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Stabilization of regime-switching processes by feedback control
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Abstract

This work investigates the almost sure stabilization of a class of regime-switching systems

based on discrete-time observations of both continuous and discrete components. It devel-

ops Shao’s work [SIAM J. Control Optim., 55(2017), pp. 724–740] in two aspects: first, to

provide sufficient conditions for almost sure stability in lieu of moment stability; second, to

investigate a class of state-dependent regime-switching processes instead of state-independent

ones. To realize these developments, we establish an estimation of the exponential functional

of Markov chains based on the spectral theory of linear operator. Moreover, through con-

structing order-preserving coupling processes based on Skorokhod’s representation of jump-

ing process, we realize the control from up and below of the evolution of state-dependent

switching process by state-independent Markov chains.
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Keywords: Stability, Regime-switching, State-dependent, Feedback control, Discrete-time ob-
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1 Introduction

This work is concerned with the stability of the following regime-switching process:

dX(t) =
[
a(X(t),Λ(t)) − b(Λ(δ(t)))X(δ(t))

]
dt+ σ(X(t),Λ(t))dW (t), (1.1)
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where δ(t) = [t/τ ]τ , [t/τ ] denotes the integer part of the number t/τ , τ is a positive constant,

and (W (t)) is a d-dimensional Wiener process. Here (Λ(t)) is a continuous time jumping process

on S = {1, 2, . . . ,M}, M < +∞, satisfying

P(Λ(t+∆) = j|Λ(t) = i, X(t) = x) =

{
qij(x)∆ + o(∆), if i 6= j,

1 + qii(x)∆ + o(∆), if i = j,
(1.2)

provided ∆ ↓ 0, where 0 ≤ qij(x) < +∞ for all i, j ∈ S with i 6= j. As usual, we assume

that for each x ∈ R
d, the Q-matrix Qx =

(
qij(x)

)
is conservative; namely qi(x) := −qii(x) =∑

j∈S\{i} qij(x) for all i ∈ S. Equation (1.1) is a type of stochastic functional differential

equation. In current work we shall provide sufficient conditions to ensure the almost sure

stability of the system (1.1) and (1.2).

Regime-switching processes have drawn much attention due to the demand of modeling,

analysis and computation of complex dynamical systems, and have been widely used in math-

ematical finance, engineer, biology etc (see, e.g. the monographs [16, 32]). Compared with

the classical stochastic processes without switching, regime-switching processes can reflect the

random change of the environment in which the concerning system lived. Then there are

many new difficulties and phenomena appeared in the study of regime-switching processes.

See, for instance, [3, 12, 16, 24, 31, 32] and references therein on the stability of such system;

[4, 7, 18, 24, 19, 20] on the recurrence of such system; [8, 2, 10] on the heavy or light tail behavior

of the invariant probability measure of such system. Besides, there are some literature on the

regime-switching processes driven by Lévy processes [5, 27, 30, 31]. Recently, there are also some

studies on regime-switching stochastic functional differential equations, e.g. [1, 14, 15, 22, 33, 17].

Our motivation to study the equation (1.1) is to stabilize an unstable system (1.1) with

b = 0 based on discrete time observations of (X(t)) and (Λ(t)). Such stabilization problem for

regime-switching processes was first raised by Mao [14] for the sake of saving cost and being

more realistic. There, Mao investigated the mean-square stability of the following controlled

system:

dX(t) = (a(X(t),Λ(t)) − b(X(δ(t),Λ(t))))dt+ σ(X(t),Λ(t))dW (t),

where (Λ(t)) is a continuous time Markov chain independent of the Wiener process (W (t)). Sub-

sequently, many works were devoted to developing this stabilization problem. See, for example,

[15, 33]. Especially, in [33], some sufficient conditions were provided to ensure this system to

be almost surely stable. Inspired by these works, [22] investigated the stability of such kind of

system not only based on discrete time observations of (X(t)) but also according to discrete

time observations of (Λ(t)). This needs to overcome the essential difference between the path

property of (X(t)) and (Λ(t)). For the continuous process (X(t)), since X(t− τ) tends to X(t)

as τ → 0, the difference between X(t) and X(t−τ) can be controlled when τ is sufficiently small.
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However, for the jumping process (Λ(t)), even Λ(t) and Λ(t−) := lims↑tΛ(s) may be quite differ-

ent. Therefore, in [22] Shao takes advantage of the independence of (W (t)) and (Λ(t)) to control

the evolution of (X(t)) through the long time behavior of (Λ(t)) and (Λ(nτ))n≥0. Precisely, it

was shown that

E|X(t)|2 ≤ |X(0)|2E
[
e
∫ t

0
f(Λ(r))+Kτ g(Λ(δ(r)))dr

]
, (1.3)

where f, g : S → R, Kτ is a constant related to τ . As an embedded Markov chain, (Λ(nτ))n≥0

has the same stationary distribution as that of (Λ(t)). However, as mentioned in [22, Remark

3.3], the following kind of quantity cannot be handled at that time in order to show the almost

sure stability

E

∫ ∞

0
e
∫ t
0 g(Λ(δ(s)))dsdt < ∞,

which could be dealt with in current work under the help of spectral theory of linear operator

(see Lemma 2.3 below).

In this work, we will overcome two difficulties to establish the almost sure stability of

(X(t),Λ(t)) given by (1.1) and (1.2). First, via the spectral theory of linear operators, we

provide estimates from upper and below the exponential functional of Markov chain (Yn)n≥0.

Second, through using Skorokhod’s representation of jumping processes or constructing order-

preserving coupling, we can control the evolution of state-dependent jumping process (Λ(t))

by some auxiliary state-independent Markov chains. Moreover, to ensure the existence of the

system (X(t),Λ(t)) satisfying (1.1) and (1.2), and the existence of order-preserving couplings,

a general result on the existence of regime-switching stochastic functional differential equation

is established. In particular, we only assume that x 7→ qij(x) is continuous and qi(x) is of

polynomial order of growth for i, j ∈ S (see Theorem 2.1 below for details).

The remainder of this paper is arranged as follows: Section 2 presents some necessary

preparation results concerning the existence of solution for state-dependent regime-switching

stochastic functional differential equations, estimate of exponential functional of Markov chains,

and constructing auxiliary Markov chains to control the evolution of state-dependent jumping

process (Λ(t)). Section 3 studies the almost sure stability for a class of regime-switching systems

based on discrete-time observations. Using the technique used in [33], we can prove our main

result, Theorem 3.4, of this work. Finally, the proof of the existence and uniqueness of solution

for regime-switching stochastic functional differential equations is appended in Appendix A.

2 Preliminary results

Let us begin this section with the existence and uniqueness of above system (1.1) and (1.2)

which can be viewed as a regime-switching stochastic functional differential equations (SFDEs).
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Here we collect the conditions used in this work on the coefficients of (1.1) and transition rate

matrix (qij(x)). We can consider a little more general SFDE:

dX(t) =
[
a(X(t),Λ(t)) − b(X(δ(t)),Λ(δ(t)))

]
dt+ σ(X(t),Λ(t))dW (t). (2.1)

Suppose the coefficients a(·, ·) : Rd×S → R
d, b(·, ·) : Rd×S → [0,∞) and σ(·, ·) : Rd×S → R

d×d

satisfy the following conditions.

(H1) There exist nonnegative functions C(·) and c(·) on S and a positive constant b̂ such that

c(i)|x|2 ≤ 2〈a(x, i), x〉 + ‖σ(x, i)‖2HS ≤ C(i)|x|2, (x, i) ∈ R
d × S,

|b(x, i)| ≤ b̂(1 + |x|), x ∈ R
d, (x, i) ∈ R

d × S,

where ‖σ(x, i)‖2HS = trace(σσ∗)(x, i) with σ∗ denoting the transpose of the matrix σ.

(H2) There exists a positive constant K̄ such that

|a(x, i) − a(y, i)| + |b(x, i) − b(y, i)| + ‖σ(x, i) − σ(y, i)‖HS ≤ K̄|x− y|, x, y ∈ R
d, i ∈ S.

Moreover, let the Q-matrix Qx =
(
qij(x)

)
satisfy the following conditions:

(Q1) x 7→ qij(x) is continuous for every i, j ∈ S.

(Q2) H := supx∈Rd maxi∈S qi(x) < ∞.

The condition (Q2) is used in the control of the evolution of (Λ(t)) through Markov chains. If

only for the aim of existence and uniqueness of the dynamical system (X(t),Λ(t)), we can use

a weaker condition as follows:

(Q2′) qi(x) =
∑

j∈S\{i} qij(x) ≤ K0(1 + |x|κ0) for every (x, i) ∈ R
d × S, where K0 and κ0 are

positive constants.

Theorem 2.1 Assume conditions (H1), (H2), (Q1) and (Q2’) hold. Then there exists a

unique nonexplosive solution (X,Λ) to (2.1) and (1.2).

In order to preserve the flow of presentation, we relegate the proof of Theorem 2.1 to

Appendix A. We provide a very explicit construction of the solution (X,Λ) to regime-switching

SFDE (2.1) and (1.2) and prove the nonexplosiveness of the solution. Compared with the

corresponding results in [21, 22] where x 7→ qij(x) is assumed to be Lipschitzian, here we only

suppose x 7→ qij(x) to be continuous. This greatly simplifies the conditions to be verified so
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that the coupling process constructed below exists. On the other hand, contrary to the usual

boundedness assumption (Q2) imposed in the previous works such as [22, 28, 32] etc., here the

functions qij(x) in the Q-matrix Qx =
(
qij(x)

)
may be unbounded. Hence the construction of

the solution in Theorem 2.1 is of interest by itself.

