Singular Value Decomposition (SVD).

4.1 Condensed Pole Interpolation

We proceed to describe the CPI method using the setting of Publication IV.
The domain Ω is decomposed into two subdomains such that

Ω = Ω1 ∪ Ω2.

In our speech acoustics application, the domain Ω1 represents the vocal
tract, while Ω2 is the MRI head coil, see Figure 4.1. We are interested in
solving the problem (3.3) using several different VT geometries and a fixed
MRI head coil geometry. That is, Ω1 is allowed to vary while Ω2 remains
unchanged. The computations are sped up by finding a low dimensional
local Ritz space corresponding to Ω2 while a trivial local Ritz space is
used for Ω1. In the CPI method, the extended subdomain related to Ω2 is
implicitly defined.

Problem (3.3) is discretised using FEM with tetrahedral elements and
first order linear basis functions. Assuming that the degrees of freedom
are ordered properly, Equation (3.6) can be written as

[︄
A11 A12

A21 A22

]︄[︄
x1

x2

]︄
= λ

[︄
M11 M12

M21 M22

]︄[︄
x1

x2

]︄
, x1 ∈ Rn1 , x2 ∈ Rn2 , (4.1)

where x1 and x2 are the coefficient vectors of the basis functions related to
the subdomains Ω1 and Ω2, respectively. Since A22, M22, range(A21), and
range(M21) are associated with the MRI head coil, they are assumed to not
change as A11 and M11, corresponding to the VT geometry, are allowed to
vary. The CPI method matrix Q ∈ Rn×(n1+m), m < n2, satisfies

Q =

[︄
I 0

0 Q2

]︄
where I ∈ Rn1×n1 , Q ∈ Rn2×m. (4.2)

The local Ritz space corresponding to Ω2 is V2 := range(Q2), and the method
subspace is V := range(Q). If V has the structure induced by (4.2), the
estimate (3.10) gives

|λ− λ̃|
λ

≤ C(λ) min
v2∈V2

∥x2 − v2∥2A22
, where ∥ · ∥A22 = ∥A1/2

22 · ∥2. (4.3)

According to (4.3), the local Ritz space V2 should approximate x2 for any
([xT1 xT2 ]

T , λ) ∈ Rn × (0,Λ) satisfying (4.1) and of unit length in the norm
induced by M. For this purpose, we study the representation formula
derived from (4.1),

x2 = (A22 − λM22)
−1(λM21 − A21)x1, for λ ̸∈ σ(A22,M22). (4.4)
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This formula can be exploited by noticing that the ranks of A21 and M21

are small. These matrix blocks are related to the coupling of the two
subsystems.

We proceed to split the representation mapping t ↦→ (A22 − tM22)
−1 into

analytical and singular parts. Let (µk,vk) ∈ R+ × Rn2 be an eigenpair of
the pencil (A22,M22) satisfying

vTi M22vj = δij , vTi A22vj = µiδij . (4.5)

The eigenvectors vk form an M22-orthonormal basis of Rn2 . Define an
M22-orthogonal projection

PΛ̃ :=

K(Λ̃)∑︂

k=1

vkv
T
kM22,

and split the representation mapping as

x2 =

K(Λ̃)∑︂

k=1

αkvk + f˜︁Λ(λ)(λM21 − A21)x1, (4.6)

where f˜︁Λ(t) := (I− PΛ̃)(A22 − tM22)
−1 is the analytic part of the represen-

tation mapping. Define EΛ̃ := span({v1, . . . ,vK(Λ̃)}), where Λ̃ > Λ and
K(Λ̃) := #{k ∈ N | µk < Λ̃}. Following (4.6), the method subspace is
defined as V2 = EΛ̃ ⊕W2 whereW2 is the complementing subspace approx-
imating the space

{︁
fΛ̃(t)w

⃓⃓
t ∈ (0,Λ), w ∈ range(M21)⊕ range(A21)

}︁
.

The function fΛ̃ is approximated by interpolation using Chebyshev nodes
{ξi}Ni=1 on (0,Λ):

fΛ̃(t) ≈
N∑︂

i=1

fΛ̃(ξi)ℓi(t), ℓi(t) =
∏︂

j ̸=i

t− ξi
ξj − ξi

.

Let {pj}rj=1 be a basis of range(M21) ⊕ range(A21). We define a comple-
menting subspace containing the interpolant of fΛ̃(t)w for any t ∈ (0,Λ)

and w ∈ range(M21)⊕ range(A21) as

W2 = span
{︁
fΛ̃(ξi)pj

⃓⃓
i = 1 . . . N, j = 1 . . . r

}︁
.

