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Abstract

In this work, we propose a simple modification of the forward-backward splitting method for
finding a zero in the sum of two monotone operators. Our method converges under the same
assumptions as Tseng’s forward-backward-forward method, namely, it does not require cocoer-
civity of the single-valued operator. Moreover, each iteration only uses one forward evaluation
rather than two as is the case for Tseng’s method. Variants of the method incorporating a
linesearch, relaxation and inertia, or a structured three operator inclusion are also discussed.
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1 Introduction
In this work, we propose an algorithm for finding a zero in the sum of two monotone operators in
a (real) Hilbert space H. Specifically, we consider the monotone inclusion problem

find x ∈ H such that 0 ∈ (A+B)(x), (1)

where A : H ⇒ H and B : H → H are (maximally) monotone operators with B (locally) Lipschitz
continuous such that (A+B)−1(0) 6= ∅. Inclusions of the form specified by (1) arise in numerous
problems of fundamental importance in mathematical optimization, either directly or through an
appropriate reformulation. In what follows, we provide some motivating examples.

Convex minimization: Consider the minimization problem

min
x∈H

f(x) + g(x),

where f : H → (−∞,+∞] is proper, lower semicontinuous (lsc), convex and g : H → R is con-
vex with (locally) Lipschitz continuous gradient denoted ∇g. The solutions to this minimization
problem are precisely the points x ∈ H which satisfy the first order optimality condition:

0 ∈ (∂f +∇g) (x), (2)

where ∂f denotes the subdifferential of f . Clearly (2) is of the form specified by (1).
General monotone inclusions: Consider the inclusion problem

find x ∈ H1 such that 0 ∈ (A+K∗BK)(x), (3)
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where A : H1 ⇒ H1 and B : H2 ⇒ H2 are maximally monotone operators, and K : H1 → H2 is a
linear, bounded operator with adjoint K∗. As was observed in [8,9], solving (3) can be equivalently
cast as the following monotone inclusion posed in the product space:

find
(
x

y

)
∈ H1 ×H2 such that

(
0
0

)
∈
([
A 0
0 B−1

]
+
[

0 K∗

−K 0

])(
x

y

)
. (4)

Notice that the first operator in (4) is maximally monotone whereas the second is bounded and
linear (in particular, it is Lipschitz continuous with full domain). Consequently, (4) is also of the
form specified by (1).

Another variant of (1) is the three operator inclusion

find x ∈ H such that 0 ∈ (A+B + C)(x), (5)

where the operators A and B are as before and C : H → H is β-cocoercive. Problems with this
structure have been studied in [10,17].

Saddle point problems and variational inequalities: Many convex optimization problems
can be formulated as the saddle point problem

min
x∈H

max
y∈H

g(x) + Φ(x, y)− f(y), (6)

where f, g : H → (−∞,+∞] are proper, lsc, convex functions and Φ: H × H → R is a smooth
convex-concave function. Problems of this form naturally arise in machine learning, statistics, etc.,
where the dual (maximization) problem comes from either dualizing the constraints in the primal
problem or from using the Fenchel–Legendre transform to leverage a nonsmooth composite part.
Through its first-order optimality condition, the saddle point problem (6) can expressed as the
monotone inclusion

find
(
x

y

)
∈ H ×H such that

(
0
0

)
∈
(
∂g(x)
∂f(y)

)
+
(
∇xΦ(x, y)
−∇yΦ(x, y)

)
, (7)

which is of the form specified by (1). By using the definitions of the respective subdifferentials, (7)
can also be expressed in terms of the variational inequality (VI): find z∗ = (x∗, y∗)> ∈ H×H such
that

〈B(z∗), z − z∗〉+ g(x)− g(x∗)− f(y) + f(y∗) ≥ 0 ∀z =
(
x

y

)
∈ H ×H, (8)

where B(x, y) := (∇xΦ(x, y),−∇yΦ(x, y))>.