In a similar way, one can establish the existence and uniqueness of solution for another

widely studied SFDE with regime-switching. To do so, we introduce some notations. Let

C denote the continuous path space C([−r, 0];Rd) endowed with the uniform topology, i.e.,

‖ξ‖∞ = sup−r≤s≤0 |ξ(s)| for ξ ∈ C , where r ≥ 0 is a constant. Consider the following SFDE:

dX(t) = b(Xt,Λ(t),Λ(t − r))dt+ σ(Xt,Λ(t),Λ(t − r))dW (t) (2.2)

withX0 = ξ ∈ C , Λ(0) = i ∈ S, and (Λ(t)) still satisfies (1.2) as above. Here, b : C ×S×S → R
d,

σ : C × S × S → R
d×d, and Xt ∈ C is defined by Xt(θ) = X(t + θ) for θ ∈ [−r, 0]. Here we

regard that Λ(t − r) = i for t − r < 0 when Λ(0) = i. The following conditions guarantee the

existence and uniqueness of the process (X,Λ) satisfying (2.2) and (1.2).

(A1) b(·, i, j) and σ(·, i, j) are bounded on bounded subset of C for every i, j ∈ S. Moreover,

there exists a positive constant K1 such that

2〈b(ξ, i, j) − b(η, i, j), ξ(0) − η(0)〉 + ‖σ(ξ, i, j) − σ(η, i, j)‖2HS ≤ K1‖ξ − η‖2∞

for all ξ, η ∈ C , i, j ∈ S, where 〈·, ·〉 denotes the Euclidean inner product in R
d, ‖σ‖2HS =

trace(σσ∗) for σ ∈ R
d×d, σ∗ denotes the transpose of σ.

(A2) There exists a positive constant K2 such that 2〈b(ξ, i, j), ξ(0)〉 + ‖σ(ξ, i, j)‖2HS ≤ K2(1 +

‖ξ‖2∞) for all ξ ∈ C and i, j ∈ S.

Theorem 2.2 Assume conditions (A1), (A2), (Q1) and (Q2’) hold. Then there exists a

unique nonexplosive solution (X,Λ) to regime-switching SFDE (2.2) and (1.2).

Theorem 2.2 can be proved by using the same idea of the argument of Theorem 2.1, and

hence the proof will be omitted.

In the remainder of this section, we shall present two kinds of preparation results: in the

first place, we establish an estimation of exponential functional of a discrete-time Markov chain

by the spectrum analysis method; in the second place, we construct two auxiliary Markov chains

to control from upper and below the evolution of the state-dependent jumping process (Λ(t)).

First, let us consider a time-homogeneous Markov chain (Yn)n≥0 on the state space S =

{1, . . . ,M} with 1 < M < ∞. Denote

Pij = P(Y1 = j|Y0 = i), i, j ∈ S.
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Assume the transition matrix P = (Pij) is a positive matrix, i.e., Pij > 0, ∀ i, j ∈ S. Let

(θ(i))i∈S be a series of real numbers. Put

P̃ij = eθ(i)Pij , i, j ∈ S, P̃ = (P̃ij)i,j∈S .

Denote Spec(P̃ ) the spectrum of the linear operator P̃ . Let

λ1 = max{Re(λ);λ ∈ Spec(P̃ )},

where Re(λ) stands for the real part of the eigenvalue λ.

Lemma 2.3 Let θ : S → R. Then there exist two positive constants K3, K4 such that

K3λ
n
1 ≤ Eµ

[
exp

{ n−1∑

k=0

θ(Yk)
}]

≤ K4λ
n
1

for every initial probability distribution µ of (Yn)n≥0 when n large enough.

Proof. According to the Perron-Frobenius theorem, due to the positivity of P̃ , which follows

directly from the positivity of P , λ1 is a simple eigenvalue of P̃ , and all the magnitudes of other

eigenvalues of P̃ are strictly smaller than λ1. Invoking the spectral theory for linear operator in a

finite dimensional Banach space (cf. Dunford and Schwartz [9, Chapter VII, Theorem 8]), there

exists a family of linear operator {E(λ); λ ∈ Spec(P̃ )} satisfying E(λ)2 = E(λ), E(λ)E(λ̃) = 0

if λ 6= λ̃, and I =
∑

λ∈Spec(P̃ )E(λ) such that

P̃n = λn
1E(λ1) +

∑

λ∈Spec(P̃ )\{λ1}

v(λ)−1∑

i=0

(P̃ − λI)i

i!
f (i)(λ)E(λ), (2.3)

where v(λ) denotes the index of the eigenvalue λ, which is a constant less than 2M ; the function

f is given by f(x) = xn and f (i) denotes the i-th order derivative of f . We can rewrite the terms

in the summation as

(P̃ − λI)i

i!
f (i)(λ)E(λ) =

n!

i!(n − i)!
λn−i(P̃ − λI)iE(λ)

= λn
1

n!

i!(n − i)!

( λ

λ1

)n−i( P̃ − λI

λ1

)i
E(λ).

Note that for any λ ∈ Spec(P̃ ) with λ 6= λ1, it holds |λ| < λ1. Therefore, for any fixed i < n,

lim
n→∞

n!

i!(n− i)!

( |λ|
λ1

)n−i
= 0.
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Consequently, by (2.3), for any initial probability measure µ of (Yn) on S,

µP̃n1 = λn
1µE(λ1)1+

∑

λ∈Spec(P̃ )\{λ1}

v(λ)−1∑

i=0

µ
[(P̃ − λI)i

i!
f (i)(λ)E(λ)1

]
.

Hence, there exist two positive constants K3, K4 independent of the initial distribution µ such

that

K3λ
n
1 ≤ µP̃n1 ≤ K4λ

n
1 , for n large enough.

Invoking the definition of P̃ , this can be written in the expectation form as

K3λ
n
1 ≤ Eµ

[
exp

{ n−1∑

k=0

θ(Yk)
}]

≤ K4λ
n
1 , for n large enough, (2.4)

which is just desired conclusion. �

Next, employing the idea of Shao [23], we go to construct two auxiliary continuous-time

Markov chains (Λ̄(t)) and (Λ∗(t)) such that Λ∗(t) ≤ Λ(t) ≤ Λ̄(t), t ≥ 0, a.s., under some

appropriate conditions. Our stochastic comparisons are based on Skorokhod’s representation of

(Λ(t)) in terms of the Poisson random measure by following the line of [26, Chapter II-2.1] or

[32]. To focus on the idea, we first consider the special situation that S consists of only two

points, i.e., S = {1, 2}. To do so, we further assume the following condition holds:

(Q3) For each x ∈ R
d, the Q-matrix Qx =

(
qij(x)

)
is irreducible.

According to the conservativeness of Qx, one has q1(x) := −q11(x) = q12(x), x ∈ R
d. For

each x ∈ R
d, let

Γ12(x) := [0, q12(x)) and Γ21(x) := [q1(x), q1(x) + q21(x)).

Obviously, the length of Γ12(x) and Γ21(x) is q12(x) and q21(x), respectively. Define a function

R
d × S × R ∋ (x, i, u) 7→ h(x, i, u) ∈ R by

h(x, i, u) = (−1)1+i
{
1{i=1}1Γii+1(x)(u) + 1{i=2}1Γii−1(x)(u)

}
.

Then, as in the proof of Theorem 2.1, (Λt) solves the following stochastic differential equation

(SDE for short)

dΛ(t) =

∫

[0,L]
h(X(t),Λ(t−), u)N(dt,du), t > 0, Λ(0) = i0 ∈ S. (2.5)

Herein, L := 2H with H being introduced in condition (Q2) and N(dt,du) stands for a Poisson

random measure with intensity dt×m(du), in which m(du) signifies the Lebesgue measure on
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[0, L]. Let p(t) be the stationary Poisson point process corresponding to the Poisson random

measure N(dt,du) so that N([0, t) ×A) =
∑

s≤t 1A(p(s)) for A ∈ B(R).

Due to the finiteness of m(du) on [0, L], there is only finite number of jumps of the process

(p(t)) in each finite time interval. Let 0 = ζ0 < ζ1 < · · · < ζn < · · · be the enumeration of all

jumps of (p(t)). It holds that limn→∞ ζn = +∞ a.s. From (2.5), it follows that

Λ(t) = i0 +
∑

s≤t

h(X(s),Λ(s−), p(s))1[0,L](p(s)), t > 0, i0 ∈ S,

which implies that (Λ(t)) may have a jump at only ζi (i.e. Λ(ζi) 6= Λ(ζi−)) provided that p(ζi) ∈

[0, L]. So the collection of all jumping times of (Λ(t)) is a subset of {ζ1, ζ2, · · · }. Subsequently,

this basic fact will be used frequently without mentioning it again.

Let

q̄12 := sup
x∈Rd

q12(x), q̄21 := inf
x∈Rd

q21(x), q̄1 := −q̄11 := q̄12, q̄2 := −q̄22 := q̄21, (2.6)

and

q∗12 := inf
x∈Rd

q12(x), q∗21 := sup
x∈Rd

q21(x), q∗1 := −q∗11 := q∗12, q∗2 := −q∗22 := q∗21. (2.7)

Let

Γ̄12 := [0, q̄12), Γ̄21 := [q̄12, q̄12 + q̄21), Γ∗
12 := [0, q∗12), Γ∗

21 := [q∗12, q
∗
12 + q∗21).

Using the same Poisson random measureN(dt,du) given in (2.5), we define two auxiliary Markov

chains (Λ̄(t)) and (Λ∗(t)) by the following SDEs:

dΛ̄(t) =

∫

[0,L]
ḡ(Λ̄(t−), u)N(dt,du), t > 0, Λ̄(0) = Λ(0), (2.8)

and

dΛ∗(t) =

∫

[0,L]
g∗(Λ∗(t−), u)N(dt,du), t > 0, Λ∗(0) = Λ(0), (2.9)

where, for i ∈ S,

ḡ(i, u) = (−1)1+i
{
1{i=1}1Γ̄ii+1

(u) + 1{i=2}1Γ̄ii−1
(u)
}
, u ∈ [0, L],

and

g∗(i, u) = (−1)1+i
{
1{i=1}1Γ∗

ii+1
(u) + 1{i=2}1Γ∗

ii−1
(u)
}
, u ∈ [0, L].

