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Abstract. Tensor decomposition is a fundamental unsupervised machine learning method in
data science, with applications including network analysis and sensor data processing. This work
develops a generalized canonical polyadic (GCP) low-rank tensor decomposition that allows other
loss functions besides squared error. For instance, we can use logistic loss or Kullback-Leibler diver-
gence, enabling tensor decomposition for binary or count data. We present a variety of statistically-
motivated loss functions for various scenarios. We provide a generalized framework for computing
gradients and handling missing data that enables the use of standard optimization methods for fit-
ting the model. We demonstrate the flexibility of GCP on several real-world examples including
interactions in a social network, neural activity in a mouse, and monthly rainfall measurements in
India.
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1. Introduction. Many data sets are naturally represented as higher-order ten-
sors. The CANDECOMP/PARAFAC or canonical polyadic (CP) tensor decomposi-
tion builds a low-rank tensor decomposition model and is a standard tool for unsuper-
vised multiway data analysis [32, 15, 29, 38]. The CP decomposition is analogous to
principal component analysis or the singular value decomposition for two-way data.
Structural features in the dataset are represented as rank-1 tensors, which reduces
the size and complexity of the data. This form of dimensionality reduction has many
applications including data decomposition into explanatory factors, dimensionality
reduction, filling in missing data, and data compression. It has been used to analyze
multiway data sets in a variety of domains including neuroscience [1, 60, 21], chem-
istry [42, 35], cybersecurity [41], network analysis and link prediction [36, 45, 22],
machine learning [5, 10, 53], hyperspectral imaging [62, 23], function approximation
[11, 12, 27, 54], and so on. In this manuscript, we consider generalizing the loss
function for determining the low-rank model.

Given a d-way data tensor X of size n1×n2×· · ·×nd, we propose a generalized CP
(GCP) decomposition that approximates X as measured by the sum of elementwise
losses specified by a generic function f : R⊗ R→ R, i.e.,

(1) minF (M;X) ≡
n1∑
i1=1

n2∑
i2=1

· · ·
nd∑
id=1

f(xi,mi) subject to M is low rank.

Here, M is a low-rank model tensor that has CP structure, as illustrated in Figure 1.
We use the shorthand xi = x(i1, i2, . . . , id) and mi = m(i1, i2 . . . , id). For the usual
CP decomposition, the elementwise loss is f(xi,mi) = (xi − mi)

2. While this loss
function is suitable for many situations, it implicitly assumes the data is normally
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Fig. 1: Illustration of CP-structured tensor. The tensor is the sum of r components,
and each component is the outer product of d vectors, also known as a rank-1 tensor
(here we show d = 3). The rank of such a tensor that has r components is bounded
above by r, so it is low-rank if r is small.

distributed. Many datasets of interest, however, do not satisfy this hidden assumption.
Such data can be nonnegative, discrete, or boolean.

Our goal in this paper is to develop a general framework for fitting GCP models
with generic loss functions, enabling the user to adapt the model to the nature of the
data. For example, we later see that a natural elementwise loss function for binary
tensors, which have all entries in { 0, 1 }, is f(xi,mi) = log(mi + 1) − xi logmi. We
show that the GCP gradient has an elegant form that uses the same computational
kernels as the standard CP gradient. We also cover the case of incomplete tensors,
where some data is missing due to either collection issues or an inability to make
measurements in some scenarios. This is a common issue for real-world datasets, and
it can be easily handled in the GCP framework.

1.1. Connections to prior work. Applications of the CP tensor decomposition
date back to the 1970 work of Carrol and Chang [15] and Harshman [29], though its
mathematical origins date back to Hitchcock in 1927 [32]. Many surveys exist on CP
and its application; see, for instance, [13, 5, 38, 50].

Our proposed GCP framework uses so-called direct or all-at-once optimization, in
contrast to the alternating approach that is popular for computing CP known as CP-
ALS. The direct optimization approach has been considered for CP by Acar, Dunlavy,
and Kolda [22] and Phan, Tichavský, and Cichocki [52]. The later case showed that
the Hessians have special structure, and similar structure applies in the case of GCP
though we do not discuss it here. The GCP framework can incorporate many of the
computational improvements for CP, such as tree-based MTTKRP computations [51]
and ADMM for constraints [33]. Our approach for handling missing data is essentially
the same as that proposed for standard CP by Acar, Dunlavy, Kolda, and Mørup [4];
the primary difference is that we now have a more elegant and general theory for the
derivatives.

There have been a wide variety of papers that have considered alternative loss
functions, so here we mention some of the most relevant. The famous nonnegative
matrix factorization paper of Lee and Seung [39] considered KL divergence in the
matrix case, and Welling and Weber [59] and others [55, 16, 28] considered it in
the tensor case. This equates to Poisson with identity link (21) in our framework.
Cichocki, Zdunek, Choi, Plemmons, and Amari [19] have considered loss functions
based on alpha- and beta-divergences for nonnegative CP [18]. These fit into the
GCP framework, and we explicitly discuss the case of beta divergence.

To the best of our knowledge, no general loss function frameworks have been pro-
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posed in the tensor case, but several have been proposed in the matrix case. Collins,
Dasgupta, and Schapire [20] developed a generalized version of matrix principal com-
ponent analysis (PCA) based on loss functions from the exponential family (Gaus-
sian, Poisson with exponential link, Bernoulli with logit link). Gordon [26] considers
a “Generalized2 Linear2 Model” for matrix factorization that allows different loss
functions and nonlinear relationships between the factors and the low-rank approx-
imation. Udell et al. [58] develop a general framework for matrix factorization that
allows for the loss function to be different for each column; several of their proposed
loss functions overlap with ours (e.g., their “Poisson PCA” is equivalent to Poisson
with the log link).

1.2. Contributions. We develop the GCP framework for computing the CP
tensor decomposition with an arbitrary elementwise loss function.

• The main difference between GCP and standard CP is the choice of loss
function, so we discuss loss function choices and their statistical connections
in section 3.

• We describe fitting the GCP model in section 4. We derive the gradient for
GCP with respect to the model components, along with a straightforward
way of handling missing data. We explain how to add regularization and use
a standard optimization method.

• In section 5, we demonstrate the flexibility of GCP on several real-world ex-
amples with corresponding applications including inference of missing entries,
and unsupervised pattern extraction over a variety of data types.

2. Background and notation. Before we continue, we establish some basic
tensor notation and concepts; see Kolda and Bader [38] for a full review.

A boldface uppercase letter in Euler font denotes a tensor, e.g., X. The number
of ways or dimensions of the tensor is called the order. Each way is referred to as a
mode. A boldface uppercase letter represents a matrix, e.g., A. A boldface lowercase
letter represents a vector, e.g., v. A lowercase letter represents a scalar, e.g., x.

The Hadamard (elementwise) product of two same-sized matrices A,B ∈ Rm×n
is denoted by A ∗ B ∈ Rm×n. The Khatri-Rao product of two matrices A ∈ Rm×p
and B ∈ Rn×p is the columnwise Kronecker product, i.e.,

(2) A�B =


a11b11 a12b12 · · · a1pb1p
a11b21 a12b22 · · · a1pb2p

...
...

. . .
...

am1bn1 am2bn2 · · · ampbnp

 ∈ Rmn×p.

2.1. General tensor notation. In the remainder of the paper, we assume all
tensors are real-valued d-way arrays of size n1 × n2 × · · · × nd. We define n and n̄ to
be the geometric and arithmetic means of the sizes, i.e.,

(3) n = d

√√√√ d∏
k=1

nk and n̄ =
1

d

d∑
k=1

nk.

In this way, nd is the total number of elements in the tensor and dn̄ is the sum of the
sizes of all the modes. As shown above, modes are typically indexed by k ∈ { 1, . . . , d }.

Tensors are indexed using i as shorthand for the multiindex (i1, i2, . . . , id), so that
xi ≡ x(i1, i2, . . . , id). We let I denote the set of all possible indices, i.e.,

(4) I ≡ { 1, . . . , n1 } ⊗ { 1, . . . , n2 } ⊗ · · · ⊗ { 1, . . . , nd } .
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It may be the case that some entries of X are missing, i.e., were not observed due to
measurement problems. We let Ω ⊆ I denote the set of observed entries, and then
I \ Ω is the set of missing entries.

The vectorization of X rearranges its elements into a vector of size nd and is
denoted by x. Tensor element x(i1, i2, . . . , id) is mapped to x(i′) in x where the

linear index i′ ∈ { 1, . . . , nd } is given by i′ = 1 +
∑d
k=1(ik − 1)n′k with n′1 = 1 and

n′k =
∏k−1
`=1 n` otherwise.