Splitting algorithms are a class of methods which can be used to solve (1) by only invoking each
operator individually rather than their sum directly. The individual steps within each iteration
of these methods can be divided into two categories: forward evaluations in which the value of a
single-valued operator is computed, and backward evaluations in which the resolvent of an operator
computed. Recall that the resolvent of an operator A is given by JA := (I+A)−1 where I : H → H
denotes the identity operator.

When the resolvents of both of the involved operators can be easily computed, there are various
algorithms in the literature which are suitable for solving (1) with B not necessarily single-valued.
The best known example of such an algorithm is the Douglas–Rachford method [24,39]. In practice,
however, it is usually not the case that both resolvents can be readily computed and thus in order
to efficiently deal with realistic problems, it is often necessary to impose further structure on the
operators in (1). Splitting methods which do not require computation of two resolvents are therefore
of practical interest.

The best-known splitting method for solving the inclusion (1) when B is single-valued is the
forward-backward method, called so because each iteration combines one forward evaluation of B
with one backward evaluation of A. More precisely, the method generates a sequence according to

xk+1 = JλA(xk − λB(xk)) ∀k ∈ N, (9)
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and converges weakly to a solution provided the operator B : H → H is 1/L-cocoercive and λ ∈
(0, 2/L). Recall that B : H → H is β-cocoercive if

〈x− y,B(x)−B(y)〉 ≥ β ‖B(x)−B(y)‖2 ∀x, y ∈ H.

Cocoercivity of an operator is a stronger property than Lipschitz continuity and hence can be
difficult to satisfy for general monotone inclusions. For instance, apart from the trivial case when
K = 0, the skew-symmetric operator in (4) is never cocoercive. Furthermore, without cocoercivity,
convergence of (9) can only be guaranteed in the presence of similarly strong assumptions such as
strong monotonicity of A+B [12], or at the cost of incorporating a backtracking strategy [6] (even
when the Lipschitz constant is known).

In order to relax the cocoercivity assumption, Tseng [40] proposed a modification of the forward-
backward algorithm, known as the Tseng’s method or the forward-backward-forward method, which
only requires Lipschitzness of B at the expense of an additional forward evaluation. Applied to
(1), Tseng’s method generates sequences according to{

yk = JλA(xk − λB(xk))
xk+1 = yk − λB(yk) + λB(xk)

∀k ∈ N, (10)

and converges weakly provided B is L-Lipschitz and λ ∈ (0, 1/L).
In this work, we introduce and analyze a new method for solving (1) which converges under

the same assumptions as Tseng’s method, but whose implementation requires only one forward
evaluation per iteration instead of two. For a fixed stepsize λ > 0, the proposed scheme can be
simply described as

xk+1 = JλA
(
xk − 2λB(xk) + λB(xk−1)

)
∀k ∈ N, (11)

and converges weakly if B is L-Lipschitz and the stepsize is chosen to satisfy λ < 1
2L . We refer

to this scheme as the forward-reflected-backward method. It is worth noting that the analysis of
our method is entirely different than existing schemes, and hence is of interest in its own right. In
particular, the sequence generated by the method is not Fejér monotone, although it does satisfy
a quasi-Fejér property [13]. Moreover, there are relatively few fundamentally different alternatives
to Tseng’s forward-backward-forward algorithm for solving inclusions in the form of (1) without
cocoercivity [15,22,34].

