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SELF-PREDICTING BOOLEAN FUNCTIONS

NIR WEINBERGER AND OFER SHAYEVITZ

Abstract. A Boolean function g is said to be an optimal predictor for another

Boolean function f , if it minimizes the probability that f(Xn) 6= g(Y n) among all

functions, where Xn is uniform over the Hamming cube and Y n is obtained from Xn

by independently flipping each coordinate with probability δ. This paper is about

self-predicting functions, which are those that coincide with their optimal predictor.

1. Introduction

One of the most important properties of a Boolean function f : {−1, 1}n → {−1, 1}
is its robustness to noise in its inputs. This robustness is traditionally measured by the

noise sensitivity of the function

(1) NSδ[f ] := Pr (f(Xn) 6= f(Y n)) ,

where Xn ∈ {−1, 1}n is a uniform Bernoulli vector, and Y n ∈ {−1, 1}n is obtained

from Xn be flipping each coordinate independently with probability 0 < δ < 1/2. The

noise sensitivity of Boolean functions has been extensively investigated [O’D14], most

often in terms of the equivalent notion of stability

Stabρ[f ] := E [f(Xn)f(Y n)] ,

where 0 < ρ < 1 is the correlation parameter, i.e., ρ := E(XiYi) = 1 − 2δ. The noise

sensitivity of f can also be interpreted as the error probability of a predictor trying

to guess the value of f(Xn) by simply applying f to the noisy input Y n. While this

predictor is intuitively appealing and easy to analyze, it is generally suboptimal. As a

simple example, think of the case where f is biased and the noise level δ is sufficiently

high; it is easy to see that a constant predictor would result in a lower error probability

than f(Y n) would.

The optimal predictor, i.e., the one that minimizes the error probability in predicting

f(Xn) from Y n, is clearly given by the sign of E(f(Xn) | Y n = yn). In general, this
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function might be rather different from f itself. However, while using the optimal

predictor is generally superior to using the function itself (albeit as we shall see, by a

factor of two at the most), computing the former is often very difficult as its value in

an point depends on the values of the function over the entire Hamming cube. It is

therefore interesting to study functions that coincide with their optimal predictor; we

call these functions self-predicting (SP).

Clearly, SP functions exhibit a desirable property - the optimal prediction of the

function is obtained by simply applying it to the noisy inputs. For example, suppose

the function describes a voting rule and the noise represents possible contamination

of the votes (e.g., due to fraud). If the function is SP, then any mechanism used for

computing the function with clean votes can be used without any modification in case

it turns out that the votes are actually noisy. In this case, the output of the function

is the optimal predictor for its true value. It should be noted, however, that being SP

does not imply anything about the ordinary stability of the function. For example, all

parity functions (characters) are SP functions, including the least stable one, to wit,

the parity of all inputs (namely, the largest character). Nonetheless, if, e.g., there are

a few alternatives for choosing a function to be used, and all of these functions have

the same stability, it is sensible to choose one of the SP functions among them (if such

exists).

Nonetheless, a function can be SP at certain noise levels but not at others. We thus

say that a function is uniformly SP (USP) if it is SP at any noise level. For example, in

the voting scenario mentioned above, it may not be realistic to assume that the noise

level is known, yet if the function is USP it can always be used to obtain the optimal

prediction of the true voting result.

In this paper, we introduce and explore self-predictability of Boolean functions. We

derive various properties of SP functions, and specifically the following:

• If a function is monotone (resp. odd, resp. symmetric), then so is the optimal

predictor. We use this fact to show that Majority functions are USP, and that

for a monotone function, self-predictability at dominating boundary points is

necessary and sufficient for a function to be SP.

• SP at high correlation: A function with Fourier degree k is SP for any ρ >

1− 1/k2, and if f is SP for ρ > 1− ε and n = Ω(1/ε), then each point xn has a

distance-2 neighbor with the same function value.

• SP at low correlation: Any function for which there exists ρ∗ such that it is

SP for all ρ ∈ [0, ρ∗] (abbreviated LCSP) is spectral threshold, i.e., equal to

the sign of its lowest Fourier level. This simple fact implies many properties:

LCSP functions are either balanced or constant, they have energy at least 1/2
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on their first level (if any), and a monotone LCSP function is
√

2
πn

-close to a

linear threshold function.

• Sharp threshold: All functions are trivially SP for ρ > 1− 2 ln 2
n

+O(n−2). How-

ever, the fraction of SP functions is doubly-exponential small with n whenever

the correlation parameter is either ρ = 1 − 2α
n

for α > 1 or ρ = 1 − 2δ for

δ ∈ [0, δmax], δmax ≈ 0.097.

The paper is organized as follows. Section 2 contains basic notation and Fourier-theory

facts. The self-predictability problem and some basic properties are introduced in Sec-

tion 3, including the proof that Majority is USP. Section 4 discusses high-correlation

sufficient conditions for SP, and Section 5 discusses low-correlation SP functions. Sec-

tion 6 provides stability-based necessary conditions for SP. In Section 7, a sharp thresh-

old phenomenon is proved for the SP property. The paper is concluded in Section 8

with a list of open problems.

2. Preliminaries

2.1. Notation and Definitions. We use upper case letters for random variables and

random vectors, and their lower case counterparts for specific realizations. For vectors

we write xj
i = (xi, . . . , xj) and omit the subscript whenever i = 1, and denote a concate-

nation of vectors by (xj
i , x

m
k ) = (xi, . . . , xj, xk, . . . , xm). We denote the cardinality of a

set S by |S|, the complement of the set A by Ac, and write [n] for the set {1, 2, . . . , n}.
We define the indicator function by 1(·), the sign function by sgn(z) where by con-

vention sgn(0) = 0, unless otherwise stated. Throughout, the logarithm log(t) is base

2, while ln(t) is the natural logarithm. The Hamming distance between xn and yn is

dH(x
n, yn).

In this paper, Xn is a uniformly distributed binary vector, and Y n is the binary vector

obtained by flipping each coordinate of Xn with some given probability δ ∈ [0, 1/2]. We

write p(xn, yn) to denote the associated joint probability mass function, and p(xn | yn),
e.g., to denote the conditional probability mass function. As a binary alphabet, for

the most part we will find it convenient to work with {−1, 1}, in which case it is more

natural to consider the correlation parameter ρ := E(XiYi) = 1 − 2δ ∈ [0, 1] instead

of the crossover probability parameter δ. We will use the latter notations throughout

the paper, with the exception of a few proofs where we find it more convenient to work

with either δ or the binary alphabet {0, 1}.

2.2. Boolean Functions and Fourier Analysis. In this paper we consider Boolean

functions f : {−1, 1}n → {−1, 1}. The distance between two Boolean functions f and

g is defined as the fraction of inputs on which they disagree, i.e., Pr(f(Xn) 6= g(Xn)).

We say that f and g are ε-close if their distance is at most ε.
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An inner product between two Boolean functions f, g is defined as

(2) 〈f, g〉 := E (f(Xn)g(Xn)) .

A character associated with a set of coordinates S ⊆ [n] is the Boolean function xS :=
∏

i∈S xi, where by convention x∅ = 1. It can be shown [O’D14, Chapter 1] that the set

of all characters form an orthonormal basis with respect to (w.r.t.) the inner product

(2). Furthermore,

f(xn) =
∑

S⊆[n]

f̂S · xS,

where {f̂S}S⊆[n] are the Fourier coefficients of f , given by f̂S = 〈xS, f〉 = E(XS ·f(Xn)).

When S is a singleton {i} ⊂ [n], we use the shorthand f̂i = f̂{i}. The Fourier weight of

f at degree k is

W k[f ] :=
∑

S⊆[n]:|S|=k

f̂ 2
S.

Instead of the noise sensitivity defined in (1) it is more common to consider the

stability, defined as

Stabρ[f ] := E (f(Xn)f(Y n)) ,

where the noise sensitivity and stability are trivially related via

Stabρ[f ] = 1− 2NS1−ρ
2
[f ].

Thus, the stability of a function is directly related to the error probability of the possibly

suboptimal predictor f(yn) to the function’s true value f(xn).

The noise operator for ρ-correlated Xn and Y n is defined as

Tρf(y
n) := E (f(Xn) | Y n = yn) ,

and, evidently, as {(Xi, Yi)} is an i.i.d. sequence,

(3) Tρf(y
n) = E





∑

S⊆[n]

f̂S ·XS | Y n = yn



 =
∑

S⊆[n]

ρ|S| · f̂S · yS.

The stability can then be expressed using the Fourier coefficients and the noise operator

as

Stabρ[f ] = E (E (f(Xn)f(Y n)) | Y n)

= E (f(Y n)Tρf(Y
n))

= 〈f, Tρf〉

=
∑

S⊆[n]

ρ|S| · f̂ 2
S(4)
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=
∥

∥T√
ρf
∥

∥

2

2
,

where (4) follows from Plancherel’s identity 〈f, g〉 = E(f(Xn)g(Xn)) =
∑

S⊆[n] f̂S ĝS.

A Boolean function f is called a linear threshold function (LTF) if there exists coef-

ficients an0 ∈ R
n+1 such that

f(xn) = sgn

(

a0 +

n
∑

i=1

aixi

)

.

