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(2P2, K4)-Free Graphs are 4-Colorable

Serge Gaspers∗† Shenwei Huang‡

August 10, 2018

Abstract

In this paper, we show that every (2P2,K4)-free graph is 4-colorable. The bound is
attained by the five-wheel and the complement of the seven-cycle. This answers an open
question by Wagon [19] in the 1980s. Our result can also be viewed as a result in the study
of the Vizing bound for graph classes. A major open problem in the study of computa-
tional complexity of graph coloring is whether coloring can be solved in polynomial time
for (4P1, C4)-free graphs. Lozin and Malyshev [15] conjecture that the answer is yes. As an
application of our main result, we provide the first positive evidence to the conjecture by
giving a 2-approximation algorithm for coloring (4P1, C4)-free graphs.

Keywords: graph coloring; χ-bound; forbidden induced subgraphs; approximation algo-
rithm.
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1 Introduction

All graphs in this paper are finite and simple. We say that a graph G contains a graph H if
H is isomorphic to an induced subgraph of G. A graph G is H-free if it does not contain H.
For a family of graphs H, G is H-free if G is H-free for every H ∈ H. In case H consists of
two graphs, we write (H1,H2)-free instead of {H1,H2}-free. As usual, let Pn and Cn denote
the path and the cycle on n vertices, respectively. The complete graph on n vertices is denoted
by Kn. The n-wheel Wn is the graph obtained from Cn by adding a new vertex and making it
adjacent to every vertex in Cn. For two graphs G and H, we use G+H to denote the disjoint

union of G and H. For a positive integer r, we use rG to denote the disjoint union of r copies
of G. The complement of G is denoted by G. A hole in a graph is an induced cycle of length at
least 4. A hole is odd if it is of odd length.

A q-coloring of a graph G is a function φ : V (G) −→ {1, . . . , q} such that φ(u) 6= φ(v)
whenever u and v are adjacent in G. We say that G is q-colorable if G admits a q-coloring. The
chromatic number of G, denoted by χ(G), is the minimum number q such that G is q-colorable.
The clique number of G, denoted by ω(G), is the size of a largest clique in G. Obviously,
χ(G) ≥ ω(G) for any graph G. The maximum degree of a graph G is denoted by ∆(G).

A family G of graphs is said to be χ-bounded if there exists a function f such that for every
graph G ∈ G and every induced subgraphH of G it holds that χ(H) ≤ f(ω(H)). The function f
is called a χ-binding function for G. The class of perfect graphs (a graph G is perfect if for every
induced subgraph H of G it holds that χ(H) = ω(H)), for instance, is a χ-bounded family with
χ-binding function f(x) = x. Therefore, χ-boundedness is a generalization of perfection. The
notion of χ-bounded families was introduced by Gyárfás [10] who make the following conjecture.
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Conjecture 1 (Gyárfás [9]). For every forest T , the class of T -free graphs is χ-bounded.

Gyárfás [10] proved the conjecture for T = Pt: every Pt-free graph G has χ(G) ≤ (t −
1)ω(G)−1. The result was slightly improved by Gravier, Hoàng and Maffray in [8] that ev-
ery Pt-free graph G has χ(G) ≤ (t − 2)ω(G)−1. This implies that every P5-free graph G has
χ(G) ≤ 3ω(G)−1. Note that this χ-binding function is exponential in ω(G). For ω(G) = 3, Es-
peret, Lemoine, Maffray and Morel [3] obtained the optimal bound on the chromatic number:
every (P5,K4)-free graph is 5-colorable. They also demonstrated a (P5,K4)-free graph whose
chromatic number is 5. On the other hand, a polynomial χ-binding function for the class of 2P2-
free graphs was shown by Wagon [19] who proved that every such graph has χ(G) ≤

(

ω(G)+1
2

)

.
This implies that every (2P2,K4)-free graph is 6-colorable. In [19] it was asked if there exists
a (2P2,K4)-free graph whose chromatic number is 5 or 6. We observe that the (P5,K4)-free
graph with chromatic number 5 given in [3] contains an induced 2P2.

In this paper we settle Wagon’s question [19] by proving the following theorem.

Theorem 1. Every (2P2,K4)-free graph G has χ(G) ≤ 4.

The bound in Theorem 1 is attained by the five-wheel W5 and the complement of a seven-
cycle C7. Hence, we obtain the optimal χ-bound for the class of 2P2-free graphs when the
clique number is 3. A family G of graph is said to satisfy the Vizing bound if f(x) = x+ 1 is a
χ-binding function for G. The definition was motivated by the classical Vizing’s Theorem [18]
on the chromatic index χ′(G) of graphs which states that χ′(G) ≤ ∆(G) + 1 for any graph G.
This is equivalent to say that the class of line graphs satisfies the Vizing bound. Our result
(Theorem 1) shows that the class of (2P2,K4)-free graphs also satisfies the Vizing bound. We
refer to Randerath and Schiermeyer [17] and Fan, Xu, Ye and Yu [4] for more results on the
Vizing bound for various H-free graphs.

We also note that our proofs of Theorem 1 below are algorithmic: one can easily follow the
steps of the proof and give a 4-coloring of the input graph in polynomial time.

An application. Let Coloring denoted the computational problem of determining the chro-
matic number of a graph. In the past two decades, there has been an overwhelming attention
on the complexity of Coloring H-free graphs. The starting point is a result due to Král’,
Kratochv́ıl, Tuza, and Woeginger [14] who gave a complete classification of the complexity of
Coloring for the case where H consists of a single graph H: if H is an induced subgraph
of P4 or of P1 + P3, then Coloring restricted to H-free graphs is polynomial-time solvable,
otherwise it is NP-complete. Afterwards, researchers started to study Coloring restricted to
(H1,H2)-free graphs. Despite much efforts of top researchers in the area the complexity of
Coloring are known only for some pairs of H1 and H2, see [6] for a summary of the known
partial results. Even solving the problem for particular pairs of H1 and H2 requires substan-
tial work, see [2, 16, 11, 12, 15, 13] for instance. Lozin and Malyshev [15] demonstrated that
the classification is already problematic even if both H1 and H2 are 4-vertex graphs: they
determined the complexity of Coloring for all such pairs with three exceptions. One of the
three unknown pairs is (4P1, C4). Lozin and Malyshev [15] conjecture that Coloring can be
solved in polynomial time for (4P1, C4)-free graphs. The problem was listed as an important
open problem in the survey on the computational complexity of coloring graphs with forbidden
subgraphs by Golovach, Johnson, Paulusma and Song [6].

Here we use Theorem 1 to give a 2-approximation algorithm for coloring (4P1, C4)-free
graphs. This is the first general result towards a polynomial-time algorithm for the problem,
although Fraser, Hamel, Hoàng, Holmes, and LaMantia showed that the problem is polynomial
time solvable for a subclass of (4P1, C4)-free graphs [5]. For a graph G and a subset S ⊆ V (G),
we denote by G[S] the subgraph of G induced by S. A graph is chordal if it is Ct-free for each
t ≥ 4.

Theorem 2. There exists a polynomial-time 2-approximation algorithm for coloring (4P1, C4)-
free graphs.
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Figure 1: Two special graphs H1 and H2.

Proof. Let G be a (4P1, C4)-free graph. Then G is (2P2,K4)-free. By Theorem 1, we have that
G can be partitioned into 4 stable sets. So, G can be partitioned into 4 cliques Ki for 1 ≤ i ≤ 4,
and this partition can be found in polynomial time. Since G is C4-free, both G[K1 ∪K2] and
G[K3 ∪K4] are chordal. It is well-known that the chromatic number of a chordal graph can be
determined in linear time, see [7] for example. Therefore, the value χ(G[K1∪K2])+χ(G[K3∪K4])
provides a 2-approximation for χ(G).

We now turn to the proof of Theorem 1. The neighborhood of a vertex v in a graph G,
denoted by NG(v), is the set of neighbors of v. We simply write N(v) if the graph G is clear
from the context. Two nonadjacent vertices u and v in G are comparable if either N(v) ⊆ N(u)
or N(u) ⊆ N(v). Observe that if N(u) ⊆ N(v), then χ(G−u) = χ(G). Therefore, it suffices to
prove Theorem 1 for every connected (2P2,K4)-free graph with no pair of comparable vertices.
We do so by proving a number of lemmas below. The idea is that we assume the occurrence of
some induced subgraph H in G and then argue that the theorem holds in this case. Afterwards,
we can assume that G is H-free in addition to being (2P2,K4)-free. We then pick a different
induced subgraph as H and repeat. In the end, we are able to show that the theorem holds
if G contains a C5 (see Lemma 2-Lemma 5 below). Therefore, the remaining case is that G
is (odd hole, K4)-free. In this case, the theorem follows from a known result by Chudnovsky,
Robertson, Seymour and Thomas [1] that every (odd hole, K4)-free graph is 4-colorable. This
proves Theorem 1.

Th proof idea is based on a paper by Esperet et al. [3] who proved that every (P5,K4)-free
graph is 5-colorable. In particular, the graph H1 (see Figure 1) that plays an important role in
our proof was also used in [3]. However, to prove 4-colorability we need to use the argument
of comparable vertices and extensively extend the structural analysis in [3]. The remainder of
the paper is organized as follows. In section 2 we present some preliminary results. In section 3
and section 4 we prove Lemma 2 and Lemma 3, respectively. We then prove Lemma 4 and
Lemma 5 in section 5.

2 Preliminaries

We present the structure around a five-cycle in (2P2,K4)-free graphs that will be used in
section 4 and section 5. Let G be a (2P2,K4)-free graph and C = 12345 be an induced C5

of G. All indices below are modulo 5. We partition V \ C into the following subsets:

Z = {v ∈ V \ C : NC(v) = ∅},

Ri = {v ∈ V \ C : NC(v) = {i− 1, i + 1}},

Yi = {v ∈ V \ C : NC(v) = {i− 2, i, i + 2}},

Fi = {v ∈ V \ C : NC(v) = C \ {i}},

U = {v ∈ V \ C : NC(v) = C}.

