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FIXING NONCONVERGENCE OF ALGEBRAIC ITERATIVE

RECONSTRUCTION WITH AN UNMATCHED BACKPROJECTOR∗

YIQIU DONG† , PER CHRISTIAN HANSEN† , MICHIEL E. HOCHSTENBACH‡ , AND

NICOLAI ANDRÉ BROGAARD RIIS†

Abstract. We consider algebraic iterative reconstruction methods with applications in im-
age reconstruction. In particular, we are concerned with methods based on an unmatched projec-
tor/backprojector pair; i.e., the backprojector is not the exact adjoint or transpose of the forward
projector. Such situations are common in large-scale computed tomography, and we consider the
common situation where the method does not converge due to the nonsymmetry of the iteration
matrix. We propose a modified algorithm that incorporates a small shift parameter, and we give
the conditions that guarantee convergence of this method to a fixed point of a slightly perturbed
problem. We also give perturbation bounds for this fixed point. Moreover, we discuss how to use
Krylov subspace methods to efficiently estimate the leftmost eigenvalue of a certain matrix to select
a proper shift parameter. The modified algorithm is illustrated with test problems from computed
tomography.

Key words. Unmatched transpose, algebraic iterative reconstruction, perturbation theory,
leftmost eigenvalue estimation, computed tomography
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1. Introduction. Algebraic iterative reconstruction techniques [10]—such as
the methods by Kaczmarz and Cimmino—play an important role in solving inverse
problems. In particular, they are popular in computed tomography (CT) due to their
great flexibility with respect to the measurement geometry of the X-ray scanner and
their ability to handle very underdetermined problems. This is in contrast to filtered
backprojection and similar algorithms [16] that rely on specific geometries and a large
amount of data. Algebraic iterative methods are also used successfully in other image
reconstruction problems such as image deblurring.

The fundamental mechanism behind these methods is known as semi-convergence
[16]. During the initial iterations, the iterates approach the exact (and unattainable)
solution to the noise-free problem, while in later stages the iterates converge to the
undesired noisy solution. The methods produce filtered, or regularized, solutions and
the number of iterations plays the role of a regularization parameter [7].

The algebraic iterative methods, in their basic form as well as their block versions,
lend themselves very well to implementations that utilize GPUs and other hardware
accelerators, and where the coefficient matrix is never stored; rather, the matrix-
vector multiplications are computed on the fly. This has led to an implementation
paradigm that is routinely used in software packages for computed tomography (such
as ASTRA [22] and TIGRE [1]), namely, to focus on the computational speed of the
matrix-vector multiplication. However, this introduces a convergence issue that has
largely been ignored.
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To set the stage, we formulate the noise-free problem as

(1.1) A x̄ = b̄ , A ∈ R
m×n ,

where the vectors x̄ and b̄ represent the exact image and the noise-free data, while A
represents the forward model—known as the (forward) projection in CT where both
m ≥ n and m < n are common. The multiplication with AT , the transpose of A, is
known in CT as the backprojection. These two operations form the computational
core of any algebraic iterative method and therefore— to optimize for computational
speed—the software developers often choose different discretization schemes, and
different model approximations, for these operations [24]. Consequently, in such soft-

ware the backprojection corresponds to multiplication with a matrix ÂT that is not
the exact transpose of A. We refer to this situation as having an unmatched projec-
tor/backprojector pair, and we call ÂT the unmatched transpose.

It appears that very little attention has been given to iterations based on such
unmatched pairs; see [25] for an early reference and [2], [13] for two more recent
ones. The latter paper has introduced a methodology for analyzing such iterations
and formulated conditions for convergence, and it has been shown that an unmatched
projector/backprojector pair deteriorates the best possible solution at the point of
semi-convergence.

In the common situation of an unmatched projector/backprojector pair where the
convergence criterion from [2] is not satisfied, the iterations will fail to converge for
noise-free data (although some kind of semi-convergence may be observed experimen-
tally for noisy data). In this paper we show that a small and cost-efficient modification
of the basic algorithm can guarantee convergence to a solution of a slightly perturbed
problem. This ensures that the fast implementations of the forward projections and
backprojections can still be used without sacrificing convergence. Moreover, to pro-
vide a theoretical foundation we extend the convergence and perturbation analysis
from [2] to the modified algorithm.

Our paper has been organized as follows. Section 2 sets the stage by summarizing
convergence results for a generic iterative algorithm (proposed in [2]) that allows an
unmatched transpose. Section 3 introduces the modified algorithm, gives the associ-
ated convergence conditions, and discusses the perturbation theory for the underlying
problem. The modified algorithm is based on the introduction of a shift parameter,
and in Section 4 we discuss how to efficiently estimate the leftmost eigenvalue of a
certain matrix, which defines this shift. Finally, in Section 5 we give numerical ex-
amples that illustrate the new method for solving inverse problems, followed by some
conclusions in Section 6.

We use the following notations: ‖ · ‖ denotes the vector and matrix 2-norm,
R(A) and N (A) are the range and null space of A, respectively, and we split a
complex eigenvalue λj into its real and imaginary parts denoted by Re(λj) and Im(λj),
respectively. For a vector x, we use xH for its conjugate transpose.

In Section 2 we use notations and concepts associated with oblique projections and
oblique pseudoinverses to obtain compact expression that would otherwise be quite
lengthy. We refer to [9] for details and geometric interpretations of these quantities
in relation to inverse problems. Given two complementary subspaces X and Y of Rm

that intersect trivially, and matrices X , Y , and Y0 such that

X = R(X) , Y = R(Y ) , Y⊥ = R(Y0) .