Note that if a0 = 0 then f is balanced, i.e., Pr(f(Xn) = 1) = 1/2. More generally, a

function f is a polynomial threshold function (PTF) [Bru90] of degree k if there exists

{p̂S} such that maxS:p̂S 6=0|S|= k and

(5) f(xn) = sgn





∑

S⊆[n]

p̂S · xS



 .

A PTF has sparsity s if {p̂S} is supported over exactly s terms. For LTF and PTFs,

we will always assume that coefficients are chosen such that the polynomial inside the

sign operator is never identically zero.

3. Optimal Prediction and Self Predicting (SP) Functions

3.1. The Optimal Predictor. Let f : {−1, 1}n → {−1, 1} be some Boolean function.

It is easy to see that the optimal predictor (minimizing the error probability) of f(Xn)

given that Y n = yn has been observed, is simply

sgnE (f(Xn) | Y n = yn) = sgnTρf(y
n).

Note that according to our definition sgn(0) = 0, but ties can of course be broken

arbitrarily in any other way.

The optimal predictor preserves several properties of the function. We define the

natural partial order � over R
k, where yk � zk if and only if yi ≤ zi for all coordinates

i. We write ≺ to denote the case of strict inequality in at least one of the coordinates.

Recall that [O’D14, Definition 2.8.] a function f : {−1, 1}n → R is called:

• Monotone on S ⊆ [n], if f(yn) ≤ f(zn) whenever both yS � zS and y[n]\S =

z[n]\S, and monotone if it is monotone on [n].

• Odd (resp. even) if f(xn) = −f(−xn) for all xn ∈ {−1, 1}n (resp. f(xn) =

f(−xn)).

• Symmetric if f(π(xn)) = f(xn) for all xn ∈ {−1, 1}n and permutation π ∈ Sn

(where Sn is the symmetric group over the set [n]) and π(xn) = (xπ(1), . . . , xπ(n)).

Proposition 3.1. For ρ ∈ (0, 1], sgnTρ(·) preserves monotonicity on any S ⊆ [n],

parity (oddness or evenness) and symmetry.
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Proof.

• Monotonicity : This property stems from the fact that the operator Tρ itself pre-

serves monotonicity (for ρ ∈ (0, 1]) [Kel10, Proof of Proposition 4.4], [KKM16,

Claim 2.4. (b)]. A short proof is given for the sake of completeness. Assume

that f(yn) = 1 and let zn satisfy yS � zS and y[n]\S = z[n]\S. We prove the state-

ment for a singleton S, say S = {n}. The general case then follows by applying

the same argument repeatedly. If yn = 1 the claim is trivial. Assume yn = −1

and let zn agree with yn except on the nth coordinate. Due to monotonicity of

f , we have that f(zn) = 1. Then

Tρf(z
n) =

∑

xn

p(xn | zn)f(xn)

=
∑

xn−1

∑

xn

p(xn−1 | yn−1)p(xn | 1)f(xn)

=
∑

xn−1

p(xn−1 | yn−1)
[

δf(xn−1,−1) + (1− δ)f(xn−1, 1)
]

≥
∑

xn−1

p(xn−1 | yn−1)
[

(1− δ)f(xn−1,−1) + δf(xn−1, 1)
]

= Tρf(y
n)

where the inequality holds since f is monotone on the nth coordinate (and

δ ∈ [0, 1/2)). Hence, sgnTρf(z
n) ≥ sgnTρf(y

n).

• Parity : f is odd if and only if f̂S = 0 for all S ⊆ [n] such that |S| is even

[O’D14, Exercise 1.8]. It follows from the Fourier expansion of Tρf (3) that if f

is odd then so is Tρf , i.e. Tρf(x
n) + Tρf(−xn) = 0 for all xn ∈ {−1, 1}n. Thus,

sgnTρf is also odd (utilizing the convention sgn(0) = 0). The proof for even

functions is similar.

• Symmetry : f is symmetric if and only if f̂S depends on S only via |S|. Hence (3)

implies that if f is symmetric then so is Tρf . A composition of scalar function

and a symmetric function results in a symmetric function, and thus sgnTρf is

symmetric.

�

We say that a Boolean function f is ρ-self-predicting (ρ-SP) at yn, if the optimal

predictor given yn at correlation level ρ coincides with the function itself whenever it is

not tied, i.e., if

f(yn) = sgnTρf(y
n),

whenever Tρf(y
n) 6= 0. The function f is called ρ-SP if it is ρ-SP for any yn ∈ {−1, 1}n.

We say that f is uniformly self-predicting (USP) if it is ρ-SP for any ρ ∈ [0, 1]. We also
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say that f is low-correlation self-predicting (LCSP), if there exists some ρ∗ > 0 such

that f is ρ-SP for all ρ ∈ [0, ρ∗).

We note in passing that seemingly plausible properties may not hold in general:

Example 3.2. The optimal predictor of a balanced function may not be balanced. For

example, the function

1

4
(2x1 + x3 − 2x1x2 + x1x3 + x2x3 − x3x4

+ x1x2x3 + x1x3x4 − x2x3x4 + x1x2x3x4)

is a balanced function, yet sgnTρf is non-balanced when ρ = 1/2.

Example 3.3. In the following sections we explore functions that are SP for high or low

correlation. However, self-predictability is not necessarily a monotone property in ρ.

To wit, if a function is ρ0-SP then it might not be ρ-SP for some ρ ≥ ρ0. Indeed, there

are functions that admit such an “irregular” behavior. We have numerically analyzed

LTFs with randomly drawn coefficients, and found, for example, that the balanced LTF

with n = 11 and coefficients

a111 = (13, 43, 67, 67, 67, 117, 153, 165, 165, 179, 179)

is ρ-SP only for ρ ∈ [0, 0.312] ∪ (0.544, 1].

3.2. Elementary USP Functions. The following fact follows easily from the defini-

tion.

Proposition 3.4. All the characters are USP.

Proof. Let f(xn) = xS for some S ⊆ [n]. Then for any yn,

sgnTρf(y
n) = sgn

(

ρ|S| · yS
)

= sgn
(

yS
)

= f(yn).

�

We next show that Majority (for odd n), given by,

Maj(xn) := sgn
∑

i∈[n]
xi

is USP. While this property is plausible, it does not stem from only analyzing the

“local” behavior of the function. Specifically, at a boundary point yn, i.e., one for which
∑

i∈[n] yi = ±1, there are more neighbors in the immediate neighborhood of yn (say,

Hamming distance one or two) who disagree with yn on the value of the function, than
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those who agree with it. Thus, any proof that such a point is SP for all ρ ∈ (0, 1] cannot

rely only on the local values of the function in the vicinity of that point. Rather, it

should take into account the function’s value in larger neighborhoods, or even over the

entire Hamming cube.

Theorem 3.5. Majority is USP.

Proof. Since Maj is monotone, odd and symmetric, then so is sgnTρ Maj (Proposition

3.1). Hence, for all xn ∈ {−1, 1}n

(6) sgnTρ Maj(xn) + sgnTρ Maj(−xn) = 0.

Consider without loss of generality xn such that Maj(xn) = 1, i.e., if w is the number

of 1’s in xn, then w > n − w. Then, x = (1w,−1n−w) and x̃ = (1n−w,−1w) satisfy

x̃n � xn, and from symmetry,

sgnTρ Maj(xn) = sgnTρ Maj(xn) ≥ sgnTρ Maj(x̃n) = sgnTρ Maj(−xn).

Hence, (6) implies that sgnTρ Maj(xn) ≥ 0, as was required to be proved. �

Remark 3.6. An indirect way of proving Theorem 3.5 is via May’s theorem [O’D14,

Ex. 2.3]: Since sgnTρ Maj is monotone, odd and symmetric, it must be the majority

function itself.

By numerically experimenting with simple LTFs one can find that Majority (and

characters) are not the only USP functions, and not even the only USP LTFs. Specifi-

cally:

Example 3.7. The balanced LTFs with n = 5 and coefficients a51 = (1, 1, 3, 3, 5),

with n = 7 and coefficients a71 = (1, 1, 3, 3, 3, 5, 7), with n = 9 and coefficients a91 =

(1, 1, 3, 3, 3, 5, 5, 5, 7), with n = 11 and coefficients a111 = (1, 1, 3, 3, 3, 3, 5, 5, 5, 7, 7) can

all be verified by direct computation to be USP.

In the next section we generate classes of USP functions by utilizing operations which

preserve the SP property.

3.3. SP/USP Preserving Operators. Let us next discuss several operations that

preserve self-predictability. First, we note that self-predictability is invariant to negation

of inputs. We write ◦ for the Hadamard product.

Proposition 3.8. Let an ∈ {−1, 1}n. Then, f(xn) is ρ-SP if and only if f(an ◦ xn) is

ρ-SP.

The straightforward proof is omitted. Next, we consider the case of separable func-

tions.
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Proposition 3.9. Let f(xn) = g(xk
1) · h(xn

k+1). Then f is ρ-SP if and only if both g

and h are ρ-SP.