3



Lemma 1. Let G be a (2P2,K4)-free graph and C = 12345 be an induced C5 of G. Then

V (G) = C ∪ Z ∪ (
⋃5

i=1Ri) ∪ (
⋃5

i=1 Yi) ∪ (
⋃5

i=1 Fi) ∪ U .

Proof. Suppose that there is a vertex v ∈ V (G) \ C that does not belong to any of Z, Ri, Yi,
Fi and U . Note that v has at least one and at most three neighbors on C. Moreover, these
neighbors must be consecutive on C. Without loss of generality, we may assume that v is
adjacent to 1 and not adjacent to 3 and 4. Now 34 and 1v induce a 2P2.

We now prove some structural properties of these sets.

(2.1) Z ∪Ri is an independent set.

If Z ∪Ri contains an edge xy, then xy and (i− 2)(i+ 2) induce a 2P2, a contradiction. �

(2.2) U ∪ Yi and U ∪ Fi are independent sets.

If either U ∪ Yi or U ∪ Fi contains an edge xy, then {x, y, i− 2, i + 2} induces a K4. �

(2.3) Ri and Ri+1 are complete.

It suffices to prove for i = 1. If r1 ∈ R1 and r2 ∈ R2 are not adjacent, then 5r1 and 3r2
induce a 2P2. �

(2.4) Yi and Yi+1 are complete.

It suffices to prove for i = 1. If y1 ∈ Y1 and y2 ∈ Y2 are not adjacent, then 5y2 and 3y1
induce a 2P2. �

(2.5) Ri and Yi are complete.

It suffices to prove for i = 1. If r1 ∈ R1 and y1 ∈ Y1 are not adjacent, then 5r1 and 3y1
induce a 2P2. �

(2.6) Either Ri and Yi+1 are anti-complete or Ri+1 and Yi are anti-complete.

Suppose, by contradiction, that there exist vertices ri ∈ Ri, ri+1 ∈ Ri+1, yi ∈ Yi, yi+1 ∈
Yi+1 such that ri and ri+1 are adjacent to yi+1 and yi, respectively. Then it follows from
(2.3), (2.4) and (2.5) that {ri, ri+1, yi, yi+1} induces a K4. �

(2.7) Each vertex in Yi is anti-complete to either Yi−2 or Yi+2.

It suffices to prove for i = 1. If y1 ∈ Y1 is adjacent to a vertex yi ∈ Yi for i = 3, 4, then
{1, y1, y3, y4} induces a K4 by (2.4). �

(2.8) Fi is complete to Yi−2 ∪ Yi+2 and anti-complete to Yi−1 ∪ Yi ∪ Yi+1.

It suffices to prove for i = 5. Let f ∈ F5. Recall that f is adjacent to 1, 2, 3, 4 but not
adjacent to 5 by the definition of F5. Suppose first that f is not adjacent to a vertex
y ∈ Y2 ∪ Y3. Note that y is adjacent to 5 by the definition of Y2 and Y3. Now either 3f or
2f forms a 2P2 with 5y depending on whether y ∈ Y2 or y ∈ Y3. This proves the first part
of (2.8). Suppose now that f is adjacent to a vertex y ∈ Yi for some i ∈ {1, 4, 5}. Since
i /∈ {2, 3}, it follows that 5 /∈ {i − 2, i + 2}. Therefore, f is adjacent to i − 2 and i + 2.
This implies that {f, y, i− 2, i+ 2} induces a K4. This proves the second part of (2.8). �

(2.9) Fi is complete to Ri−1 ∪Ri+1.

It suffices to prove i = 5. If f ∈ F5 is not adjacent to r ∈ R1 ∪ R4, then either f3 or f2
forms a 2P2 with 5r depending on whether r ∈ R1 or r ∈ R4. �

(2.10) If U 6= ∅, then Yi and Yi+2 are anti-complete.

Let u ∈ U . If yi ∈ Yi and yi+2 ∈ Yi+2 are adjacent, then yiyi+2 and u(i+ 1) induce a 2P2

since u is adjacent to neither yi nor yi+2 by (2.2), a contradiction. �
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(2.11) Either Fi or Fi+2 is empty.

It suffices to prove for i = 3. Suppose that Fi contains a vertex fi ∈ Fi for i = 3, 5. Then
either 3f5 and 5f3 induce a 2P2 or {1, 2, f3, f5} induces a K4 depending on whether f3
and f5 are nonadjacent or not. �

(2.12) If G is H1-free, then the following holds: if Fi 6= ∅, then Ri+1 is anti-complete to Yi+2∪Yi

and Ri−1 is anti-complete to Yi−2 ∪ Yi.

It suffices to prove for i = 5. Let f ∈ F5. Suppose, by contradiction, that there exists
vertices r ∈ R1 and y ∈ Y2 ∪ Y5 such that r and y are adjacent. Note that f is adjacent
to r by (2.9). If y ∈ Y2, then f is adjacent to y by (2.8) and this implies that {f, y, r, 2}
induces a K4. If y ∈ Y5, then f is not adjacent to y by (2.8) and this implies that
C ∪\{1} ∪ {f, y, r} induces an H1 (see Figure 1). This proves that R1 is anti-complete to
Y2 ∪ Y5. The proof for the second part is symmetric. �

(2.13) Each vertex in Ri is anti-complete to either Yi+1 or Yi+2. By symmetry, each vertex in Ri

is anti-complete to either Yi−1 or Yi−2

Suppose, by contradiction, that there exists a vertex ri ∈ Ri such that ri is adjacent to a
vertex yi+1 ∈ Yi+1 and a vertex yi+2 ∈ Yi+2. By (2.4), yi+1 and yi+2 are adjacent. This
implies that {ri, yi+1, yi+2, i− 1} induces a K4. �

3 Eliminate H1

In this section we show that our main theorem, Theorem 1, holds when G is connected, has no
pair of comparable vertices, and contains H1 as an induced subgraph.

Lemma 2. Let G be a connected (2P2,K4)-free graph with no pair of comparable vertices. If G
contains an induced H1, then χ(G) ≤ 4.

Proof. Let H = C ∪ {w} be an induced H1 in G where C = {1, 2, 3, 4, 5, 6} induces a C6 such
that ij is an edge if and only if |i − j| 6= 1, and w is adjacent to 1, 2, 4 and 5 (See Figure 1).
All the indices below are modulo 6. We partition V (G) into following subsets:

Z = {v ∈ V \ C : NC(v) = ∅},

Di,i+1 = {v ∈ V \ C : NC(v) = {i, i + 1}},

Ti = {v ∈ V \ C : NC(v) = {i− 1, i, i + 1}},

Fi,i+1 = {v ∈ V \ C : NC(v) = {i− 1, i, i + 1, i + 2}},

W = {v ∈ V \ C : NC(v) = NC(w) = {1, 2, 4, 5}}.

Let D =
⋃6

i=1Di,i+1, T =
⋃6

i=1 Ti and F =
⋃6

i=1 Fi,i+1. Without loss of generality, we assume
H has been chosen such that |T |+ |F | is maximized. We first show that V (G) = C ∪ Z ∪D ∪
T ∪ F ∪W .

(3.1) There is no vertex v ∈ V \C such that v is adjacent to i but adjacent to neither i− 1 nor
i+ 1 for any 1 ≤ i ≤ 6.

Suppose that such a vertex v exists. Then it follows that vi and (i − 1)(i + 1) induce a
2P2. �

(3.2) If a vertex in V \ C has at most two neighbors on C, then v ∈ Z ∪D.

Suppose not. Let v ∈ V \ C that has at most two neighbors on C and v /∈ Z ∪D. Then
either v has exactly one neighbor on C or has two neighbors on C that are not consecutive.
By symmetry, we may assume that v is adjacent to 1 but not adjacent to 2 and 6. This
contradicts (3.1). �
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(3.3) If a vertex v ∈ V \ C that has exactly three neighbors on C, then v ∈ T .

Suppose not. Let v ∈ V \ C that has exactly at three neighbors on C. By symmetry, we
may assume that v is adjacent to 1. It follows from (3.1) that v is adjacent to either 2
or 6, say 2. If v is not adjacent to 3 or 6, then it contradicts (3.1) for i = 4 or i = 5.
Therefore, v ∈ T1 or v ∈ T2. �

(3.4) If a vertex v ∈ V \ C that has exactly four neighbors on C, then v ∈ F ∪W .

By (3.1), v must have two consecutive neighbors on C. If v has three consecutive neighbors
on C, then all four neighbors must be consecutive by (3.1) and so v ∈ F . Now NC(v) =
{i, i + 1, i + 3, i + 4} for some i. If i = 1, then v ∈ W . Suppose that i = 2 (and the case
i = 3 is symmetric). Then either w1 and v6 induce a 2P2 or {w, v, 2, 5} induces a K4,
depending on whether w and v are nonadjacent or not. �

(3.5) There is no vertex in V \ C that has more than four neighbors.

Suppose not. Let v ∈ V \ C have at least five neighbors on C. By symmetry, we may
assume that v is adjacent to i for each 1 ≤ i ≤ 5. Then {1, 3, 5, v} induces a K4. �

It follows from (3.2)-(3.5) that V (G) = C∪Z∪D∪T ∪F ∪W . Note that each of the subsets
defined is an independent set since G is (2P2,K4)-free. We further investigate the adjacency
among those subsets.

(3.6) The set W is anti-complete to Z.

If w ∈ W and z ∈ Z are adjacent, then wz and 36 induce a 2P2, a contradiction. �

(3.7) The setW is complete toDi,i+1 for i ∈ {2, 3, 5, 6} and anti-complete toDi,i+1 for i ∈ {1, 4}.