We also remark that our method is of particular interest in the setting of the saddle point
problem (7). Indeed, one of the first splitting techniques for solving (6) is the famous Arrow–
Hurwicz algorithm [3] which suffers from the shortcoming of requiring strict assumptions to ensure
convergence. This was remedied in late 70’s when various modification of the algorithm were pro-
posed [2, 23, 33] which turned out to be applicable not only to saddle point problems, but also
to more general variational inequalities. Note also that the simplest case of (6) occurs when Φ
is a bilinear form and gives rise to the popular primal-dual algorithm, first analyzed by Cham-
bolle & Pock [11]. In a recent preprint [20], a variant of this algorithm, which can be applied when
Φ is not necessarily bilinear, was considered. Such an extension is a significant improvement as
it provides an approach to the saddle point problem that is different from variational inequality
methods. An interesting common feature of the methods in [11, 15, 20, 27] as well as the one pre-
sented here is that their respective iterations include a “reflection term” in which the value of an
operator at the previous point is subtracted from twice its value at the current point.

In addition to general interest in monotone inclusions from optimization community described
above, a new surge has appeared in machine learning research, see [16, 18, 28, 29, 38] and the
references therein. In these works, the authors design algorithms for training generative adversarial
networks (GANs) [19]. Although this takes the form of a nonconvex-nonconcave min-max problem,
the main workhorses are based on classical algorithms for solving monotone variational inequalities.
Thus, we believe that new algorithmic ideas, even for the monotone case, may have some impact
in this field as well.

The remainder of this paper is organized as follows. In Section 2, we introduce our method and
prove its convergence (Theorem 2.5). In Section 2.1, this result is refined to show that convergence
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is linear whenever one of the operators is strongly monotone. In Section 3, we incorporate a
linesearch procedure into the method (Theorem 3.4). In Section 4, we consider a relaxed inertial
version (Theorem 4.3) and, in Section 5, we propose a variant which solves the three operator
inclusion (5). Finally, in Section 6, we analyze a version of the stochastic algorithm which can be
considered in between the forward-backward method and our proposed method.

2 Forward-reflected-backward splitting
Recall that a set-valued operator A : H⇒ H is monotone if

〈x− y, u− v〉 ≥ 0 ∀(x, u), (y, v) ∈ graA,

where graA = {(x, y) ∈ H × H : y ∈ A(x)} denotes the graph of A. A monotone operator
is maximally monotone if its graph is not properly contained in the graph of any other monotone
operator. The resolvent of a maximally monotone operator A : H⇒ H, defined by JA := (I+A)−1,
is an everywhere single-valued operator [5]. A single-valued operator B : H → H is L-Lipschitz if
‖B(x)−B(y)‖ ≤ L ‖x− y‖ for all x, y ∈ H.

In this section, we consider the problem of finding a point x ∈ H such that

0 ∈ (A+B)(x), (12)

where A : H ⇒ H is maximal monotone, and B : H → H is monotone and L-Lipschitz. Given
initial points x0, x−1 ∈ H, we consider the scheme

xk+1 = JλkA

(
xk − λkB(xk)− λk−1(B(xk)−B(xk−1)

)
∀k ∈ N, (13)

where (λk) ⊆ R+ is a sequence of step-sizes (starting with from k = −1). Note that, each iteration
of this scheme requires one forward evaluation and one backward evaluation. Using the definition
of the resolvent JλkA = (I + λkA)−1, (13) can be equivalently expressed as the inclusion

xk+1 − xk + λkB(xk) + λk−1 (B(xk)−B(xk−1)) ∈ −λkA(xk+1) ∀k ∈ N. (14)

Before turning our attention to the convergence analysis of this method, we first note some
special cases in which it recovers known methods.
Remark 2.1 (Special cases of (13)). We consider three cases in which the proposed algorithm reduces
or is equivalent to known methods. For simplicity, we only consider the fixed step-size case (i.e.,
∃λ > 0 such that λk = λ for all k). In this case, (13) can be expressed compactly as

xk+1 = JλA
(
xk − 2λB(xk) + λB(xk−1)

)
. (15)

(a) If B = 0 then (15) simplifies to the proximal point algorithm [36], that is, (15) becomes

xk+1 = JλA(xk) ∀k ∈ N.