The mode-k unfolding or matricization of X rearranges its elements into a matrix
of size nk × (nd/nk) and is denoted as X(k), where the subscript indicates the mode
of the unfolding. Element (i1, . . . , id) ∈ I maps to matrix entry (ik, i

′
k) where

(5) i′k = 1 +

k−1∑
`=1

(i` − 1)n′` +

d∑
`=k+1

(i` − 1)(n′`/nk)

2.2. Kruskal tensor notation. We assume the model tensor M in (1) has low-
rank CP structure as illustrated in Figure 1. Following Bader and Kolda [7], we refer
to this type of tensor as a Kruskal tensor. Specifically, it is defined by a set of d factor
matrices, Ak of size nk × r for k = 1, . . . , d, such that

(6) mi ≡ m(i1, i2 . . . , id) =

r∑
j=1

a1(i1, j)a2(i2, j) · · · ad(id, j) for all i ∈ I.

The number of columns r is the same for all factor matrices and equal to the number
of components (d-way outer products) in the model. In Figure 1, the jth component
is the outer product of the jth column vectors of the factor matrices, i.e., A1(:, j),
A2(:, j), etc. We denote (6) in shorthand as M = JA1,A2, . . . ,AdK. The mode-k
unfolding of a Kruskal tensor has a special form that depends on the Khatri-Rao
products of the factor matrices, i.e.,

(7) M(k) = AkZ
ᵀ
k where Zk ≡ Ad � · · · �Ak+1 �Ak−1 � · · · �A1.

If r is relatively small (e.g., r ≤ O(n)), then we say M has low rank. The
advantage of finding a low-rank structure is that it is more parsimonious. The model
M has nd entries but the number of values to define it is only

r

d∑
k=1

nk = drn̄� nd.

It is sometimes convenient to normalize the columns of the factor matrices and
have an explicit weight for each component. For clarity of presentation, we omit this
from our main discussion but do provide this alternative form and related results in
Appendix A.

3. Choice of loss function. The difference between GCP and the standard CP
formulation is flexibility in the choice of loss function. In this section, we motivate
alternative loss functions by looking at the statistical likelihood of a model for a given
data tensor.

In statistical modeling, we often want to maximize the likelihood of a model that
parameterizes the distribution; see, e.g., [30, section 8.2.2]. We assume that we have a
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parameterized probability density function (PDF) or probability mass function (PMF)
that gives the likelihood of each entry, i.e.,

xi ∼ p(xi | θi) where `(θi) = mi,

where xi is an observation of a random variable and `(·) is an invertible link function
that connects the model parameter mi and the corresponding natural parameter of the
distribution, θi. The link function is oftentimes just the identity function, but we show
the utility of a nontrivial link function in subsection 3.2. Link functions are a common
statistical concept and have been used for generalized matrix factorizations [20, 26].

Our goal is to find the model M that is the maximum likelihood estimate (MLE)
across all entries. Conditional independence of observations1 means that the overall
likelihood is just the product of the likelihoods, so the MLE is the solution to

(8) max
M

L(M;X) ≡
∏
i∈Ω

p(xi | θi) with `(θi) = mi for all i ∈ Ω.

We are trying to estimate the parameters θi, but we only have one observation per
random variable xi. Nevertheless, we are able to make headway because of the low-
rank structure of M and corresponding interdependences of the θi’s. Recall that we
have nd observations but only drn̄ free variables.

For a variety of reasons, expression (8) is rather awkward. Instead we take the
negative logarithm to convert the product into a sum. Since the log is monotonic, it
does not change the maximizer. Negation simply converts the maximization problem
into a minimization problem which is common for optimization. Eliminating θi as
well, we arrive at the minimization problem

(9) minF (M;X) ≡
∑
i∈Ω

f(xi,mi) where f(x,m) ≡ − log p(x | `−1(m)).

In the remainder of this section, we discuss how specific choices of distributions (and
corresponding p’s) lead naturally to specific choices for the elementwise loss function f .
Each distribution has its own standard notation for the generic parameter θ, e.g., the
Poisson distribution in subsection 3.5 refers to its natural parameter as λ. Although
our focus here is on statistically-motivated choices for the loss function, other options
are possible as well. We mention two, the Huber loss and β-divergence, explicitly in
subsection 3.7.

3.1. Gaussian distribution and the standard formulation. In this subsec-
tion, we show that the standard squared error loss function, f(x,m) = (x − m)2,
comes from an assumption that the data is Gaussian distributed. A usual assumption
is that the data has low-rank structure but is contaminated by “white noise,” i.e.,

(10) xi = mi + εi with εi ∼ N (0, σ) for all i ∈ Ω.

Here N (µ, σ) denotes the normal or Gaussian distribution with mean µ and standard
deviation σ. We assume σ is constant across all entries. We can rewrite (10) to see
that the data is Gaussian distributed:

xi ∼ N (µi, σ) with µi = mi for all i ∈ Ω.

1The independence is conditioned on M. Although there are dependencies between the entries
of M since indeed the entire purpose of the GCP decomposition is to discover these dependencies,
the observations themselves remain conditionally independent.
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In this case, the link function between the natural parameter µi and the model mi is
simply the identity, i.e., `(µ) = µ.

From standard statistics, the PDF for the normal distribution N (σ, µ) is

p(x |µ, σ) = e−(x−µ)2 / 2σ2 /√
2πσ2.

Following the framework in (9), the elementwise loss function is

f(x,m) = (x−m)2
/

(2σ2) + 1
2 log(2πσ2).

Since σ is constant, it has no impact on the optimization, so we remove those terms
to arrive at the standard form

f(x,m) = (x−m)2 for x,m ∈ R.

Note that this final form is no longer strictly a likelihood which has implications
for, e.g., using Akaike information criterion (AIC) or the Bayesian information crite-
rion (BIC) to choose the number of parameters. In the matrix case, the maximum
likelihood derivation can be found in [61].

It is not uncommon to add a nonnegativity assumption on M [48, 47, 46, 39, 59],
which may correspond to some prior knowledge about the means being nonnegative.

3.2. Bernoulli distribution and connections to logistic regression. In
this subsection, we propose a loss function for binary data. A binary random variable
x ∈ { 0, 1 } is Bernoulli distributed with parameter ρ ∈ [0, 1] if ρ is the probability
of a 1 and, consequently, (1 − ρ) is the probability of a zero. We denote this by
x ∼ Bernoulli(ρ). Clearly, the PMF is given by

(11) p(x | ρ) = ρx(1− ρ)(1−x) x ∈ { 0, 1 } .

A reasonable model for a binary data tensor X is

(12) xi ∼ Bernoulli(ρi) where `(ρi) = mi.

If we choose ` to be the identity link, then we need to constrain mi ∈ [0, 1] which is
a complex nonlinear constraint, i.e.,

(13) 0 ≤
r∑
j=1

a1(i1, j)a2(i2, j) · · · ad(id, j) ≤ 1 for all i ∈ I.

Instead, we can use a different link function.
One option for the link function is to work with the odds ratio, i.e.,

(14) `(ρ) = ρ
/

(1− ρ).

It is arguably even easier to think in terms of odds ratios than the probability, so
this is a natural transformation. For any ρ ∈ [0, 1), we have `(ρ) ≥ 0. Hence, using
(14) as the link function means that we need only constrain mi ≥ 0. This constraint
can be enforced by requiring the factor matrices to be nonnegative, which is a bound
constraint and much easier to handle than the nonlinear constraint (13). With some
algebra, it is easy to show that we can write the log of (11) as

− log
(
p(x | ρ)

)
= log

(
1
/

(1− ρ)
)
− x log

(
ρ
/

(1− ρ)
)
.
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Plugging this and the link function (14) into our general framework in (9) yields the
elementwise loss function

f(x,m) = log(1 +m)− x logm for x ∈ { 0, 1 } ,m ≥ 0.

For a given odds m ≥ 0, the associated probability is ρ = m/(1 + m). Note that
f(1, 0) = −∞ because this represents a statistically impossible situation. In practice,
we replace logm with log(m+ ε) for some small ε > 0 to prevent numerical issues.

Another common option for the link function is to work with the log-odds, i.e.,

(15) `(ρ) = log
(
ρ
/

(1− ρ)
)
.

It is so common that it has a special name: logit. The loss function then becomes

f(x,m) = log(1 + em)− xm for x ∈ { 0, 1 } ,m ∈ R,

and the associated probability is ρ = em/(1 + em). In this case, m is completely
unconstrained and can be any real value. This is the transformation commonly used
in logistic regression. A form of logistic tensor decomposition for a different type of
decomposition called DEDICOM was proposed by Nickel and Tresp [43].