Suppose that w ∈ W is not adjacent some vertex d ∈ Di,i+1 for some i ∈ {2, 3, 5, 6}. By
symmetry, we may assume that i = 2. Then d3 and w4 induce a 2P2, a contradiction.
Suppose that w ∈ W is adjacent some vertex d ∈ D1,2 ∪D4,5. Then dw and 36 induce a
2P2, a contradiction. �

(3.8) The set W is complete to T1 ∪ T2 ∪ T4 ∪ T5 and anti-complete to T3 ∪ T6.

Suppose that w ∈ W is not adjacent some vertex t ∈ Ti for some i ∈ {1, 2, 4, 5}. By
symmetry, we may assume that i = 1. Then t6 and w5 induce a 2P2. Suppose that
w ∈ W is adjacent some vertex t ∈ Ti for some i ∈ {3, 6}. By symmetry, we may assume
that i = 3. Then {w, t, 2, 4} induces a K4. �

(3.9) The setW is anti-complete to Fi,i+1 for i ∈ {2, 3, 5, 6} and complete to Fi,i+1 for i ∈ {1, 4}.

Suppose that w ∈ W is adjacent some vertex f ∈ Fi,i+1 for some i ∈ {2, 3, 5, 6}. By
symmetry, we may assume that i = 2. Then {f,w, 1, 4} induces a K4. Suppose that
w ∈ W is not adjacent some vertex f ∈ Fi,i+1 for some i ∈ {1, 4}. By symmetry, we may
assume that i = 1. Then 6f and 5w induce a 2P2. �

(3.10) The set Z is anti-complete to D ∪ T ∪ (F \ (F1,2 ∪ F4,5)).

Suppose that z ∈ Z is adjacent to some vertex x ∈ D∪T ∪(F \(F1,2∪F4,5)). If x ∈ D∪T ,
then there exists a vertex i ∈ C such that x is not adjacent to i − 1 and i+ 1. Then zx
and (i− 1)(i+1) induce a 2P2. If x ∈ Fi,i+1 for some i = 2, 3, 5, 6, then xw /∈ E by (3.9).
Moreover, there exists a vertex j ∈ NC(w) such that xj /∈ E. Then wj and zx induce a
2P2. �

It follows from and (3.6) and (3.10) that any vertex in Z has neighbors only in F1,2 ∪ F4,5.
On the other hand, w is complete to F1,2∪F4,5 by (3.9). Since G contains no pair of comparable
vertices, it follows that Z = ∅.
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(3.11) For each i, Di,i+1 is anti-complete to Di+1,i+2, complete to Di+2,i+3 and anti-complete to
Di+3,i+4.

By symmetry, it suffices to prove the claim for i = 1. Let d ∈ D1,2. If d is adjacent to
d′ ∈ D2,3, then 46 and dd′ induce a 2P2. If d is not adjacent to d′ ∈ D3,4, then 2d and 3d′

induce a 2P2. If d is adjacent to d′ ∈ D4,5, then 36 and dd′ induce a 2P2. �

(3.12) For each i, Fi,i+1 is anti-complete to Fi+1,i+2 ∪ Fi+3,i+4 and complete to Fi+2,i+3.

By symmetry, it suffices to prove the claim for i = 1. Let f ∈ F1,2. If f is adjacent to a
vertex f ′ ∈ F2,3, then {1, 3, f, f ′} induces a K4. If f is not adjacent to a vertex f ′ ∈ F3,4,
then 5f ′ and 6f induce a 2P2. If f is adjacent to a vertex f ′ ∈ F4,5, then {3, 6, f, f ′}
induces a K4. �

(3.13) The sets Ti and Ti+1 are anti-complete for i ∈ {1, 4}.

By symmetry, it suffices to prove this for i = 1. If t1 ∈ T1 and t2 ∈ T2 are adjacent, then
w is adjacent to both t1 and t2 by (3.8). But now {t1, t2, w, 1} induces a K4. �

(3.14) The sets T3 and T1 ∪ T5 are complete. By symmetry, T6 and T2 ∪ T4 are complete.

Suppose that t3 ∈ T3 is not adjacent to some vertex t ∈ T1 ∪ T5. By (3.8), w is adjacent
to t but not to t3. Then 3t3 and wt induce a 2P2, a contradiction. �

(3.15) The sets Ti and Ti+3 are complete for each 1 ≤ i ≤ 6.

By symmetry, it suffices to prove this for i = 1. If t1 ∈ T1 and t4 ∈ T4 are not adjacent,
then 2t1 and 3t4 induce a 2P2. �

(3.16) For each i, Di,i+1 is anti-complete to Ti−1 ∪Ti ∪Ti+1 ∪Ti+2 and complete to Ti+3 ∪Ti+4.

We note that D1,2 and D4,5 are symmetric, and D2,3, D3,4, D5,6 and D6,1 are symmetric.
So, it suffices to prove the claim for D1,2 and D2,3.

Let d ∈ D1,2. Suppose that d is adjacent to some vertex t ∈ T6 ∪ T1 ∪ T2 ∪ T3. By
symmetry, we may assume that i ∈ {1, 3}. If i = 1, then td and 35 induce a 2P2. If i = 3,
then w is not adjacent to d and t by (3.7) and (3.8). Then dt and w5 induce a 2P2. Now
suppose that d is not adjacent to some vertex t ∈ T4 ∪ T5. By symmetry, we may assume
that t ∈ T4. Then d2 and t3 induce a 2P2. This proves the claim for D1,2.

Let d ∈ D2,3. Suppose that d is adjacent to some vertex t ∈ T2 ∪ T3. By symmetry, we
may assume that t ∈ T2. Then dt and 46 induce a 2P2. Suppose that d is not adjacent
to some vertex t ∈ T5 ∪ T6. By symmetry, we may assume that t ∈ T5. Then d3 and t4
induce a 2P2.

By (3.7) and (3.8), {2, w} is complete to D2,3 ∪ T1. It follows from K4-freeness of G that
D2,3 is anti-complete to T1. It remains to show that D2,3 is anti-complete to T4. Suppose
that d is adjacent to some vertex t4 ∈ T4. Note that C ′ = C \ {1} ∪ {t4} induces a C6 and
H ′ = C ′ ∪ {w} induces a subgraph isomorphic to H1. By (3.13) and (3.14), all vertices
in T1 ∪ T4 ∪ T5 ∪ T6 remain to be T -vertices with respect to C ′. Moreover, all vertices in
T3 ∪ F remain to be F -vertices or T -vertices. By the choice of C, there exists a vertex
t ∈ T2 that is not adjacent to t4. Then dt4 and 1t2 induce a 2P2, a contradiction. This
proves the claim for D2,3. �

(3.17) For each i, Fi,i+1 is anti-complete to Ti ∪ Ti+1 and complete to Ti+3 ∪ Ti+4

By symmetry of C, it suffices to prove this for i = 1. Let f ∈ F1,2. If f is adjacent to
some vertex t ∈ T1 ∪ T2, then either {6, 2, f, t} or {1, 3, f, t} induces a K4 depending on
whether t ∈ T1 or t ∈ T2. Suppose that f is not adjacent to some vertex t ∈ T4 ∪ T5. By
symmetry, we may assume that t ∈ T4. Then 6f and 5t induce a 2P2, a contradiction. �
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(3.18) The sets Fi,i+1 and Ti−1 are complete for i ∈ {2, 5}, and Fi,i+1 and Ti+2 are complete for
i ∈ {3, 6}.

Let f ∈ Fi,i+1 and t ∈ Ti be nonadjacent. By (3.9) and (3.8), w is adjacent to t but not
f . It can be readily checked that in each of the cases wt and f3 or wt and f6 induce a
2P2. �

(3.19) The set D1,2 is anti-complete to F6,1 ∪ F2,3 and complete to F45.

The set D4,5 is anti-complete to F3,4 ∪ F5,6 and complete to F12.

The set D2,3 is anti-complete to F1,2 and complete to F5,6 ∪ F6,1.

The set D3,4 is anti-complete to F4,5 and complete to F5,6 ∪ F6,1.

The set D6,1 is anti-complete to F1,2 and complete to F2,3 ∪ F3,4.

The set D5,6 is anti-complete to F4,5 and complete to F2,3 ∪ F3,4.

Note that D1,2 and D4,5 are symmetric, and D2,3, D3,4, D5,6 and D6,1 are symmetric. So,
it suffices to prove the claim for D1,2 and D2,3. Let d ∈ D1,2. If d is adjacent to some
vertex f ∈ F6,1 ∪ F2,3, then w is not adjacent to d and f by (3.7) and (3.9). Now df and
w4 or dfand w5 induce a 2P2 depending on whether f ∈ F6,1 or f ∈ F2,3. If d is not
adjacent to some vertex f ∈ F4,5, then d2 and f3 induce a 2P2. This proves the claim for
D1,2.

Now let d ∈ D2,3. By (3.7), it follows that wd ∈ E. If d is adjacent to a vertex f ∈ F1,2,
then {d, f, 2, w} induces a K4 by (3.9). If d is not adjacent to a vertex f ∈ F5,6 ∪ F6,1,
then 6f and wd induce a 2P2 by (3.9). This proves the claim for D2,3. �

We proceed with a few claims that help to show that certain sets are empty.

Claim 1. Either D1,2 or D4,5 is empty.

Proof of Claim 1. Suppose not. Let d12 ∈ D1,2 and d45 ∈ D4,5. By (3.7)-(3.19), N(d12) ⊆
N(w) unless d12 has a neighbor f ∈ F3,4 ∪ F5,6. Similarly, N(d45) ⊆ N(w) unless d45 has a
neighbor f ′ ∈ F3,4∪F5,6. By (3.11) and (3.19), d12f and d45f

′ induce a 2P2, a contradiction.

Claim 2. Each vertex in T1 has a non-neighbor in T5 and each vertex in T5 has a non-neighbor

in T1. By symmetry, each vertex in T2 has a non-neighbor in T4 and each vertex in T4 has a

non-neighbor in T2.