Then, according to Skorokhod’s representation, (Λ̄t) and (Λ∗
t ) are continuous-time Markov chains

on S = {1, 2} generated by the Q-matrices Q̄ = (q̄ij)1≤,i,j≤2 and Q∗ = (q∗ij)1≤,i,j≤2, respectively.
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Lemma 2.4 (i) If q̄21 > 0 and

q̄12 + q̄21 ≤ q12(x) + q21(x), x ∈ R
d, (2.10)

then Λ(t) ≤ Λ̄(t) for all t ≥ 0 a.s.

(ii) If q∗12 > 0 and

q∗12 + q∗21 ≥ q12(x) + q21(x), x ∈ R
d, (2.11)

then Λ∗(t) ≤ Λ(t) for all t ≥ 0 a.s.

Proof. Here we include a proof for the completeness and the ease of the readers. We shall only

prove assertion (i) as assertion (ii) can be proved in a similar way. Since there is no jump during

the open interval (ζk, ζk+1), we only need to prove (i) at ζk, k ≥ 1. To this aim, we consider

separately three different cases.

Case 1: Λ(ζk) = Λ̄(ζk) = 1, k ≥ 1. In this case, we deduce from (2.5) and (2.8) that

Λ(ζk+1) = 1 + 1Γ12(X(ζk+1))(p(ζk+1)) and Λ̄(ζk+1) = 1 + 1Γ̄12
(p(ζk+1)).

According to the notion of q̄12, one clearly has q12(x) ≤ q̄12, x ∈ R
d, which implies that

Γ12(X(ζk+1)) ⊂ Γ̄12, a.s. Whence, Λ(ζk+1) ≤ Λ̄(ζk+1), a.s.

Case 2: Λ(ζk) = Λ̄(ζk) = 2, k ≥ 1. Concerning such case, we also obtain from (2.5) and (2.8)

that

Λ(ζk+1) = 2− 1Γ21(X(ζk+1))(p(ζk+1)) and Λ̄(ζk+1) = 2− 1Γ̄21
(p(ζk+1)). (2.12)

If p1(ζk+1) /∈ Γ̄21, then, from (2.12), one has Λ̄(ζk+1) = 2 so that Λ(ζk+1) ≤ Λ̄(ζk+1) due to

the fact that Λ(ζk+1) ≤ 2. Next, we proceed to deal with the case p(ζk+1) ∈ Γ̄21, which of

course leads to Λ̄(ζk+1) = 1 in view of (2.12), and q̄12 ≤ p(ζk+1) < q̄12 + q̄21. Employing the

assumption (2.10) and utilizing the fact that q12(X(ζk+1)) ≤ q̄12, we arrive at q12(X(ζk+1)) ≤

p(ζk+1) < q12(X(ζk+1)) + q21(X(ζk+1)), namely, p(ζk+1) ∈ Γ12(X(ζk+1)). As a consequence,

Λ(ζk+1) = Λ̄(ζk+1) = 1.

Case 3: Λ(ζk) = 1, Λ̄(ζk) = 2, k ≥ 1. For this setup, it follows from (2.5) and (2.8) that

Λ(ζk+1) = 1 + 1Γ12(X(ζk+1))(p(ζk+1)) and Λ̄(ζk+1) = 2− 1Γ̄21
(p(ζk+1)). (2.13)

From (2.13), it is easy to see that Λ(ζk+1) ≤ Λ̄(ζk+1) if p(ζk+1) /∈ Γ̄21. Now, if p(ζk+1) ∈ Γ̄21,

then we infer that Λ̄(ζk+1) = 1 and that q̄12 ≤ p(ζk+1) < q̄12 + q̄21. Hence, one has p(ζk+1) ≥

q12(X(ζk+1)); in other words, p(ζk+1) /∈ Γ12(X(ζk+1)). As a result, we obtain from (2.13) that

Λ(ζk+1) = Λ̄(ζk+1) = 1.
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The desired result follows immediately by summing up the above three cases. �

We now proceed to the general situation that S could own more than two states, i.e.,

S = {1, . . . ,M}. To this end, we employ the coupling method and especially construct the

so-called order-preserving couplings. To do so, we need some preparation.

Let Λ(1) and Λ(2) be two continuous-time Markov chains defined by two generators Q(1) =(
q
(1)
ij

)
and Q(2) =

(
q
(2)
ij

)
on the state space S, respectively. Note that Q(1) and Q(2) are called

Q-matrices in [6, 34, 35]. A continuous-time Markov chain (Λ(1),Λ(2)) on the product space

S × S is called a coupling of Λ(1) and Λ(2), if the following marginality holds for any t ≥ 0,

i1, i2 ∈ S and B1, B2 ⊂ S,

P
(i1,i2)

(
(Λ(1)(t),Λ(2)(t)) ∈ B1 × S

)
= P

(i1)(Λ(1)(t) ∈ B1),

P
(i1,i2)

(
(Λ(1)(t),Λ(2)(t)) ∈ S ×B2

)
= P

(i2)(Λ(2)(t) ∈ B2),
(2.14)

where the superscript in P
(i1,i2) and P

(i1) is used to emphasize the initial value of the corre-

sponding process. From [6] we know that constructing a coupling Markov chain (Λ(1),Λ(2)) is

equivalent to constructing a coupling generator Q̃ on the finite state space S × S, and such a

generator Q̃ is called a coupling of Q(1) and Q(2). For given two generators (or two Q-matrices),

one can construct many their coupling generators (or coupling Q-matrices); see [6] for more

examples and explanation. In what follows we are especially interested in the order-preserving

couplings. On the product space S ×S, an order-preserving coupling Q̃ of Q(1) and Q(2) means

that the corresponding Markov chain generated by Q̃ satisfies

P
(i1,i2)

(
Λ(1)(t) ≤ Λ(2)(t), ∀ t ≥ 0

)
= 1, i1 ≤ i2 ∈ S. (2.15)

See [6, Chapter 5] for the details about the coupling Q-matrices and related materials. For

more general case, the construction of order-preserving couplings was studied in [34, 35]. In

particular, we have the following lemma from the aforementioned three references.

Lemma 2.5 If the generators Q(1) and Q(2) on S satisfy that
∑

l≥m

q
(1)
i1l

≤
∑

l≥m

q
(2)
i2l

for all i1 ≤ i2 < m and

∑

l≤m

q
(1)
i1l

≥
∑

l≤m

q
(2)
i2l

for all m < i1 ≤ i2,
(2.16)

there exists an order-preserving coupling Q-matrix Q̃ on S × S and hence (2.15) holds.

Assumption 2.1 Assume that there exists a generator Q̄ =
(
q̄i,j
)
on S such that the following

bounds hold:
sup
x∈Rd

∑

l≥m

qi1l(x) ≤
∑

l≥m

q̄i2l for all i1 ≤ i2 < m and

inf
x∈Rd

∑

l≤m

qi1l(x) ≥
∑

l≤m

q̄i2l for all m < i1 ≤ i2,
(2.17)

10



where the matrix
(
qij(x)

)
is given in (1.2).

If two generators Q(1) and Q(2) satisfy (2.16), we simply write Q(1) � Q(2). For convenience,

with a slight abuse of notation, we denote the matrix
(
qij(x)

)
by Qx. So Assumption 2.1 means

that for each x ∈ R
d, Qx � Q̄. By Lemma 2.5, for each x ∈ R

d, there exists an order-preserving

coupling of Qx and Q̄ given in Assumption 2.1. Namely, for each x ∈ R
d, there exists a Q-matrix

on S × S such that this Q-matrix is an order-preserving coupling of Qx and Q̄. In fact, such

an order-preserving coupling was constructed explicitly in [34, 35]; see also [6, p. 221]. For

definiteness, we choose one such coupling and denote it by Q̃(x) =
(
q̃(i, j;m,n)(x)

)
, which can

be expressed explicitly. For the sake of completeness and also certain subsequent application,

we sketch the construction of the coupling Q̃(x) here though a method which is essentially not

new (cf. [34, 35]).

As mentioned in [34], we can define the basic coupling of Qx and Q̄ for the points (i, j) ∈

S × S with i > j as follows:





q̃(i, j;m,n)(x) =
(
qik(x)− q̄jk

)+
, m = k, n = j, k 6= i,

q̃(i, j;m,n)(x) =
(
q̄jk − qik(x)

)+
, m = i, n = k, k 6= j,

q̃(i, j;m,n)(x) = qik(x) ∧ q̄jk, m = k, n = k, (k, k) 6= (i, j),

q̃(i, j;m,n)(x) = 0, other (m,n) 6= (i, j),

(2.18)

and q̃(i, j; i, j)(x) := −
∑

(m,n)6=(i,j)

q̃(i, j;m,n)(x).

Next, we construct the order-preserving coupling for the points (i, j) ∈ S × S with i ≤ j,

which is the key point to construct a coupling (Λ, Λ̄) so that P(Λ(t) ≤ Λ̄(t), ∀ t ≥ 0) = 1. For

each n ∈ S, define

ann(x) =

{
qin(x), n 6= i,

0, n = i,

bnn(x) =

{
q̄jn, n 6= j,

0, n = j.

(2.19)

Then, define the sequences {amn(x)}, {bmn(x)} (m ≤ n, n ∈ S): for m = n − 1, n − 2, · · · , 1

successively as

amn(x) =
(
am,n−1(x)

)+
−
(
bm,n−1(x)

)+
,

bmn(x) =
(
bm+1,n(x)

)+
−
(
am+1,n(x)

)+
.

(2.20)

Here and hereafter, a+ = max{a, 0}. Let us give some explanation on this definition procedure.