We contrast the odds and logit link functions in terms of the interpretation of the
components. An advantage of odds with nonnegative factors is that each component
can only increase the probability of a 1. The disadvantage is that it requires a
nonnegativity constraint. The logit link is common in statistics and has the advantage
that it does not require any constraints. A potential disadvantage is that it may be
harder to interpret components since they can counteract one another. Moreover,
depending on the signs of its factors, an individual component can simultaneously
increase the probability of a 1 for some entries while reducing it for others. As such,
interpretations may be nuanced.

3.3. Gamma distribution for positive continuous data. There are several
distributions for handling nonnegative continuous data. As mentioned previously, one
option is to assume a Gaussian distribution but impose a nonnegativity constraint.
Another option is a Rayleigh distribution, discussed in the next subsection. Yet
another is the gamma distribution (for strictly positive data), with PDF

(16) p(x | k, θ) =
(
xk−1

/
(Γ(k) θk)

)
e−x/θ for x > 0,

where k > 0 and θ > 0 are called the shape and scale parameters respectively and
Γ(·) is the Gamma function.2 We assume k is constant across all entries and given, in
which case this is a member of the exponential family of distributions. For example,
k = 1 and k = 2 are the exponential and chi-squared distributions, respectively. If
we use the link function `(θ) = θ/k which induces a positivity constraint m > 0 as a
byproduct3, and plug this and (16) into (9) and remove all constant terms (i.e., terms
involving only k), the elementwise loss function is

(17) f(x,m) = log(m) + x/m for x > 0,m > 0.

In practice, we use the constraint m ≥ 0 and replace m with m+ ε (with small ε) in
the loss function (17).

2The Gamma distribution may alternatively by parameterized by α = k and β = 1/θ.
3This also means that we set m to be the expected mean value, i.e., m = E[x] = kθ.
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3.4. Rayleigh distribution for nonnegative continuous data. As alluded
to in the previous subsection the Rayleigh distribution is a distribution for nonnegative
data. The PDF is

(18) p(x |σ) =
(
x
/
σ2
)
e−x

2/(2σ2) for x ≥ 0,

where σ > 0 is called the scale parameter. The link `(σ) =
√
π/2 σ (corresponding

to the mean) induces a positivity constraint on m. Plugging this link and (18) into
(9) and removing the constant terms yields the loss function

(19) f(x,m) = 2 log(m) + π
4 (x/m)2 for x ≥ 0,m > 0.

We again replace m > 0 with m ≥ 0 and replace m with m+ ε (with small ε) in the
loss function (19).

3.5. Poisson distribution for count data. If the tensor values are counts,
i.e., natural numbers (N = { 0, 1, 2, . . . }), then they can be modelled as a Poisson
distribution, a discrete probability distribution commonly used to describe the number
of events that occurred in a specific window in time, e.g., emails per month. The PMF
for a Poisson distribution with mean λ is given by

(20) p(x |λ) = e−λλx
/
x! for x ∈ N.

If we use the identity link function (`(λ) = λ) and (20) in (9) and drop constant
terms, we have

(21) f(x,m) = m− x logm for x ∈ N,m ≥ 0.

This loss function has been studied previously by Welling and Weber [59] and Chi and
Kolda [16] in the case of tensor decomposition; Lee and Seung introduced it in the
context of matrix factorizations [39]. As in the Bernoulli case, we have a statistical
impossibility if x > 0 and m = 0, so we make the same correction of adding a small ε
inside the log term.

Another option for the link function is the log link, i.e., `(λ) = log λ. In this case,
the loss function becomes

(22) f(x,m) = em − xm for x ∈ N,m ∈ R.

The advantage of this approach is that m is unconstrained.

3.6. Negative binomial for count data. Another option for count data is the
negative binomial (NegBinom) distribution. This distribution models the number of
trials required before we experience r ∈ N failures, given that the probability of failure
is ρ ∈ [0, 1]. The PMF is given by

(23) p(x | r, ρ) =

(
x+ r − 1

k

)
ρx(1− ρ)r for x ∈ N.

If we use the odds link (14) with the probability of failure ρ, then the loss function
for a given number of failures r is

f(x,m) = (r + x) log(1 +m)− x logm for x ∈ N,m > 0.

We could also use a logit link (15). This is sometimes used as an alternative when
Poisson is overdispersed.
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3.7. Choosing the loss function. Our goal is to give users flexibility in the
choice of loss function. In rare cases where the generation of the data is well un-
derstood, the loss function may be easily prescribed. In most real-world scenarios,
however, some guesswork is required. The choice of fit function corresponds to an
assumption on how the data is generated (e.g., according to a Bernoulli distribution)
and we further assume that the parameters for the data generation form a low-rank
tensor. Generally, users would experiment with several different fit functions and
several choices for the model rank.

An overview of the statistically-motivated loss functions that we have discussed
is presented in Table 1. The choices of Gaussian, Poisson with log link, Bernoulli
with logit link, and Gamma with given k are part of the exponential family of loss
functions, explored by Collins et al. [20] in the case of matrix factorization. We
note that some parameters are assumed to be constant (denoted in blue). For the
normal and Gamma distributions, the constant terms (σ and k, respectively) do not
even appear in the loss function. The situation is different for the negative binomial,
where r does show up in the loss function. We have modified the positivity constraints
(m > 0) to instead be nonnegativity constraints (m ≥ 0) by adding a small ε = 10−10

in appropriate places inside the loss functions; these changes are indicated in red.
This effectively converts the constraint to m ≥ ε. The modification is pragmatic since
otherwise finite-precision arithmetic yields in ±∞ gradient and/or function values. In
the sections that follow, nonnegativity of M is enforced by requiring that the factor
matrices ({Ak | k = 1, . . . , d }) be nonnegative.

Table 1: Statistically-motivated loss functions. Parameters in blue are assumed to be
constant. Numerical adjustments are indicated in red.

Distribution Link function Loss function Constraints

N (µ, σ) m = µ (x−m)2 x,m ∈ R

Gamma(k, σ) m = kσ x/(m+ε) + log(m+ε) x > 0,m ≥ 0

Rayleigh(θ) m =
√
π/2 θ 2 log(m+ε) + (π/4)(x/(m+ε))2 x > 0,m ≥ 0

Poisson(λ) m = λ m− x log(m+ε) x ∈ N,m ≥ 0

m = log λ em − xm x ∈ N, m ∈ R

Bernoulli(ρ) m = ρ / (1−ρ) log(m+1)−x log(m+ε) x ∈ { 0, 1 } ,m ≥ 0

m = log(ρ / (1− ρ)) log(1+em)− xm x ∈ { 0, 1 }, m ∈ R

NegBinom(r, ρ) m = ρ / (1−ρ) (r+x) log(1+m)− x log(m+ε) x ∈ N, m ≥ 0

In terms of choosing the loss function from this list, the choice may be dic-
tated by the form of the data. If the data is binary, for instance, then one of the
Bernoulli choices may be preferred. Count data may indicate a Poisson or NB distri-
bution. There are several choices for strictly positive data: Gamma, Rayleigh, and
even Gaussian with nonnegativity constraints.

The list of possible loss functions and constraints in Table 1 is by no means
comprehensive, and many other choices are possible. For instance, we might want to
use the Huber loss [34], which is quadratic for small values of |x −m| and linear for
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Fig. 2: Graphical comparison of different loss functions. Note that some are only
defined for binary or integer values of x (bottom row) and that some are only defined
for nonnegative values of x and/or m.

larger values. This is a robust loss function [30]. The Huber loss is

(24) f(x,m; ∆) =

{
(x−m)2 if |x−m| ≤ ∆,

2∆|x−m| −∆2 otherwise.

This formulation has continuous first derivatives and so can be used in the GCP
framework. Another option is to consider β-divergences, which have been popular in
matrix and tensor factorizations [18, 17, 24]. We give the formulas with the constant
terms (depending only on x) omitted:

f(x,m;β) =


1
βm

β − 1
β−1xm

β−1 if β ∈ R \ { 0, 1 } ,
m− x logm if β = 1,
x
m + logm if β = 0.

Referring to Table 1, β = 1 is the same as Poisson loss with the identity link, and
β = 0 is the same as the Gamma loss with the linear link.

We show a graphical summary of all the loss functions in Figure 2. The top
row is for continuous data, and the bottom row is for discrete data. The Huber loss
can be thought of as a smooth approximation of an L1 loss. Gamma, Rayleigh, and
β-divergence are similar, excepting the sharpness of the dip near the minimum.

4. GCP decomposition. We now consider how to compute the GCP for a
given elementwise loss function. The majority of this section focuses on dense tensors.
Handling sparse or scarce tensors is discussed in subsection 4.3.