The approximation error (4.3) can be analysed using standard interpolation
error estimates leading to Theorem 4.4 in Publication IV:

|λ− λ̃|
λ

≤ Cγ3 [4(γ − 1)]−2N−2 ,

where γ := Λ̃/Λ is called the oversampling parameter and λ̃ ∈ σV(A,M) ∩
(0,Λ) is the eigenvalue approximating λ ∈ σ(A,M) ∩ (0,Λ). This gives

21



Domain decomposition

an exponential convergence with respect to the number of interpolation
points N . The convergence rate depends on the oversampling parameter
which should be chosen as γ > 5/4. In the implementation discussed in
Publication IV, the vectors pj are the non-zero columns of M21 and A21. A
basis for the Ritz space V2 is obtained from the matrix

[︂
v1 . . . vK(Λ̃) fΛ̃(ξ1)p1 . . . fΛ̃(ξN )pr

]︂
,

using SVD. See Publication IV for details.

4.2 Distributed solution of eigenvalues

Let us look at solving (3.3) using multiple workstations or a cloud com-
puting service. In order to efficiently utilise the computational power, the
problem needs to be split into several subproblems that can be computed
independently on each worker node. A natural way to do this is to parti-
tion the domain Ω and let each node compress the amount of information
related to its assigned subdomain. But how do we achieve this when each
eigenmode has predominantly global behaviour?

The CPI method described in Section 4.1 can be generalised for an arbi-
trary amount of subdomains. However, the amount of degrees of freedom
on the interfaces of a complex 3D mesh is so large that the SVD becomes
infeasible to compute.

In order to reduce the amount of computation required, an extended
subdomain is created for each subdomain, see Figure 4.3. A different
representation formula is considered for mapping data from the boundary
of the extended subdomain to the interior of the subdomain. Due to the
regularity properties of the Laplace operator, the λ-dependent mapping is
compact for any parameter value. Using a linearisation step with interpo-
lation, a compact linear operator describing the mapping of boundary data
associated with the spectral interval of interest into the subdomain can be
constructed for each subdomain. SVD is used to create a low dimensional
basis for the range of this operator. Using an appropriate orthogonalisation
of the basis, a low-dimensional eigenvalue problem is assembled on the
master node, which only has to compute the off-diagonal entries of the
reduced-order mass and system matrices.

The reduced eigenvalue problem has sparse diagonal blocks but each
off-diagonal block corresponding to overlapping subdomains is full. An
example of the sparsity is shown in Figure 4.2.

We will now look at each step described above in more detail to piece
together the method. For simplicity, we consider the case ΓD = ∂Ω.
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Figure 4.2. An illustration of the non-zero entries of a PU-CPI reduced order stiffness
matrix. The full blocks correspond to neighbouring subdomains.

4.3 Subdomains and extensions

Let {U (p)}Mp=1 be an open cover of Ω,

Ω =
M⋃︂

p=1

U (p).

For p = 1, . . . ,M , we associate an extended subdomain ˆ︁U (p) with U (p)

satisfying
{x ∈ Ω | dist(x, U (p)) < r} ⊂ ˆ︁U (p).

Here r > 0 is a user-defined parameter. A non-unique definition is used due
to the FEM discretisation, where the extended subdomains are chosen as
element sets whose boundaries do not follow the level sets of the distance
function.

Figure 4.3. A two-dimensional domain split into two subdomains Ω1, Ω2 along the dashed
line. The overlapping triangles are shown in dark gray on the left. The
subdomains Ω1 and Ω2 are shown in white on the right, and the subdomain
extensions are shown in light gray.
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4.4 Continuous representation formula

Next, we derive a representation formula similar to (4.4) in a continuous
setting. We focus on a single subdomain U and its extended subdomain
ˆ︁U . For simplicity, we assume ∂ ˆ︁U ∩ ∂Ω = ∅. Let (λ, u) ∈ (0,Λ)×H1

0 (Ω) be a
solution to (3.3), and split the eigenfunction as follows:

u|ˆ︁U = u0 + EuB, (4.7)

where u0 ∈ H1
0 (
ˆ︁U) and uB = γ

∂ ˆ︁Uu. Here γ
∂ ˆ︁U is the trace operator and E its

right inverse satisfying EuB|U = 0. Hence, we have u|U = u0|U . Choosing
v ∈ H1

0 (
ˆ︁U) and using the splitting in (4.7), problem (3.3) becomes
∫︂

ˆ︁U
∇u0 · ∇v − λu0v dx = −

∫︂

ˆ︁U
∇EuB · ∇v − λ(EuB)v dx. (4.8)

We call (λ, uB) ↦→ u0|U = u|U implicitly defined by (4.8) the continuous rep-
resentation mapping. This mapping is not well defined if λ is an eigenvalue
of the Dirichlet Laplacian in ˆ︁U . To define the analytic part of the repre-
sentation mapping, the function u0 is partially solved from (4.8) using an
eigenbasis {vk} of H1

0 (
ˆ︁U) with corresponding eigenvalues {µk} satisfying

∫︂

ˆ︁U
∇vk · ∇v dx = µk

∫︂

ˆ︁U
vkv dx for each v ∈ H1

0 (
ˆ︁U), ∥vk∥L2(ˆ︁U)

= 1.

Choosing v = vk in (4.8) gives

(µk − λ)
∫︂

ˆ︁U
u0vk dx = −

∫︂

ˆ︁U
∇EuB · ∇vk − λ(EuB)vk dx.