Proof. If g and h are both ρ-SP then for any yn,

sgnTρf(y
n) = sgnTρ

(

g(yk) · h(ynk+1)
)

= sgn
(

Tρg(y
k) · Tρh(y

n
k+1)

)

= g(yk1) · h(ynk+1)

= f(yn).

Conversely, suppose that f is ρ-SP for some ρ ∈ (0, 1]. Then there must exist at

least one point ynk+1 at which h is ρ-SP, since if this was not the case, then Tρh(y
n
k+1) ·

f(hn
k+1) ≤ 0 holds for all hn

k+1. This, however, is impossible since

E
[

Tρh(Y
n
k+1) · h(Y n

k+1)
]

=
∑

ρ|S|ĥ2
S > 0.

Hence, without loss of generality, we may assume that h(ynk+1) = 1. Then for any yk

sgnTρg(y
k) = sgnTρg(y

k) · sgnTρh(y
n
k+1)

= sgn
(

Tρg(y
k) · Tρh(y

n
k+1)

)

= sgnTρf(y
n)

= f(yn)

= g(yk) · h(ynk+1)

= g(yk).

Hence g, and symmetrically, also h, are ρ-SP. �

Note that Proposition 3.4 also follows as a simple corollary to Proposition 3.9. Next,

we consider functions of equal-size disjoint characters.

Proposition 3.10. Let {Sℓ ⊆ [n]}ℓ∈[m] be disjoint subsets of equal size |Sℓ|= w. Let

f : {−1, 1}m → {−1, 1} be ρw-SP. Then f(xS1 , xS2, . . . , xSm) is ρ-SP.

Proof. By equating coefficients of the Fourier representation (which are unique), it is

readily obtained that the Fourier coefficients of h(xn) = f(xS1 , xS2 , . . . , xSm) are given

by

ĥS =







f̂T , S = ∪t∈TSt

0, otherwise
.

Hence,

sgnTρh(y
n) = sgn

∑

S⊆[n]

ρ|S|ĥSy
S
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= sgn
∑

T⊆[m]

ρw|T | · ĥ∪t∈TSt · y∪t∈TSt

= sgn
∑

T⊆[m]

ρw|T |f̂T
∏

t∈T
ySt

= sgnTρwf(y
S1, yS2, . . . , ySm)

= f(yS1, yS2, . . . , ySm)

= h(yn).

�

Example 3.11. Using the fact that characters and Majority are USP functions, to-

gether with Propositions 3.8, 3.9 and 3.10, we can construct many distinct USP func-

tions. For example, the function

sgn ((x1x2 + x3x4 + x5x6) · (x7x8x9 − x10x11x12 − x13x14x15) · x16)

is USP.

Nonetheless, there are USP functions that cannot be constructed from characters and

Majority this way. For example, none of these functions can be an LTF, as the USP

functions in Example 3.7.

3.4. Closeness to SP and Strong Stability. How far can a function be from self

predicting? We say that a function is ε-close to ρ-SP, to mean that f and its optimal

predictor sgnTρf are ε-close.

Lemma 3.12. Any function f is
∑

S⊆[n](1− ρ|S|)f̂ 2
S-close to ρ-SP.

Proof. Let A ⊆ {−1, 1}n be the set of all yn at which f is ρ-SP. Hence for any yn 6∈ A

it must be that f(yn) · Tρf(y
n) < 0. Noting that |Tρf(y

n)|≤ 1, we have that

E (f(Y n) · Tρf(Y
n)) ≤ Pr (Y n ∈ A) .

On the other hand, it also holds that

E (f(Y n) · Tρf(Y
n)) =

∑

S⊆[n]

ρ|S|f̂ 2
S.

The proof now follows by recalling that
∑

S⊆[n] f̂
2
S = 1. �

For any n, functions that depend on all n variables can be found (even balanced ones),

whose distance from their optimal predictor is larger than some universal constant. The

problem with this measure of closeness to SP is that in many cases the optimal predictor

might be different from the functions on inputs that are very noisy, i.e., where the

posterior probability of the function value is close to uniform. Thus, a more practically
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motivated way of quantifying closeness to SP is by considering noise sensitivity and

stability.

Define the strong noise sensitivity of a function f to be

NS∗
δ[f ] := Pr (f(Xn) 6= sgnTρf(Y

n)) ,

and the associated strong stability as

Stab∗
ρ[f ] := E (f(Xn) · sgnTρf(Y

n)) .

Of course, just as for the regular noise sensitivity and stability, we have the trivial

connection

Stab∗
ρ[f ] = 1− 2NS∗1−ρ

2

[f ].

We can also express the strong stability in terms of the noise operator:

Stab∗
ρ[f ] = E (E (f(Xn) · sgnTρf(Y

n) | Y n))

= E (Tρf(Y
n) · sgnTρf(Y

n))

= E |Tρf(Y
n)|

= ‖Tρf‖1 .

Thus the 1-norm of Tρf can be interpreted in terms of the error probability associated

with the optimal predictor for f . Since the optimal predictor sgnTρf can only do better

than f itself, we immediately have:

Proposition 3.13. For any function f and any ρ ∈ [0, 1]

∥

∥T√
ρf
∥

∥

2

2
≤ ‖Tρf‖1 ,

with equality if and only if f is ρ-SP.

The strong stability can also be upper bounded by a regular stability expression.

Proposition 3.14. Stabρ[f ] ≤ Stab∗
ρ[f ] ≤

√

Stabρ2 [f ].

Proof. Write

Stab∗
ρ[f ] = 〈Tρf, sgnTρf〉

≤ ‖Tρf‖2 · ‖sgnTρf‖2

=
√

〈Tρf, Tρf〉

=
√

〈Tρ2f, f〉

=
√

Stabρ2 [f ].
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where the inequality is by Cauchy-Schwartz’s inequality, the next equality is since

‖sgnTρf‖2= 1, and the following equality is since Tρf is a self-adjoint operator (this

follows from Plancherel’s identity: 〈Tρf, g〉 =
∑

S⊆[n] ρ
|S|f̂S ĝS = 〈f, Tρg〉). �

An immediate consequence of the above is:

Corollary 3.15. The strong noise sensitivity satisfies:

1−
√

Stabρ2 [f ]

1− Stabρ[f ]
· NSδ[f ] ≤ NS∗

δ [f ] ≤ NSδ[f ].

Note that this bound is tight for the characters (and again shows that they are USP).

We can easily derive the following weaker statements:

Corollary 3.16. For any f

(7)
NSδ[f ]

2
≤ NS∗

δ[f ] ≤ NSδ[f ].

If f is balanced, then

(8)
NSδ[f ]

1 + ρ
≤ NS∗

δ[f ] ≤ NSδ[f ].

Proof. The bounds in (7) follow from Stabρ2[f ] ≤ Stabρ[f ] and mint∈[0,1]
1−

√
t

1−t
= 1/2.

The bounds in (8) follow from

1−
√

Stabρ2 [f ]

1− Stabρ[f ]
≥ 1−

√

Stabρ2 [f ]

1− Stabρ2 [f ]

=
1

1 +
√

Stabρ2 [f ]

≥ 1

1 + ρ
.

�

We may obtain improved bounds for low correlation values:

Proposition 3.17. Suppose W 1[f ] > 0. Then:

max

{

1,
1

√

2W 1[f ]
+O(ρ2)

}

≤
Stab∗

ρ[f ]

Stabρ[f ]
≤ 1
√

W 1[f ]
+O(ρ2).

Proof. We have that

Stab∗
ρ[f ] = E |Tρf(Y

n)|

= E

∣

∣

∣

∣

∣

n
∑

i=1

ρf̂iYi

∣

∣

∣

∣

∣

+O(ρ2).
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Khintchine’s inequality [Haa81] then implies

1√
2
·
√

W 1[f ] · ρ+O(ρ2) ≤ Stab∗
ρ[f ] ≤

√

W 1[f ] · ρ+O(ρ2),

and the result follows from [O’D14, Proposition 2.51]

Stabρ[f ] = W 1[f ] · ρ+O(ρ2).

�

Corollary 3.18. For any balanced LTF W 1[f ] ≥ 1/2 [O’D14, Theorem 5.2], and so

Stab∗
ρ[f ]

Stabρ[f ]
≤

√
2 +O(ρ2).

4. High Correlation Sufficient Conditions

In this section, we derive sufficient conditions on a function to be SP using various

arguments. All our conditions will be high correlation ones, i.e., for ρ0 larger than

some threshold. To that end, we will need a simple characterization of monotone SP

functions. Recall that xn is called a boundary point of f if the value of f(xn) can be

flipped by flipping some single coordinate of xn. We further say that xn is a dominating

boundary point of f if f(xn) = 1 (resp. = −1) and f(yn) = −1 (resp. = 1) for any

yn ≺ xn (resp. xn ≺ yn).

The following is a simple corollary to the fact that monotonicity is preserved by sgnTρ

(Proposition 3.1).

Proposition 4.1. A monotone function is ρ-SP if and only if it is ρ-SP at all its

dominating boundary points.

We can now prove the following:

Proposition 4.2. Any function is ρ-SP for ρ > 2(n−1)/n − 1, and there is no better

universal guarantee.