Recall that we have a data tensor X of size n1 × n2 × · · · × nd and that Ω ⊆ I is
the set of indices where the values of X are known. For a given r, the objective for
GCP decomposition is to find the factor matrices Ak ∈ Rnk×r for k = 1, . . . , d that
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solve

(25) min F (M;X,Ω) ≡ 1

|Ω|
∑
i∈Ω

f(xi,mi) subject to M = JA1,A2, . . . ,AdK.

We only sum over the known entries, i.e., i ∈ Ω; the same approach to missing data
has been used for the CP decomposition [3, 4]. We scale by the constant 1/|Ω| so that
we are working with the mean. This is simply a convenience that makes it easier to
compare function values for tensors with different sizes or different amounts of missing
data. This is an optimization problem, and we propose to solve it using an off-the-shelf
optimization method, which has been successful for the standard CP decomposition
[2, 52] and is amenable to missing data [3, 4]. In contrast to an alternating approach,
we do not have to solve a series of optimization problems. The main advantage of
the alternating least squares in the solution of the standard CP decomposition is that
the subproblems have closed-form solutions [38]; in contrast, the GCP subproblems
do not have closed-form solutions so we do not use an alternating method.

We focus on first-order methods, so we need to calculate the gradient of F with
respect to the factor matrices. This turns out to have an elegant formulation as shown
in subsection 4.1. The GCP formulation (25) can be augmented in various ways. We
might add constraints on the factor matrices such as nonnegativity. Another option
is to add L2-regularization on the factor matrices to handle the scale ambiguity [2],
and we explain how to do this in subsection 4.2. We might alternatively want to use
L1-regularization on the factor matrices to encourage sparsity. The special structure
for sparse and scarce tensors is discussed in subsection 4.3.

4.1. GCP gradient. We need the gradient of F in (25) with respect to the factor
matrices, and this is our main result in Theorem 3. The importance of this result
is that it shows that the gradient can be calculated via a standard tensor operation
called the matricized tensor times Khatri-Rao product (MTTKRP), allowing us to
take advantage of existing optimized implementations for this key tensor operation.
Before we get to that, we establish some useful results in the matrix case. These will
be applied to mode-k unfoldings of M in the proof of Theorem 3. The next result is
standard in matrix calculus and left as an exercise for the reader.

Lemma 1. Let M = ABᵀ where A is a matrix of size n × r and B is a matrix
of size p× r. Then

∂mi`

∂ai′j
=

{
b`j if i = i′,

0 if i 6= i′
for all i, i′ ∈ { 1, . . . , n } , j ∈ { 1, . . . , r } , ` ∈ { 1, . . . , p } .

Next, we consider the problem of generalized matrix factorization in Lemma 2,
which is our linchpin result. This keeps the index notation simple but captures exactly
what we need for the main result in Theorem 3. In Lemma 2, the matrix W is an
arbitrary matrix of weights for the terms in the summation, and the matrix Y (which
depends on W) is a matrix of derivatives of the elementwise loss function with respect
to the model.

Lemma 2. Let X,W,A,B be matrices of size n × p, n × p, n × r, and p × r,
respectively. Let f : R×R→ R be a function that is continuously differentiable w.r.t.
its second argument. Define the real-valued function F̃ as

(26) F̃ (M;X,W) =

n∑
i=1

p∑
`=1

wi` f(xi`,mi`) subject to M = ABᵀ.
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Then the first partial derivative of F̃ w.r.t. A is

∂F̃

∂A
= YB ∈ Rn×r

where we define the n× p matrix Y as

(27) yi` = wi`
∂f

∂mi`
(xi`,mi`) for all i ∈ { 1, . . . , n } , ` ∈ { 1, . . . , p } .

Proof. Consider the derivative of F̃ with respect to matrix element aij . We have

∂F̃

∂aij
=

n∑
i′=1

p∑
`=1

wi′`
∂f

∂aij
(xi′`,mi′`) by definition of F

=

n∑
i′=1

p∑
`=1

wi′`
∂f

∂mi′`
(xi′`,mi′`)

∂mi′`

∂aij
by chain rule,

=

p∑
`=1

yi`b`j by Lemma 1 and (27).

Rewriting this in matrix notation produces the desired result.

Now we can consider the tensor of the GCP problem (25) in Theorem 3. For
simplicity, we replace Ω with an indicator tensor W such that wi = δi∈Ω and rewrite
F using W. Although this result specifies a specific W, it could be extended to
incorporate general weights such as the relative importance of each entry; see section 6
for further discussion on this topic.

Theorem 3 (GCP Gradients). Let X be a tensor of size n1 × n2 × · · · × nd and
Ω be the indices of known elements of X. Let f : R × R → R be a function that is
continuously differentiable w.r.t. its second argument. Define W to be an indicator
tensor such that wi = δi∈Ω/|Ω|. Then we can rewrite the GCP problem (25) as

(28) min F (M;X,W) ≡
∑
i∈I

wi f(xi,mi) subject to M = JA1,A2, . . . ,AdK.

Here Ak is a matrix of size nk × r for k ∈ { 1, . . . , d }. For each mode k, the first
partial derivative of F w.r.t. Ak is given by

(29)
∂F

∂Ak
= Y(k)Zk

where Zk is defined in (7) and Y(k) is the mode-k unfolding of a tensor Y defined by

(30) yi = wi
∂f

∂mi
(xi,mi) for all i ∈ I.

Proof. For a given k, recall that M(k) = AkZ
ᵀ
k. Hence, we can write F in (28) as

F (M;X,W) = F̃ (AkZ
ᵀ
k;X(k),W(k)),

where F̃ is from (26). The result follows from Lemma 2 with the substitutions used
in the following table:
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Matrix Case X W A B Y n p r

Tensor Case X(k) W(k) Ak Zk Y(k) nk nd/nk r

We note that the definition of Y is consistent across all k.

Theorem 3 generalizes several previous results: the gradient for CP [55, 2], the
gradient for CP in the case of missing data [4], and the gradient for Poisson tensor
factorization [16].

Consider the gradient in (29). The Zk has no dependence on X, Ω, or the loss
function; it depends only on the structure of the model. Conversely, Y has no de-
pendence on the structure of the model. The elementwise derivative tensor Y is the
same size as X and is zero wherever X is missing data. The structure of Ω determines
the structural sparsity of Y, and this will be important in subsection 4.3. The form
of the derivative is a matricized tensor times Khatri-Rao product (MTTKRP) with
the tensor Y and the Khatri-Rao product Zk. The MTTKRP is the dominant kernel
in the standard CP computation in terms of computation time and has optimized
high-performance implementations [7, 56, 40, 31]. In the dense case, the MTTKRP
costs O(rnd).

Algorithm 1 computes the GCP loss function and gradient. On Line 2 we compute
elementwise values at known data locations. If all or most elements are known, we
can compute the full model using (7) at a cost of rnd. However, if only a few elements
are known, it may be more efficient to compute model values only at the locations in
Ω using (6) at a cost of 2r|Ω|. We compute the elementwise derivative tensor Y in
Line 4; here the quantity δi∈Ω is 1 if i ∈ Ω and 0 otherwise. The cost of Lines 3 and 4 is
O(|Ω|). Lines 5 to 7 compute the gradient with respect to each factor matrix, and the
cost is O(drnd). Communication lower bounds as well as a parallel implementation for
MTTKRP for dense tensors are covered in [9]. Since this is a sequence of MTTKRP
operations, we can also consider reusing intermediate computations as has been done
[51] and reduces the d part of the expense. Hence, the cost is dominated by the
MTTKRP, just as for the standard CP-ALS. We revisit this method in the case of
sparse or large-scale tensors in subsection 4.3.

Algorithm 1 GCP loss function and gradient

1: function gcp fg(X,Ω,{Ak | k = 1, . . . , d })
2: mi ← entry({Ak | k = 1, . . . , d } , i) for all i ∈ Ω . Model entries
3: F ← 1

|Ω|
∑
i∈Ω f(xi,mi) . Loss function

4: yi ← (δi∈Ω/|Ω|) ∂f
∂mi

(xi,mi) for all i ∈ I . Elementwise derivative tensor
5: for k = 1, . . . , d do . Full sequence of MTTKRPs
6: Gk ← mttkrp(Y, JA1,A2, . . . ,AdK, k) . Gradients w.r.t. Ak

7: end for
8: return F and {Gk | k = 1, . . . , d }
9: end function

4.2. Regularization. It is straightforward to add regularization to the GCP
formulation. This may especially be merited when there is a large proportion of
missing data, in which case some of the factor elements may not be constrained due
to lack of data. As an example, consider simple L2 regularization. We modify the
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GCP problem in (25) to be

(31) minF (M;X,Ω, { ηk }) ≡
1

|Ω|
∑
i∈Ω

f(xi,mi) +

d∑
k=1

ηk
2
‖Ak‖22

subject to M = JA1,A2, . . . ,AdK.