Proof of Claim 2. Let t1 ∈ T1. Let

X = {6, 1, 2} ∪W ∪D3,4 ∪D4,5 ∪ T3 ∪ T4 ∪ F2,3 ∪ F3,4 ∪ F4,5.

Note that N(4) = X ∪ T5 ∪ F5,6 and N(t1) ⊆ X ∪ T5 ∪ F5,6 ∪ T6 by the properties we have
proved. Since G contains no pair of comparable vertices, t1 has a neighbor t6 ∈ T6 and there
exists a vertex t ∈ N(4)\N(t1). Clearly, t ∈ F5,6∪T5. If t ∈ F5,6, then 4t and t1t6 induce a 2P2

since F56 and T6 are anti-complete by (3.17). This shows that t1 has a non-neighbor t ∈ T5. By
symmetry, each vertex in T5 has a non-neighbor in T1.

Claim 3. Each vertex in T6 has a neighbor in T1 ∪ T5. By symmetry, each vertex in T3 has a

neighbor in T2 ∪ T4.

Proof of Claim 3. Let t6 ∈ T6. Let

X = {5, 6, 1} ∪D2,3 ∪D3,4 ∪ T2 ∪ T3 ∪ T4 ∪ F2,3 ∪ F3,4.

Note that N(3) = X ∪ F1,2 ∪ F4,5 and N(t6) ⊆ X ∪ T1 ∪ T5 ∪ F12 ∪ F45. Since G contains no
pair of comparable vertices, t6 has a neighbor in T1 ∪ T5.
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T1 T2

T3

T4T5

T6

D45

D12

D23

D34 D56

D61

Figure 2: The adjacency among Ti and Di,i+1. A thick line between two sets means that the
two sets are complete, a thin line means the edges between the two sets can be arbitrary, and
no line means that the two sets are anti-complete. For clarity, edges between two Di,i+1 are not
shown.

Claim 4. If D5,6 ∪D6,1 6= ∅, then T2 and T4 are complete. By symmetry, if D2,3 ∪D3,4 6= ∅,
then T1 and T5 are complete.

Proof of Claim 4. Let d ∈ D5,6 ∪ D6,1. Suppose that t2 ∈ T2 and t4 ∈ T4 are not adjacent.
If d ∈ D5,6, then dt2 ∈ E and dt4 /∈ E by (3.16). Thus, dt2 and 4t4 induce a 2P2. If d ∈ D6,1,
then dt4 ∈ E and dt2 /∈ E by (3.16). Thus, dt4 and 2t2 induce a 2P2.

Claim 5. One of F6,1, F1,2 and F2,3 is empty. By symmetry, one of F3,4, F4,5 and F5,6 is

empty.

Proof of Claim 5. Suppose that f61 ∈ F6,1, f12 ∈ F1,2, and f23 ∈ F2,3. Then f61f23 and f12w
induce a 2P2 by (3.9) and (3.12).

By Claim 1, we may assume that D4,5 = ∅. It follows from (3.13), (3.14) and (3.15) that
either T1 and T5 are complete or T2 and T4 are complete for otherwise G would contain a 2P2

(see Figure 2). By symmetry, we may assume that T1 and T5 are complete. It then follows from
Claim 2 and Claim 3 that T1 ∪ T5 ∪ T6 = ∅.

If D5,6 ∪D6,1 6= ∅, then T2 ∪ T3 ∪ T4 = ∅ due to Claim 2-Claim 4. In the following we shall
use this fact without explicitly mentioning it. We divide our proof into four cases depending
on whether F1,2 and F4,5 are empty or not. One can verify that each of the partitions of
V (G) into 4 subsets in the following is a 4-coloring of G using the properties we have proved.
For convenience, we draw Figure 3 to visulize the adjacency among Di,i+1 and Fi,i+1. From
Figure 3 it can be seen that if T2 ∪ T3 ∪ T4 = ∅, then we can use the symmetry of H under
its automorphism f : V (H) → V (H) with f(1) = 2, f(2) = 1, f(3) = 6, f(4) = 5, f(5) = 4,
f(6) = 3 and f(w) = w.

Case 1. Both F1,2 and F4,5 are not empty. Let f12 ∈ D1,2 and f45 ∈ D4,5. We first show that
F1,2 ∪ F4,5 is anti-complete to D2,3 ∪D3,4 ∪D5,6 ∪D6,1. By symmetry, it suffices to show that
F1,2 ∪F4,5 is anti-complete to D2,3. Suppose that d ∈ D2,3 and f ∈ F1,2 ∪F4,5 are adjacent. By
(3.19), f ∈ F4,5. Then df and 1f12 induce a 2P2. On the other hand, it follows from Claim 5
and (3.12) that at most one of F2,3, F3,4, F5,6 and F6,1 is not empty.
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F12

F23

F34

F45

F56

F61

D12

D23

D34 D56

D61

Figure 3: The adjacency among Fi,i+1 and Di,i+1. A thick line between two sets means that
the two sets are complete, a thin line means the edges between the two sets can be arbitrary,
and no line means that the two sets are anti-complete. For clarity, edges between two Di,i+1

are not shown.

• If F2,3 6= ∅, then G has a 4-coloring:

F4,5 ∪D2,3 ∪D3,4 ∪ {1} ∪ T4,

F2,3 ∪D1,2 ∪W ∪ {6} ∪ T3,

F1,2 ∪ {4, 5} ∪ T2,

D5,6 ∪D6,1 ∪ {2, 3}.

• Suppose that F6,1 6= ∅.
If D5,6 ∪D6,1 6= ∅, then G has a 4-coloring:

F4,5 ∪D5,6 ∪D6,1 ∪ {2},

F6,1 ∪D1,2 ∪W ∪ {3},

F1,2 ∪ {4, 5},

D2,3 ∪D3,4 ∪ {1, 6}.

If D5,6 ∪D6,1 = ∅, then G has a 4-coloring:

F4,5 ∪ {1, 2} ∪ T4,

F6,1 ∪D1,2 ∪W ∪ {3},

F1,2 ∪ {4, 5} ∪ T2,

D2,3 ∪D3,4 ∪ {6} ∪ T3.

• Suppose that F3,4 6= ∅. Note first that no vertex d ∈ D1,2 can have a neighbor in both F1,2

and F3,4 for otherwise a neighbor of d in F1,2, a neighbor of d in F3,4, d and 2 induce a K4. Let
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D′
1,2 be the set of vertices in D1,2 that are anti-complete to F3,4 and D′′

1,2 = D1,2 \D
′
1,2. Then

G has a 4-coloring:

F4,5 ∪D2,3 ∪D3,4 ∪ {1} ∪ T4,

F3,4 ∪D′
1,2 ∪W ∪ {6} ∪ T3,

F1,2 ∪D′′
1,2 ∪ {4, 5} ∪ T2,

D5,6 ∪D6,1 ∪ {2, 3}.

• Suppose that F5,6 6= ∅. Note first that no vertex d ∈ D1,2 can have a neighbor in both
F1,2 and F5,6 for otherwise a neighbor of d in F1,2, a neighbor of d in F5,6, d and 1 induce a K4.
Let D′

1,2 be the set of vertices in D1,2 that are anti-complete to F5,6 and D′′
1,2 = D1,2 \D

′
1,2. By

(3.17) and (3.18), F5,6 and T3∪T4 are complete. Since G is K4-free, T3 and T4 are anti-complete.
Then G has a 4-coloring:

F4,5 ∪D5,6 ∪D6,1 ∪ {2},

F5,6 ∪D′
1,2 ∪W ∪ {3},

F1,2 ∪D′′
1,2 ∪ {4, 5} ∪ T2,

D2,3 ∪D3,4 ∪ {1, 6} ∪ T3 ∪ T4.

Case 2. Both F1,2 and F4,5 are empty. By (3.12) and the fact that G is 2P2-free, one of F2,3,
F3,4, F5,6 and F6,1 is empty. By (3.11), (3.19), (3.12) and K4-freeness of G, either D5,6 and F5,6

are anti-complete or D3,4 and F3,4 are anti-complete.
• Suppose that F6,1 = ∅.
If D5,6 and F5,6 are anti-complete, then G has a 4-coloring:

F2,3 ∪ F3,4 ∪W ∪ {6} ∪ T3,

F5,6 ∪D5,6 ∪ {2, 3},

D1,2 ∪D6,1 ∪ {4, 5} ∪ T2,

D2,3 ∪D3,4 ∪ {1} ∪ T4.

Now assume that D3,4 and F3,4 are anti-complete.
If D5,6 ∪D6,1 6= ∅, then G has a 4-coloring:

F2,3 ∪ F5,6 ∪W,

F3,4 ∪D3,4 ∪ {6, 1},

D1,2 ∪D2,3 ∪ {4, 5},

D5,6 ∪D6,1 ∪ {2, 3}.

If D5,6 ∪D6,1 = ∅, then G has a 4-coloring:

F2,3 ∪D1,2 ∪W ∪ {6} ∪ T3,

F3,4 ∪D3,4 ∪ {1} ∪ T4,

F5,6 ∪ {2, 3},

D2,3 ∪ {4, 5} ∪ T2.
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• Suppose that F2,3 = ∅.
Suppose first that D3,4 and F3,4 are anti-complete.
If D5,6 ∪D6,1 6= ∅, then G has a 4-coloring:

F6,1 ∪ F5,6 ∪W ∪ {3},

F3,4 ∪D3,4 ∪ {6, 1},

D1,2 ∪D2,3 ∪ {4, 5},

D6,1 ∪D5,6 ∪ {2}.

If D5,6 ∪D6,1 = ∅, then G has a 4-coloring:

F6,1 ∪ F5,6 ∪W ∪ {3},

F3,4 ∪D3,4 ∪ {6} ∪ T3,

D1,2 ∪D2,3 ∪ {4, 5} ∪ T2,

{1, 2} ∪ T4.