Proof. This range corresponds to the values of the crossover probability δ ∈ [0, 1−2−1/n)

for which the probability no bit was flipped (1 − δ)n, is at least 1/2. This bound is

achieved with equality by the OR function OR(xn). To see this, note that the OR

function is monotone and symmetric with a single dominating boundary point 1n. For

this point

Tρ OR(1n) = (1− δ)n · 1 + [1− (1− δ)n] · (−1)

which is non-negative if and only if δ ∈ [0, 1− 2−1/n]. �
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Specific properties of the function, may be used to obtain better sufficient bounds in

special cases. For example, suppose that the sparsity of f̂S is s, i.e.,

f(xn) =
∑

S∈S
f̂S · xS

where S ⊂ 2[n] and |S|= s. Then, an application of the union bounds leads to

Pr [f(Xn) = f(yn) | Y n = yn] ≥ Pr

[

⋂

S∈S
XS = yS | Y n = yn

]

≥ 1−
∑

S∈S
Pr
[

XS 6= yS | Y n = yn
]

= 1−
∑

S∈S

1− ρ|S|

2
.

This probability will be larger than 1/2 for all yn ∈ {−1, 1}n if ρ is larger than the

solution to
∑

S∈S
ρ|S| = s− 1.

Similar conditions can be derived for PTFs (5) of sparsity s.

The extremal property of the OR function noted above may ostensibly be attributed

to the fact that it is extremely unbalanced. However, x1 · OR(xn
2 ) is balanced, and

Propositions 3.9 and 4.2 imply that it is ρ-SP for ρ > 2(n−2)/(n−1)−1 = 1− 2 ln(2)
n

+O(n−2).

The next proposition demonstrates that the statement in Proposition 4.2 holds even if

we restrict ourselves to balanced LTFs.

Proposition 4.3. Any balanced LTF f is ρ-SP for ρ > 1− 2 ln(2)
n

+O(n−2), and there

is no better universal guarantee.

Proof. Note that the above region is essentially the same as the one in Proposition 4.2,

hence one direction is clear. We need to show there exists a balanced function that is

not ρ-SP at any point outside this region. To that end, let us introduce the enlightened

dictator function, defined for n ≥ 3 to be

(9) E-Dict(xn) := sgn

(

(n− 2)x1 +

n
∑

i=2

xi

)

.

Evidently, E-Dict(xn) is determined by the “dictator” x1, unless all the ”subjects”

x2, . . . , xn disagree. It is easy to verify that E-Dict(xn) is a monotone, odd (and hence

balanced) function. This function is SP at yn = (−1, 1n−1) if and only if

Pr(E-Dict(Xn) = 1 | Y n = yn) = (1− δ)n + δ(1− δn−1) ≥ 1/2.(10)
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The second derivative of the left-hand side (l.h.s.) above is n(n− 1)((1− δ)n−1− δn−2),

which is non-negative for δ ∈ [0, 1/2], hence the l.h.s. is convex inside this interval. It

is easy to check that equality in (10) holds for δ = ln(2) ·n−1−O(n−2) and for δ = 1/2,

hence by convexity yn is δ-SP if and only if δ < ln(2) · n−1 − O(n−2), or equivalently,

ρ > 1− 2 ln(2) · n−1 +O(n−2).1 �

4.1. Bounded Degree and Spectral Norm. Next, we provide a stronger statement

that uses the Fourier-degree Deg(f) of the function f , i.e., the maximal degree of the

characters appearing in the Fourier representation of f .

Theorem 4.4. Any function f is ρ-SP for

ρ ≥ 1− 1

Deg(f) ·min
{

Deg(f),
∑

S⊆[n]

∣

∣

∣
f̂S

∣

∣

∣

} .

Proof. Fix any yn and think of Tρf(y
n) as a polynomial in ρ. Let ρ0 be the largest

root of this polynomial in [0, 1] (if there is one, otherwise ρ0 = 0). Since Tρf(y
n) equals

f(yn) ∈ {1,−1} for ρ = 1, then by continuity, f is ρ-SP at yn for any ρ ≥ ρ0. By the

mean value theorem

1 = T1f(y
n)− Tρ0f(y

n) = (1− ρ0)
d

dρ
Tρf(y

n)

∣

∣

∣

∣

ρ=ρ̃

for some ρ̃ ∈ [ρ0, 1], and so

(11) ρ0 ≤ 1− 1

maxρ∈[0,1]

∣

∣

∣

d
dρ
Tρf(yn)

∣

∣

∣

,

and so a bound on ρ0 may be obtained by bounding the derivative. To that end,

recall that Markov brothers’ inequality [GM99, Theorem 1.1] states that for any real

polynomial P (t) of degree k

max
t∈[−1,1]

∣

∣

∣

∣

d

dt
P (t)

∣

∣

∣

∣

≤ k2 · max
t∈[−1,1]

|P (t)| ,

and that Bernstein’s inequality [GM99, Theorem 1.2] states that for any complex poly-

nomial Q(z) of degree k,

max
|z|≤1

∣

∣

∣

∣

dQ(z)

dz

∣

∣

∣

∣

≤ k ·max
|z|≤1

|Q(z)| .

The claim then follows from (11) by noting that the degree of Tρf as a polynomial in

ρ equals the Fourier degree Deg(f) , and the bound

|Tρf(y
n)| =

∣

∣

∣

∣

∣

∣

∑

S⊆[n]

ρ|S| · f̂S · xS

∣

∣

∣

∣

∣

∣

1Using Proposition 4.1 it can be verified that this the true range for which E-Dict(·) is SP.
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≤
∑

S⊆[n]

|f̂S|

for any ρ ∈ (0, 1]. �

Theorem 4.4 significantly improves on Theorem 4.2 whenever Deg(f) ≪ √
n, e.g.,

for n-dimensional functions f that can be computed by a decision tree of depth k ≪ n,

in which case Deg(f) ≤ k [O’D14, Proposition 3.16]. Functions with low spectral norm
∑

S⊆[n]|f̂S| are discussed in [STlV17] and references therein.

4.2. Friendly Neighbors. Given a function f , we say that a point xn has a radius-d

friendly neighborhood w.r.t. f if there exists some yn of distance at most d that agrees

with xn, namely, where dH(x
n, yn) ≤ d and f(xn) = f(yn).

Proposition 4.5. Suppose f is ρ-SP for all ρ > 1−ε, and n > max{2ε−1, γ} where γ is

a universal constant. Then each point in {−1, 1}n has a radius-2 friendly neighborhood

w.r.t. f .

Proof. Suppose toward contradiction that all the neighbors at Hamming distance 1 and

2 from some yn disagree with it. This implies that

Pr (f(Xn) 6= f(Y n) | Y n = yn) ≥
(

n

1

)

δ(1− δ)n−1 +

(

n

2

)

δ2(1− δ)n−2

= (1− δ)n−2nδ

(

(1− δ) +
(n− 1)

2
δ

)

.

Choosing δ = α
n
, and assuming that n > 2α

ε
so that we are in the SP region, yields

Pr (f(Xn) 6= f(Y n)|Y n = yn) ≥
(

1− α

n

)n−2

α

(

1 +
α

2
− 3α

2n

)

≥
(

1− α

n

)n−2

·
(

α+
α2

2

)

− O

(

1

n

)

= e−α ·
(

α +
α2

2

)

−O

(

1

n

)

.

One can check that, e.g., for α = 1, (α + α2

2
)e−α > 1/2, and so f cannot be SP if n is

larger than some universal constant, in contradiction. �

Hence, for a function to be SP even slightly below the guaranteed high correlation

threshold of ρ > 1− 2 ln(2)
n

+O(n−2), every point must admit a radius-2 friendly neigh-

borhood. The OR function, e.g., does not satisfy this property. Furthermore, this result

is tight: for the largest character x[n] =
∏n

i=1 xi, which is USP, the distance-1 neighbors

of each point do not agree with it.

The following corollary, which is not directly related to self-predictability, is obtained

by combining Theorem 4.4 and Proposition 4.5.
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Corollary 4.6. If Deg f <
√

n/2 and n is larger than a universal constant, then each

point in {−1, 1}n has a radius-2 friendly neighborhood w.r.t. f .

5. Low Correlation Self Predicting (LCSP) Functions

In this section we discuss LCSP functions, i.e., functions that are ρ-SP for any ρ < ρ∗

for some ρ∗ > 0. Note that any USP function is trivially also LCSP, hence all our LCSP

necessary conditions will apply to USP functions verbatim.

5.1. LCSP and Spectral Threshold Functions. Let the minimal level of a function

f be defined as

Lev(f) := min
{

k ∈ [n] : W k[f ] > 0
}

,

and let

fLev(x
n) :=

∑

S:|S|=Lev(f)

f̂Sx
S.

We say that f is weakly spectral threshold (WST) if fLev(x
n) · f(xn) ≥ 0 for all xn, i.e.,

the sign of both functions agree whenever fLev 6= 0. We say that f is strongly spectral

threshold (SST) if it is WST and fLev is never zero.