In this case, the gradients are given by

(32)
∂F

∂Ak
= Y(k)Zk + ηkAk,

where Y(k) and Zk are the same as in (30). The difficulty is in picking the regular-
ization parameters, { ηk }. These can all be equal or different, and can be selected by
cross-validation using prediction of held out elements.

4.3. GCP Decomposition for Sparse or Scarce Tensors. We say a tensor
is sparse if the vast majority of its entries are zero. In contrast, we say a tensor is
scarce if the vast majority of its entries are missing. In either case, we can store such
a tensor efficiently by keeping only its nonzero/known values and the corresponding
indices. If s is the number of nonzero/known values, the required storage is s(d+ 1)
rather than nd for the dense tensor where every zero or unknown value is stored
explicitly.

The fact that X is sparse does not imply that the Y tensor needed to compute
the gradient (see Theorem 3) is sparse. This is because ∂f

∂mi
(0,mi) 6= 0 for general

values of mi. There are two cases where the gradient has a structure that allows us
to avoid explicitly calculating Y:

• Standard Gaussian formulation; see Appendix B for details.
• Poisson formulation with the identity link; see [16] for details.

Otherwise, we have to calculate the dense Y explicitly in order to compute the gra-
dients. For many large-scale tensors, this is infeasible. The fact that X is scarce,
however, does imply that the tensor Y is sparse. This is because all missing elements
in X correspond to zeros in Y.

Let us take a moment to contrast the implication of sparse versus scarce. Recall
that a sparse tensor is one where the vast majority of elements are zero, whereas a
scarce tensor is one where the vast majority of elements are missing. The elementwise
gradient tensor Y for a sparse tensor is structurally dense, but it is sparse for a scarce
tensor. To put it another way, if X is sparse, then the MTTKRP calculation in Line 6
of Algorithm 1 has a dense Y; but if X is scarce, then the MTTKRP calculation uses
a sparse Y. Further discussion of sparse versus scarce in the matrix case can be found
in a blog post by Kolda [37]. We summarize the situation in Figure 3.

Dense X⇒ Dense Y

Sparse X⇒ Dense Y

Scarce X⇒ Sparse Y

Fig. 3: Contrasting sparsity and scarcity in GCP.

The idea that scarcity yields sparsity in the gradient calculation suggests several
possible approaches for handling large-scale tensors. One possibility is to simply
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leave out some of the data, i.e., impose scarcity. Consider that we have a vastly
overdetermined problem because we have nd observations but only need to determine
rdn̄ parameters. Special care needs to be taken if the tensor is sparse, since leaving out
the vast majority of the nonzero entries would clearly degrade the solution. Another
option is to consider stochastic gradient descent, where the batch at each iteration
can be considered as a scarce tensor, leading again to a sparse Y in the gradient
calculation. These are topics that we will investigate in detail in future work.

5. Experimental results. The goal of GCP is to give data analysts the flexibil-
ity to try out different loss functions. In this section, we show examples that illustrate
the differences in the tensor factorization from using different loss functions. We do
not claim that any particular loss function is better than any other; instead, we want
to highlight the ability to easily use different loss functions. Along the way, we also
show the general utility of tensor decomposition, which includes:

• Data decomposition into explanatory factors: We can directly visualize
the resulting components and oftentimes use this for interpretation. This is
analogous to matrix decompositions such as principal component analysis,
independent component analysis, nonnegative matrix factorization, etc.

• Compressed object representations: Object ik in mode k corresponds
to row ik in factor matrix Ak, which is a length-r vector. This can be used
as input to regression, clustering, visualization, machine learning, etc.

We focus primarily on these types of activities. However, we could also consider filling
in missing data, data compression, etc.

All experiments are conducted in MATLAB. The method is implemented as
gcp opt in the Tensor Toolbox for MATLAB [8, 6]. For the optimization, we use
limited-memory BFGS with bound constraints (L-BFGS-B) [14]4. First-order opti-
mization methods such as L-BFGS-B typically expect a vector-valued function f :
Rn → R and a corresponding vector-valued gradient, but the optimization variables
in GCP are matrix-valued; see Appendix C for discussion of how we practically handle
the required reshaping. For simplicity, we choose a rank that works reasonably well
for the purposes of illustration. Generally, however, the choice of model rank is a
complex procedure. It might be selected based on model consistency across multiple
runs, cross-validation for estimation of hold-out data, or some prediction task using
the factors. Likewise, we choose an arbitrary “run” for the purposes of illustration.
These are nonconvex optimization problems, and so we are not guaranteed that every
run will find the global minimum. In practice, a user would do a few runs and usually
choose the one with the lowest objective value.

5.1. Social network. We consider the application of GCP to a social network
dataset. Specifically, we use a chat network from students at UC Irvine [44, 49, 45]. It
contains transmission times and sizes of 59,835 messages sent among 1899 anonymized
users over 195 days from April to October 2004. Because many of the users included
in the dataset sent few messages, we select only the 200 most prolific senders in this
analysis. We consider a three-way binary tensor of size 200×200×195 of the following
form:

x(i1, i2, i3) =

{
1 if student i1 sent a message to student i2 on day i3,

0 otherwise.

4We specifically use the MATLAB-compatible translation by Stephen Becker, available at https:
//github.com/stephenbeckr/L-BFGS-B-C

https://github.com/stephenbeckr/L-BFGS-B-C
https://github.com/stephenbeckr/L-BFGS-B-C
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(a) Number of interacting pairs per day. Note
the gap around day 70 and the decrease in
activity toward the end of the experiment.

(b) Histogram of number of interactions
per pair where count is in the log scale.
Most students only interact once. The

greatest number of interaction days is 33.

Fig. 4: Statistics for a social network tensor where x(i1, i2, i3) = 1 if student i1 sends
a message to student i2 on day i3.

It has 9764 nonzeros, so it is only 0.13% dense though we treat it as dense in this work.
The number of interacting pairs per day is shown in Figure 4a, and there is clearly
more activity earlier in the study. To give a sense of how many days any given pair
of students interact, we consider the histogram in Figure 4b. The vast majority of
students that interacted had only one interaction, i.e., 4×104 of the interactions were
for only one day. The maximum number of interaction days was 33, which occurred
for only one pair.

5.1.1. Explanatory factors for social network. We compare the explana-
tory GCP factors using three different loss functions in Figure 5. Recall that each
component is the outer product of three vectors; these vectors are what we plot to
visualize the model. In all cases, we use r = 7 components because it seemed to be ad-
equately descriptive. To visualize the factorization, components are shown as “rows”,
numbered on the left, and ordered by magnitude. We show all three modes as bar
plots. The first two modes correspond to students, as senders and receivers. They are
ordered from greatest to least total activity and normalized to unit length. The third
mode is day, and it is normalized to the magnitude of the component. Each compo-
nent groups students that are messaging one another along with the dates of activity.
Each loss function yields a different grouping and so a different interpretation. The
appropriateness of any particular interpretation depends on the context.

For the standard CP in Figure 5a, we did not add a nonnegative constraint on the
factors, but there are only a few small negative entries (see, e.g., the third component).
There is a clear temporal locality in the first three factors. The remaining four are
more diffuse. A few sender/receiver factors capture only a few large magnitude entries:
sender factor 4, receiver factor 6, and both sender/receiver factors 7.

For Bernoulli with an odds link in Figure 5b, the factor matrices are constrained
to be nonnegative. We see even more defined temporal locality in this version. In
particular, components 6 and 7 do not really have an analogue in the Gaussian version.
The sender and receiver factors are correlated with one another in components 2, 6,
and 7, which is something that we did not really see in the Gaussian case. Such
correlations are indicative of a group talking to itself. The factors in this case seem
to do a better job capturing the activity on the most active days per Figure 4a.
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(a) Gaussian (standard CP). Some factors only pick up one or two students as senders or receivers.

(b) Bernoulli-odds (with nonnegativity constraints). Compared with CP-ALS, many students
are identified with each component and more emphasis is placed on the heavier traffic days.

(c) Bernoulli-logit. A negative product means the likely result is a zero, i.e.,
no communication. The first few factors are focused primarily on the zeros.

Fig. 5: GCP tensor decomposition of 200 × 200 × 195 binary (0/1) social network
tensor using different loss functions and r = 7.
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For Bernoulli with a logit link in Figure 5c, the interpretation is very different.
Recall that negative values correspond to observing zeros. The first component is
roughly inversely correlated with the activity per day, i.e., most entries are zeros and
this is what is picked up. It is only really in components 5 and 7 where there is some
push toward positive values, i.e., interactions.