Then the m × m matrix PX ,Y denotes the oblique projector onto X along Y which
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satisfies

∀x ∈ X : PX ,Y x = x , ∀y ∈ Y : PX ,Y y = 0 , ∀z ∈ R
m : PX ,Y z ∈ X ,

and the projection matrix can be written as

(1.2) PX ,Y = X
(
Y T
0 X

)†
Y T
0 ,

where † denotes the Moore–Penrose pseudoinverse. Moreover, if X ∈ R
m×n then the

n×m matrix X†
Y denotes the oblique pseudoinverse of X along Y, given by

(1.3) X†
Y =

{
X† PX ,Y =

(
Y T
0 X

)†
Y T
0 , m ≥ n

PY,N (X) X
† = Y (X Y )† , m ≤ n .

The case m ≥ n requires R(X) and N (Y ) to be complementary, while the case
m ≤ n requires N (X) and R(Y ) to be complementary. If Y = X⊥ then PX ,Y is the

orthogonal projector on X and X†
Y is the ordinary pseudoinverse.

2. The BA Iteration. When we consider noisy data b = b̄ + e, where the
vector e represents the perturbation, then it is common to compute a (weighted) least
squares solution. In the simplest case with unit weights we can compute the solution
by means of the Landweber iteration (or gradient descent method) with initial guess
x0 = 0:

(2.1) xk+1 = xk + ωAT (b −Axk) , k = 0, 1, 2, . . . ,

where ω is a relaxation parameter satisfying 0 < ω < 2 / ‖ATA‖.
To analyze the behavior of this and similar algebraic iterative methods with an

unmatched transpose, we follow [2] and consider the BA Iteration defined by

(2.2) xk+1 = xk + ω B (b−Axk) , k = 0, 1, 2, . . . ,

where different choices of the n×m matrix B give unmatched-transpose versions of
known iterative methods. For example, B can be an unmatched transpose ÂT for
Landweber’s method, or B can be an unmatched approximation to ATdiag(AAT )−1

for Cimmino’s method; see [10] for an overview of methods.
The convergence of the BA Iteration is governed by the (complex) eigenvalues

λj of the matrix BA: (2.2) converges if and only if the relaxation parameter ω and
all nonzero λj satisfy

(2.3) 0 < ω <
2Re(λj)

|λj |2
and Re(λj) > 0 ,

see [2, Prop. 3.2] for details. Note that this specializes to the standard condition when
B = AT .

We will now investigate when the BA Iteration (2.2) has a unique fixed point.
From the definition of the BA Iteration (2.2) with x0 = 0 it follows that any fixed
point x∗ must satisfy BAx∗ = B b. Moreover, it is also clear from (2.2) that all
iterates xk ∈ R(B); in particular this holds for x∗. Therefore, we can write any fixed
point in the form x∗ = B y for some vector y ∈ Rm. (This vector y may not be unique,
as one can add an arbitrary component z ∈ N (B), but this is irrelevant for what is
to follow.) Inserting x∗ = B y we obtain an equation for y:

(2.4) BAB y = B b .
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Here, BA is an operator from R(B) to itself. Recall that A ∈ Rm×n and B ∈ Rn×m,
where both m ≥ n and m < n are possible in CT applications.

From (2.4) it follows there is a unique fixed point x ∈ R(B) if and only if one of
the following eight equivalent conditions holds.

Proposition 2.1. Consider the two matrices A ∈ Rm×n and B ∈ Rn×m with
ranks rA, rB ≤ min{m,n} and with the singular value decompositions (SVDs) A =
UAΣAV

T
A and BT = UBΣBV

T
B . The following statements are equivalent:

(i) BA : R(B) → R(B) is nonsingular (meaning that BAz = 0 and z ∈ R(B)
imply that z = 0);

(ii) For every b ∈ Rm, the equation BAx = Bb has a unique solution x ∈ R(B);
(iii) R(B) ∩N (BA) = {0};
(iv) N (BAB) = N (B);
(v) R(BAB) = R(B);
(vi) rank(BAB) = rank(B);
(vii) A is nonsingular on R(B) and B is nonsingular on R(AB);
(viii) R(B) ∩N (A) = {0} and R(AB) ∩ N (B) = {0};
Proof. The equivalences follow relatively straightforwardly from the (dimensions

of) nullspaces and ranges of A, B, BA, and AB. For (iv) we have N (BAB) ⊇ N (B)
with equality if and only if (i) holds. For (v) one has R(BAB) ⊆ R(B) with equality
if and only if (i) holds, where the ranks in (vi) are the dimensions of the subspaces of
(v). A nonzero vector in R(B) cannot be mapped to zero by the consecutive action
of BA, which is stated in (vii) and (viii).

We assume from now on that there is a unique solution, and the next theorem
provides specific expressions for this fixed point. We will see that, even in the absence
of noise, the fixed point of (2.2) is not the exact solution x̄. One way to understand
this— following the discussion in [2]— is by the fact that the unmatched normal
equations BAx = B b may be viewed as an oblique projection of Ax = b, instead of
the common orthogonal projection underlying the normal equations ATAx = AT b.

Theorem 2.2. Assume that A and B satisfy the criteria in Proposition 2.1. Then
the fixed point x∗ of the BA Iteration (2.2) with starting vector x0 = 0 can be
expressed in three ways:

(2.5) x∗ = (B A)†R(B)B b = B (AB)†N (B) b = PR(B),N (BA) A
†
N (B)b ,

and for noise-free data b̄ = A x̄ the fixed point is given by

(2.6) x̄∗ = PR(BA),N (BA) x̄ .

If m ≥ n and A and B have full rank then x∗ = (BA)−1B b and x̄∗ = x̄.

Proof. By writing the fixed point as x∗ = B y with y ∈ Rm it follows from
(2.4) that x∗ = B (BAB)†B b, and the first two expressions in (2.5) are obtained by

recognizing that B ((B A)B)† = (BA)†R(B) and (B (AB))†B = (AB)†N (B); cf. (1.3).