Since u0 ∈ H1
0 (
ˆ︁U), we can use the eigenfunction basis representation

u0 =
∑︁∞

j=1 αjvj . Using the orthogonality of the eigenfunctions allows us to
solve the coefficients αj when λ ̸∈ σ(H1

0 (
ˆ︁U)):

αj =
1

µk − λ

∫︂

ˆ︁U
−∇EuB · ∇vk + λ(EuB)vk dx.

Here σ(H1
0 (
ˆ︁U)) denotes the family of eigenvalues of the Dirichlet Lapla-

cian in ˆ︁U . Through this identity, we define an operator-valued function
Z : (0,Λ)→ B(H1/2(∂ ˆ︁U), H1(ˆ︁U)) as

Z(t)wB :=
∞∑︂

k=K(Λ̃)+1

vk
µk − t

∫︂

ˆ︁U
−∇EwB · ∇vk + t(EwB)vk dx, (4.9)

where Λ̃ > Λ and K(t) := #{λ | λ ∈ σ(H1
0 (
ˆ︁U)), λ < t}. The solution u0 in ˆ︁U

is then given by

u0 =

K(Λ̃)∑︂

k=1

αkvk + Z(λ)uB. (4.10)
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The restriction of u to U is given by the continuous representation formula:

u|U =

K(Λ̃)∑︂

k=1

αkvk|U + ZU (λ)uB, (4.11)

where ZU (t)wB := (Z(t)wB) |U is the analytic part of the continuous rep-
resentation mapping. The reason for defining the solution in U as a
restriction from an extended subdomain ˆ︁U is that the operator ZU (t) is
compact for every t ∈ (0,Λ) due to the regularity properties of the Laplace
operator. Thus, ZU (t) has a finite rank approximation for each t ∈ (0,Λ).
In the next section, we present a way to approximate the ranges of these
operators.

4.5 Partition of Unity CPI

We proceed to define the PU-CPI method subspace ˜︁V. Let ˜︁V(p) ⊂ H1(U (p))

be local Ritz spaces associated with the subdomains U (p). The space ˜︁V
is constructed using a variant of the partition of unity method originally
introduced by Babuška and Melenk [7]. Recall the open cover {U (p)}Mp=1 of
Ω. For each p, define a stitching operator R(p) ∈ B(H1(U (p)), H1(Ω)) such
that

(R(p)w(p))|Ω\U(p) = 0 and
M∑︂

p=1

R(p)(w|U(p)) = w,

for each w(p) ∈ H1(U (p)) and w ∈ H1(Ω). These operators can be con-
structed in FEM by simply setting the coefficients of basis functions not
fully supported on U (p) to zero.

The PU-CPI method subspace is defined as

˜︁V :=

⎧
⎨
⎩w ∈ H

1
0 (Ω)

⃓⃓
⃓⃓
⃓ w =

M∑︂

p=1

R(p)w(p) for w(p) ∈ ˜︁V(p)
⎫
⎬
⎭ . (4.12)

In Publication V, the relative eigenvalue error is bounded by a multiplica-
tive constant and the sum of local approximation error terms

E(u, U (p)) = min
w∈˜︁V(p)

∫︂

U(p)

⃓⃓
⃓∇R(p)(u|U(p) − w)

⃓⃓
⃓
2
dx. (4.13)

The local Ritz spaces ˜︁V(p) are designed to minimise the local approximation
error terms related to eigenfunctions u associated with the spectral interval
of interest (0,Λ). According to (4.11), we use the splitting ˜︁V(p) = E

(p)

Λ̃
⊕W(p).

Similar to Section 4.1,W(p) is chosen to approximate the space
{︂
ZU (t)wB

⃓⃓
⃓ t ∈ (0,Λ), wB ∈ H1/2(∂ ˆ︁U (p))

}︂
.
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To constructW(p), we first perform a linearisation step. Define
B ∈ B([tr(V(U))]N ,V(U))) as

BwB =

N∑︂

i=1

ZU (ξi)wB,i where wB = (wB,1, . . . , wB,N ). (4.14)

Denote wℓ
B(t) = [ℓ1(t)wB, . . . , ℓN (t)wB]. ThenBwℓ

B(t) =
∑︁N

i=1 ℓi(t)ZU (ξi)wB .
Thus, the Lagrange interpolation polynomials of ZU (t) for t ∈ (0,Λ) can
be represented through B. Since B is a compact linear bounded opera-
tor, it can be approximated by a finite rank operator ˆ︁B. Thus, we choose
W(p) = range( ˆ︁B). The local approximation error terms (4.13) are bounded
by a finite rank approximation error and the interpolation error. For more
details, see Publication V.

A similar construction is feasible in the context of finite element method,
where H1

0 (Ω) is replaced by a finite element space Vh. The operator ˆ︁B is
formed using SVD. An example of an implementation of the method is given
in Publication V, where the authors solve three-dimensional eigenprob-
lems on a cluster of 26 networked workstations. In the most demanding
examples, the number of degrees of freedom was significantly higher than
a single workstation could manage.
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