5.1.2. Prediction for social network. To show the benefit of using a different
loss function, we consider the problem of predicting missing values. We run the same
experiment as before but hold out 50 ones and 50 zeros at random when fitting the
model. We then use the model to predict the held out values. Let Ω denote the
set of known values, so i 6∈ Ω means that the entry was held out. We measure the
accuracy of the prediction using the log-likelihood under a Bernoulli assumption, i.e.,
we compute

log-likelihood =
∑
xi=1
i6∈Ω

log pi +
∑
xi=0
i6∈Ω

log(1− pi),

where pi is the probability of a one as predicted by the model. A higher log-likelihood
indicates a more accurate prediction. We convert the predicted values mi, computed
from (6), to probabilities pi (truncated to the range [10−16, 1− 10−16]) as follows:

• Gaussian. Let pi = mi, truncating to the range (0,1).
• Bernoulli-odds. Convert from the odds ratio: pi = mi/(1 +mi).
• Bernoulli-logit. Convert from the log-odds ratio: pi = emi/(1 + emi).

We repeat the experiment two hundred times, each time holding out a different set of
100 entries. The results are shown in Figure 6. This is a difficult prediction problem
since ones are extremely rare; the differences in prediction performance were negli-
gible for predicting the zeros but predicting the ones was much more difficult. Both
Bernoulli-odds and Bernoulli-logit consistently outperform the standard approach
based on a Gaussian loss function. We also note that the Gaussian-based predic-
tions were outside of the range [0, 1] for 11% of the predictions, making it tricky to
interpret the Gaussian-based predictions.

5.2. Neural activity of a mouse. In recent work, Williams et al. [60] consider
the application of CP tensor decomposition to analyze the neural activity of a mouse
completing a series of trials. They have provided us with a reduced version of their
dataset to illustrate the utility of the GCP framework. In the dataset we study, the
setup is as follows. A mouse runs a maze over and over again, for a total of 300 trials.
The maze has only one junction, at which point the mouse must turn either right or
left. The mouse is forced to learn which way to turn in order to receive a reward.
For the first 75 trials, the mouse gets a reward if it turns right; for the next 125
trials, it gets a reward if it turns left; and for the final 100 trials, it gets a reward if it
turns right. Data was recorded from the prefrontal cortex of a mouse using calcium
imaging; specifically, the activity of 282 neurons was recorded and processed so that
all data values lie between 0 and 1. The neural activity in time for a few sample
neurons is shown in Figure 7; we plot each of the 300 different trials and the average
value. From this image, we can see that different neurons have distinctive patterns of
activity. Additionally, we see an example of at least one neuron that is clearly active
for some trials and not for others (Neuron 117).

This is large and complex multiway data. We can arrange this data as a three-
way nonnegative tensor as follows: 282 (neurons) × 110 (time points) × 300 trials.
Applying GCP tensor decomposition reduces the data into explanatory factors, as we
discuss in subsection 5.2.1. We show how the factors can be used in a regression task
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(a) Prediction of 100 missing entries for 200 trials. (b) Box plot of prediction results.

Fig. 6: Log-likelihood for GCP with different loss functions. Each trial holds out
50 ones and 50 zeros at random. The GCPs are computed and used to estimate
each held-out value. A higher log-likelihood indicates a better prediction. In the box
plot, the box represents 25th–75th percentiles with a horizontal midline at the 50th
percentile, i.e., the median. The whiskers extend to the most extreme data points
that are not considered outliers, and then outliers are indicated with plus-symbols.

in subsection 5.2.2.

5.2.1. Explanatory factors for mouse neural activity. We compare the
results of using different loss functions in terms of explanatory factors. In all cases, we
use r = 8 components. The first mode corresponds to the neurons and is normalized
to the size of the component, The second and third modes are, respectively, within-
trial time and trial, each normalized to length 1. The neuron factors are plotted as
bar graphs, showing the activation level of each neuron. We emphasize in red the
bars that correspond to the example neurons from Figure 7. The time factors are
plotted as lines, and turn out to be continuous because that is an inherent feature of
the data itself. We did nothing to enforce continuity in those factors. The trial factors
are scatter plots, color coded to indicate which way the mouse turned. The dot is
filled in if the mouse received a reward. When the rules changed (at trial 75 and 200,
indicated by vertical dotted lines), the mouse took several trials to figure out the new
way to turn for the reward.

The result of a standard CP analysis is shown in Figure 8a. Several components
are strongly correlated with the trial conditions, indicating the power of the CP analy-
sis. For instance, component 3 correlates with receiving a reward (filled). Components
5, 6, and 8 correlate to turning left (orange) and right (green). Their time profiles
align with when these activities are happening (e.g., end of trial for reward and mid-
trial for turn). The problem with the standard CP model is that interpretation of
the negative values is difficult. Consider that neuron 212 has a significant score for
nearly every component, making it hard to understand its role. Indeed, several of
the example neurons have high magnitude scores for multiple components, and so it
might be hard to hypothesize which neurons correspond to which trial conditions.

In contrast, consider Figure 8b which shows the results of GCP with β-divergence
with β = 0.5. The factorization is arguably easier to interpret since it has only non-
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Fig. 7: Example neuron activity across all trials. Each thin line (randomly colored)
is the time profile for a single trial, and the single dark line is the average over all
300 trials. Different neurons have distinctive temporal patterns. Moreover, some have
markedly different activity for different trials, like Neuron 117.

negative values. As before, we see that several components clearly correlate with the
trial conditions. Components 3 and 6 correlate with reward conditions. Components
5 and 7 correlate to the turns. In this case, the example neurons seem to have clearer
identities with the factors. Neuron 176 is strongest for factor 3 (reward), whereas
neuron 273 is strongest for factor 6 (no reward). Some of the components do not
correspond to the reward or turn, and we do not always know how to interpret them.
They may have to do with external factors that are not recorded in the experimental
metadata. We might also hypothesize interpretations for some components. For in-
stance, the second component is active mid-trial and may have to do with detecting
the junction in the maze.

For further comparison, we include the results of using Rayleigh, Gamma, and
Huber loss functions in Figure 9. These capture many of the same trends.

5.2.2. Regression task for mouse neural activity. Recall that the tensor
factorization has no knowledge of the experimental conditions, i.e., which way the
mouse turned or whether or not it received a reward. Suppose that the experimental
logs were corrupted in such a way that we lost 50% of the trial indicators (completely
at random rather than in a sequence). For instance, we might not know whether the
mouse turned left or right in Trial 87. We can use the results of the GCP tensor
factorization to recover that information. Observe that each trial is represented by 8
values, i.e., a score for each component. These vectors can be used for regression.

Our experimental setup is as follows. We randomly selected 50% of the 300 trials
as training data and use the remainder for testing. We do simple linear regression.
Specifically, we let Atrain

3 be the rows of A3 corresponding to the training trials and
ytrain be the corresponding binary responses (e.g., 1 for left turn and 0 for right turn).
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(a) Gaussian (standard CP) is difficult to interpret because of negative values

(b) Beta-divergence with β=0.5 has no negative factor values and so is easier to interpret

Fig. 8: GCP tensor decomposition of mouse neural activity. Components ordered
by size (top to bottom). Example neurons (26, 62, 82, 117, 154, 176, 212, 249,
273) highlighted in red. Trial symbols are coded by conditions: color indicates turn
and filled indicates a reward. The rule changes are denoted by vertical dotted lines.
Observe that some factors split the trials by turn (green versus orange) and others
split by reward (open versus filled), even though the tensor decomposition has no
knowledge of the trial conditions.

We solve the regression problem:

min
β
‖Atrain

3 β − ytrain‖.

We let Atest
3 be the rows of A3 corresponding to the testing trials. Using the optimal
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(a) Rayleigh with nonnegativity constraints

(b) Gamma with nonnegativity constraints

(c) Huber with ∆=0.25 and nonnegativity constraints

Fig. 9: Additional GCP tensor decompositions of mouse neural activity.
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Loss Regression Coefficients Max Incorrect
Type 1 2 3 4 5 6 7 8 Std. Dev. out of 15000

Gaussian -9.6 2.1 0.5 -0.8 3.7 15.9 3.5 1.3 2.2e+00 0
Beta Div. 5.5 5.4 -4.6 3.0 5.9 -1.8 -5.6 1.9 1.2e+00 0
Rayleigh 2.7 1.9 1.2 0.9 5.6 3.7 -5.3 -0.4 1.2e+00 0
Gamma -15.1 22.4 6.2 4.3 -0.3 -7.6 -8.2 10.5 3.0e+00 1454
Huber 2.8 -1.3 3.4 9.7 -0.6 1.4 -1.5 -2.7 7.1e-01 0

(a) Turn

Loss Regression Coefficients Max Incorrect
Type 1 2 3 4 5 6 7 8 Std. Dev. out of 15000

Gaussian 11.6 -0.5 18.7 -2.1 -6.9 -8.6 0.0 -3.2 3.6e+00 37
Beta Div. 5.1 -0.8 7.4 -0.1 2.8 -3.8 2.6 2.4 1.1e+00 0
Rayleigh -6.3 8.5 8.1 1.0 -1.6 5.1 1.9 -3.0 1.3e+00 520
Gamma 10.7 1.9 0.5 0.3 -2.1 3.6 5.6 -6.4 1.3e+00 172
Huber 3.0 13.5 -9.0 2.3 2.5 2.2 -1.0 4.0 1.3e+00 62

(b) Reward

Table 2: Regression coefficients and prediction performance for different loss functions

β, we make predictions for ytest by computing

ŷtest =
[
Atest

3 β ≥ 0.5
]
.