(b) If A = NC is the normal cone to a set C and B is an affine operator then (15) can be expressed
as

xk+1 = PC
(
xk − λB(2xk − xk−1)

)
∀k ∈ N, (16)

which coincides with the projected reflected gradient method [26] for VIs.

(c) If A = NH = 0 then the projected reflected gradient method (16) becomes

xk+1 = xk − λB(2xk − xk−1) ∀k ∈ N.

Under the change of variables xk = 2xk − xk−1, this becomes

xk+1 = xk − 2λB(xk) + (xk−1 − xk) = xk − 2λB(xk) + λB(xk−1) ∀k ∈ N,
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which is precisely (13) with A = 0. Alternatively, (15) can be expressed as the two step
recursion {

yk+1 = yk − λB(xk)
xk+1 = yk+1 − λB(xk).

(17)

This is exactly Popov’s algorithm [33] for unconstrained VIs. In this sense, the three methods
coincide in this case up to a change of variable. Furthermore, in the GANs literature, both (16)
and (17) are also known to be equivalent to the optimistic gradient method. For details, see
the discussion in [21].

Before establishing convergence of the method, we require some preparatory results.

Lemma 2.2. Let (zk) ⊆ H be a bounded sequence and suppose limk→∞ ‖zk − z‖ exists whenever z
is a cluster point of (zk). Then (zk) is weakly convergent.

Equation (18) in the following proposition conforms, in particular, to our proposed method
given by

xk+1 = JλkA

(
xk − λkB(xk)− λk−1(B(xk)−B(xk−1)

)
.

Proposition 2.3. Let F : H ⇒ H be maximally monotone, and let d1, v2, u1, v1, u0 ∈ H be arbi-
trary. Define d2 as

d2 = JF (d1 − u1 − (v1 − u0)). (18)

Then, for all x ∈ H and u ∈ −F (x), we have

‖d2 − x‖2 + 2 〈v2 − u1, x− d2〉 ≤ ‖d1 − x‖2 + 2 〈v1 − u0, x− d1〉
+ 2 〈v1 − u0, d1 − d2〉 − ‖d1 − d2‖2 − 2 〈v2 − u, d2 − x〉 . (19)

Proof. By definition of the resolvent, d1 − u1 − (v1 − u0) ∈ d2 + F (d2) and hence, by monotonicity
of F ,

0 ≤ 〈d2 − d1 + u1 + (v1 − u0)− u, x− d2〉
= 〈d2 − d1, x− d2〉+ 〈u1 − u, x− d2〉+ 〈v1 − u0, x− d2〉 .

The first term can expressed as

〈d2 − d1, x− d2〉 = 1
2
(
‖d1 − x‖2 − ‖d2 − x‖2 − ‖d2 − d1‖2

)
,

and the second and third terms can be rewritten, respectively, as

〈u1 − u, x− d2〉 = 〈v2 − u, x− d2〉+ 〈u1 − v2, x− d2〉 ,
〈v1 − u0, x− d2〉 = 〈v1 − u0, x− d1〉+ 〈v1 − u0, d1 − d2〉 .

The claimed inequality follows by combining these expressions.

Apart from using the monotonicity of F , the proof of Proposition 2.3 only uses simple algebraic
manipulations involving u1, v1, u0, v2, d1, d2. Nevertheless, the resulting inequality (19) already
provides some insight into how our subsequence analysis of (11) proceeds. For instance, the first
line of (19) suggests terms for telescoping so long as the second line can be appropriately estimated.