We now introduce the SVD

BA = U ΣV T , Σ ∈ R
p×p , U, V ∈ R

n×p ,

where p = rank(BA). Inserting this in (2.4) we get U ΣV TB y = B b, and by
multiplying from the left with Σ−1UT we obtain V TB y = Σ−1UTB b. The solution
y of minimum norm is given by

y = (V TB)†Σ−1UTB b ,
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and hence

x∗ = B (V TB)†Σ−1UTB b = B (V TB)†V TV Σ−1UTB b = B (V TB)†V T (B A)†B b.

By recognizing PR(B),N (BA) = B (V TB)†V T as the oblique projector onto R(B)

along N (V T ) = N (BA), cf. (1.2), and A†
N (B) = (BA)†B as the oblique pseudoinverse

of A along N (B), cf. (1.3), we obtain the third expression in (2.5).
For the special case b = b̄ = A x̄ the fixed point satisfies x̄∗ ∈ R(BA), and hence

we can write it as x̄∗ = BA ȳ for some vector ȳ ∈ Rn. According to BA x̄∗ = B b̄ =
BA x̄, we obtain

x̄∗ = BA (BABA)†BA x̄ = BA
(
((BA)T )TBA

)†
((BA)T )T x̄,

and we recognize PR(BA),N (BA) = BA
(
((BA)T )TBA

)†
((BA)T )T as the oblique

projector onto R(BA) along R((BA)T )⊥ = N (BA).

The sensitivity of the fixed point to perturbations of the right-hand side can be
characterized as follows.

Corollary 2.3. Let x̄∗ and x∗ denote the fixed point of the BA Iteration when
applied to the noise-free data b̄ and the noisy data b = b̄+ e, respectively. Then

‖x∗ − x̄∗‖ ≤ ‖PR(B),N (BA)‖ ‖A†
N (B)‖ ‖e‖ .

If m ≥ n and A and B have full rank then

‖x∗ − x̄∗‖ ≤ ‖A†
N (B)‖ ‖e‖ .

When B = AT then the oblique pseudoinverse A†
N (B) is the ordinary pseudoinverse

A† and we obtain the traditional least-squares perturbation bound.

Proof. The first bound is a direct consequence of (2.5), and the second bound
follows from the fact that PR(B),N (BA) = I when m ≥ n = rank(A).

The conclusions to be drawn from the analysis in this section is that the conditions
for the existence of a fixed point of the BA Iteration are rather strict, and that
the fixed point is potentially very sensitive to data errors since the matrix A is ill-
conditioned in inverse problems. Moreover, it is very difficult to check the existence
conditions in a practical application, and it appears that they are very often violated
in the available software systems. This motivates the development of a modified
iterative method that is always guaranteed to have a fixed point, which we introduce
and analyze in the rest of this paper.

3. A Modified Algorithm. In our numerical studies with ASTRA and other
software packages for CT, we have found that very often the convergence condition
in (2.3) is violated in that BA has one or more eigenvalues with negative real part.
As a consequence the iteration has no fixed point and the typical situation is that the
iterates xk, after some iterations, start to diverge. We illustrate this in Section 5.

3.1. The Shifted BA Iteration. To remedy this non-convergence issue, we
propose a modified version of the BA Iteration that has guaranteed convergence
and whose fixed point approximates the exact solution x̄. In addition, the modified
method should exhibit semi-convergence properties similar to the BA Iteration. We
refer to the modified algorithm as the Shifted BA Iteration, and it guarantees
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convergence of the iterations for appropriate choices of the two parameters α > 0 and
ω > 0:

(3.1) xk+1 = (1− αω)xk + ωB (b −Axk) , k = 0, 1, 2, . . . .

This scheme is motivated by the Tikhonov problem,

(3.2) xα = argmin
x

{
‖Ax− b‖2 + α ‖x‖2

}
= (ATA+ α I)−1AT b ,

for which a gradient descent step takes the form

xk+1 = xk − ω (AT (b−Axk) + αxk) = (1− αω)xk + ω AT (b −Axk) .

Hence, if B = AT then with a properly chosen ω the iteration (3.1) converges to
a Tikhonov solution xα. Below we study the convergence properties of (3.1) with
B 6= AT .

The matrix that governs the iterations for the Shifted BA Iteration (3.1) is
BA+ α I with I as the identity matrix, whose eigenvalues are λj + α (where λj are
the eigenvalues of BA). Our key idea is that by a proper choice of the additional
positive parameter α we can ensure that all these eigenvalues have a nonnegative
real part— thus ensuring convergence. The shift needs to be just large enough that
Re(λj) + α > 0 for those λj 6= −α. At the same time, if α is small then the fixed
point will be an approximation to the exact solution x̄. Hence, in contrast to the
BA Iteration the shifted version has a unique fixed point that is always attained
for both noisy and noise-free data. Our new approach can therefore be viewed as a
modification where both a regularization term and semi-convergence of the iterations
are used for noisy data.

We note that the Shifted BA Iteration is mathematically equivalent to ap-
plying the BA Iteration to the augmented matrices and vector

(3.3)

[
A√
αI

]
, [B ,

√
αI ] ,

[
b
0

]
.

A similar idea was used in [3, §3.2], for the case B = AT , to perform convergence
analysis for the case rank(A) < n. According to [2, Props. 3.1 and 3.2], with the
augmented matrices and vector defined in (3.3) we obtain the following convergence
criterion for the Shifted BA Iteration.

Theorem 3.1. Let λj denote those eigenvalues of BA that are different from −α.
Then the Shifted BA Iteration (3.1) converges to a fixed point if and only if α
and ω satisfy

(3.4) 0 < ω < 2
Re(λj) + α

|λj |2 + α (α+ 2Re(λj))
and Re(λj) + α > 0 .