We did this 100 times, both for determining the turn direction (left or right) and the
reward (yes or no).

The results are shown in Table 2. We caution that these are merely for illustrative
purposes as changing the ranks and other parameters might impact the relative per-
formance of the methods. For the turn results, shown in Table 2a, only the Gamma
loss failed to achieve perfect classification. We can see which factors were most im-
portant based on the regression coefficients. For instance, the sixth component is
clearly the most important for Gaussian, whereas the fifth and seventh are key for
β-divergence. The reward was harder to predict, per the results in Table 2b. This
is likely due to the fact that there were relatively few times when the reward was
not received. For instance, the Rayleigh method performed worst, in contrast to its
perfect classification for the turn direction. Only the β-divergence achieved perfect
regression with the third component being the most important predictor.

5.3. Rainfall in India. We consider monthly rainfall data for different regions
in India for the period 1901–2015, available from Kaggle5. For each of 36 regions,
12 months, and 115 years, we have the total rainfall in millimeters. There is a small
amount of missing data (0.72%), which GCP handles explicitly. We show example
monthly rainfalls for 6 regions in Figure 10.

Oftentimes the gamma distribution is used to model rainfall. A histogram of all
monthly values is shown in Figure 11 along with the estimated gamma distribution (in
red), and it seems as though a gamma distribution is potentially a reasonable model.
Most rainfall totals are very small (the smallest nonzero value is 0.1mm, which is
presumably the precision of the measurements), but the largest rainfall in a month
exceeds 2300mm. For this reason, we consider the GCP tensor decomposition with
gamma loss.

5https://www.kaggle.com/rajanand/rainfall-in-india
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Fig. 10: Rainfall totals per month in several regions in India. Each colored thin line
represents a single year. The average is shown as a thick black line. Monsoon season
is June – September.

Fig. 11: Histogram of monthly rainfall totals for 36 regions in India over 115 years.
The estimated gamma distribution is shown in red.

A comparison of two GCP tensor decompositions is shown in Figure 12. Factors in
the first two modes (region and year) are normalized to length one, and the monthly
factor is normalized by the size of the component. The rainfall from year to year
follows no clear pattern, and this is consistent with the general understanding of these
rainfall patterns. India is known for its monsoons, which occur in June–September of
each year.

The GCP with standard Gaussian error loss and nonnegative constraints is shown
in Figure 12a. The first component captures the period July–September, which is the
main part of the monsoon season. Components 3, 4, and 5 are dominated by a few
regions. It is well known that Gaussian fitting can be swamped by outliers, and this
may be the case here.

The GCP with the gamma distribution loss function is shown in Figure 12b.
This captures the monsoon season primarily in the first two components. There are
no particular regions that dominate the factors.

6. Conclusions and future work. We have presented the GCP tensor decom-
position framework which allows the use of an arbitrary elementwise loss function,
generalizing previous works and enabling some extensions. GCP includes standard
CP tensor decomposition and Poisson tensor decomposition [16], as well as decom-
positions based on beta divergences [19]. Using the GCP framework, we are able to
define Bernoulli tensor decomposition for binary data, which is something like the
tensor decomposition version of logistic regression and is derived via maximum like-
lihood. Alternatively, GCP can also handle a heuristic loss function such as Huber
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(a) Gaussian (standard CP) with nonnegativity con-
straints, which separates July into its own component.

(b) Gamma (with nonnegativity constraints), which picks up the monsoon in the first component.

Fig. 12: GCP tensor decomposition of India rainfall data, organized into a tensor of
36 regions, 115 years, and 12 months. The first two modes are normalized to length 1

loss. We do not claim that any particular loss function is necessarily better than any
other. Rather, for data analysis, it is often useful to have a variety of tools available,
and GCP provides flexibility in terms of choosing among different loss functions to fit
the needs of the analyst. Additionally, the GCP framework efficiently manages miss-
ing data, which is a common difficulty in practice. Our main theorem (Theorem 3)
generalizes prior results for the gradient in the case of standard least squares, Poisson
tensor factorization, and for missing data. It further reveals that the gradient takes
the form of an MTTKRP, enabling the use of efficient implementations for this key
tensor operation.

In our framework, we have proposed that the weights wi be used as indicators
for missingness and restricted as wi ∈ { 0, 1 }. To generalize this, we can easily
incorporate nonnegative elementwise weights wi ≥ 0. For instance, we might give
higher or lower weights depending on the confidence in the data measurements. In
recommender systems, there is also an idea that missing data may not be entirely
missing at random. In this case, it may be useful to treat missing data elements as
zeros but with low weights; see, e.g., [57].

For simplicity, our discussion focused on using the same elementwise loss function
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f(xi,mi) for all entries of the tensor. However, we could easily define a different loss
function for every entry, i.e., fi(xi,mi). The only modification is to the definition
(30) of the elementwise derivative tensor Y. If we have a heterogeneous mixture of
data types, this may be appropriate. In the matrix case, Udell, Horn, Zadeh, and
Boyd [58] have proposed generalized low-rank models (GLRMs) which use a different
loss function for each column in matrix factorization. We have also assumed our loss
functions are continuously differentiable with respect to mi, but that can potentially
be relaxed as well in the same way as done by Udell et al. [58].

In our discussion of scarcity in subsection 4.3, we alluded to the potential utility of
imposing scarcity for scaling up to larger scale tensors. In stochastic gradient descent,
for example, we impose scarcity by selecting only a few elements of the tensor at each
iteration. Another option is to purposely omit most of the data, depending on the
inherent redundancies in the data (assuming it is sufficiently incoherent). These are
topics that we will investigate in detail in future work.

Lastly, it may also be of interest to extend the GCP framework to functional
tensor decomposition. Garcke [25], e.g., has used hinge and Huber losses for fitting a
functional version of the CP tensor decomposition.

Appendix A. Kruskal tensors with explicit weights. It is sometimes con-
venient to write (6) with explicit positive weights λ ∈ Rr+, i.e.,

(33) m(i1, i2 . . . , id) =

r∑
j=1

λ(j) a1(i1, j) a2(i2, j) · · · ad(id, j),

with shorthand M = Jλ;A1,A2, . . . ,AdK. In this case, the mode-k unfolding in (7)
is instead given by

M(k) = Ak diag(λ)ZTk .

We can also define the vectorized form

(34) M = Jλ;A1,A2, . . . ,AdK⇒m = Zλ,

where

(35) Z ≡ Ad �Ad−1 � · · · �A1 ∈ Rn
d×r.

Using these definitions, it is a straightforward exercise to extend Theorem 3 to
the case M = Jλ;A1,A2, . . . ,AdK.

Corollary 4. Let the conditions of Theorem 3 hold except that the model has
an explicit weight vector so that M = Jλ;A1,A2, . . . ,AdK. In this case, the partial
derivatives of F w.r.t. Ak and λ are

(36)
∂F

∂Ak
= Y(k)Zk diag(λ) and

∂F

∂λ
= ZTy,

where Y(k) and y are, respectively, the mode-k unfolding and vectorization of the
tensor Y defined in (30), Zk is defined in (7), and Z is defined in (35).

Appendix B. Special structure of standard CP gradient. In standard
CP, which uses f(x,m) = (x − m)2, the gradient has special structure that can be
exploited when X is sparse. Leaving out the constant, ∂f

∂m = −x + m; therefore,
Y = −X + M. From (29), the CP gradient is

(37)
∂F

∂Ak
= −(X(k) −M(k))Zk = −X(k)Zk + Ak(Zᵀ

kZk).
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The first term is an MTTKRP with the original tensor, and so it can exploit sparsity
if X is sparse, reducing the cost from O(rnd) to O(r2d ·nnz(X)) and avoiding forming
Zk explicitly. The second term can also avoid forming Zk explicitly since its gram
matrix is given by

(38) Zᵀ
kZk = (Aᵀ

1A1) ∗ · · · ∗ (Aᵀ
k−1Ak−1) ∗ (Aᵀ

k+1Ak+1) ∗ · · · ∗ (Aᵀ
dAd),

where ∗ is the Hadamard (elementwise) product. This means that Zᵀ
kZk is trivial to

compute, requiring only O(r2dn̄) operations. Equation (37) is a well-known result;
see, e.g., [2]. Computation of MTTKRP with a sparse tensor is discussed further in
[7].