Clearly, we can define a12(x) and b12(x) with (2.20) by the well-defined a11(x), b11(x), a22(x)

and b22(x). Suppose the {am′n′(x)}, {bm′n′(x)} (m′ ≤ n′) have been defined successively for

n′ = 1, 2, . . ., n − 1. With (2.20) we can further define the case of n′ = n. Although bnn(x)
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is independent of x, bmn(x) is x-dependent in general. Finally, with the well-defined sequences

{amn(x)}, {bmn(x)} (m ≤ n, n ∈ S), the desired coupling is given by





q̃(i, j;m,n)(x) =
(
amn(x)

)+
∧
(
bmn(x)

)+
, m ≤ n,m 6= i, n 6= j,

q̃(i, j; i, n)(x) = q̄jn −
∑

1≤m≤n,m6=i

q̃(i, j;m,n)(x), i ≤ n 6= j,

q̃(i, j;m, j)(x) = qim(x)−
∑

n≥m,n 6=j

q̃(i, j;m,n)(x), i 6= m ≤ j,

q̃(i, j;m,n)(x) = 0, other (m,n) 6= (i, j),

(2.21)

and

q̃(i, j; i, j)(x) = −
∑

(m,n)6=(i,j),m≤n

q̃(i, j;m,n)(x).

For every fixed x ∈ R
d, let (Λ, Λ̄) be the continuous-time Markov chain determined by the

coupling operator Q̃ defined in (2.21) with Λ(0) ≤ Λ̄(0). As shown in [34], the construction of

q̃(i, j;m,n) guarantees that the process Λ can never jump to the front of Λ̄ a.s., i.e. P(Λ(t) ≤

Λ̄(t), ∀ t ≥ 0) = 1.

Consequently, the order-preserving coupling
(
X,Λ, Λ̄

)
is constructed as follows. Let X

satisfy SDE (1.1) and (Λ, Λ̄) be a jumping process on S×S with (Λ(0), Λ̄(0)) = (i0, j0) satisfying

P{(Λ(t+∆), Λ̄(t+∆)) = (m,n)|(Λ(t), Λ̄(t)) = (i, j),X(t) = x}

=

{
q̃(i, j;m,n)(x)∆ + o(∆), if (m,n) 6= (i, j),

1 + q̃(i, j;m,n)(x)∆ + o(∆), if (m,n) = (i, j),

(2.22)

provided ∆ ↓ 0. Here q̃(i, j;m,n) is determined by (2.18) or (2.21) according to i0 > j0 or not.

Lemma 2.6 Suppose that (H1), (H2), (Q1), (Q2’) and Assumption 2.1 holds. Then the

coupling process
(
X,Λ, Λ̄

)
satisfying (1.1) and (2.22) exists, and further

P
(x,i,j)

(
Λ(t) ≤ Λ̄(t), ∀ t ≥ 0

)
= 1, x ∈ R

d, i ≤ j ∈ S. (2.23)

In addition, suppose that Q̄ is irreducible, then the invariant measure µ̄ = (µ̄1, . . . , µ̄M ) of Λ̄

exists, and for each increasing function h on S and each (x, i) ∈ R
d × S,

P
(x,i)

(
lim sup
t→∞

1

t

∫ t

0
h(Λ(s))ds ≤

∑

m∈S

h(m)µ̄m

)
= 1, (2.24)

for every initial value
(
X(0),Λ(0)

)
= (x, i).
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Proof. By the definition of ann(x), amn(x) and q̃(i, j;m,n), it is easy to check the validation of

conditions (Q1) and (Q2’) for Q̃(x). Therefore, Theorem 2.1 ensures that the system (X,Λ, Λ̄)

satisfying (1.1) and (2.22) exists. Although the transition rate matrix of (Λ, Λ̄) now depends on

X which is time varying, the construction of Q̃x still can ensure that Λ(t) cannot jump to the

front of Λ̄(t) a.s. if Λ(0) ≤ Λ̄(0). Hence, (2.23) holds.

Using the right continuity of
(
X,Λ, Λ̄

)
, from (2.23) we obtain that for each given increasing

function h on S, x ∈ R
d and i ≤ j ∈ S,

P
(x,i,j)

(
1

t

∫ t

0
h(Λ(s))ds ≤

1

t

∫ t

0
h(Λ̄(s))ds, ∀ t ≥ 0

)
= 1. (2.25)

Since Q̄ is irreducible and S is a finite state space, the associated Markov chain Λ̄ is ergodic

with the invariant probability measure given by µ̄ = (µ̄1, . . . , µ̄M ). By the ergodic property of

the Markov chain, we have

P

(
lim
t→∞

1

t

∫ t

0
h(Λ̄(s))ds =

∑

m∈S

h(m)µ̄m

)
= 1. (2.26)

For any arbitrarily given δ > 0, by Egorov’s theorem, we then get

P

(
1

t

∫ t

0
h(Λ̄(s))ds →

∑

m∈S

h(m)µ̄m uniformly as t → ∞

)
≥ 1− δ. (2.27)

Thus, for any given ε > 0, there exists a T (ε) > 0 such that

1− δ ≤ P

(
1

t

∫ t

0
h(Λ̄(s))ds ≤

∑

m∈S

h(m)µ̄m + ε for all t ≥ T (ε)

)
. (2.28)

Therefore, combining (2.25) and (2.28), we derive that for every increasing function h on S,

x ∈ R
d and i ≤ j ∈ S,

P
(x,i,j)

(
1

t

∫ t

0
h(Λ(s))ds ≤

∑

m∈S

h(m)µ̄m + ε for all t ≥ T (ε)

)
≥ 1− δ, (2.29)

which yields that

P
(x,i)

(
1

t

∫ t

0
h(Λ(s))ds ≤

∑

m∈S

h(m)µ̄m + ε for all t ≥ T (ε)

)
≥ 1− δ (2.30)

since the left hand side of (2.29) does not depend on j. So,

P
(x,i)

(
lim sup
t→∞

1

t

∫ t

0
h(Λ(s))ds ≤

∑

m∈S

h(m)µ̄m + ε

)
≥ 1− δ. (2.31)
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Finally, letting ε and δ tend to 0, we arrive at (2.24). �

Such a Markov chain Λ̄ having the properties stated in Lemma 2.6 will be called a upper

control Markov chain. It will serve as an upper envelop as mentioned above. On the other hand,

a lower control Markov chain Λ∗ can be constructed under proper conditions.

Assumption 2.2 Assume that there exists a generator Q∗ =
(
q∗i,j
)
on S such that the following

bounds hold: ∑

j≥m

q∗i1,j ≤ inf
x∈Rd

∑

j≥m

qi2j(x) for all i1 ≤ i2 < m and

∑

j≤m

q∗i1,j ≥ sup
x∈Rd

∑

j≤m

qi2j(x) for all m < i1 ≤ i2.
(2.32)

For each x ∈ R
d, an order-preserving coupling of Q∗ and Q(x) can be constructed explicitly

(see [6, p. 221]). Actually, replace the (qij(x)) and (q̄i,j) in (2.19)–(2.21) by (q∗i,j) and (qij(x))

respectively, we can construct a coupling operator Q̃(x) = (q̃(i, j;m,n)(x)) for each x ∈ R
d and

i ≥ j. When i < j, we still use the basic coupling given in (2.18) by replacing q̄j,k with q∗j,k. We

now construct an order-preserving coupling process
(
X,Λ∗,Λ

)
as follows. Let X satisfy SDE

(1.1) and (Λ∗,Λ) be a jumping process on S × S with (Λ∗(0),Λ(0)) = (i0, j0) satisfying

P{(Λ∗(t+∆),Λ(t+∆)) = (m,n)|(Λ∗(t),Λ(t)) = (i, j),X(t) = x}

=

{
q̂(i, j;m,n)(x)∆ + o(∆), if (m,n) 6= (i, j),

1 + q̂(i, j;m,n)(x)∆ + o(∆), if (m,n) = (i, j),

(2.33)

provided ∆ ↓ 0. Similar to Lemma 2.6, we can prove the following lemma.

Lemma 2.7 Suppose that (H1), (H2), (Q1), (Q2’) and Assumption 2.2 holds. Then the

coupling process
(
X,Λ∗,Λ

)
satisfying (1.1) and (2.22) exists, and further

P
(x,j,i)

(
Λ(t) ≥ Λ∗(t), ∀ t ≥ 0

)
= 1 with (X(0),Λ∗(0),Λ(0)) = (x, j, i), i ≥ j. (2.34)

In addition, suppose that Q∗ is irreducible, then for each increasing function h on S and each

(x, i) ∈ R
d × S,

P
(x,i)

(
lim inf
t→∞

1

t

∫ t

0
h(Λ(s))ds ≥

∑

m∈S

h(m)µ∗
m

)
= 1, (2.35)

where µ∗ = (µ∗
1, . . . , µ

∗
M ) is the invariant probability measure associated with Λ∗.

In what follows, we provide two concrete examples to illustrate the application of order-

preserving couplings to construct upper control and lower control Markov chains for the jump

component of state-dependent regime-switching processes.
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Example 2.3 Consider the case d = 1, S = {1, 2}. Let Qx in (1.2) be given by

Qx =
(
qij(x)

)
=

(
sin2 x− 2 2− sin2 x

1 + | cos x| −1− | cos x|

)
.

Meanwhile, we choose

Q̄ = (q̄i,j) =

(
−2 2

1 −1

)
and Q∗ = (q∗i,j) =

(
−1 1

2 −2

)
.

It can be verified that Qx � Q̄ and Q∗ � Q(x) for all x ∈ R and that both Q̄ and Q∗ are

irreducible and their associated invariant probability measures are given by µ̄ = (µ̄1, µ̄2) =

(1/3, 2/3) and µ∗ = (µ∗
1, µ

∗
2) = (2/3, 1/3) respectively. Thus, for the system (X,Λ) satisfying

(1.1) and (1.2) and any given increasing function h on S = {1, 2}, by virtue of Lemma 2.6, we

have

P
(x,i)

(
lim sup
t→∞

1

t

∫ t

0
h(Λ(s))ds ≤

h(1) + 2h(2)

3

)
= 1; (2.36)

and by virtue of Lemma 2.7, we have

P
(x,i)

(
lim inf
t→∞

1

t

∫ t

0
h(Λ(s))ds ≥

2h(1) + h(2)

3

)
= 1. (2.37)

Example 2.4 Consider the case d = 1, S = {1, 2, 3}. Let Q(x) in (1.2) be defined by

Q(x) =
(
qij(x)

)
=




−3− | cos x|+ sin2 x 1 + | cos x| 2− sin2 x

1 + x2

1+x2 −2− x2

1+x2 1

2 + | sinx| 1 + |x|
1+|x| −3− | sin x| − |x|

1+|x|


 .