Proof. Replacing the matrices B and A in theBA Iteration with the augmented
ones from (3.3), we define C = BA + αI and T = I − ωC. Then T is the iteration
matrix for the Shifted BA Iteration (3.1), i.e.,

(3.5) xk+1 = Txk + ωBb,

and any fixed point x∗
α of (3.1) satisfies the equation

(3.6) C x∗
α = B b .
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Let P = PR(CT ) be the orthogonal projector onto R(CT ) = N (C)⊥. In view of
the presence of the projection P , we consider the new coordinate system given by the
orthogonal matrix [N R ], where N and R are matrices with orthonormal columns
spanning N (C) and R(CT ), respectively. We examine P T in the new coordinates
where [N R ]TP [N R ] [N R ]T T [N R ] takes the form

[
0 0

0 I

] [
I −ωNTCR

0 I − ωRTCR

]
=

[
0 0

0 I − ωRTCR

]
.

For the first block row, it holds that

Tx = x ⇔ Cx = 0 ⇔ x ∈ N (C) ⇔ −α is an eigenvalue of BA.

This shows the eigenvalue 1 of T is associated with the eigenspace N (C). We see that
because of the projector operator, this eigenvalue, which corresponds to eigenvalues of
BA equal to −α, is irrelevant for convergence. From the second block row, it suffices to
consider PT as operator R(CT ) → R(CT ), where it holds that PT = T . Combining
these facts, we conclude that it is enough to consider the eigenvalues 1−ω(λj +α) of
T , where λj is not equal to −α.

Then, applying the results in [2, Props. 3.1 and 3.2] to the augmented matrices
and vector (3.3), we obtain the sufficient and necessary condition of convergence with
respect to α and ω.

When we have convergence, a fixed point x∗
α of the Shifted BA Iteration

satisfies

(3.7) x∗
α = (1 − αω)x∗

α + ωB (b −Ax∗) ⇐⇒ (B A+ α I)x∗
α = B b

and, similar to Theorem 2.2, we can characterize this fixed point as follows.

Theorem 3.2. Assume that BA + α I is nonsingular. The fixed point of the
Shifted BA Iteration (3.1) applied to b, with starting vector x0 = 0 and α > 0,
satisfies

(3.8) x∗
α = (BA+ α I)−1B b = B (AB + α I)−1b , x∗

α ∈ R(B) .

For noise-free data b̄ = A x̄ the fixed point x̄∗
α satisfies

x̄∗
α = (BA+ α I)−1BA x̄ , x̄∗

α ∈ R(BA) , x̄− x̄∗
α = α (BA+ α I)−1x̄ .

Proof. The first relation follows immediately from (3.7). To obtain the second
relation we write x∗

α = B y and note that (BA+α I)B y = B (AB +α I) y. Hence y
must satisfy

B
(
(AB + α I) y − b

)
= 0 ,

and therefore y has the general form with an arbitrary component in the null space
of B (AB + α I) as well as B:

y = (AB + α I)−1b+ z , z ∈ N (B) ,

We note that AB + α I is nonsingular due to our assumption that BA + α I is
nonsingular, cf. [11, Thm. 1.3.22]. Thus

x∗
α = B y = B

(
(AB + α I)−1b+ z

)
= B (AB + α I)−1b ,
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and it follows immediately that x∗
α ∈ R(B). The first results for x̄∗

α follows imme-
diately from (3.8). To show the second result let BA have the eigendecomposition
BA = W diag(λi)W

−1; then (BA + α I)−1BA = W diag(λi/(λi + α))W−1 from
which it follows that x̄∗

α ∈ span{w1, . . . , wrank(BA)} = R(BA). The third result fol-
lows from the relation

(B A+ α I) (x̄− x̄∗
α) = (BA+ α I) (x̄− (B A+ α I)−1BA x̄) = α x̄ .

Note that the results in (3.8) can also be derived by applying the augmented
matrices and vector defined in (3.3) to (2.5).

To summarize, we formulated the convergence conditions for the Shifted BA

Iteration in terms of the shift α and the relaxation parameter ω, and we gave
explicit expressions for the fixed point of this iterative method.

3.2. First-Order Perturbation Analysis. Recall that the fixed point x∗
α of

the Shifted BA Iteration is the Tikhonov solution in (3.2) when B = AT . Follow-
ing [2] it is natural to give a general perturbation analysis of the Tikhonov problem
when different perturbations are introduced in the matrices A and AT in the corre-
sponding normal equations ATAx = AT b. A special instance of this analysis is when
B is an unmatched transpose of A, and where our analysis lets us bound the difference
between the fixed point x∗

α and the exact solution x̄.
We introduce the perturbed quantities

(3.9) Ã = A+ EA, ÂT = AT + EAT , b = b̄+ e ,

with EA ∈ Rm×n, EAT ∈ Rn×m and e ∈ Rm. Moreover we define x̃α as the solution
to the Regularized Unmatched Normal Equations

(ÂT Ã+ α I)x = ÂT b .

We want to compare x̃α to the exact solution x̄. To do this, we introduce the Tikhonov
solution x̄α = (ATA+ α I)−1AT b̄ to the unperturbed problem (3.2).

We then split the error into a perturbation error x̃α − x̄α and a regularization
error x̄α − x̄ as follows:

(3.10) x̃α − x̄ = (x̃α − x̄α) + (x̄α − x̄) .

This approach allows us to study the effect of the matrix and right-hand side pertur-
bations in isolation from the effect that Tikhonov regularization has on a noise-free
system.

Theorem 3.3. With the definitions in (3.9) and (3.10) we have the following
first-order error bounds obtained by omitting higher-order terms:

‖x̃α − x̄α‖ .
1

2
√
α
‖e‖+ 1

2
√
α
‖EA x̄α‖+

1

α
‖EAT (b̄ −A x̄α)‖ ,

‖x̃α − x̄α‖
‖x̄α‖

.
‖A‖
2
√
α

‖e‖
‖A x̄α‖

+
‖A‖
2
√
α

‖EA‖
‖A‖ +

‖A‖2
α

‖EAT ‖
‖A‖

‖b̄−A x̄α‖
‖A x̄α‖

.