For an LTF f = sgn(a0+
∑n

i=1 aixi), the Fourier coefficients (f̂φ, f̂1, . . . , f̂n) are called

Chow parameters, and, as is well-known [Cho61, Tan61], these parameters unambigu-

ously determine the LTF. The Chow-parameters problem [OS11] is to find coefficients

an0 defining the LTF given the Chow parameters. It can be seen that in case of balanced

LTFs, SST functions are exactly the LTFs for which a solution to the Chow-parameters

problem is exactly the Chow parameters themselves.

Proposition 5.1. SST implies LCSP. Conversely, LCSP implies WST.

Proof. The optimal predictor for f satisfies

sgnTρf(x
n) = sgn



ρLev(f) ·
∑

s:|S|≥Lev(f)

ρ|S|−Lev(f)f̂Sx
S





= sgn (fLev(x
n) +O(ρ)) .

Thus, sgnTρf(x
n) = sgn fLev(x

n) for any ρ small enough whenever fLev(x
n) 6= 0. If f is

SST fLev(x
n) never vanishes, and hence f(xn) = sgn fLev(x

n) = sgnTρf(x
n), implying

LCSP. Conversely, if f is LCSP, then f(xn) = sgnTρf(x
n) = sgn fLev(x

n) unless fLev

vanishes, implying WST. �

An immediate consequence of Proposition 5.1 is:

Corollary 5.2. An LCSP function is either balanced or constant.
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Proof. Suppose f is LCSP and unbalanced. Then Lev[f ] = 0 and f̂φ 6= 0, and by

Proposition 5.1 it must be WST. Hence f = sgn f̂φ ∈ {−1, 1} must be constant. �

It is also interesting to note the following dichotomy:

Corollary 5.3. Let f be an LCSP function. Then either W 1[f ] = 0 or W 1[f ] ≥ 1/2.

Proof. If 0 < W 1[f ] < 1/2 then Proposition 3.17 implies that

Stab∗
ρ[f ]

Stabρ[f ]
> 1

for all sufficiently small ρ, and so f cannot be LCSP. �

This result resembles the claim that W 1[f ] ≥ 1/2 for LTFs [O’D14, Theorem 5.2].

Note however that the above claim holds for LCSP functions that are not LTFs but do

have energy on the first level. Next, recall that Proposition 3.13 states that a function

is ρ-SP if and only if ‖Tρf‖1= Stab∗
ρ[f ] = Stabρ[f ] = ‖T√

ρf‖22. A similar property

holds for fLev if the function is LCSP.

Corollary 5.4. If f is LCSP then ‖fLev‖1= ‖fLev‖22.

Proof. f must be WST by Proposition 5.1, and so Plancherel’s identity implies that

E |fLev(Xn)| = E (fLev(X
n) · f(Xn))

= 〈fLev, f〉

=
∑

S:|S|=Lev[f ]

f̂ 2
S

= E
(

f 2
Lev(X

n)
)

.

�

The following two examples show that the distinction between WST and SST in

Proposition 5.1 is necessary.

Example 5.5 (LCSP does not imply SST). Consider the balanced LTF with n = 4

and coefficients a41 = (2, 1, 1, 1). This is a Majority function with a tie-breaking input.

It can be verified by direct computation that this function is USP, hence also LCSP.

However, its level-1 Fourier coefficients are (3
4
, 1
4
, 1
4
, 1
4
). Hence, while it is clearly WST,

it is not SST as there are 2 inputs for which fLev(x
n) = 0.

Example 5.6 (WST does not imply LCSP). The balanced LTF with n = 9 and

coefficients a91 = (1, 5, 16, 19, 25, 58, 68, 91, 94) can be verified to be WST, but not LCSP.

It is ρ-SP only for ρ > 0.577. This example was found by analyzing LTFs with randomly

drawn coefficients.
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The following example shows that the SST property is limited to the low-correlation

regime only.

Example 5.7 (SST does not imply USP). The LTF of Example 3.3 is SST, but as was

shown there, is not USP. Thus, while an SST is always LCSP, it is not necessarily USP.

We note in passing that there are SST and WST functions outside Majority that are

USP.

Example 5.8. The LTF in Example 3.7 is SST and USP, while the balanced LTF with

n = 9 and coefficients a91 = (1, 1, 1, 3, 3, 3, 5, 5, 7) is WST and USP (fLev = 0 for 30

inputs), but not SST.

Next, using Proposition 5.1, we can show that the largest coefficients of an LCSP

LTF cannot be too distinct.

Proposition 5.9. Let f be an LTF that depends on all its n variables. Let a and

b be its first and second largest coefficients in absolute values, respectively, in some

representation of f . If f is LCSP then
∣

∣

a
b

∣

∣ <
√

2n ln(2n) + 1.

Proof. Assume without loss of generality that a1 ≥ a2 ≥ · · · ≥ an > 0. Recall also

that by Corollary 5.2 we know that a0 = 0. Since f is monotone, its level-1 Fourier

coefficients equal influences [O’D14, Proposition 2.21], i.e.,

f̂k = Infk[f ](12)

:= Pr
(

f(Xn) 6= f(Xk−1
1 ,−Xk, X

n
k+1)

)

= Pr

(∣

∣

∣

∣

∣

∑

i 6=k

aiXi

∣

∣

∣

∣

∣

< ak

)

.(13)

Assume without loss of generality that a2 = 1, and write a := a1. For brevity, also

write Z :=
∑n

i=3 aiXi and X := X1. Then, from the symmetry of Z,

f̂1 = Pr(|X + Z|≤ a)

= Pr(|1 + Z|≤ a)

≥ Pr(|Z|< a− 1),

and

f̂2 = Pr(|aX + Z|≤ 1)

≤ Pr(a− 1 ≤ |Z|≤ a+ 1)

≤ Pr(|Z|≥ a− 1).
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Hence,
f̂1

f̂2
≥ 1− Pr(|Z|≥ a− 1)

Pr(|Z|≥ a− 1)
.

Since |ai|≤ 1 for 3 ≤ i ≤ n, and assuming toward contradiction that a >
√

(2n− 2) ln 2n+

1, Hoeffding’s inequality implies that

Pr(|Z|≥ a− 1) < 1/n,

and so f̂1/f̂2 > n − 1. Noting that ai ≥ aj implies f̂i ≥ f̂j , we also have that f̂1/f̂i ≥
n − 1 + ε for any i > 1, for ε > 0 small enough. By Proposition 5.1, f is WST,

i.e., f(xn) = sgn
∑n

i=1 f̂ixi whenever the right-hand side (r.h.s.) is nonzero. This

representation and the bounds on the ratios f̂1/f̂i from above imply that f(xn) =

x1 must hold. This, however, contradicts the assumption that f depends on all the

variables. �

For example, the enlightened dictator function E-Dict(·) (9) has first-to-second co-

efficient ratio of n − 2, and thus cannot be LCSP. It should be noted however, that

E-Dict(·) can also be written as an LTF with coefficients E-Dict(·) = (
√
n, 1, c, c, . . . , c)

where c =
√
n−1+ε
n−2

for some ε > 0. When given in this form, Proposition 5.9 is incapable

of ruling it out from being SP. Nonetheless, it is easy to verify that LTFs of coefficients

(c, 1, 1, ..., 1) for c < n − 2 and c = Ω(n), must have a2 = a3 · · · = an in any valid

representation, and thus the first-to-second-coefficient ratio is always Ω(n).

5.2. LTF Approximation. The WST condition can be leveraged to show that a LCSP

function can typically be well approximated by an LTF. Specifically:

Theorem 5.10. An LCSP f is
√

2
πnf

-close to an LTF, where nf := |{i ∈ [n] : f̂i 6= 0}|.

Corollary 5.11. A monotone LCSP function that depends on all its coordinates is
√

2
πn

-close to an LTF.

To prove Theorem 5.10 we first establish the following technical lemma. We state it

in a slightly more general form than we actually need.

Lemma 5.12. Let an ∈ R
n be a vector of nonzero coefficients. Then for any b ∈ R

Pr

(∣

∣

∣

∣

∣

n
∑

i=1

aiXi − b

∣

∣

∣

∣

∣

< min
k∈[n]

|ak|
)

≤ 2−n

(

n

⌊n/2⌋

)

≤
√

2

πn
.

Proof. Write a = min|ak| and let

A :=

{

xn ∈ {−1, 1}n :

∣

∣

∣

∣

∣

n
∑

i=1

aixi − b

∣

∣

∣

∣

∣

< a

}

.



SELF-PREDICTING BOOLEAN FUNCTIONS 21

It is easy to see that A forms an antichain w.r.t. the partial order � on {−1, 1}n, i.e.,

that there are no two distinct xn, yn ∈ A such that xn � yn. This holds simply since

for such a pair it must hold that
∣

∣

∣

∣

∣

n
∑

i=1

aiyi −
n
∑

i=1

aixi

∣

∣

∣

∣

∣

≥ 2a.

An antichain w.r.t. � is called a Sperner family, and Sperner’s theorem [AS04, Maximal

Antichains, Corollary 2] shows that

|A|≤
(

n

⌊n/2⌋

)

concluding the proof. �

Proof of Theorem 5.10. Assume Lev[f ] = 1 (trivial otherwise), and define g(xn) =

sgn(
∑n

i=1 f̂ixi). Let A := {xn ∈ {−1, 1}n : g(xn) = 0}. Using Lemma 5.12, we have

that

Pr(Xn ∈ A) ≤
√

2

πnf

.