Meanwhile, we choose

Q̄ = (q̄i,j) =




−4 2 2

1 −3 2

2 1 −3


 and Q∗ = (q∗i,j) =




−2 1 1

3 −3 0

3 2 −5


 .

For any x ∈ R, it is easy to see that

q12(x) + q13(x) ≤ q̄1,2 + q̄1,3, q13(x) ≤ q̄1,3,

q13(x) ≤ q̄2,3, q23(x) ≤ q̄2,3,

q21(x) ≥ q̄2,1, q21(x) ≥ q̄3,1,

q31(x) + q32(x) ≥ q̄3,1 + q̄3,2, q31(x) ≥ q̄3,1
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and that
q∗1,2 + q∗1,3 ≤ q12(x) + q13(x), q∗1,3 ≤ q13(x),

q∗1,3 ≤ q23(x), q∗2,3 ≤ q23(x),

q∗2,1 ≥ q21(x), q∗2,1 ≥ q31(x),

q∗3,1 + q∗3,2 ≥ q31(x) + q32(x), q∗3,1 ≥ q31(x).

Hence, we get that Q(x) � Q̄ and Q∗ � Q(x) for all x ∈ R, it is easy to see that

q12(x) + q13(x) ≤ q∗1,2 + q∗1,3, q13(x) ≤ q∗1,3,

q13(x) ≤ q∗2,3, q23(x) ≤ q∗2,3,

q21(x) ≥ q∗2,1, q21(x) ≥ q∗3,1,

q31(x) + q32(x) ≥ q∗3,1 + q∗3,2, q31(x) ≥ q∗3,1

and that
q∗(1, 2) + q∗(1, 3) ≤ q12(x) + q13(x), q∗(1, 3) ≤ q13(x),

q∗(1, 3) ≤ q23(x), q∗(2, 3) ≤ q23(x),

q∗(2, 1) ≥ q21(x), q∗(2, 1) ≥ q31(x),

q∗(3, 1) + q∗(3, 2) ≥ q31(x) + q32(x), q∗(3, 1) ≥ q31(x).

Hence, we get that Q(x) � Q∗ and Q∗ � Q(x) for all x ∈ R
1. Clearly, both Q̄ and Q∗ are

irreducible and their associated invariant probability measures are given by µ̄ = (µ̄1, µ̄2, µ̄3) =

(7/25, 8/25, 2/5) and µ∗ = (µ∗
1, µ

∗
2, µ

∗
3) = (3/5, 7/25, 3/25) respectively. Thus, for the system

(X,Λ) satisfying (1.1) and (1.2) and any given increasing function h on S = {1, 2, 3}, by virtue

of Lemma 2.6, we have

P
(x,i)

(
lim sup
t→∞

1

t

∫ t

0
h(Λ(s))ds ≤

7h(1) + 8h(2) + 10h(3)

25

)
= 1; (2.38)

and by virtue of Lemma 2.7, we have

P
(x,i)

(
lim inf
t→∞

1

t

∫ t

0
h(Λ(s))ds ≥

15h(1) + 7h(2) + 3h(3)

25

)
= 1. (2.39)

3 Almost sure stability of regime-switching SFDE

To make the idea clear, in this work we shall study the stability of a regime-switching system

with linear feedback control as we did in [22]. Recall the equation satisfied by (X(t)), i.e.

dX(t) =
[
a(X(t),Λ(t)) − b(Λ(δ(t)))X(δ(t))

]
dt+ σ(X(t),Λ(t))dW (t), X(0) = x ∈ R

d. (3.1)

We would like to point out that these constants bi, i ∈ S do not have to be all positive. In order

to show the almost sure stability of the system (3.1) and (1.2), we shall apply the method in
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[33], and the key point is to prove
∫ ∞

0
E|X(t)|2dt < ∞.

As mentioned in [22, Remark 3.3], we cannot show the finiteness of the following quantity at

that time:

E

∫ ∞

0
e
∫ t

0
g(Λ(δ(s)))dsdt < ∞

for a general function g. However, with the help of Lemma 2.3, we can handle this quantity now.

From now on, we suppose the coefficient a(·, ·) : Rd × S → R
d satisfies the following condition.

(H3) There exists a positive constant Ma such that |a(x, i)| ≤ Ma|x| for all (x, i) ∈ R
d × S.

To make our computation below more precisely, we give out a more explicit construction of

the probability space used in the sequel. Let

Ω1 = {ω| ω : [0,∞) → R
d is continuous with ω(0) = 0},

which is endowed with the locally uniform convergence topology and the Wiener measure P1

so that the coordinate process W (t, ω) := ω(t), t ≥ 0, is a standard d-dimensional Brownian

motion. Let (Ω2,F2,P2) be a probability space and ΠR be the totality of point functions on

R. For a point function (p(t)), Dp denotes its domain, which is a countable subset of [0,∞).

Let p : Ω2 → ΠR be a Poisson point process with counting measure N(dt,dz) on (0,∞) × R+

defined by

N((0, t) × U) = #{s ∈ Dp| s ≤ t, p(s) ∈ U}, t > 0, U ∈ B(R+), (3.2)

and its intensity measure is dt×m(dz). Set (Ω,F ,P) = (Ω1 × Ω2,B(Ω1)× F2,P1 × P2), then

under P = P1 × P2, for ω = (ω1, ω2), t 7→ ω1(t) is a Wiener process, which is independent of

the Poisson point process t 7→ p(t, ω2). Throughout this work, we will work on this probability

space (Ω,F ,P). Define

E
N [ · ](ω2) = E[ · |F2](ω2)

to be the conditional expectation with respect to the σ-algebra F2.

Lemma 3.1 Let (X(t),Λ(t)) be the solution of (3.1) and (1.2). Suppose conditions (H1)-(H3),

(Q1), (Q2) and (Q3) hold. Set

K(τ) = 2τ(2C̄ +Ma + b̄)e(2C̄+3Ma+b̄)τ , (3.3)

where C̄ = maxi∈S C(i) and b̄ = maxi∈S b(i). Moreover, assume τ is sufficiently small so that

K(τ) < 1. Then it holds

E
N |X(t)−X(δ(t))|2(ω2) ≤

K(τ)

1−K(τ)
E
N |X(t)|2(ω2). (3.4)
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Proof. For any t ≥ 0, there is a unique integer υ ≥ 0 for t ∈ [υτ, (υ+1)τ). Moreover, δ(s) = υτ

for s ∈ [υτ, t]. From (3.1) we have that

X(t) −X(δ(t)) = X(t)−X(υτ)

=

∫ t

υτ

[
a(X(s),Λ(s)) − b(Λ(δ(s)))X(δ(s))

]
ds

+

∫ t

υτ
σ(X(s),Λ(s))dw1(s).

According to the condition (H1), it follows from this and Itô’s formula that

|X(t) −X(δ(t))|2

=

∫ t

δ(t)
2〈X(s)−X(δ(s)), a(X(s),Λ(s))−b(Λ(δ(s)))X(δ(s))〉ds

+

∫ t

δ(t)
‖σ(X(s),Λ(s))‖2HSds+

∫ t

δ(t)
2〈X(s)−X(δ(s)), σ(X(s),Λ(s))dw1(s)〉.

Taking the conditional expectation w.r.t. F2 on both sides of previous equality and using the

independence of (w1(t)) and (w2(t)), we get

E
N [|X(t) −X(δ(t))|2](ω2)

≤ E
N
[ ∫ t

δ(t)
C(Λ(s))|X(s)|2 + 2Ma|X(s)||X(s) −X(δ(s))|ds

]
(ω2)

+ E
N
[ ∫ t

δ(t)
2b(Λ(δ(s)))|X(δ(s))||X(s) −X(δ(s))|ds

]
(ω2)

≤ E
N
[ ∫ t

δ(t)

{
2C̄(|X(s) −X(δ(s))|2 + |X(δ(s))|2)

+Ma(3|X(s)−X(δ(s))|2+|X(δ(s))|2)

+ b̄|X(s)−X(δ(s))|2 + b̄|X(δ(s))|2
}
ds
]
(ω2)

≤ (2C̄ +Ma + b̄)τEN [|X(δ(t))|2 ](ω2)

+ E
N
[ ∫ t

δ(t)
(2C̄ + 3Ma + b̄)|X(s)−X(δ(s))|2ds

]
(ω2).

By virtue of Gronwall’s inequality,

E
N |X(t)−X(δ(t))|2(ω2)

≤ (2C̄ +Ma + b̄)τEN [|X(δ(t))|2](ω2)e
∫ t
δ(t)

(
2C̄+3Ma+b̄

)
ds

≤ 2τ(2C̄ +Ma + b̄)EN [|X(t) −X(δ(t))|2 + |X(t)|2](ω2)e
∫ t

δ(t)

(
2C̄+3Ma+b̄

)
ds
,
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which yields immediately the desired conclusion. �

In the following, we consider only the case S = {1, 2} and use Lemma 2.4 to construct the

control Markov chains from upper and below. For the case S containing more than two states,

we can use Lemma 2.6 and Lemma 2.7 to construct the control Markov chains, then follow the

same line as the case S = {1, 2} to derive the corresponding results.

Recall that (q̄ij) and (q∗ij) are defined by (2.6) and (2.7). Suppose that (2.10), (2.11) and

q̄21, q
∗
12 > 0 hold. Then, according to Lemma 2.4, it holds

Λ∗(t) ≤ Λ(t) ≤ Λ̄(t), t ≥ 0, a.s. (3.5)

Define

P̄ij = P(Λ̄(τ) = j|Λ̄(0) = i)

P ∗
ij = P(Λ∗(τ) = j|Λ∗(0) = i), i, j ∈ S.

For a function b(·) : S → R, define

P̄ (b) =
(
eb(i)P̄ij

)
, P ∗(b) =

(
eb(i)P ∗

ij

)
.