Suppose now that D3,4 and F3,4 are not anti-complete and that D5,6 and F5,6 are anti-
complete. By (3.16) and (3.17), D3,4 ∪F3,4 are anti-complete to T3 ∪ T4. Since G is 2P2-free, it
follows that T3 and T4 are anti-complete. Then G has a 4-coloring:

F6,1 ∪ F3,4 ∪W,

F5,6 ∪D5,6 ∪ {2, 3},

D1,2 ∪D6,1 ∪ {4, 5} ∪ T2,

D2,3 ∪D3,4 ∪ {6, 1} ∪ T3 ∪ T4.

• Suppose that F5,6 = ∅. If F6,1 = ∅, then G has a 4-coloring as above. So, we can assume
that F6,1 6= ∅. Let f61 ∈ F6,1. If d ∈ D2,3 and f ∈ F2,3 are adjacent, then {2, f61, d, f} induces
a K4 by (3.12) and (3.19). So, D2,3 and F2,3 are anti-complete. By (3.17) and (3.18), F6,1 and
T2∪T3 are complete. Since G is K4-free, T2 and T3 are anti-complete. Then G has a 4-coloring:

F3,4 ∪ F6,1 ∪W,

F2,3 ∪D1,2 ∪D2,3 ∪ {5, 6} ∪ T2 ∪ T3,

D3,4 ∪ {1, 2} ∪ T4,

D5,6 ∪D6,1 ∪ {3, 4}.

• Suppose that F3,4 = ∅. If F2,3 = ∅, then G has a 4-coloring as above. So, we can assume
that F2,3 6= ∅. Let f23 ∈ F2,3. If d ∈ D6,1 and f ∈ F6,1 are adjacent, then {1, f23, d, f} induces
a K4 by (3.12) and (3.19). So, D6,1 and F6,1 are anti-complete.

If D5,6 ∪D6,1 6= ∅, then G has a 4-coloring:

F5,6 ∪ F2,3 ∪W,

F6,1 ∪D1,2 ∪D6,1 ∪ {3, 4},

D5,6 ∪ {1, 2},

D3,4 ∪D2,3 ∪ {5, 6}.
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If D5,6 ∪D6,1 6= ∅, then G has a 4-coloring:

F5,6 ∪ F6,1 ∪W ∪ {3},

F2,3 ∪D1,2 ∪ {6} ∪ T3,

D2,3 ∪ {4, 5} ∪ T2,

D3,4 ∪ {1, 2} ∪ T4.

Case 3. The set F1,2 = ∅ but the set F4,5 6= ∅. By Claim 5, either F3,4 = ∅ or F5,6 = ∅. By
(3.11), (3.19), (3.12) and K4-freeness of G, either D2,3 and F2,3 are anti-complete or D6,1 and
F6,1 are anti-complete.

• Suppose that F5,6 = ∅.
If D6,1 and F6,1 are anti-complete, then G has a 4-coloring:

F2,3 ∪ F3,4 ∪W ∪ {6} ∪ T3,

F6,1 ∪D1,2 ∪D6,1 ∪ {3, 4},

F4,5 ∪D5,6 ∪ {1, 2} ∪ T4,

D2,3 ∪D3,4 ∪ {5} ∪ T2.

Now assume that D2,3 and F2,3 are anti-complete.
If D5,6 ∪D6,1 6= ∅, then G has a 4-coloring:

F3,4 ∪ F6,1 ∪W,

F2,3 ∪D1,2 ∪D2,3 ∪ {5, 6},

F4,5 ∪D3,4 ∪ {1, 2},

D5,6 ∪D6,1 ∪ {3, 4}.

If D5,6 ∪D6,1 = ∅, then G has a 4-coloring:

F3,4 ∪W ∪ {6} ∪ T3,

F2,3 ∪D1,2 ∪D2,3 ∪ {5} ∪ T2,

F4,5 ∪D3,4 ∪ {1, 2} ∪ T4,

F6,1 ∪ {3, 4}.

• Suppose that F3,4 = ∅. Suppose first that D2,3 and F2,3 are anti-complete.
If D5,6 ∪D6,1 6= ∅, then G has a 4-coloring:

F5,6 ∪ F6,1 ∪W ∪ {3},

F2,3 ∪D1,2 ∪D2,3 ∪ {5, 6},

F4,5 ∪D3,4 ∪ {1, 2},

D5,6 ∪D6,1 ∪ {4}.

If D5,6 ∪D6,1 = ∅, then G has a 4-coloring:

F5,6 ∪ F6,1 ∪W ∪ {3},

F2,3 ∪D1,2 ∪D2,3 ∪ {6} ∪ T3,

F4,5 ∪D3,4 ∪ {1, 2} ∪ T4,

{4, 5} ∪ T2.
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Now suppose that D2,3 and F2,3 are not anti-complete and that D6,1 and F6,1 are anti-
complete. Then T2 and T3 are anti-complete for otherwise an edge between T2 and T3 and an
edge between D2,3 and F2,3 induce a 2P2 by (3.16) and (3.17). Then G has a 4-coloring:

F5,6 ∪ F2,3 ∪W,

F6,1 ∪D1,2 ∪D6,1 ∪ {3, 4},

F4,5 ∪D5,6 ∪ {1, 2} ∪ T4,

D2,3 ∪D3,4 ∪ {5, 6} ∪ T2 ∪ T3.

Case 4. The set F4,5 = ∅ but the set F1,2 6= ∅. By Claim 5, either F2,3 = ∅ or F6,1 = ∅.
By (3.19) and (3.12), F3,4 is complete to D5,6 ∪ F5,6. So, if F3,4 6= ∅, then D5,6 and F5,6 are
anti-complete for otherwise G would contain a K4. By symmetry, if F5,6 6= ∅, then D3,4 and F3,4

are anti-complete. Moreover, either D3,4 and F3,4 are anti-complete or D5,6 and F5,6 are anti-
complete. Similarly, either D2,3 and F3,4 are anti-complete or D6,1 and F5,6 are anti-complete.

• Suppose that F6,1 = ∅. If both F3,4 and F5,6 are not empty, then consider the following
4-coloring of G− (D2,3 ∪D6,1):

I1 = F2,3 ∪D1,2 ∪W ∪ {6} ∪ T3,

I2 = F3,4 ∪D3,4 ∪ {1} ∪ T4,

I3 = F5,6 ∪D5,6 ∪ {2, 3},

I4 = F1,2 ∪ {4, 5} ∪ T2.

If D2,3 and F3,4 are anti-complete, then G has a 4-coloring: I1, I2 ∪D2,3, I3 and I4 ∪D6,1. If
D6,1 and F5,6 are anti-complete, then G has a 4-coloring: I1, I2, I3 ∪ D6,1 and I4 ∪ D2,3. It
reamains to consider the case where at least one of F3,4 and F5,6 is empty.

Suppose that F5,6 = ∅. Recall that no vertex in D1,2 can have a neighbor in both F1,2 and
F3,4. Let D

′
1,2 be the set of vertices in D1,2 that are anti-complete to F1,2 and D′′

1,2 = D1,2 \D
′
1,2.

Then G has a 4-coloring:

F1,2 ∪D′
1,2 ∪ {4, 5} ∪ T2,

F2,3 ∪ F3,4 ∪D′′
1,2 ∪W ∪ {6} ∪ T3,

D2,3 ∪D3,4 ∪ {1} ∪ T4,

D5,6 ∪D6,1 ∪ {2, 3}.

Suppose now that F5,6 6= ∅ and F3,4 = ∅. Note that no vertex in D1,2 can have a neighbor
in both F1,2 and F5,6. Let D

′
1,2 be the set of vertices in D1,2 that are anti-complete to F1,2 and

D′′
1,2 = D1,2 \D

′
1,2. Moreover, recall that since F5,6 6= ∅, T3 and T4 are anti-complete. Then G

has a 4-coloring:

F1,2 ∪D2,3 ∪D′
1,2 ∪ {4, 5} ∪ T2,

F2,3 ∪ F5,6 ∪D′′
1,2 ∪W,

D3,4 ∪ {6, 1} ∪ T3 ∪ T4,

D5,6 ∪D6,1 ∪ {2, 3}.
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• Suppose that F2,3 = ∅. If both F3,4 and F5,6 are not empty, then consider the following
4-coloring of G− (D2,3 ∪D6,1):

I1 = F6,1 ∪D1,2 ∪W ∪ {3},

I2 = F5,6 ∪D5,6 ∪ {2},

I3 = F3,4 ∪D3,4 ∪ {6, 1} ∪ T3 ∪ T4,

I4 = F1,2 ∪ {4, 5} ∪ T2.

If D2,3 and F3,4 are anti-complete, then G has a 4-coloring: I1, I2, I3 ∪D2,3 and I4 ∪D6,1. If
D6,1 and F5,6 are anti-complete, then G has a 4-coloring: I1, I2 ∪D6,1, I3 and I4 ∪ D2,3. So,
one of F3,4 and F5,6 is empty.

Suppose that F5,6 6= ∅. So, F3,4 = ∅. Recall that no vertex in D1,2 can have a neighbor in
both F1,2 and F5,6. Let D′

1,2 be the set of vertices in D1,2 that are anti-complete to F1,2 and
D′′

1,2 = D1,2 \D
′
1,2. Moreover, T3 and T4 are anti-complete. Then G has a 4-coloring:

F1,2 ∪D′
1,2 ∪ {4, 5} ∪ T2,

F6,1 ∪ F5,6 ∪D′′
1,2 ∪W ∪ {3},

D6,1 ∪D5,6 ∪ {2},

D2,3 ∪D3,4 ∪ {6, 1} ∪ T3 ∪ T4.

Suppose now that F5,6 = ∅. Recall that no vertex inD1,2 can have a neighbor in both F1,2 and
F3,4. Let D

′
1,2 be the set of vertices in D1,2 that are anti-complete to F1,2 and D′′

1,2 = D1,2 \D
′
1,2.