Since f is LCSP then by Proposition 5.1 is it also WST, and hence f(xn) = g(xn) for

all xn 6∈ A. By slightly perturbing the coefficients of g, one can clearly obtain a “legal”

LTF g̃ that takes values only in {−1, 1} and still agrees with f for all xn 6∈ A. The

distance between f and g̃ is therefore at most |A|/2n. �

5.3. Chow Distance. The Chow distance between two Boolean functions f and g is

defined as

dChow(f, g) :=





∑

i∈[n]

(

f̂i − ĝi

)2





1/2

.

It was shown in [OS11, Prop. 1.5, Th. 1.6] that for any f and g

1

4
d2Chow(f, g) ≤ Dist(f, g) ≤ Õ

(

1
√

− log dChow(f, g)

)

,

where for q < 1, Õ(q) means O(q · logc(1/q)) for some absolute constant c.

For LCSP LTF functions, the upper bound can be generally improved. We will state

our result for the case where one of the functions is SST, though it can be somewhat

cumbersomely extended to the case where none of them is. Let Gap[f ] be the minimal

positive value of
∑n

i=1 f̂ixi over the Hamming cube (with Gap[f ] = 0 if all the f̂i’s are

zero).
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Theorem 5.13. Let f and g be two balanced LCSP functions that depend on all n

variables, and assume that f is SST. Then

Dist(f, g) ≤ d2Chow(f, g)

2Gap[f ]
.

Proof of Theorem 5.13. Let

B := {xn ∈ {−1, 1}n : f(xn) 6= g(xn)} .

Then,

d2Chow(f, g) = E



(f(Xn)− g(Xn)) ·
∑

i∈[n]

(

f̂i − ĝi

)

Xi



(14)

= 2E





∣

∣

∣

∣

∣

∣

∑

i∈[n]

(

f̂i − ĝi

)

Xi

∣

∣

∣

∣

∣

∣

· 1(Xn ∈ B)



(15)

≥ 2Gap[f ] · Pr (Xn ∈ B) ,(16)

where (14) follows from linearity of expectation and the definition of the Fourier coeffi-

cients, (15) holds since both f and g are WST by virtue of Proposition 5.1 and so for all

xn ∈ B, |f(Xn)− g(Xn)|= 2 and sgn[
∑

i∈[n](f̂i − ĝi)Xi] = sgn[f(Xn)− g(Xn)]. Finally,

(16) holds by noting that f is SST and g is WST. Thus, whenever f(xn) > g(xn) then
∑

i∈[n] f̂iXi > Gap[f ] and
∑

i∈[n] ĝiXi ≤ 0 (and similarly for f(xn) < g(xn)). �

Equations (12)-(13) and Lemma 5.12 imply that Gap[Maj] ≤
√

2
πn

. Since Majority

is SST, we have:

Corollary 5.14. For odd n and any LCSP function g,

1

4
· d2Chow(Maj, g) ≤ Dist(Maj, g) ≤

√

πn

8
· d2Chow(Maj, g).

6. Stability-based Conditions

In this section we provide simple necessary conditions for a function to be ρ-SP, in

terms of its stability and Fourier coefficients.

Proposition 6.1. If f is ρ-SP then

Stabρ[f ] ≥ max
S⊆[n]

ρ|S||f̂S|.

Proof. If f is ρ-SP, then Stabρ[f ] = Stab∗
ρ[f ]. Letting T ⊆ [n], the strong stability can

be lower bounded as follows:

Stab∗
ρ[f ] = E

∣

∣

∣

∣

∣

∣

∑

S⊆[n]

ρ|S| · f̂S · Y S

∣

∣

∣

∣

∣

∣
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= E





∣

∣

∣

∣

∣

∣

∑

S⊆[n]

ρ|S| · f̂S · Y S

∣

∣

∣

∣

∣

∣

·
∣

∣Y T
∣

∣





= E





∣

∣

∣

∣

∣

∣

∑

S⊆[n]

ρ|S| · f̂S · Y S · Y T

∣

∣

∣

∣

∣

∣





≥

∣

∣

∣

∣

∣

∣

E





∑

S⊆[n]

ρ|S| · f̂S · Y S · Y T





∣

∣

∣

∣

∣

∣

= |ρ|T | · f̂T |.

The proof is completed by optimizing over T . �

Example 6.2. When f is the OR function, we have

max
S⊆[n]

ρ|S||f̂S|= |f̂φ|= 1− 21−n.

It is easy to verify that

Pr (f(Xn) = f(Y n)) = 1− 21−n · (1− (1− δ)n) ,

and using ρ = 1− 2δ

Stabρ[f ] = 2 · Pr (f(Xn) = f(Y n))− 1

= 1− 22−n ·
(

1−
(

1 + ρ

2

)n)

.

Then, OR is ρ-SP only when Stabρ[OR] ≥ 1−21−n, which can be seen to be equivalent to

ρ ≥ 2(n−1)/n−1. This is the same result that can be obtained by direct computation (see

Proposition 4.2), and so the bound of Proposition 6.1 is tight in this case. Furthermore,

we may deduce again the result of Corollary 5.2:

Corollary 6.3. An LCSP function is either balanced or constant.

Proof. If f is ρ-SP then

Stabρ[f ] =
∑

S⊆[n]

ρ|S||f̂S|2≥ |f̂φ|.

As ρ ↓ 0, this bound implies that |f̂φ|2≥ |f̂φ|, and as |f̂φ|≤ 1, this is only possible when

either f̂φ = 0 or |f̂φ|= 1. �

More generally, we have the following:

Corollary 6.4. If f is LCSP then

W Lev[f ][f ] ≥ max
S⊆[n]: |S|=Lev(f)

|f̂S|.
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Specifically, if f is also monotone, this bound reads

W 1[f ] ≥ max
i∈[n]

f̂i = max
i∈[n]

Inf i[f ],

where the r.h.s. is the so-called maximal influence of f .

When Deg(f) < n, another bound of the form of Proposition 6.1 can be derived using

the following implication of hypercontractivity [Bon70, Gro75]: When f : {−1, 1}n → R

has Deg(f) = k then ‖f‖2 ≤ ek · ‖f‖1 [O’D14, Theorem 9.22].

Proposition 6.5. If f is ρ-SP and Deg(f) = k then

Stabρ[f ] ≥ e−k ·
√

Stabρ2 [f ].

Proof. As in the proof of Proposition 6.1, we lower bound

E

∣

∣

∣

∣

∣

∣

∑

S⊆[n]

ρ|S| · f̂S · Y S

∣

∣

∣

∣

∣

∣

= ‖Tρf‖1

≥ e−k · ‖Tρf‖2(17)

= e−k ·
√

〈Tρf, Tρf〉

= e−k ·
√

〈Tρ2f, f〉(18)

= e−k ·
√

Stabρ2 [f ]

where (17) is since Deg(f) = Deg(Tρf) = k, and (18) is since Tρf is a self-adjoint

operator. �

The last proof implies for a degree k, ρ-SP function f

e−k ·
√

Stabρ2 [f ] ≤ Stabρ[f ] ≤
√

Stabρ2[f ].

It can be observed that even for a given degree k, neither of the bounds in Propositions

6.1 and 6.5 subsumes the other.

7. Sharp Threshold at High Correlation

As we have seen, all functions are ρ-SP when ρ > 1− 2 ln 2
n

+O(n−2). In this section,

we show that when the correlation is reduced ever so slightly to ρ ≈ 1− 2
n
, the fraction

of SP functions becomes double-exponentially small.

Theorem 7.1. For any α > 1, the fraction of ρ-SP functions for ρ = 1− 2α
n

is at most

exp(−2n·E(α)+o(n)), where

E(α) := min

{

1

2
, h

(

α− 1

2α

)}
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and h(t) := −t log(t)− (1− t) · log(1− t) is the binary entropy function.

The fact that ρ-SP functions are rare is not limited to the ρ = 1 − O( 1
n
) regime,

yet a different technique is needed in order to establish this in other regimes. We next

demonstrate how a similar phenomenon holds in a high correlation regime where ρ is

fixed. Let ηδ be the minimal η > 0 such that

1

2
log

1

δ2 + (1− δ)2
< min

{

log
1

1− δ
, d(η||δ)

}

holds, where d(p||q) := p log p
q
+(1−p) log 1−p

1−q
is the binary divergence function. It can

be verified that ηδ < 1/4 for any δ < δmax ≈ 0.0974.

Theorem 7.2. For any δ ∈ (0, δmax), the fraction of ρ-SP functions for ρ = 1 − 2δ is

at most exp
(

−2n[1−h(2ηδ)]−o(n)
)

.

We begin with the proof of Theorem 7.1.

Proof of Theorem 7.1. In this proof we find it more convenient to work with a δ and

{0, 1} convention. We begin by deriving a sufficient condition for a function to be non-

ρ-SP at any fixed yn. This condition depends only on local values of the function, up

to a Hamming distance of log n from yn, and is tailored to the regime of δ = Θ(1/n).