Proof. Let x̃α = x̄α + δxα and consider the perturbed system

(3.11) (ÂT Ã+ α I) (x̄α + δxα) = ÂT b .
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Moreover note that from (3.9) we have

ÂT b = (AT + EAT ) (b̄ + e) = AT b̄+AT e+ EAT b

and
ÂT Ã = (AT + EAT ) (A+ EA) = ATA+ E ,

where we have introduced

E = ATEA + EAT A+ EAT EA .

Inserting these equations in (3.11) we obtain

(ATA+ E + α I) (x̄α + δxα) = AT b̄ +AT e+ EAT b ,

and rearranging we get

(ATA+ α I) x̄α + (ATA+ α I) δxα = AT b̄+AT e + EAT b− E x̄α − E δxα .

Now using that (ATA+ αI) x̄α = AT b̄ and neglecting higher-order terms we get

(ATA+ αI) δxα ≈ AT e+ EAT b−ATEA x̄α − EAT A x̄α

= AT (e− EA x̄α) + EAT (b̄−A x̄α) ,

which can also be obtained by using the augmented form in the proof of [2, Prop. 2.1],
i.e., replacing A, E, and b with

[
A√
αI

]
,

[
E
0

]
,

[
b
0

]
.

This leads to the bound

‖δxα‖ . ‖(ATA+ α I)−1AT ‖ ‖(e− EA x̄α)‖ +

‖(ATA+ α I)−1‖ ‖EAT (b̄−A x̄α)‖

≤ 1

2
√
α
‖e‖+ 1

2
√
α
‖EA x̄α‖+

1

α
‖EAT (b̄−A x̄α)‖ ,

where we use that, with σi being the ith singular value of A,

‖(ATA+ α I)−1AT ‖ = max
i

σi

σ2
i + α

≤ 1

2
√
α

and

‖(ATA+ αI)−1‖ = max
i

1

σ2
i + α

≤ 1

α
.

For the relative error we get

‖δxα‖
‖x̄α‖

.
1

2
√
α

‖e‖
‖x̄α‖

+
1

2
√
α

‖EA x̄α‖
‖x̄α‖

+
1

α

‖EAT (b̄−A x̄α)‖
‖x̄α‖

≤ ‖A‖
2
√
α

‖e‖
‖A x̄α‖

+
‖A‖
2
√
α

‖EA‖
‖A‖ +

‖A‖2
α

‖EAT ‖
‖A‖

‖b̄−A x̄α‖
‖A x̄α‖

,

where we used that

‖A x̄α‖ ≤ ‖A‖ ‖x̄α‖ ⇐⇒ 1

‖x̄α‖
≤ ‖A‖

‖A x̄α‖
.
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To complete the analysis we need to bound the regularization error x̄α − x̄ associated
with the noise-free system. To obtain a useful bound we need to incorporate the fact
that we solve a discretized inverse problem. This is done in the following theorem
from [5] (see also [7, Thm. 4.5.1]).

Theorem 3.4. Introduce SVD of A as A =
∑min(m,n)

i=1 ui σi v
T
i and assume that

the noise-free right-hand side b̄ is given by the model

uT
i b̄ = σν

i , i = 1, 2, . . . ,min(m,n) ,

in which ν ≥ 0 is a model parameter that controls the decay of these coefficients. Then

‖x̄α − x̄‖
‖x̄‖ ≤





√
n, 0 ≤ ν < 1 ,

√
n

( √
α

‖A‖

)ν−1

, 1 ≤ ν < 3 ,

√
n

( √
α

‖A‖

)2

, 3 ≤ ν .

In practice the Tikhonov regularization parameter α is always less than ‖A‖2 [7].
This theorem then says that the noise-free problem must satisfy the discrete Picard
condition for Tikhonov regularization to produce a useful result—which is, of course,
the case for the imaging problems we have in mind.

To summarize our results, the shift parameter α plays the following roles. The
regularization error decreases as α decreases, and if the noise-free data satisfies the
discrete Picard condition (as we expect) then a small nonzero α has little influence
on the regularization error. On the other hand, as α decreases then the perturbation
error increases. We want to use an α just large enough to ensure convergence.

4. Eigenvalue Estimation. The motivation behind the Shifted BA Itera-

tion is to introduce a small positive shift parameter α, just large enough to ensure
that all the shifted eigenvalues have a positive real part, i.e., Re(λj)+α > 0. To turn
this principle into an efficient working algorithm, we therefore need to be able to esti-
mate the leftmost eigenvalue λlm of BA, the eigenvalue with the minimal real part. If
Re(λlm) > 0 then we just use the BA Iteration, otherwise we use the Shifted BA

Iteration with α slightly larger than |Re(λlm)|. (In view of Theorem 3.1, we might
theoretically even take α exactly equal to this quantity, but this is not important in
practice, since the approximation to the smallest real part of the leftmost eigenvalue
will usually be an upper bound.) It is important to note that we only have actions
with A and B at our disposal, and no actions with AT , BT , or exact shift-and-invert
transformations, are possible.

Various approaches have been investigated by Meerbergen and coauthors for the
rightmost eigenvalue of a matrix C (or, equivalently, the leftmost of −C). Several of
these are “matrix-free”, which means that only matrix-vector products are necessary.
An approach based on Chebyshev polynomials has been proposed in [14]. In [15], the
search space is expanded by an approximation to exp(C) z, where z is the current Ritz
vector. However, these methods usually take a considerable number of matrix-vector
multiplications to expand the search space by one vector.