Then the corresponding first eigenvalues of the linear operators P̄b, P
∗
b are denoted by

λ̄1(b) = max{Re(λ);λ ∈ Spec(P̄b)},

λ∗
1(b) = max{Re(λ);λ ∈ Spec(P ∗

b )}.
(3.6)

The Markov chain (Λ̄(nτ))n≥0 is a skeleton Markov chain of (Λ̄(t)). If we denote f̄ij(t) =

P(Λ̄(t) = j|Λ̄(0) = i), i, j ∈ S, t ≥ 0, then

P̄ij = P(Λ̄(τ) = j|Λ̄(0) = i) = f̄ij(τ).

It is known (cf. e.g. [6, Chapter 4]) that f̄ij(t) satisfies the following equation

f̄ij(t) = eq̄itδij +
∑

k 6=j

∫ t

0
f̄ik(t− s)q̄kje

−q̄jsds, (3.7)

where δij = 1 if i = j; otherwise, δij = 0. Since (Λ̄(t)) is assumed to be irreducible, this yields

that P̄ij > 0 for all i, j ∈ S, which means that the transition matrix P̄ of (Λ̄(nτ))n≥0 is positive.

Therefore, Lemma 2.3 can be applied to (Λ̄(nτ))n≥0. Similar deduction holds for (Λ∗(nτ))n≥0.

Lemma 3.2 There exist two constants K̃1, K̃2 > 0 such that for any initial point i0 ∈ S of Λ̄

and Λ∗, it holds that

K̃1(λ̄1(b))
t ≤ Ei0

[
exp

{∫ t

0
b(Λ̄(δ(s)))ds

}]
≤ K̃2(λ̄1(b))

t, (3.8)
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K̃1(λ
∗
1(b))

t ≤ Ei0

[
exp

{∫ t

0
b(Λ∗(δ(s)))ds

}]
≤ K̃2(λ

∗
1(b))

t, (3.9)

for t large enough.

Proof. We only prove (3.8), and the rest assertion can be proved in the same way. Applying

Lemma 2.3, we obtain that for t large enough,

Ei0

[
exp

{∫ t

0
b(Λ̄(δ(s)))ds

}]
= Ei0

[
exp

{ [t/τ ]−1∑

k=0

(
b(Λ̄(kτ))τ + (t− [t/τ ]τ)

)}]

≤ eτ maxi b(i)Ei0

[
exp

{ [t/τ ]−1∑

k=0

b(Λ̄(kτ))τ
}]

≤ eτ maxi b(i)K2

(
min{Λ̄1,b, 1}

)−τ
(λ1(b))

t.

Analogously,

Ei0

[
exp

{∫ t

0
b(Λ̄(δ(s)))ds

}]
≥ eτ(mini b(i)∧0)K1

(
max{λ̄1,b, 1})

−τ (λ̄1(b))
t.

Inequality (3.8) follows from the finiteness of the cardinality of S. �

Lemma 3.3 Under the conditions (H1)-(H3), (Q1), (Q2) and (Q3), suppose further that

(2.10), (2.11) and q̄21, q∗12 > 0 hold. Assume the functions b(·), C(·), c(·) on S are all non-

decreasing. Then for ε ∈ (0, 1),

E[|X(t)|2] ≤ |x0|
2
E

[
e
∫ t
0 (C(Λ̄(r))−2b(Λ∗(δ(r)))+2

√
K(τ)

1−K(τ)
b(Λ̄(δ(r))))dr

]
(3.10)

and

E[|X(t)|2] ≥ |x0|
2
E

[
e
∫ t
0 c(Λ∗(r))−2b(Λ̄(δ(r)))−2

√
K(τ)

1−K(τ)
b(Λ̄(δ(r)))dr

]
. (3.11)

Proof. It follows from Itô’s formula and condition (H1) that

d|X(t)|2 =
(
2〈X(t), a(X(t),Λ(t))〉 + ‖σ(X(t),Λ(t))‖2HS

)
dt

− 2b(Λ(δ(t)))〈X(t),X(δ(t))〉dt+ 2〈X(t), σ(X(t),Λ(t))dw1(t)〉

≤
(
C(Λ(t))|X(t)|2 − 2b(Λ(δ(t)))〈X(t),X(δ(t))〉

)
dt

+ 2〈X(t), σ(X(t),Λ(t))dw1(t)〉

≤
(
C(Λ(t))− (2− ε)b(Λ(δ(t)))

)
|X(t)|2dt

+
1

ε
b(Λ(δ(t)))|X(t) −X(δ(t))|2dt
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+ 2〈X(t), σ(X(t),Λ(t))dw1(t)〉, for every ε ∈ (0, 1).

Taking conditional expectation E
N [ · ] on both sides, then applying (3.5) and the non-decreasing

property of functions b(·) and C(·), we obtain that for 0 ≤ s < t,

E
N [|X(t)|2](ω2)− E

N [|X(s)|2](ω2)

≤ E
N
[ ∫ t

s

{(
C(Λ(r))− (2− ε)b(Λ(δ(r)))

)
|X(r)|2

+
1

ε
b(Λ(δ(r)))|X(r) −X(δ(r))|2

}
dr
]
(ω2)

≤ E
N
[ ∫ t

s

{(
C(Λ̄(r))− (2− ε)b(Λ∗(δ(r)))

)
|X(r)|2

+
1

ε
b(Λ̄(δ(r)))|X(r) −X(δ(r))|2

}
dr
]
(ω2)

=

∫ t

s

{(
C(Λ̄(r))− (2− ε)b(Λ∗(δ(r)))

)
E
N
[
|X(r)|2

]
(ω2)

+
1

ε
b(Λ̄(δ(r)))EN

[
|X(r)−X(δ(r))|2

]
(ω2)

}
dr,

where in the last equality we used the fact that the processes (Λ̄(t)) and (Λ∗(t)) are fixed once

ω2 is given. Invoking the estimate in Lemma 3.1, this yields

E
N [|X(t)|2](ω2)− E

N [|X(s)|2](ω2)

≤

∫ t

s

{ (
C(Λ̄(r))−(2 − ε)b(Λ∗(δ(r)))+

K(τ)

ε(1 −K(τ))
b(Λ̄(δ(r)))

)
E
N [|X(r)|2](ω2)

}
dr.

(3.12)

Note that as a function of ε,

C(Λ̄(r))−(2− ε)b(Λ∗(δ(r)))+
K(τ)

ε(1 −K(τ))
b(Λ̄(δ(r)))

takes its maximal value at

ε =

√
K(τ)

1−K(τ)
·

√
b(Λ̄(δ(r)))

b(Λ∗(δ(r)))
.

Hence, it follows from (3.12) that

E
N [|X(t)|2](ω2)− E

N [|X(s)|2](ω2)

≤

∫ t

s

{(
C(Λ̄(r))−2b(Λ∗(δ(r)))+2

√
K(τ)

1−K(τ)

√
b(Λ̄(δ(r)))b(Λ∗(δ(r)))

)
E
N [|X(r)|2](ω2)

}
dr.
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Since b(Λ∗(δ(r))) ≤ b(Λ̄(δ(r))) for all r ≥ 0, we then have that

E
N [|X(t)|2](ω2)− E

N [|X(s)|2](ω2)

≤

∫ t

s

{ (
C(Λ̄(r))−2b(Λ∗(δ(r)))+2

√
K(τ)

1−K(τ)
b(Λ̄(δ(r)))

)
E
N [|X(r)|2](ω2)

}
dr.

(3.13)

Set u(t)(ω2) = E
N [|X(t)|2](ω2), and

g(r) = C(Λ̄(r))−2b(Λ∗(δ(r)))+2

√
K(τ)

1−K(τ)
b(Λ̄(δ(r))).

(3.13) can be rewritten in the form

u(t)(ω2)− u(s)(ω2) ≤

∫ t

s
g(r)u(r)(ω2)dr. (3.14)

As the function r → g(r) needs not to be differentiable, we can use the trick as in [23, Lemma

3.2] to derive from Gronwall’s inequality that

u(t)(ω2) ≤ u(0)(ω2)e
∫ t
0 g(r)dr. (3.15)

Then we get the desired upper estimate (3.10) after taking expectation w.r.t. E[·] on both sides

of (3.15).

The lower estimate (3.11) can be deduced by the same method. Actually, it follows from

Itô’s formula and condition (H1) that

d|X(t)|2 =
(
2〈X(t), a(X(t),Λ(t))〉 + ‖σ(X(t),Λ(t))‖2HS

)
dt

− 2b(Λ(δ(t)))〈X(t),X(δ(t))〉dt+ 2〈X(t), σ(X(t),Λ(t))dw1(t)〉

≥
(
c(Λ(t))− (2 + ε)b(Λ(δ(t)))

)
|X(t)|2dt

−
1

ε
b(Λ(δ(t)))|X(t) −X(δ(t))|2dt

+ 2〈X(t), σ(X(t),Λ(t))dw1(t)〉, for every ε ∈ (0, 1).

In what follows, the difference is that we shall use the transform c(Λ(r)) ≥ c(Λ∗(r)) instead of

C(Λ(r)) ≤ C(Λ̄(r)) and corresponding transform for b(Λ(r)) in this case. However, these details

are omitted. �

In order to estimate the long time behavior of the quantity

Eep
∫ t
0 C(Λ̄(r))dr, p > 0,
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we present the estimate established in [2] after introducing some necessary notation. Let

Q̄p = Q̄+ pdiag(C(1), . . . , C(M)),

where diag(C(1), . . . , C(M)) denotes the diagonal matrix generated by vector (C(1), . . . , C(M)).

Put

ηp,C = −max{Re(γ); γ ∈ Spec(Q̄p)}. (3.16)

According to [2, Proposition 4.1], for any p > 0, there exist two positive constants κ1(p), κ2(p)

such that for any initial point i0 ∈ S,

κ1(p)e
−ηp,C t ≤ Ei0

[
ep

∫ t

0
C(Λ̄(r))dr

]
≤ κ2(p)e

−ηp,C t, t > 0. (3.17)

Now we formulate our main result.