Specifically, we show that for a random choice of function, the probability that our

condition is satisfied decays exponentially with n, and we derive an upper bound on the

associated exponent. Then, since the resulting exponent is smaller than 1, we conclude

that the expected number of non-ρ-SP points for a random function is exponentially

large. This fact in itself, however, is not sufficient since there are statistical dependencies

between different points in the Hamming cube. Nonetheless, Janson’s theorem [AS04,

Theorem 8.1.1] along with the aforementioned “locality” of the sufficient condition allow

us to prove that the probability that all points in the Hamming cube are ρ-SP is only

double-exponentially small.

We proceed to prove the local condition for non-ρ-SP-ness. To that end, let us denote

the shell of radius d around xn ∈ {0, 1}n by

S(xn, d) := {x̃n : dH(x
n, x̃n) = d} .

For any function f : {0, 1}n → {0, 1}, let the d-shell bias of f be

βd,f(x
n) :=

1

|S(xn, d)|
∑

x̃n∈S(xn,d)

f(x̃n).

Fix η > 0 and some yn. Without loss of generality, we assume below that f(yn) = 0.

Define the set of functions

Bη(y
n, 1) = {f : β1,f(y

n) ≥ 1− η} ,
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and for 2 ≤ d ≤ ℓ, the sets

Bη(y
n, d) = {f : βd,f (y

n) ≥ 1/2} ,

where ℓ ≥ 3. We say that yn is bad for f if f ∈ Bη(y
n), where

Bη(y
n) :=

ℓ
⋂

d=1

Bη(y
n, d).

Now, for any n > ℓ, setting δ = α
n
, any f ∈ Bη(y

n) satisfies:

Pr (f(Xn) 6= f(Y n) | Y n = yn)

≥
ℓ
∑

d=1

βd,f(y
n)

(

n

d

)

δd(1− δ)n−d

≥ (1− δ)n ·
ℓ
∑

d=1

βd,f(y
n)

(

n

d

)

δd

≥
(

1− α

n

)

n ·
(

1− ℓ

n

)

ℓ ·
(

ℓ
∑

d=1

βd,f (y
n)

d!
· αd

)

≥
(

1− α

n

)

n ·
(

1− ℓ

n

)

ℓ ·
(

(1− η) · α +
1

2

ℓ
∑

d=2

αd

d!

)

=
(

1− α

n

)

n ·
(

1− ℓ

n

)

ℓ ·
(

(1− η) · α +
1

2

(

eα − 1− α−
∞
∑

d=ℓ+1

αd

d!

))

.(19)

Taking ℓ to be Ω(1) and o(n), say ℓ = logn, (19) tends to

1

2
+

(

1

2
− η

)

αe−α − 1

2
e−α

as n → ∞. Let

ηα :=
α− 1

2α
.

Clearly, ηα is monotonically increasing for α > 0, where limα↓1 ηα = 0, and limα↑∞ ηα =

1/2. Setting η ∈ (0, ηα) guarantees that (19) is larger than 1/2 for all large enough n.

Hence, for such a choice,

Pr (f(Xn) 6= f(Y n) | Y = yn) > 1/2,

and so

{f ∈ Bη(y
n)} ⊆ {f is not ρ-SP at yn} .

Let us now choose f uniformly at random over all Boolean functions on {0, 1}n, and

lower bound the probability that f is ρ-SP at yn. To that end, note that Chernoff’s
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bound implies that

(20) Pr (β1,f(y
n) ≥ 1− η) = 2−n(1−h(η))+o(n),

and symmetry implies that

Pr (βd,f(y
n) ≥ 1/2) ≥ 1/2,

for 2 ≤ d ≤ ℓ = log n. By independence,

Pr (f ∈ Bη(y
n)) =

logn
∏

d=1

Pr (f ∈ Bη(y
n, d))

= 2−n(1−h(η))+o(n) · 2−(logn−1)

= 2−n(1−h(η))+o(n),

and so

Pr (f is not ρ-SP at yn) ≥ 2−n(1−h(η))+o(n).

This completes the proof of the local bound.

We now proceed to the global behavior of the number of non-ρ-SP points. Let us

first upper bound the probability Pr(f ∈ E) where

E :=
⋂

yn∈{0,1}n
Bc
η(y

n).

This in turn will serve as an upper bound for the probability that the function we draw

is ρ-SP for the aforementioned ρ. To that end, note that if f is ρ-SP for ρ = 1−2α ·n−1

then it must be that f has no bad inputs, i.e., f ∈ E . Furthermore, note that the

expected number of “bad” inputs is given by

µ := 2n · Pr (f ∈ Bη(y
n)) = 2nh(η)+o(n).

If the number of bad inputs had been Poisson distributed with mean µ, then

Pr (f ∈ E) = e−µ = exp
(

−2n·h(η)+o(n)
)

.

However, the events Bη(x
n) and Bη(y

n) are dependent whenever dH(x
n, yn) ≤ 2ℓ.

Nonetheless, Janson’s correction [AS04, Theorem 8.1.1] implies that

Pr (f ∈ E) ≤ e−µ+∆
2 ,

where ∆ is a correction term that depends on joint probability of dependent bad events

Pr(f ∈ Bη(x
n) ∩ Bη(y

n)). We next show that ∆ → 0 as n → ∞ exponentially fast, as

long as η ∈ (0, h−1(1/2)). Once this is established, one can set η = min{ηα, h−1(1/2)}
to obtain

Pr (f ∈ E) ≤ exp
(

−2n·h(η)+o(n)
)

,
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and the theorem follows.

To complete the proof, it remains to show that ∆ → 0 exponentially fast. Let us

denote xn ∼ yn whenever the events {f ∈ Bη(x
n)} and {f ∈ Bη(y

n)} are statistically

dependent. The term required for Janson’s theorem is then given by

(21) ∆ :=
∑

xn∼yn

Pr (f ∈ Bη(x
n) ∩ Bη(y

n)) .

Let us analyze the probability in (21) under the assumption that f(xn) = f(yn) = 0.

It will be evident that all other three cases for (f(xn), f(yn)) can be analyzed in the

same way and lead to essentially the same result. Bayes rule implies that

Pr (f ∈ Bη(x
n) ∩ Bη(y

n) | f(xn) = f(yn) = 0)

= Pr (f ∈ Bη(x
n, 1) | f(xn) = f(yn) = 0)

× Pr (f ∈ Bη(y
n, 1) | f(xn) = f(yn) = 0, f ∈ Bη(x

n, 1))

× Pr

(

ℓ
⋂

d=2

{{f ∈ Bη(x
n, d)} ∩ {f ∈ Bη(y

n, d)}} |

f(xn) = f(yn) = 0, f ∈ Bη(x
n, 1) ∩ Bη(y

n, 1)

)

.(22)

For the first probability on the r.h.s. of (22), we note that if dH(x
n, yn) ≥ 2 then

S(xn, 1) ∩ {xn, yn} = φ and (20) holds. Otherwise, if dH(x
n, yn) = 1 then S(xn, 1) ∩

{xn, yn} = yn. In that case,

Pr (f ∈ Bη(x
n, 1) | f(xn) = f(yn) = 0)

= Pr (β1,f(x
n) ≥ 1− η | f(xn) = f(yn) = 0)

= Pr





1
(

n
1

)

∑

ỹn∈S(xn,1)\{yn}
f(ỹn) + f(yn) ≥ 1− η | f(xn) = f(yn) = 0





= Pr





1

n− 1

∑

ỹn∈S(xn,1)\{yn}
f(ỹn) ≥ n

n− 1
(1− η)





= 2−(n−1)[1−h(η+O(n−1))]+o(n)

= 2−n(1−h(η))+o(n),(23)

where the last transition is since h(η) is a smooth function, with bounded derivatives

around a neighborhood of any fixed η ∈ (0, 1).

For the second probability on the r.h.s. of (22), if dH(x
n, yn) ≥ 3 then S(yn, 1) ∩

{{xn, yn} ∪ S(xn, 1)} = φ and (20) holds. Next, if dH(x
n, yn) = 1 then S(yn, 1) ∩
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{{xn, yn} ∪ S(xn, 1)} = xn. A derivation similar to (23) shows that

(24) Pr (f ∈ Bη(y
n, 1) | f(xn) = f(yn) = 0, f ∈ Bη(x

n, 1)) = 2−n(1−h(η))+o(n)

holds. If dH(x
n, yn) = 2 then S(yn, 1) ∩ {{xn, yn} ∪ S(xn, 1)} contains exactly two

points. Again, a derivation similar to (23) (with n− 2 replacing n− 1) shows that (24)

holds.

The third probability in the r.h.s. of (22) can be trivially upper bounded by 1. Thus,

Pr (f ∈ Bη(x
n) ∩ Bη(y

n) | f(xn) = f(yn) = 0) ≤ 2−2n(1−h(η))+o(n).

Evidently, analogous analysis holds for all other three possibilities of the pair (f(xn), f(yn)),2

and so

(25) Pr (f ∈ Bη(x
n) ∩ Bη(y

n)) ≤ 2−2n(1−h(η))+o(n).

Now, the number of dependent pairs is upper bounded by 2n ·
(

n
2ℓ

)

since xn ∼ yn is

possible only when dH(x
n, yn) ≤ 2ℓ. As ℓ = log n was chosen,

(

n
2ℓ

)

≤ nlogn = 2log
2 n.