If D5,6 ∪D6,1 6= ∅, then G has a 4-coloring:

F1,2 ∪D6,1 ∪D′
1,2 ∪ {4, 5},

F6,1 ∪ F3,4 ∪D′′
1,2 ∪W,

D5,6 ∪ {2, 3},

D2,3 ∪D3,4 ∪ {6, 1}.

If D5,6 ∪D6,1 = ∅, then G has a 4-coloring:

F1,2 ∪D2,3 ∪D′
1,2 ∪ {4, 5} ∪ T2,

F3,4 ∪D′′
1,2 ∪W ∪ {6} ∪ T3,

F5,6 ∪ {3},

D3,4 ∪ {1, 2} ∪ T4.

In each case we have found a 4-coloring of G. This completes our proof.

4 Eliminate H2

In this section we show that our main theorem, Theorem 1, holds when G is connected, has no
pair of comparable vertices, does not contain H1 as an induced subgraph, but contains H2 as
an induced subgraph.

Lemma 3. Let G be a connected (2P2,K4,H1)-free graph with no pair of comparable vertices.

If G contains an induced H2, then χ(G) ≤ 4.
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Proof. Let H = C ∪ {f} be an induced H2 where C = 12345 induces a C5 and f is adjacent to
1, 2, 3 and 4. We partition V \ C into subsets of Z, Ri, Yi, Fi and U as in section 2. By the
fact that G is H1-free and (2.11), it follows that Fi = ∅ for i 6= 5. Note that f ∈ F5. We choose
H such that

• |U | is minimum, and

• |F5| is minimum subject to the previous condition.

(4.1) U is complete to Ri for 1 ≤ i ≤ 5.

Suppose not. Let u ∈ U be nonadjacent to ri ∈ Ri for some i. Suppose first that 1 ≤ i ≤ 4.
Note that C ′ = C \{i}∪{ri} induces a C5 and H ′ = C ′∪{u} induces an H2. Since 5 ∈ C ′,
it follows that F5∩U

′ = ∅ and U ′ ⊆ U . Moreover, u ∈ U is not in U ′ since u is not adjacent
to ri. This implies that |U ′| < |U |, contradicting the choice of H.

Now suppose that i = 5. Note that C ′ = C \ {5} ∪ {r5} induces a C5 and H ′ = C ′ ∪ {u}
induces an H2. Note that U ′ ⊆ F5 ∪ U and u /∈ U ′ since u is not adjacent to ri. By the
chocie of H, there exists a vertex f ′ ∈ F5 such that f ′ is adjacent to r5. By (2.2), u and
f are not adjacent. But then fr5 and 5u indcue a 2P2. �

(4.2) If U 6= ∅, then Ri and Ri+2 are anti-complete.

Let u ∈ U . If ri ∈ Ri and ri+2 ∈ Ri+2 are not adjacent, then {ri, ri+2, i+ 1, u} induces a
K4, since u is adjacent to ri and ri+2 by (4.1). �

Suppose first that U 6= ∅. By (4.2), Ri and Ri+2 are anti-complete. Recall that Yi and Yi+2

are anti-complete by (2.10). By (2.12), R1 is anti-complete to Y5 ∪ Y2 and R4 is anti-complete
to Y5∪Y3. By (2.8), F5 is anti-complete to Y1∪Y4. By (2.6), either Y3 and R2 are anti-complete
or Y2 and R3 are anti-complete.

If Y3 and R2 are anti-complete, then G admits the following 4-coloring:

Y1 ∪ Y4 ∪ U ∪ F5 (2.10)(2.2)(2.8)

Y2 ∪ Y5 ∪R1 ∪ {1} (2.10)(2.12)

Y3 ∪R2 ∪R4 ∪ {2, 4} (4.2)(2.12)

R3 ∪R5 ∪ Z ∪ {3, 5} (4.2)(2.2)

If Y2 and R3 are anti-complete, then G admits the following 4-coloring:

Y1 ∪ Y4 ∪ U ∪ F5 (2.10)(2.2)(2.8)

Y3 ∪ Y5 ∪R4 ∪ {4} (2.10)(2.12)

Y2 ∪R1 ∪R3 ∪ {1, 3} (4.2)(2.12)

R2 ∪R5 ∪ Z ∪ {2, 5} (4.2)(2.2)

This shows that if U 6= ∅, then G has a 4-coloring. Therefore, we can assume in the following
that U = ∅.

(4.3) Each vertex in R2 ∪R3 is either complete or anti-complete to F5.

Suppose not. Let r ∈ R2 ∪ R3 be adjacent to f ∈ F5 and not adjacent to f ′ ∈ F5. By
symmetry, we may assume that r ∈ R2. Note that C ′ = C \ {2} ∪ {r} induces a C5 and
H ′ = C ′ ∪ {f} induces an H2. Clearly, f

′ /∈ F ′
5. By the choice of H, there exists a vertex

y ∈ Y such that y ∈ F ′
5. This means that y is not adjacent to 5 but adjacent to 1, 3, 4

and r2. This implies that y ∈ Y1. By (2.8), f ′ and y are not adjacent. But now f ′2 and
yr2 induce a 2P2. �

16



By (2.8), (2.9) and (4.3), only vertices in R5∪Z can distinguish two vertices in F5. By (2.1),
R5∪Z is an independent set and so (F5, R5∪Z) is a 2P2-free bipartite graph. This implies that
F5 = {f} since any two vertices in F are comparable. Let R′

i = N(f) ∩ Ri and R′′
i = Ri \ R

′
i

for i = 2, 3, 5. We now prove properties of R′
i and R′′

i .

(4.4) R′
5 is anti-complete to R′

2 ∪R′
3.

Suppose that r′5 ∈ R′
5 and r′2 ∈ R′

2 are adjacent. Then {r′5, r
′
2, 1, f} induces a K4. �

(4.5) R′
5 is anti-complete to Y2 ∪ Y3.

Suppose that r′5 ∈ R′
5 and y2 ∈ Y2 are adjacent. By (2.8), f and y2 are adjacent. Then

{r′5, 4, y2, f} induces a K4. �

(4.6) R′
2 is anti-complete to R4. By symmetry, R′

3 is anti-complete to R1.

Suppose that r′2 ∈ R′
2 and r4 ∈ R4 are adjacent. By (2.9), f and r4 are adjacent. Then

{r′2, r4, 3, f} induces a K4. �

(4.7) R′′
5 is anti-complete to R′′

2 ∪R′′
3 .

Suppose that r′′5 ∈ R′′
5 and r′′2 ∈ R′′

2 are adjacent. Then r′′5r
′′
2 and f2 induce a 2P2. �

(4.8) Y5 is anti-complete to R′′
2 ∪R′′

3 .

Suppose that y5 ∈ Y5 and r′′2 ∈ R′′
2 are adjacent. By (2.8), f and y are not adjacent. Then

y5r
′′
2 and f4 induce a 2P2. �

(4.9) R′′
5 is anti-complete to Y1 ∪ Y4.

Suppose that r′′5 ∈ R′′
5 and y4 ∈ Y4 are adjacent. By (2.8), f and y4 are not adjacent.

Then r′′5y4 and f2 induce a 2P2. �

(4.10) R′′
2 is anti-complete to Y1. By symmetry, R′′

3 is anti-complete to Y4.

Suppose that r′′2 ∈ R′′
2 and y1 ∈ Y1 are adjacent. By (2.8), f and y1 are not adjacent.

Then r′′2y1 and f2 induce a 2P2. �

(4.11) R′
2 is anti-complete to Y3. By symmetry, R′

3 is anti-complete to Y2.

Suppose that r′2 ∈ R′
2 and y3 ∈ Y3 are adjacent. By (2.9), f and y3 are adjacent. Then

{r′2, y3, 3, f} induces a K4. �

(4.12) Y5 is complete to R′
2 ∪R′

3.

Suppose that y5 ∈ Y5 and r′2 ∈ R′
2 are not adjacent. By (2.8), f and y5 are not adjacent.

Then fr′2 and 5y5 induce a 2P2. �

We now prove properties of Z.

(4.13) Any vertex in Z is anti-complete to either Y2 or Y3.

Suppose not. Then there exists a vertex z ∈ Z that is adjacent to a vertex yi ∈ Yi for
i = 2, 3. By (2.8), f is adjacent to y2 and y3. Moreover, y2 and y3 are adjacent by (2.4).
This implies that f and z are not adjacent for otherwise {f, z, yi, yi+1} would induce a
K4.

We now show that z is anti-complete to Y1 ∪ Y4 ∪ Y5. Suppose not. Let z be adjacent to
a vertex y ∈ Y1 ∪ Y4 ∪ Y5. Note that there exists a vertex i ∈ NC(f) such that i is not
adjacent to y. Moreover, f and y are not adjacent by (2.8). Then zy and if induce a 2P2.
This shows that z is anti-complete to Y1 ∪ Y4 ∪ Y5. Recall that Z is anti-complete to Ri

for each i by (2.1). Therefore, N(z) ⊆ Y2 ∪Y3 ⊆ N(f), contradicting the assumption that
G has no pair of comparable vertices. �
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(4.14) If z ∈ Z is not adjacent to yi ∈ Yi, then yi is complete to N(z) \ Yi.

It suffices to prove for i = 1 by symmetry. Note that N(z) \ Y1 = (N(z) ∩ (Y2 ∪ Y5)) ∪
(N(z) ∩ (Y3 ∪ Y4)). By (2.4), y1 is complete to N(z) ∩ (Y2 ∪ Y5). It remains to show that
y1 is complete to N(z)∩ (Y3 ∪Y4). Suppose not. Let y ∈ N(z)∩ (Y3 ∪Y4) be nonadjacent
to y1. By symmetry, we may assume that y ∈ Y3. Then zy and y14 induce a 2P2. �

(4.15) If z is anti-complete to Yi for some i ∈ {2, 3}, then Yi = ∅.