Theorem 3.4 Suppose the conditions in Lemma 3.3 hold. In addition, assume

η3,C > 0, λ∗
1(−6b) < 1, and λ̄1

(
6

√
K(τ)

1−K(τ)
b
)
< 1. (3.18)

Then for every initial value (X(0),Λ(0)) = (x0, i0) ∈ R
d × S of (1.1) and (1.2), it holds

lim
t→∞

X(t) = 0, a.s. (3.19)

Proof. Applying Lemma 3.2, (3.17) and Hölder’s inequality to the estimate (3.10), we get

E[|X(t)|2] ≤ |x0|
2
(
Ee3

∫ t
0 C(Λ̄(r))dr

) 1
3
(
Ee−6

∫ t
0 b(Λ∗(δ(r)))dr

) 1
3
(
Ee

6
√

K(τ)
1−K(τ)

∫ t

0
b(Λ̄(δ(r)))dr

) 1
3

≤ |x0|
2
(
κ2(3)K̃

2
2

) 1
3 e−

η3,Ct

3
(
λ∗
1(−6b)

) t
3

(
λ̄1

(
6

√
K(τ)

1−K(τ)
b
)) t

3
.

(3.20)

Then, it is easy to check that under the condition (3.18),

∫ ∞

0
E
[
|X(t)|2

]
dt < ∞, (3.21)

and there exists a constant C > 0 such that

E[|X(t)|2] ≤ C for all t ≥ 0. (3.22)

By Itô’s formula, we obtain that

E[|X(t2)|
2]− E[|X(t1)|

2]
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= E

∫ t2

t1

(
2〈X(s), a(X(s),Λ(s))−b(Λ(δ(s)))X(δ(s))〉

+ ‖σ(X(s),Λ(s))‖2HS

)
ds

for any 0 ≤ t1 < t2 < ∞. Thus, by virtue of the condition (H1) and (3.22), there exists a

generic constant C > 0 such that

∣∣E
[
|X(t2)|

2]− E[|X(t1)|
2
]∣∣ ≤ C(t2 − t1).

Namely, E[|X(t)|2] is uniformly continuous with respect to t over R+. Hence, it follows from

(3.21) that

lim
t→∞

E
[
|X(t)|2

]
= 0. (3.23)

Now we can completely follow the proof line of [33, Theorem 3.4] to show that

lim
t→∞

X(t) = 0, a.s.

The details are omitted. �

Remark 3.5 Note that in Lemma 3.2 and Theorem 3.4, we have assumed the non-decreasing

property of the functions b(·), C(·), c(·) on S. This is a technical assumption to simplify

our presentation. Without this monotone condition, after doing some necessary rearrange-

ment of the states of S, our results remain valid. Precisely, for instance, in order to control

exp
( ∫ t

0 C(Λ(s))ds
)
, one can first reorder the set S so that C(·) is non-decreasing. Of course,

under this new order, the original Q matrix becomes a new form Q̃ = (q̃ij), while Q̃ remains

to be conservative and irreducible. Hence, we can define the corresponding Markov chains

(Λ̄(t)) and (Λ∗(t)) associated with Q̃. Then, applying Lemmas 2.4, 2.6, 2.7, one can control

exp
( ∫ t

0 C(Λ(s))ds
)
from upper and below.

Appendix A: Proof of Theorem 2.1

According to [26] and [32], (Λ(t)) can be represented in terms of Poisson random measure. This

representation will play an important role in this work. For the sake of clarity in the presentation

and calculation, we introduce the following construction of the probability space which will be

used throughout this work. Let

Ω(1) = {ω|ω : [0,∞) → R
d is continuous with ω0 = 0},

which is endowed with the locally uniform convergence topology and the Wiener measure P(1) so

that the coordinate process W (t, ω) := ω(t), t ≥ 0 is a standard d-dimensional Wiener process
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on (Ω(1),F (1), {F
(1)
t }t≥0, P

(1)). Let (Ω(2),F (2), {F
(2)
t }t≥0, P

(2)) be a complete probability space

with a filtration {F
(2)
t }t≥0 satisfying the usual conditions, and let {ξn} be a sequence of inde-

pendent exponentially distributed random variables with mean 1 on (Ω(2),F (2), {F
(2)
t }t≥0, P

(2)).

Define

Ω = Ω(1) × Ω(2), F = F (1) ×F (2), Ft = F
(1)
t ×F

(2)
t , P = P

(1) × P
(2),

and (Ω,F , {Ft}t≥0, P) is just the probability space used throughout this appendix. The proof

of Theorem 2.1 is a little long, so we separate it into two steps.

Step 1: Construction of solution. Fix some (x, i) ∈ R
d×S and consider the following SFDE

dX(i)(t) =
[
a(X(i)(t), i) − b(X(i)(δ(t)), i)

]
dt+ σ(X(i)(t), i)dW (t) (3.24)

with X(i)(0) = x. By virtue of conditions (H1) and (H2), we can prove that equation (3.24)

admits a unique nonexplosive solution X(i)(t) by using the Picard iterations following the line

of [13, Chapter 5, Theorem 2.2]. Then, we have

P
(

lim
m→∞

τOm = ∞
)
= 1,

where τOm := inf{t ≥ 0 : |X(i)(t)| ≥ m} for m ≥ 1. Recall that {ξn} is a sequence of independent

mean 1 exponentially distributed random variables introduced above. Let

τ1 = θ1 := inf
{
t ≥ 0 :

∫ t

0
qi(X

(i)(s))ds > ξ1

}
, (3.25)

so we have

P
(
τ1 > t|F

(1)
t

)
= P

(
ξ1 ≥

∫ t

0
qi(X

(i)(s))ds
∣∣∣F (1)

t

)
= exp

{
−

∫ t

0
qi(X

(i)(s))ds
}
. (3.26)

Then, it follows from condition (Q2’) that for some m ≥ |x|+ 1,

P
(
τ1 > t

)
= E exp

{
−

∫ t

0
qi(X

(i)(s))ds
}

≥ E

(
1{τOm≥t} exp

{
−

∫ t

0
qi(X

(i)(s))ds
})

= E

(
1{τOm≥t} exp

{
−

∫ t∧τOm

0
qi(X

(i)(s))ds
})

≥ P
(
{τOm ≥ t}

)
exp

{
−K0

(
1 +mκ0

)
t
}
.

(3.27)

Since both terms of the product on the last line tend to 1 as t ↓ 0, one gets P
(
τ1 > 0

)
= 1. We

define a process (X,Λ) ∈ R
d × S on [0, τ1] as follows:

X(t) = X(i)(t) for all t ∈ [0, τ1], and Λ(t) = i for all t ∈ [0, τ1). (3.28)
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Moreover, we define Λ(τ1) ∈ S according to the probability distribution:

P
(
Λ(τ1) = j|Fτ1−

)
=

qij(X(τ1))

qi(X(τ1))
(1− δij)1{qi(X(τ1))>0} + δij1{qi(X(τ1))=0}. (3.29)

Obviously, the process (X,Λ) has been constructed on the temporal interval [0, τ1], so the

process (X,Λ) is well-defined at the observation time δ(t) when δ(t) ≤ τ1. Next, we construct

the process (X,Λ) after τ1. To do so, when δ(t) < τ1, let X̂ satisfy

dX̂(t) =
[
a(X̂(t),Λ(τ1))− b(X(i)(δ(t+ τ1)), i)

]
dt+ σ(X̂(t),Λ(τ1))dW̃ (t), (3.30)

with X̂(0) = X(τ1); when δ(t) ≥ τ1, let X̂ satisfy

dX̂(t) =
[
a(X̂(t),Λ(τ1))− b(X̂(δ(t)),Λ(τ1))

]
dt+ σ(X̂(t),Λ(τ1))dW̃ (t) (3.31)

with X̂(0) = X(τ1), where W̃ (t) = W (t + τ1) −W (τ1). Actually, we can combining the above

two equations (3.30) and (3.31) as the following SFDE:

dX̂(t) =
[
a(X̂(t),Λ(τ1))− b(X̂(δ(t)), Λ̂(δ(t)))

]
dt+ σ(X̂(t),Λ(τ1))dW̃ (t), (3.32)

with X̂(0) = X(τ1), where

X̂(δ(t)) = X(i)(δ(t+ τ1))1{0≤δ(t)<τ1} + X̂(δ(t))1{δ(t)≥τ1}, (3.33)

Λ̂(δ(t)) = i1{0≤δ(t)<τ1} + Λ(τ1)1{δ(t)≥τ1}, (3.34)

and here, X(i) is the unique solution to equation (3.24) and so X(i)(δ(t + τ1)) is well-defined.

Clearly, it is easy to see from (3.33) and (3.34) that X̂(δ(t)) is well-defined whenever 0 ≤

δ(t) < τ1, while Λ̂(δ(t)) is well-defined for both δ(t) < τ1 and δ(t) ≥ τ1. Therefore, equation

(3.32) has a unique nonexplosive solution X̂(t) thanks to conditions (H1) and (H2). Let

θ2 := inf
{
t ≥ 0 :

∫ t

0
qΛ(τ1)(X̂(s))ds > ξ2

}
. (3.35)

As argued in (3.26), we have

P
(
θ2 > t|Fτ1+t

)
= P

(
ξ2 ≥

∫ t

0
qΛ(τ1)(X̂(s))ds

∣∣∣Fτ1+t

)

= exp
{
−

∫ t

0
qΛ(τ1)(X̂(s))ds

}
.

Once again, we can derive from condition (Q2’) that P
(
θ2 > 0

)
= 1. Then we let

τ2 := τ1 + θ2 = θ1 + θ2 (3.36)
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and define (X,Λ) on [τ1, τ2] by

X(t) = X̂(t− τ1) for t ∈ [τ1, τ2], Λ(t) = Λ(τ1) for t ∈ [τ1, τ2), (3.37)

and

P
(
Λ(τ2) = l|Fτ2−

)

=
qΛ(τ1),l(X(τ2))

qΛ(τ1)(X(τ2))
(1− δΛ(τ1),l)1{qΛ(τ1)

(X(τ2))>0} + δΛ(τ1),l1{qΛ(τ1)
(X(τ2))=0}.