Appendix C. GCP optimization. First-order optimization methods expect
a vector-valued function f : Rn → R and a corresponding vector-valued gradient, but
our variable is the set of d factor matrices. Because it may not be immediately obvious,
we briefly explain how to make the conversion. We define the function kt2vec to
convert a Kruskal tensor, i.e., a set of factor matrices, as follows:

a← kt2vec({Ak | k = 1, . . . , d }) ≡ [vec(A1); vec(A2); . . . ; vec(Ad)] .

The vec operator converts a matrix to a column vector by stacking its columns, and
we use MATLAB-like semicolon notation to say that the kt2vec operator stacks all
those vectors on top of each other. We can define a corresponding inverse operator,
vec2kt. The number of variables in the set of factor matrices {Ak | k = 1, . . . , d }
is drn̄, and this is exactly the same number in the vector version a because it is
just a rearrangement of the entries in the factor matrices. Since the entries of the
gradient matrices correspond to the same entries in the factor matrices, we use the
same transformation function for them. The wrapper that would be used to call an
optimization method is shown in Algorithm 2. The optimization method would input
a vector optimization variable, this is converted to a sequence of matrices, we compute
the function and gradient using Algorithm 1, we turn the gradients into a vector, and
we return this along with the function value.

Algorithm 2 Wrapper for using first-order optimization method

1: function gcp fg wrapper(a)
2: {Ak | k = 1, . . . , d } ← vec2kt(a)
3: [F, {Gk | k = 1, . . . , d }]← gcp fg(X,Ω, {Ak | k = 1, . . . , d })
4: g← kt2vec({Gk | k = 1, . . . , d })
5: return [F,g]
6: end function
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[35] R. Jaffé, K. M. Cawley, and Y. Yamashita, Applications of excitation emission matrix
fluorescence with parallel factor analysis (EEM-PARAFAC) in assessing environmental
dynamics of natural dissolved organic matter (DOM) in aquatic environments: A review,
in Advances in the Physicochemical Characterization of Dissolved Organic Matter: Im-
pact on Natural and Engineered Systems, vol. 1160 of ACS Symposium Series, American
Chemical Society (ACS), 2014, pp. 27–73, doi:10.1021/bk-2014-1160.ch003.

[36] T. Kolda and B. Bader, The TOPHITS model for higher-order web link analysis, in Pro-
ceedings of Link Analysis, Counterterrorism and Security 2006, 2006, http://www.siam.
org/meetings/sdm06/workproceed/LinkAnalysis/21Tamara Kolda SIAMLACS.pdf.

[37] T. G. Kolda, Sparse versus scarce. Blog, Nov. 2017, http://www.kolda.net/post/
sparse-versus-scarce/. Accessed May 2018.

[38] T. G. Kolda and B. W. Bader, Tensor decompositions and applications, SIAM Review, 51
(2009), pp. 455–500, doi:10.1137/07070111X.

[39] D. D. Lee and H. S. Seung, Learning the parts of objects by non-negative matrix factorization,
Nature, 401 (1999), pp. 788–791, doi:10.1038/44565.

[40] J. Li, Y. Ma, C. Yan, and R. Vuduc, Optimizing sparse tensor times matrix on multi-core
and many-core architectures, in Workshop on Irregular Applications: Architecture and
Algorithms (IA3), 2016, pp. 26–33, doi:10.1109/IA3.2016.010.

[41] K. Maruhashi, F. Guo, and C. Faloutsos, MultiAspectForensics: Pattern mining on large-
scale heterogeneous networks with tensor analysis, in 2011 International Conference on
Advances in Social Networks Analysis and Mining (ASONAM), IEEE, 2011, pp. 203–210,
doi:10.1109/asonam.2011.80.

[42] K. R. Murphy, C. A. Stedmon, D. Graeber, and R. Bro, Fluorescence spectroscopy and
multi-way techniques. PARAFAC, Analytical Methods, 5 (2013), p. 6557, doi:10.1039/
c3ay41160e.

[43] M. Nickel and V. Tresp, Logistic tensor factorization for multi-relational data, 2013,
arXiv:1306.2084v1 [stat.ML].

[44] T. Opsahl, Network 1: Facebook-like social network, https://toreopsahl.com/datasets/
#online social network (accessed 2018-06-20).

[45] T. Opsahl and P. Panzarasa, Clustering in weighted networks, Social Networks, 31 (2009),
pp. 155–163, doi:10.1016/j.socnet.2009.02.002, https://doi.org/10.1016/j.socnet.2009.02.
002.

[46] P. Paatero, Least squares formulation of robust non-negative factor analysis, Chemomet-
rics and Intelligent Laboratory Systems, 37 (1997), pp. 23–35, doi:10.1016/S0169-7439(96)

http://dx.doi.org/10.1364/josaa.34.000252
http://dx.doi.org/10.1162/NECO_a_00168
http://dx.doi.org/10.1007/978-3-642-15880-3_35
http://dx.doi.org/10.1016/j.jco.2007.03.007
http://dx.doi.org/10.1016/j.jco.2007.03.007
http://dx.doi.org/10.1080/10556788.2015.1009977
http://arxiv.org/abs/1304.4964
http://www.psychology.uwo.ca/faculty/harshman/wpppfac0.pdf
http://dx.doi.org/10.1007/978-0-387-84858-7
http://arxiv.org/abs/1708.08976v1
http://dx.doi.org/10.1002/sapm192761164
http://dx.doi.org/10.1109/TSP.2016.2576427
http://arxiv.org/abs/1506.04209v2
http://dx.doi.org/10.1214/aoms/1177703732
http://dx.doi.org/10.1021/bk-2014-1160.ch003
http://www.siam.org/meetings/sdm06/workproceed/Link Analysis/21Tamara_Kolda_SIAMLACS.pdf
http://www.siam.org/meetings/sdm06/workproceed/Link Analysis/21Tamara_Kolda_SIAMLACS.pdf
http://www.kolda.net/post/sparse-versus-scarce/
http://www.kolda.net/post/sparse-versus-scarce/
http://dx.doi.org/10.1137/07070111X
http://dx.doi.org/10.1038/44565
http://dx.doi.org/10.1109/IA3.2016.010
http://dx.doi.org/10.1109/asonam.2011.80
http://dx.doi.org/10.1039/c3ay41160e
http://dx.doi.org/10.1039/c3ay41160e
http://arxiv.org/abs/1306.2084v1
https://toreopsahl.com/datasets/#online_social_network
https://toreopsahl.com/datasets/#online_social_network
http://dx.doi.org/10.1016/j.socnet.2009.02.002
https://doi.org/10.1016/j.socnet.2009.02.002
https://doi.org/10.1016/j.socnet.2009.02.002
http://dx.doi.org/10.1016/S0169-7439(96)00044-5
http://dx.doi.org/10.1016/S0169-7439(96)00044-5


30 DAVID HONG, TAMARA G. KOLDA, AND JED A. DUERSCH

00044-5.
[47] P. Paatero, A weighted non-negative least squares algorithm for three-way “PARAFAC” factor

analysis, Chemometrics and Intelligent Laboratory Systems, 38 (1997), pp. 223–242, doi:
10.1016/S0169-7439(97)00031-2.

[48] P. Paatero and U. Tapper, Positive matrix factorization: A non-negative factor model with
optimal utilization of error estimates of data values, Environmetrics, 5 (1994), pp. 111–126,
doi:10.1002/env.3170050203.

[49] P. Panzarasa, T. Opsahl, and K. M. Carley, Patterns and dynamics of users' behavior and
interaction: Network analysis of an online community, Journal of the American Society
for Information Science and Technology, 60 (2009), pp. 911–932, doi:10.1002/asi.21015,
https://doi.org/10.1002/asi.21015.

[50] E. E. Papalexakis, U. Kang, C. Faloutsos, N. D. Sidiropoulos, and A. Harpale, Large
scale tensor decompositions: Algorithmic developments and applications, IEEE Data Eng.
Bull., 36 (2013), pp. 59–66, http://sites.computer.org/debull/A13sept/p59.pdf.

[51] A.-H. Phan, P. Tichavsky, and A. Cichocki, Fast alternating LS algorithms for high order
CANDECOMP/PARAFAC tensor factorizations, IEEE Transactions on Signal Processing,
61 (2013), pp. 4834–4846, doi:10.1109/TSP.2013.2269903, http://dx.doi.org/10.1109/TSP.
2013.2269903.
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