Since the leftmost eigenvalue is an eigenvalue located at the exterior of the spec-
trum, Krylov based methods are often well suited. Stewart’s Krylov–Schur method
[20] is one of the most popular methods to compute such eigenvalues. This method is
essentially equivalent to implicitly restarted Arnoldi [19], as for instance implemented
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in Matlab’s eigs, but has a particularly elegant and easy-to-understand implementa-
tion. In our experiments, a custom-made implementation of the Krylov–Schur method
proved to be, on average, a factor 1.2–1.3 faster than eigs in terms of matrix-vector
multiplications. We give pseudocode for the Krylov–Schur method in Algorithm 1.

Algorithm 1: Krylov–Schur for the leftmost eigenvalue

Input: Minimal and maximal subspace dimensions ℓ < ℓ̄, starting vector v1, tole-
rance tol, functions to perform matrix-vector multiplications with A and B.

Output: A pair (θ, v) that approximates the leftmost eigenpair (λlm, vlm),
with ‖(BA− θI) v‖ ≤ tol.

1: Form the Krylov decomposition BAVℓ̄ = Vℓ̄ Hℓ̄ + hℓ̄+1,ℓ̄ vℓ̄+1 f
H
ℓ̄

2: for k = 1, 2, . . .
3: Extract Schur pairs (θj , cj) from Hℓ̄ with j = 1, . . . , ℓ̄,

sorted on nondecreasing real part
4: if |hℓ̄+1,ℓ̄ f

H
ℓ̄

c1| ≤ tol

5: Accept θ = θ1 with leftmost Schur vector v = Vℓ̄ c1, stop
6: end

7: Truncate decomposition to dimension ℓ by selecting leftmost Schur vectors
8: Expand the Krylov decomposition to dimension ℓ̄
9: end

This algorithm uses the Krylov decomposition from [20] which is a generalization
of the Arnoldi decomposition and which may have complex factors. In Line 1, the
first Krylov decomposition has fℓ̄ = eℓ̄, the ℓ̄th standard basis vector. In subsequent
Krylov decompositions this vector is changed, as indicated below. In Line 4, we
exploit the fact that

(BA− θI) v = (BA− θI)Vℓ̄ c1

= Vℓ̄ (Hℓ̄ c1 − θ1 c1) + hℓ̄+1,ℓ̄ vℓ̄+1 f
H
ℓ̄ c1 = hℓ̄+1,ℓ̄ vℓ̄+1 f

H
ℓ̄ c1.

As described in [20], the restart in Lines 7–8 is performed as follows. Suppose
Hℓ̄ = QSQH is the Schur decomposition with the most relevant Schur vectors (cor-
responding to the leftmost Ritz values in S) sorted in the beginning of Q. Then the
method is restarted with Vℓ := Vℓ̄ Q1:ℓ instead of Vℓ̄; Sℓ instead of Hℓ̄; and QH

1:ℓfℓ̄
instead of fℓ̄. We present numerical experiments with this method in Section 5.2.

An alternative approach that uses inexact shift-and-invert operators by carrying
out inner iterations is Jacobi–Davidson [18]. This inexact inner-outer type of method
may be worthwhile when the leftmost eigenvalue is not well separated from neighbor-
ing eigenvalues. In our applications this does not seem the case, and Jacobi–Davidson
performs usually worse than Krylov–Schur. In addition, it is not obvious to gener-
ate a preconditioner for a shifted version of BA, which would be very helpful for
Jacobi–Davidson.

In our experiments with examples from computed tomography, we find that the
matrix BA is often close to normal (in fact, even close to symmetric; cf. Section 5.2).
For such problems, another alternative approach to approximate the leftmost eigen-
value is the following. Let

W (C) = { zHCz : z ∈ C
n, ‖z‖ = 1 }

be the field of values (or numerical range) of C. Then we can expect the quantity

ν(BA) := minRe(W (BA))
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to be close to the leftmost eigenvalue of BA. This ν(BA) would in principle be
relatively easy to approximate, since it is equal to 1

2 minλ(BA+(BA)T ), which results
in computing an exterior eigenvalue of a symmetric eigenproblem. This would mean
that we can use a symmetric version of Krylov–Schur, which saves roughly half of the
reorthogonalization costs.

Unfortunately, in our applications we do not have the action with AT or BT ,
and the described approach is not an option. However, as an alternative, we can still
approximate ν(BA) by

ν(BA) ≈ ν(Hℓ̄) ,

where Hℓ̄ is the matrix in the Krylov decomposition obtained with BA after sev-
eral iterations. The computation of this quantity only requires the known HH

ℓ̄
, and

therefore bypasses the need of the transposes of A and B. Although there are usually
no error bounds for this type of approximation, it may in practice be of very good
quality. This algorithm is summarized below.

Algorithm 2: A field of values approximation for the leftmost eigenvalue

Input: Minimal and maximal subspace dimensions ℓ < ℓ̄, starting vector v1,
maximum iterations maxit, functions to perform actions with A and B.

Output: θ, the leftmost point of a projected field of values, which approximates the
leftmost point of W (BA).

1: Form the Krylov decomposition BAVℓ̄ = Vℓ̄ Hℓ̄ + hℓ̄+1,ℓ̄ vℓ̄+1 f
H
ℓ̄

2: for k = 1, 2, . . . , maxit
3: Extract Schur pairs (θj , cj) from Hℓ̄ with j = 1, . . . , ℓ̄,

sorted on nondecreasing real part
4: Truncate decomposition to dimension ℓ by selecting leftmost Schur vectors
5: Expand the Krylov decomposition to dimension ℓ̄
6: end

7: Accept θ = minReW (Hℓ̄) = real part of leftmost eigenvalue of 1
2 (Hℓ̄ +HH

ℓ̄
)

Note that in a type of method as in Algorithm 2, there is typically no error
estimate available; there only is a user-chosen parameter maxit, which often can be
modest (see Section 5). A main advantage of Algorithm 2 over Algorithm 1 is that
it may be possible to stop the iterations improving the Krylov decomposition earlier,
before the eigenpair of Algorithm 1 has converged to the desired tolerance. We test
both approaches in the next section.