(3.38)

Following this procedure, we can further define (X,Λ) on the interval [τn, τn+1) inductively

for n ≥ 3, where τn is defined similarly as (3.25) and (3.36). This “interlacing procedure”

uniquely determines a process (X,Λ) ∈ R
d × S for all t ∈ [0, τ∞), where

τ∞ = lim
n→∞

τn. (3.39)

Since the sequence τn is strictly increasing, the limit τ∞ ≤ ∞ exists. Hence, the process (X,Λ)

constructed above can be regarded as the unique solution to SFDE (2.1) and (1.2) on [0, τ∞).

Step 2: Nonexplosion of solution. What is left to complete the proof of Theorem 2.1 is to

show P(τ∞ = ∞) = 1, which is also the most delicate and difficult part of the argument.

First, we show that the evolution of the discrete component Λ can be represented as a

stochastic integral with respect to a Poisson random measure, which is sometimes called Sko-

rokhod’s representation of Λ. In view of [26, Section II-2.1] or [32, Section 2.2], for each x ∈ R
d,

construct a family of intervals {Γij(x); i, j ∈ S} on the positive half line in the following manner:

Γ12(x) = [0, q12(x))

Γ13(x) = [q12(x), q12(x) + q13(x))

. . .

Γ1M (x) =
[M−1∑

j=2

q1j(x), q1(x)
)

Γ21(x) = [q1(x), q1(x) + q21(x))

Γ23(x) = [q1(x) + q21(x), q1(x) + q21(x) + q23(x))

. . .

and so on. Therefore, we obtain a sequence of consecutive, left-closed, right-open intervals

Γij(x), each having length qij(x). For convenience of notation, we set Γii(x) = ∅ and Γij(x) = ∅

if qij(x) = 0. Define a function h : Rd × S × R+ → R by

h(x, i, z) =
∑

j∈S

(j − i)1Γij (x)(z).
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Namely, for each x ∈ R
d and i ∈ S, we set h(x, i, z) = j−i if z ∈ Γij(z) for some j 6= i; otherwise

h(x, i, z) = 0.

Put λ(t) :=
∫ t
0 qΛ(s)(X(s))ds and n(t) := max{n ∈ N : ξ1 + · · · + ξn ≤ λ(t)} for all

t ∈ [0, τ∞), where {ξn, n = 1, 2, . . . } is the sequence of independent exponential random variables

with mean 1 introduced above. Then in view of (3.25), (3.26), (3.35), and (3.36), the process

{n(t ∧ τ∞), t ≥ 0} is a counting process that counts the number of switches for the component

Λ. We can regard n(·) as a nonhomogeneous Poisson process with random intensity function

qΛ(t)(X(t)), t ∈ [0, τ∞).

Now for any s < t ∈ [0, τ∞) and A ∈ B(S), let

p((s, t]×A) =
∑

u∈(s,t]

1{Λ(u)6=Λ(u−),Λ(u)∈A} and p(t, A) = p((0, t] ×A).

Then we have p(t ∧ τ∞,S) = n(t ∧ τ∞) and

Λ(t ∧ τ∞) = Λ(0) +

∞∑

k=1

[Λ(τk)− Λ(τk−)]1{τk≤t∧τ∞}

= Λ(0) +

∫ t∧τ∞

0

∫

S
[j − Λ(s−)] p(ds,dj).

(3.40)

We can also define a Poisson random measure N(·, ·) on [0,∞) ×R+ by

N(t ∧ τ∞, B) :=
∑

j∈S∩B

p(t ∧ τ∞, j), for all t ≥ 0 and B ∈ B(R+).

Observe that for any (x, i) ∈ R
d × S and j ∈ S \ {i}, we have

m{z ∈ [0,∞) : h(x, i, z) 6= 0} = qi(x) and m{z ∈ [0,∞) : h(x, i, z) = j − i} = qij(x),

where m is the Lebesgue measure on R+. Therefore, we can rewrite (3.29), (3.38) and (3.40)

into the following form

Λ(t ∧ τ∞) = Λ(0) +

∫ t∧τ∞

0

∫

R+

h(X(s−),Λ(s−), z)N(ds,dz). (3.41)

Second, we shall prove that the process X is nonexplosive. Without loss of generality, we

fix the initial value (X(0),Λ(0)) = (x, i) ∈ R
d × S and for any integer m ≥ [|x|] + 1, denote

by τ̃m := inf{t ≥ 0 : |X(t)| ≥ m} the first exit time for the X component from the open ball

Om := {x ∈ R
d : |x| < m}, and let τ̃∞ := limm→∞ τ̃m. We shall prove that

P
(
τ̃∞ = ∞

)
= 1. (3.42)
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To this end, we first consider the X component process on the temporal interval [0, τ), where

τ > 0 is the length of discrete time observation period. Actually, by Itô’s formula, we have

d|X(t)|2 = 2〈X(t), a(X(t),Λ(t)) − b(X(δ(t)),Λ(δ(t)))〉dt

+ ‖σ(X(t),Λ(t))‖2HSdt+ 2〈X(t), σ(X(t),Λ(t))dW (t)〉

=
(
2〈X(t), a(X(t),Λ(t))〉 + ‖σ(X(t),Λ(t))‖2HS

)
dt

− 2〈X(t), b(X(δ(t)),Λ(δ(t)))〉dt+ 2〈X(t), σ(X(t),Λ(t))dW (t)〉.

(3.43)

Then, by condition (H1) we get that for t ∈ [0, τ),

|X(t)|2 = |X(0)|2 +

∫ t

0

(
2〈X(s), a(X(s),Λ(s))〉 + ‖σ(X(s),Λ(s))‖2HS

)
ds

− 2

∫ t

0
〈X(s), b(X(0),Λ(0))〉ds+M(t)

≤
(
2b̂2t+ 1

)(
|X(0)|2 + 1

)
+
(
C̄ + 1

) ∫ t

0
|X(s)|2ds+M(t),

(3.44)

where M(t) is a continuous local martingale and C̄ = maxi∈S C(i). Taking expectations on both

sides yields that

E|X(t)|2 ≤
(
2b̂2t+ 1

)(
E|X(0)|2 + 1

)
+
(
C̄ + 1

) ∫ t

0
E|X(s)|2ds,

and then by Gronwall’s inequality, it follows that

E|X(t)|2 ≤
(
2b̂2t+ 1

)(
E|X(0)|2 + 1

)
e(C̄+1)t, for every t ∈ [0, τ). (3.45)

Using Fatou’s lemma, from (3.45) we also have

E|X(τ)|2 ≤
(
2b̂2τ + 1

)(
E|X(0)|2 + 1

)
e(C̄+1)τ . (3.46)

Deducing inductively, we can obtain that for any integer m ≥ 1,

E|X(mτ + t)|2 ≤
(
2b̂2t+ 1

)(
E|X(mτ)|2 + 1

)
e(C̄+1)t, for every t ∈ [0, τ), (3.47)

which further implies that E|X(t)|2 < ∞ for any t ≥ 0. Therefore, the explosion time τ̃∞ of the

component X must be infinity almost surely, and so (3.42) holds.

Third, we go to prove that for any given m ≥ [|x|] + 1,

P
(
τ∞ < τ̃m

)
= 0, or equivalently P

(
τ∞ ≥ τ̃m

)
= 1. (3.48)

29



Indeed, for any arbitrarily fixed m0 ≥ [|x|] + 1, let

Ĥ := K0

(
1 +mκ0

0

)
.

Since |X(s)| ≤ m0 for all s ≤ τ̃m0 , so by condition (Q2’) we have qij(X(s)) ≤ Ĥ for all i, j ∈ S

and all s ≤ τ̃m0 . Then, it follows from (3.41) that for any t ≤ τ∞,

Λ(t ∧ τ̃m0) = Λ(0) +

∫ t∧τ̃m0

0

∫

R+

h(X(s),Λ(s−), z)N(ds,dz)

= Λ(0) +

∫ t∧τ̃m0

0

∫

[0,M(M−1)Ĥ]
h(X(s−),Λ(s−), z)N(ds,dz),

(3.49)

since the integrand h(X(s),Λ(s−), z) equals 0 when s ≤ τ̃m0 and z /∈ [0,M(M − 1)Ĥ ], where

constant M is the number of elements in S. For the characteristic measure (i.e., the intensity

measure) m(·) of the Poisson random measure N(·, ·), since m

(
[0,M(M − 1)Ĥ ]

)
< ∞, so the

stationary point process corresponding to the above Poisson random measure N(·, ·) has only

finite occurrence times on the temporal interval [0, t ∧ τ̃m0) almost surely. Hence, it follows

from (3.49) that the component Λ has only finite jumps (i.e., switches) on the temporal interval

[0, t ∧ τ̃m0) almost surely; refer to [28, Proposition 2.1 and Corollary 2.2] for the details. This

implies that τ∞ ≥ t ∧ τ̃m0 almost surely, and then that τ∞ ≥ τ̃m0 almost surely due to that t is

arbitrary. Now we actually have proven (3.48) since the above m0 ≥ [|x|] + 1 is also arbitrary.

Let Am :=
{
ω ∈ Ω : τ∞ < τ̃m

}
for m ≥ [|x|] + 1, and let

A =

∞⋃

m=[|x|]+1

Am, Ac = Ω\A.

It follows from (3.48) that

P(A) = 0, and then P(Ac) = 1. (3.50)

Note that Ac = {τ∞ ≥ τ̃∞}. Thus, by (3.42) we have

P(τ∞ = ∞) ≥ P(τ̃∞ = ∞) = 1.

Consequently, the solution (X(t),Λ(t)) is nonexplosive, and so the above interlacing procedure

actually determines a process (X(t),Λ(t)) for all t ∈ [0,∞). The proof is thus completed.
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