Suppose that z is anti-complete to Y2 and Y2 contains a vertex y2. It follows from (4.14)
that N(z) ⊆ N(y2), contradicting the assumption that G contains no pair of comparable
vertices. �

If Y5 = ∅, then N(5) = {1, 4}∪R1∪R4∪Y2∪Y3 ⊆ N(f) by (2.8) and (2.9). This contradicts
the assumption that G contains no pair of comparable vertices. So, we assume in the following
that Y5 contains a vertex y5. We claim now that either R′′

2 or R′′
3 is empty. Suppose not. Let

r′′i ∈ R′′
i for i = 2, 3. By (2.3), r′′2 and r′′3 are adjacent. Moreover, y5 is not adjacent to r′′2 and

r′′3 by (4.8). Then r′′2r
′′
3 and 5y5 induce a 2P2. This proves that either R′′

2 or R′′
3 is empty. We

consider two cases depending on whether f has a neighbor in R5.

Case 1. R′
5 = ∅, i.e., f has no neighbor in R5. Therefore, R5 = R′′

5 . Recall that either R′′
2 or

R′′
3 is empty. By symmetry, we may assyme that R′′

2 = ∅. Then R2 = R′
2 and so R2 and R4 are

anti-complete by (4.6). Let Y ′
2 = {y ∈ Y2 : y is anti-complete to Y5} and Y ′′

2 = Y2 \ Y
′
2 . Note

that each vertex in Y ′′
2 has a neighbor in Y5 by the definition and so is anti-complete to Y4 by

(2.7). Then the following is a 4-coloring φ of G− (R3 ∪ Z):

I1 = Y ′
2 ∪ Y5 ∪R1 ∪ {1} (2.12)

I2 = Y ′′
2 ∪ Y4 ∪R3 ∪ {3} Definition of Y ′′

2

I3 = R2(= R′
2) ∪R4 ∪ Y3 ∪ {2, 4} (2.12)(4.11)

I4 = Y1 ∪R5(= R′′
5) ∪ {f, 5} (2.8)(4.9)

We now extend φ to R3 as follows. Since R3 is an independent set by (2.1), it suffices to
explain how to extend φ to each vertex in R3 independently. Let r3 ∈ R3 be an arbitrary vertex.
Suppose first that r3 ∈ R′

3. By (4.6) and (4.11), r3 is anti-complete to R1 ∪ Y2. By (2.13), r3 is
anti-complete to either Y4 or Y5. Therefore, we can add r3 to either I1 or I2. Now suppose that
r3 ∈ R′′

3 . By (4.7) and (4.10), r3 is anti-complete to Y4 ∪R5. By (2.13), r3 is anti-complete to
either Y1 or Y2. Therefore, we can add r3 to either I2 or I4. This shows that G − Z admits a
4-coloring φ′ = (I ′1, I

′
2, I

′
3, I

′
4) with Ii ⊆ I ′i for each 1 ≤ i ≤ 4.

We now obtain a 4-coloring of G by either extending φ′ to Z or by finding another 4-coloring
of G. If Z is anti-complete to Y3, then we can extend φ′ by adding Z to I ′3. So, we assume
that there is a vertex z ∈ Z that is adjacent to a vertex in Y3. It then follows from (4.13) and
(4.15) that Y2 = ∅. If each vertex in Z is anti-complete to one of Y3, Y4 and Y5, then we can
extend φ′ to Z by adding each vertex in Z to I ′1, I

′
2 or I ′3 (since Y2 = ∅). Therefore, let z ∈ Z

be adjacent to yi ∈ Yi for i ∈ {3, 4, 5}. We prove some additional properties using the existence
of y3, y4 and y5. First of all, R1 and R4 are anti-complete. Suppose not. Let r1 ∈ R1 and
r4 ∈ R4 be adjacent. By (2.12), y5 is not adjacent to r1 and r4. Then r1r4 and zy5 induce a
2P2. Secondly, y3 and y5 are not adjacent for otherwise {y3, y4, y5, z} induces a K4. Thirdly,
Y1 and Y4 are anti-complete to each other. Suppose not. Then Y1 contains a vertex y1 that is
not anit-complete to Y4. By (2.7), y1 is anti-complete to Y3. Then fy3 and y1y5 induce a 2P2.
Now G admits the following 4-coloring:

Y1 ∪R′′
5(= R5) ∪ Y4 ∪ {f, 5} (4.9)

Y3 ∪R′
2(= R2) ∪ {2} (4.11)

R1 ∪R4 ∪ Y5 ∪ {1, 4} (2.12)

R3 ∪ Z ∪ {3} (2.1)
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Case 2. R′
5 6= ∅. Let r′5 ∈ R′

5. If r1 ∈ R1 and r4 ∈ R4 are adjacent, then {r1, r4, r
′
5, f} induces

a K4 by (2.3) and (2.9). So, R1 and R4 are anti-complete. We now consider two subcases.

Case 2.1. R′′
2 and Y3 are not anti-complete. Let r′′2 ∈ R′′

2 and y3 ∈ Y3 be adjacent. We claim
first that Y1 and Y4 are anti-complete. Suppose not. Let y1 ∈ Y1 and y4 ∈ Y4 be adjacent.
Then y3 and y4 are adjacent by (2.4). By (2.7), y1 is not adjacent to y3. Moreover, y1 is not
adjacent to r′′2 by (4.10). But now 4y1 and y3r

′′
2 induce a 2P2. This shows that Y1 and Y4 are

anti-complete. Moreover, Y2 and R3 are anti-complete by (2.6). Therefore, the following is a
4-coloring φ of G− (R′′

2 ∪ Z).

I1 = R4 ∪ Y5 ∪R1 ∪ {1, 4} (2.12)

I2 = Y1 ∪R′′
5 ∪ Y4 ∪ {f, 5} (4.9)

I3 = R3 ∪ Y2 ∪ {3} (2.6)

I4 = Y3 ∪R′
2 ∪R′

5 ∪ {2} (4.4)(4.5)(4.11)

We now explain how to extend φ to each vertex in R′′
2 ∪Z. Since R′′

2 ∪Z is an independent
set by (2.1), this will give a 4-coloring of G. By (4.13), we can add each vertex in Z to either
I3 or I4. Let s′′ ∈ R′′

2 be an arbitrary vertex. Then s′′ is anti-complete to R′′
5 ∪ Y1 by (4.7)

and (4.10). If s′′ is not anti-complete to Y3, then s′′ is anti-complete to Y4 by (2.13) and thus
we can add s′′ to I2. Now s′′ is anti-complete to Y3. We claim that s′′ is anti-complete to R′

5.
Suppose not. Then s′′ is adjacent to some vertex r′ ∈ R′

5. Note that y3 is not adjacent to s′′ by
our assumption. Moreover, y3 is not adjacent to r′ by (4.5). Then s′′r′ and 5y3 induce a 2P2.
This shows that s′′ is anti-complete to R′

5 and thus we can add s′′ to I4.

Case 2.2. R′′
2 and Y3 are anti-complete. By symmetry, R′′

3 and Y2 are anti-complete. It follows
from (4.11) that R2 and Y3 are anti-complete and R3 and Y2 are anti-complete. Recall that
either R′′

2 or R′′
3 is empty. By symmetry, we may assume that R′′

2 = ∅. Then R2 = R′
2. We

now claim that R′
3 is anti-complete to Y4. Suppose not. Let r′3 ∈ R′

3 be adjacent to y4 ∈ Y4.
By (4.12), r′3 is adjacent to y5. But this contradicts (2.13). So, R′

3 is anti-complete to Y4. By
symmetry, R′

2 is anti-complete to Y1. This together with (4.10) implies that R3 and R2 are
anti-complete to Y4 and Y1, respectively. Let Y ′

4 = {y ∈ Y4 : y is anti-complete to Y1} and
Y ′′
4 = Y4 \ Y

′
4 . Note that each vertex in Y ′′

4 has a neighbor in Y1 and so is anti-complete to Y2

by (2.7). Now G− Z admits a 4-coloring φ:

I1 = R4 ∪ Y5 ∪R1 ∪ {1, 4} (2.12)

I2 = Y1 ∪R′′
5 ∪ Y ′

4 ∪ {f, 5} (4.9)

I3 = R3 ∪ Y2 ∪ Y ′′
4 ∪ {3} (2.6)

I4 = Y3 ∪R′
2 ∪R′

5 ∪ {2} (4.4)(4.5)(4.11)

We now explain how to obtain a 4-coloring of G based on φ. If Z is anti-complete to Y3, then
we can add Z to I4. So, assume that there exists a vertex in Z that is adjacent to some vertex
in Y3. It then follows from (4.13) and (4.15) that Y2 = ∅. If each vertex in Z is anti-complete
to one of Y3, Y

′′
4 and Y5, then we can extend φ′ to Z by adding each vertex in Z to I1, I3 or

I4 (since Y2 = ∅). Therefore, let z ∈ Z be adjacent to yi ∈ Yi for i ∈ {3, 5} and be adjacent
to y4 ∈ Y ′′

4 . Note that y3 and y5 are not adjacent for otherwise {y3, y4, y5, z} induces a K4.
We claim that Y1 and Y4 are anti-complete to each other. Suppose not. Then Y1 contains a
vertex y1 that is not anit-complete to Y4. By (2.7), y1 is anti-complete to Y3. Then fy3 and
y1y5 induce a 2P2. Now G admits the following 4-coloring:

R4 ∪ Y5 ∪R1 ∪ {1, 4} (2.12)

Y1 ∪R′′
5 ∪ Y4 ∪ {f, 5} (4.9)

R3 ∪ Z ∪ {3} (2.1)

Y3 ∪R′
2 ∪R′

5 ∪ {2} (4.4)(4.5)(4.11)
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This completes the proof.