5. Numerical Examples. We present numerical examples with two different
test problems, in order to demonstrate the performance of our new algorithm. All
computations are carried out in MATLAB.

5.1. Small Illustrative Test Problem. The first test problem is quite small,
with m = n = 64, such that we can explicitly compute the desired eigenvalues and
other quantities that allow us to analyze the algorithms’ performance related to the
above theory. The matrix A is full, and it is generated by means of the function
regutm from Regularization Tools [8] by which we can generate random test
matrices with specified singular values, while the singular vectors have the character-
istic spectral behavior of inverse problems [6]. We generate a well-conditioned matrix
Awell and a more ill-conditioned matrix Aill with the following distribution of singular
values:

Awell : logspace(0,−2, m) , Aill : logspace(0,−4, m) .
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Fig. 1. The convergence histories for the small test problems with noisy data (e 6= 0); the
similar plots for noise-free data (e = 0) are almost identical. Left: results for the BA Iteration

which exhibits non-convergence for the ill-conditioned matrix. Right: results for the Shifted BA

Iteration with α = 2 |Re(λlm(Â TA))|; this method converges for both matrices.

We then generate a corresponding unmatched transpose ÂT = AT + EAT by adding
random Gaussian elements to AT ; all elements are from N (0, σ2

A) where the variance

is chosen such that ‖EAT ‖ / ‖A‖ = 0.05. Both A and ÂT have full rank.
The exact solution x̄ is the one from the shaw test problem [8]; it is smooth with

two humps. Then we generate the exact and noisy right-hand sides by

(5.1) b̄ = A x̄ , b = b̄ + e , ‖e‖ / ‖b̄‖ = 0.05 ,

where the random elements of e are Gaussian; all elements are from N (0, σ2
b ) where

the variance scales the noise as desired.
We applied both the BA Iteration and the Shifted BA Iteration with

B = ÂT to these problems. For the BA Iteration we use the relaxation parameter
ω = 1.9 / ‖ÂTA‖ and for the Shifted BA Iteration we use ω equal to the upper
bound in (3.4) with the factor 2 replaced by 1.9. For both systems we used eig to
compute the eigenvalues; the spectral radius is ρ(BA) = 1.00 by construction, and
the leftmost eigenvalues are

λlm(Â
T
well Awell) = 4.78 · 10−5 ,

λlm(Â
T
ill Aill) = −2.02 · 10−5 ± i 3.83 · 10−6 .

Note that for Aill the leftmost eigenvalue is a complex conjugate pair with a negative
real part. Hence we expect the BA Iteration to exhibit non-convergence for the
problems with Aill. To ensure convergence of the Shifted BA Iteration we choose

α = 2 |Re(λlm(Â
TA))| .

The convergence histories for the noisy data (e 6= 0) are shown in Figure 1; the similar
plots for the noise-free data (e = 0) are almost identical. We make the following
observations:

• The left plot confirms that the BA Iteration converges only for the well-
conditioned matrix for which all eigenvalues have a positive real part, and
that it converges to x∗ = A†

N (B)b = B (AB)−1b.

• The right plot confirms that the Shifted BA Iteration converges for
both matrices, and that it converges to x∗

α = B (AB + αI)−1b. For the
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Fig. 2. The semi-convergence histories of the two iterative methods for Awell (left) and Aill

(right). For the problems with noisy data, we obtain a reasonably accurate solution at the point of
semi-convergence. See the text for a detailed discussion.

well-conditioned system the convergence is much faster compared to the ill-
conditioned system. Also, the Shifted BA Iteration converges faster than
the BA Iteration for the well-conditioned system.

Having confirmed the convergence of the methods, it is also relevant to study
how well the methods are able to approximate the exact solution x̄. To illustrate
this, Figure 2 shows plots of the reconstruction errors ‖xk − x̄‖ / ‖x̄‖ versus iteration
number k. We make several observations:

• For the well-conditioned matrix Awell and noise-free data (e = 0) the BA

Iteration converges to the exact solution x̄ as predicted by Theorem 2.2
with square and full-rank A and B.

• For the ill-conditioned matrix Aill the BA Iteration always diverges.
• For noise-free data (e = 0) the Shifted BA Iteration converges to a
slightly perturbed solution x̄∗

α with

‖x̄∗
α − x̄‖ / ‖x̄‖ = 3.36 · 10−3 for Awell ,

‖x̄∗
α − x̄‖ / ‖x̄‖ = 5.01 · 10−2 for Aill .

• For noisy data (e 6= 0) the BA Iteration for Awell, as well as the Shifted

BA Iteration for both Awell and Aill, converge to a fixed point that is
quite far from the exact solution. Exactly the same behavior occurs for iter-
ations that use a matching transpose. The main point is that for noisy data
the iterations exhibit semi-convergence, where the iterates produce a good
approximation to x̄ during the initial iterations.

In conclusion, these experiments verify the benefit of using the Shifted BA Itera-

tion, namely, guaranteed convergence while retaining the semi-convergence that all
algebraic iterative methods rely on for noisy data.

5.2. Test Problem From the ASTRA Toolbox. The second test problem
comes from X-ray computed tomography (CT) using a parallel-beam geometry with 90
projections in the angular range 0◦–180◦, and a detector with 80 pixels and of length is
equal to the image size. The exact solution x̄ represents a 128×128 discretization of the
Shepp–Logan phantom. Hence the problem size is m = 7200 and n = 16384, and the
problem is underdetermined. For such underdetermined CT problems the algebraic
iterative methods can give much better results than the “standard” methods based
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on filtered backprojection [17]. As before, the exact and noisy data are generated
according to (5.1).