Then (25) implies that

∆ ≤ 2n+o(n) · 2−2n(1−h(η))+o(n)

= 2−n(1−2h(η))+o(n),

and so ∆ → 0 as n → ∞ exponentially fast, as long as η ∈ (0, h−1(1/2)). This concludes

the proof. �

We move on to the proof of Theorem 7.2.

Proof of Theorem 7.2. In this proof we find it more convenient to work with a δ and

{−1, 1} convention. As the proof of Theorem 7.1, this proof also comprises of a local

condition and global analysis. We begin by deriving a necessary condition for a function

to be ρ-SP, which is now based only on the value of the function at points of Hamming

distance (slightly larger than) 2ηn, with η < 1/4. This condition is tailored to the

regime of a fixed δ. We then use a central-limit theorem to show that the probability

that this condition is satisfied is close to 1/2. For global analysis, we consider a subset

of the hamming cube of size about 2n[1−h(2η)] whose minimal Hamming distance is at

least ηn. The existence of such a set is guaranteed by the Gilbert-Varshamov bound

[Rot06, Th. 4.10]. Since the points in this subset are sufficiently far apart, the event

that the local condition holds for one of the points is independent of the corresponding

events pertaining to all other points. Thus, the probability of a function to be ρ-SP is

not more than about 2−2n[1−h(2η)]
.

2Note that the value of f(xn) (resp. f(yn)) does not change the asymptotics of the Pr(f ∈ Bη(y
n))

(resp. Pr(f ∈ Bη(x
n))).
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To prove the required local condition, let δ < η < 1/4 be given, and let Dη(y
n) be a

punctured Hamming ball of relative radius η around yn, i.e.,

Dη(y
n) :=

{

zn ∈ {−1, 1}n : 0 <
1

n
dH(z

n, yn) ≤ η

}

.

Then, clearly

|p(xn|yn) · f(xn)| ≤ p(xn|yn) = 2−n log 1
1−δ ,

and by the Chernoff bound (or the method of types [CK11])
∣

∣

∣

∣

∣

∣

∑

xn∈Dc
η(y

n)\yn
p(xn|yn) · f(xn)

∣

∣

∣

∣

∣

∣

≤
∑

xn∈Dc
η(y

n)\yn
p(xn|yn)

≤ Pr (Xn 6∈ Dη(y
n) | Y n = yn)

≤ 2−nd(η||δ)−Θ(log n).

Focusing on some yn, we may assume without loss of generality that f(yn) = −1. Then,

E (f(Xn) | Y n = yn)

=
∑

xn

p(xn|yn) · f(xn)

= p(yn|yn) · f(yn) +
∑

xn∈Dη(yn)

p(xn|yn) · f(xn) +
∑

xn∈Dc
η(y

n)\yn
p(xn|yn) · f(xn)

≥ −2−n log 1
1−δ +

∑

xn∈Dη(yn)

p(xn|yn) · f(xn)− 2−nd(η||δ)−Θ(log n),

and thus,

{f is ρ-SP at yn} ⊆






∑

xn∈Dη(yn)

p(xn|yn) · f(xn) ≤ 2−n log 1
1−δ + 2−nd(η||δ)−Θ(log n)







:= Aη(y
n).

We next evaluate the probability that the necessary condition is satisfied when f is

chosen uniformly at random over all Boolean functions on {−1, 1}n. Specifically, we

use the Berry-Esseen central-limit theorem [Fel71, Chapter XVI.5, Theorem 2] to bound

Pr(Aη(y
n)). To that end, we note that

E





∑

xn∈Dη(yn)

p(xn|yn) · f(xn)



 = 0,
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and that by the method of types [CK11]

E





∑

xn∈Dη(yn)

p(xn|yn) · f(xn)





2

=
∑

xn∈Dη(yn)

p2(xn|yn)

=

⌊ηn⌋
∑

ℓ=1

∑

xn:dH (xn,yn)=ℓ

2−2n[h(ℓ/n)+d(ℓ/n||δ)]

= 2−2n·min0≤ζ≤η [h(ζ)+2d(ζ||δ)]−Θ(logn)(26)

= 2
−n·log 1

δ2+(1−δ)2
−Θ(logn)

where ζ := d/n, and the minimum in (26) is attained for ζ = δ2

δ2+(1−δ)2
(which satisfies

ζ ≤ δ < η). Similarly, we note that

γn :=
∑

xn∈Dη(yn)

E |p(xn|yn) · f(xn)|3

= 2−n·min0≤ζ≤η [2h(ζ)+3d(ζ||δ)]−Θ(logn),

where clearly γn decreases exponentially for any δ ∈ (0, 1/2). Consequently, the Berry-

Esseen central-limit theorem implies that there exists a universal constant c such that

Pr (Aη(y
n)) ≤ 1−Q

(

2−n log 1
1−δ + 2−nd(η||δ)−Θ(log n)

2
−n· 1

2
log 1

δ2+(1−δ)2
−Θ(logn)

)

+ cγn(27)

≤ 1

2
+ o(1).(28)

where in (27) Q(·) is the tail distribution function of the standard normal distribution,

and (28) is satisfied whenever η > ηδ. This completes the analysis of the local necessary

condition.

We next move on to global analysis. By the Gilbert-Varshamov bound [Rot06, Th.

4.10], there exists a set (also known as an error-correcting code) Cn ⊂ {−1, 1}n such

that

|Cn|≥ 2n[1−h(2η)]−o(n)

and Dη(x
n) ∩ Dη(y

n) = φ for all xn, yn ∈ Cn. Consequently,

Pr (f is ρ-SP) ≤ Pr

(

⋂

yn∈Cn
f is ρ-SP at yn

)

≤ Pr

(

⋂

yn∈Cn

{

f ∈ Ac
η(y

n)
}

)

=
∏

yn∈Cn
Pr (f ∈ Aη(y

n))



SELF-PREDICTING BOOLEAN FUNCTIONS 32

≤
(

1

2
+ o(1)

)|Cn|
.

The proof is completed since |Cn| increases exponentially for η < 1/4. �

Remark 7.3. It is evident that the proof of Theorem 7.2 also holds for any sequence of

{δn} such that δn = ω( 1√
n
) and δ := lim supn→∞ δn < δmax. Indeed, (28) holds in this

case too, as long as we choose η to be ηδ.

8. Open Problems

We have introduced the notion of self-predictability for Boolean functions. There are

many interesting questions left open; below is far from an exhaustive list.

We know that the characters, Majority and a few other LTFs (found numerically)

are USP, and we can create many other USP functions from them. However, we still

lack a clear understanding of what makes a function USP.

Problem 8.1. Characterize the family of USP functions. Specifically, how many USP

functions are there?

More specifically, we ask:

Problem 8.2. Is there a finite set of USP functions and a finite set of SP-preserving

operations that span all USP functions?

Adding symmetry to the mix, we conjecture the following.

Conjecture 8.3. The only symmetric USP functions are Majority and the largest char-

acter. In particular, Majority is the only monotone and symmetric USP function.

We have seen that LCSP functions are WST, but not vice versa.

Problem 8.4. Find a simple condition guaranteeing that a WST function is LCSP

(resp. USP).

We say that a function f is monotonically SP if there exists ρ0 such that f is ρ-SP

for ρ > ρ0 and not ρ-SP for ρ < ρ0. We have seen that there exist (balanced) functions

that are not monotonically SP.

Problem 8.5. Characterize the family of monotonically SP functions.

We have bounded the ratio between the strongest and second strongest coefficient of

an LCSP LTF. This is quite weak: Let rn(F) be the minimum number such that any

LTF in the family F admits a representation in which the ratio between the maximal

coefficient and minimal coefficient (in absolute values) is at most rn(F). It is known



SELF-PREDICTING BOOLEAN FUNCTIONS 33

in general, (see [BHPS10, Theorem 2] and references therein) that 2−n(2−o(1)) · nn/2 ≤
rn(F) ≤ 2n−1 · (n + 1)(n+1)/2 if F is the family of all LTFs. It is interesting to ask

whether rn(F) becomes much smaller under self-predictability.

Problem 8.6. Characterize rn(F) when F is the family of LCSP LTFs (resp. USP

LTFs).

Let Gρ,n be a directed graph over the set of all Boolean functions with n variables,

where we draw a directed edge from every function f to its optimal predictor sgnTρf

(unless they coincide). To avoid ambiguities, we can set sgnTρf equal to f whenever Tρf

is exactly zero. It is easy to see that the number of ρ-SP functions is upper bounded by

the number of weakly connected components of Gρ,n, namely the connected components

of the associated undirected graph obtained by removing the direction of the edges. In

fact, we conjecture that these quantities are exactly equal, or equivalently:

Conjecture 8.7. Gρ,n contains no cycles.

Note that if the above conjecture holds, then a simple way to arrive at a ρ-SP

function is to start with some function f and repeatedly apply the sgnTρ operator; this

procedure will terminate at a ρ-SP function in finite time. In fact, simulations indicate

that this convergence happens very quickly, which may hint that the weakly connected

components of Gρ,n have small depth.
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