5 Eliminate W5 and C5

In this section we prove two lemmas. The fist one states that our main theorem, Theorem 1,
holds when G is connected, has no pair of comparable vertices, does not contain H1 or H2 as an
induced subgraph, but contains the 5-wheel as an induced subgraph. The second lemma then
assumes that G is W5-free as well, but contains an induced C5.

Lemma 4. Let G be a (2P2,K4,H1,H2)-free graph with no pair of comparable vertices. If G
contains an induced W5, then χ(G) ≤ 4.

Proof. Let W = C ∪ {u} be an induced W5 such that C = 12345 induces a C5 in this order
and u is complete to C. We partition V \C into subsets of Z, Ri, Yi, Fi and U as in section 2.
Note that u ∈ U . Since G is H2-free, it follows that Fi = ∅ for each i. We prove the following
properties.

(5.1) U is complete to R.

If u′ ∈ U is not adjacent to ri ∈ Ri, then C \ {i}∪ {ri, u} induces an H2. This contradicts
our assumption that G is H2-free. �

(5.2) Ri and Ri+2 are anti-complete.

Suppose that ri ∈ Ri and ri+2 ∈ Ri+2 are not adjacent. By (5.1), u is adjacent to both ri
and ri+2. This implies that {ri, ri+2, i+ 1, u} induces a K4. �

(5.3) Ri and Yi+1 are anti-complere.

It suffices to prove for i = 1. If r1 ∈ R1 and y2 ∈ Y2 are adjacent, then C \ {1} ∪ {r1, y2}
induces an H2, a contradiction. �

(5.4) Yi and Yi+2 are anti-complete.

Since U 6= ∅, (5.4) follows directly from (2.10). �

It follows from (5.2)–(5.4) and (2.1)–(2.2) that G admits the following 4-coloring:

R1 ∪R3 ∪ Z ∪ {1, 3} (5.2)(2.1)

R2 ∪ Y3 ∪R4 ∪ {2, 4} (5.2)(5.3)

Y1 ∪R5 ∪ Y4 ∪ {5} (5.3)(5.4)

Y2 ∪ Y5 ∪ U (5.4)(2.2)

This completes our proof.

Lemma 5. Let G be a connected (2P2,K4,H1,H2,W5)-free graph with no pair of comparable

vertices. If G contains an induced C5, then χ(G) ≤ 4.

Proof. Let C = 12345 be an induced C5 in this order. We partition V \ C into subsets of Z,
Ri, Yi, Fi and U as in section 2. Since G is (H2,W5)-free, both U and Fi are empty. It then
follows from Lemma 1 that V (G) = C ∪Z ∪ (

⋃5
i=1Ri)∪ (

⋃5
i=1 Yi). We first prove the following

properties of Ri and Z.

(5.1) Each vertex in Ri is anti-complete to either Ri−2 or Ri+2.

It suffices to prove for i = 4. Suppose that r4 ∈ R4 is adjacent to a vertex ri ∈ Ri for
i = 1, 2. By (2.3), r1 and r2 are adjacent. This implies that {r1, r2, 3, 4, 5, r4} induces a
subgraph isomorphic to H2. This contradicts the assumption that G is H2-free. �
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(5.2) Ri and Yi+1 are anti-complete.

It suffices to prove for i = 1. If r1 ∈ R1 and y2 ∈ Y2 are adjacent, then C \ {1} ∪ {r1, y2}
induces an H2. �

(5.3) Each vertex in Z cannot have a neighbor in each of Yi for 1 ≤ i ≤ 5.

Suppose that z ∈ Z has a neighbor yi ∈ Yi for each 1 ≤ i ≤ 5. By (2.4), yi and yi+1 are
adjacent. This implies that yi and yi+2 are not adjacent, for otherwise {yi, yi+1, yi+2, z}
induces a K4. But now {y1, y2, y3, y4, y5, z} induces a W5. �

(5.4) If z ∈ Z has a neighbor in each of Yi, Yi+1, Yi+2 and Yi+3, then Yi+4 is anti-complete to
N(z).

It suffices to prove for i = 1. Let yi ∈ Yi be a neighbor of z for 1 ≤ i ≤ 4. By (5.3), z
is anti-complete to Y5 and so N(z) ⊆ Y1 ∪ Y2 ∪ Y3 ∪ Y4 by (2.1). Let y5 be an arbitrary
vertex in Y5. By (2.4), y5 is complete to Y1 ∪ Y4. Therefore it remains to show that y5 is
complete to N(z) ∩ (Y2 ∪ Y3). If y5 is not adjacent to a vertex y ∈ N(z) ∩ (Y2 ∪ Y3), then
either 3y5 or 2y5 forms a 2P2 with zy depending on whether y ∈ Y2 or y ∈ Y3. �

(5.5) If Z contains a vertex that has a neighbor in Yi, Yi+1, Yi+2 and Yi+3, then Yi+4 = ∅.

Let z ∈ Z have neighbor in Yi for 1 ≤ i ≤ 4. By (5.3), z is anti-complete to Y5. If Y5

contains a vertex y, then N(z) ⊆ N(y) by (5.4). This contradicts the assumption that G
contains no pair of comparable vertices. �

Let Y ′
4 = {y ∈ Y4 : y is anti-complete to Y1} and Y ′′

4 = Y4 \ Y ′
4 . Note that each vertex in

Y ′′
4 has a neighbor in Y1 by the definition and so is anti-complete to Y2 by (2.7). Similarly, let

R′
4 = {r ∈ R4 : r is anti-complete to R1} and R′′

4 = R4 \ R
′
4. By (5.1), R′′

4 is anti-complete to
R2. We now consider the following two cases.

Case 1. Z contains a vertex that has a neighbor in four Yi. It then follows from (5.5) that
Yj = ∅ for some j. We may assume by symmetry that j = 5. These facts and (5.2) imply that
G admits the following 4-coloring:

Y1 ∪R5 ∪ Y ′
4 ∪ {5},

Y2 ∪R3 ∪ Y ′′
4 ∪ {3},

R1 ∪ Z ∪R′
4 ∪ {1},

R2 ∪ Y3 ∪R′′
4 ∪ {2, 4}.

Case 2. Each vertex in Z has a neighbor in at most three Yi. Note that G − Z admits the
following 4-coloring φ by (5.2):

I1 = Y1 ∪R5 ∪ Y ′
4 ∪ {5},

I2 = Y2 ∪R3 ∪ Y ′′
4 ∪ {3},

I3 = R1 ∪ Y5 ∪R′
4 ∪ {1},

I4 = R2 ∪ Y3 ∪R′′
4 ∪ {2, 4}.

We now explain how to extend φ to Z. For this purpose we partition Z into the following two
subsets:

Z1 = {z ∈ Z : z is anti-complete to either Y3 or Y5},

Z2 = Z \ Z1.
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We first claim that each vertex in Z2 has a neighbor in Y4. Suppose not. Let z ∈ Z2 be
a vertex such that z is anti-complete to Y4. Since z has a neighbor in both Y3 and Y5, z is
anti-complete to either Y1 or Y2 by the assumption that each vertex in z has a neighbor in at
most three Yi. If z is anti-complete to Y1, then N(z) ⊆ Y2∪Y3∪Y5 ⊆ N(5). If z is anti-complete
to Y2, then N(z) ⊆ Y1 ∪ Y3 ∪ Y5 ⊆ N(3). In either case, it contradicts the assumption that
G contains no pair of comparable veritces. This proves the claim. Consequently, Z2 is anti-
complete to Y1 ∪ Y2. We now claim that each vertex in Z2 is anti-complete to either Y ′

4 or Y ′′
4 .

Suppose not. Let z ∈ Z2 have a neighbor y′4 ∈ Y4 and a neighbor y′′4 ∈ Y ′′
4 . By the definition

of Y ′′
4 , it follows that y′′4 has a neighbor y1 ∈ Y1. Then 3y1 and y′4z induce a 2P2 since y′4 is

not adjacent to y1. Now we can extend φ to Z by adding each vertex in Z1 to I3 or I4 and by
adding each vertex in Z2 to I1 or I2.
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[10] A. Gyárfás. Problems from the world surrounding perfect graphs. Zastosowania Matem-

atyki, XIX:413–441, 1987.

[11] C. T. Hoàng and D. A. Lazzarato. Polynomial-time algorithms for minimum weighted
colorings of (P5, P5)-free graphs and similar graph classes. Discrete Appl. Math., 186:106–
111, 2015.

[12] S. Huang, M. Johnson, and D. Paulusma. Narrowing the complexity gap for colouring
(Cs, Pt)-free graphs. The Computer Journal, 58:3074–3088, 2015.

22



[13] T. Karthick, F. Maffray, and L. Pastor. Polynomial cases for the vertex coloring problem.
Algorithmica, to appear, 2018.

[14] D. Král, J. Kratochv́ıl, Z. Tuza, and G. J. Woeginger. Complexity of coloring graphs
without forbidden induced subgraphs. In Proceedings of the 27th International Workshop

on Graph-Theoretic Concepts in Computer Science, Lecture Notes in Computer Science
2204, pages 254–262, 2001.

[15] V. V. Lozin and D. S. Malyshev. Vertex coloring of graphs with few obstructions. Discrete

Applied Mathematics, 216:273–280, 2017.

[16] D. S. Malyshev. The coloring problem for classes with two small obstructions. Optimization

Letters, 8:2261–2270, 2014.

[17] B. Randerath and I. Schiermeyer. Vertex colouring and forbidden subgraphs-a survey.
Graphs and Combinatorics, 20:1–40, 2004.

[18] V. G. Vizing. On an estimate of the chromatic class of a p-graph. Diskret. Analiz., 3:25–30,
1964.

[19] S. Wagon. A bound on the chromatic number of graphs without certain induced subgraphs.
J. Combin. Theory, Ser. B, 29:345–346, 1980.

23


	1 Introduction
	2 Preliminaries
	3 Eliminate H1
	4 Eliminate H2
	5 Eliminate W5 and C5