The matricesA and ÂT that represent the forward and backprojections come from
the ASTRA toolbox [22] used in conjunction with “spot operators” [23]. Specifically,
we use the ASTRA function opTomo to compute the matrix-vector multiplications
with these matrices. For the forward projection the GPU-version of ASTRA uses the
interpolation model, also known as Joseph’s method [12], while the backprojection
uses the line model with linear interpolation between detector pixels (as done, e.g.,
in MATLAB’s iradon). The matrices are not stored; if we store them then the

sparsity of A and ÂT is 1.32% and 2.35%, respectively. Measures of nonsymmetry
and nonnormality of BA are

‖ 1
2

(
(BA)− (BA)T

)
‖F

‖BA‖F
= 0.125 ,

‖(BA) (BA)T − (BA)T (BA)‖F
‖BA‖2F

= 0.0235 .

The spectral radius is ρ(BA) ≈ 1.76 · 104.
For this test problem we use the algorithms from Section 4 to estimate the leftmost

eigenvalue of BA, and we compare the performance of the following strategies:
• eigs from MATLAB with options maxit = 1500, tol = 10−2, SIGMA = ’sr’;
• ks is the Krylov–Schur method (Algorithm 1) with options maxit = 1500,
absolute tolerance tol = 10−2, mindim = 30, maxdim = 60, target = ’-inf’

(for the leftmost eigenvalue);
• jd is the Jacobi–Davidson method with options maxit = 1500, tol = 10−2,
mindim = 30, maxdim = 60, target = ’-inf’;

• fovN is the field of values based method (Algorithm 2) with options maxit =
N, mindim = 30, maxdim = 60.

Table 1 shows results for two cases:
1. All matrix-vector multiplications are performed on the GPU, using the AS-

TRA function opTomo. These multiplications are performed in single preci-
sion. The Jacobi–Davidson method jd did not converge, and this may be due
to the single-precision computations on the GPU.

2. The two matrices A and ÂT are explicitly computed and stored as sparse
matrices. Like all the other computations, these computations are performed
on the CPU in double precision.

We see that for these CT problems the Krylov–Schur method uses the least amount
of computations, corresponding to the work in performing about 500 iterations of the
Shifted BA Iteration method. When solving several CT problems with the same
geometry, and hence the same matrices, this is acceptable. Even when an unmatched
pair is used only once, this may be an acceptable overhead to ensure convergence and
trust in the computed solution.

Figure 3 reports the work involved in the eigenvalue estimation with the Krylov-
Schur method, as measured by matrix-vector multiplications (MVMs), for different
numbers of image pixels n = 642, 1282, 2562, 5122, 10242, 20482. The number of rows
is m ≈ 0.45n. We see that for larger problems the number of MVMs seems to be
proportional to n1/3.

Figure 4 shows the convergence histories when applying the two iterative algo-
rithms to this problem, with α and ω chosen as before. We observe the same behavior
as before: The BA Iteration diverges, while the Shifted BA Iteration converges
to a fixed point. Moreover, the Shifted BA Iteration exhibits semi-convergence as
expected, and the minimum reconstruction error—at the point of semi-convergence—
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Table 1

Estimation of the leftmost eigenvalue λlm of BA with the methods discussed in Section 4. We
use the ASTRA test problem mentioned in the text. The methods stop when we reach convergence
with absolute tolerance 10−2 or after the fixed number of iterations used in the field of values based
method Algorithm 2 fovN for N = 10, 15, and 20 iterations, respectively. We show the mean number
of matrix-vector multiplications (MVMs) as well as the mean and standard deviation of the estimated
λlm. The top half of the table shows results for the case when the matrix-vector multiplications are
done by the ASTRA functon opTomo, while the bottom half is for the case when we explicitly store
the matrices. The difference is due to the difference in precision (single vs. double).

25 trials with opTomo that utilizes the GPU

Mean MVM Mean λlm (st. dev.)

fov10 660 −0.8921 (1.167 · 10−1)

fov15 960 −0.9323 (7.478 · 10−3)

fov20 1260 −0.9354 (3.579 · 10−3)

ks 1041 −0.9281 (2.510 · 10−5)

eigs 1278 −0.9281 (4.103 · 10−5)

25 trials with A and ÂT explicitly stored

Mean MVM Mean λlm (st. dev.)

fov10 660 −0.8920 (1.171 · 10−1)

fov15 960 −0.9322 (7.647 · 10−3)

fov20 1260 −0.9354 (3.581 · 10−3)

ks 1039 −0.9281 (2.334 · 10−5)

eigs 1261 −0.9281 (3.893 · 10−5)

jd 1404 −0.9281 (4.624 · 10−5)

Fig. 3. The number of matrix-vector multiplications (MVM) needed to estimate the leftmost
eigenvalue with the Krylov-Schur method, as a function of the number of image pixels n.

does not deteriorate when using the shifted method.

6. Conclusions. We have considered algebraic iterative reconstruction methods
with an unmatched backprojector, i.e., the backprojector is not the exact adjoint or
transpose of the forward projector. In particular we are concerned with the common
situation where the iterative method does not converge, due to the nonsymmetry of the
iteration matrix. We propose a modified algorithm that uses a small shift parameter,
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Fig. 4. Left: the convergence of the BA Iteration and the Shifted BA Iteration for noise-
free data (e = 0); as expected the former does not converge. Right: semi-convergence histories of
the two iterative methods for noise-free as well as noisy data.

we define the conditions that guarantee convergence to a fixed point of a slightly
perturbed problem, and we give perturbation bounds for this fixed point. We also
discuss how to efficiently estimate the leftmost eigenvalue of a certain matrix, which
is needed to computed the shift parameter in the modified algorithm. Numerical
experiments with artificial test problems as well as a test problem from computed
tomography illustrate the use of the new algorithm. Our MATLAB code is available
on request.
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