Lemma 2.4. Let x ∈ (A + B)−1(0) and let (xk) be given by (13). Suppose (λk) ⊆
[
ε, 1−2ε

2L

]
for

some ε > 0. Then, for all k ∈ N, we have

‖xk+1 − x‖2 + 2λk 〈B(xk+1)−B(xk), x− xk+1〉+
(1

2 + ε

)
‖xk+1 − xk‖2

≤ ‖xk − x‖2 + 2λk−1 〈B(xk)−B(xk−1), x− xk〉+ 1
2‖xk − xk−1‖2. (20)
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Proof. By applying Proposition 2.3 with

F := λkA

u := λkB(x)
d1 := xk

d2 := xk+1

u0 := λk−1B(xk−1)
u1 := λkB(xk)

v1 := λk−1B(xk)
v2 := λkB(xk+1),

we obtain the inequality

‖xk+1 − x‖2 + 2λk 〈B(xk+1)−B(xk), x− xk+1〉+ ‖xk+1 − xk‖2

≤ ‖xk − x‖2 + 2λk−1 〈B(xk)−B(xk−1), x− xk〉
+ 2λk−1 〈B(xk)−B(xk−1), xk − xk+1〉 − 2λk 〈B(xk+1)−B(x), xk+1 − x〉 .

Since B is monotone, the last term is nonnegative. Using Lipschitzness of B, the second last term
can be estimated as

〈B(xk)−B(xk−1), xk − xk+1〉 ≤ L ‖xk − xk−1‖ ‖xk − xk+1‖

≤ L

2
(
‖xk − xk−1‖2 + ‖xk − xk+1‖2

)
.

(21)

Thus, altogether, we obtain

‖xk+1 − x‖2 + 2λk 〈B(xk+1)−B(xk), x− xk+1〉+ (1− λk−1L) ‖xk+1 − xk‖2

≤ ‖xk − x‖2 + 2λk−1 〈B(xk)−B(xk−1), x− xk〉+ λk−1L ‖xk − xk−1‖2 .

The claimed inequality follows since λk−1L <
1
2 and 1− λk−1L ≥ 1− 1−2ε

2 = 1
2 + ε.

We are now ready for the first main result regarding convergence of the proposed method.

Theorem 2.5. Let A : H ⇒ H be maximally monotone, let B : H → H be monotone and L-
Lipschitz, and suppose that (A + B)−1(0) 6= ∅. Suppose (λk) ⊆

[
ε, 1−2ε

2L

]
for some ε > 0. Given

x0, x−1 ∈ H, define the sequence (xk) according to

xk+1 = JλkA

(
xk − λkB(xk)− λk−1(B(xk)−B(xk−1))

)
∀k ∈ N.

Then (xk) converges weakly to a point contained in (A+B)−1(0).

Proof. Let x ∈ (A+B)−1(0). By Lemma 2.4, we have

‖xk+1 − x‖2 + 2λk 〈B(xk+1)−B(xk), x− xk+1〉+
(1

2 + ε

)
‖xk+1 − xk‖2

≤ ‖xk − x‖2 + 2λk−1 〈B(xk)−B(xk−1), x− xk〉+ 1
2‖xk − xk−1‖2, (22)

which telescopes to yield

‖xk+1 − x‖2 + 2λk 〈B(xk+1)−B(xk), x− xk+1〉+ 1
2‖xk+1 − xk‖2

+ ε
k∑
i=0
‖xi+1 − xi‖2 ≤ ‖x0 − x‖2 + 2λ−1 〈B(x0)−B(x−1), x− x0〉+ 1

2 ‖x0 − x−1‖2 . (23)

Using Lipschitzness of B, we can estimate

2λk 〈B(xk+1)−B(xk), x− xk+1〉 ≥ −2λkL ‖xk+1 − xk‖ ‖x− xk+1‖

≥ −λkL
(
‖xk+1 − xk‖2 + ‖x− xk+1‖2

)
.

(24)

Since λkL ≤ (1− 2ε)/2 < 1/2, substituting the previous equation back into (23) gives

1
2‖xk+1 − x‖2 + ε

k∑
i=0
‖xi+1 − xi‖2

≤ ‖x0 − x‖2 + 2λ−1 〈B(x0)−B(x−1), x− x0〉+ 1
2 ‖x0 − x−1‖2 ,

6



from which we deduce that (xk) is bounded and that ‖xk − xk+1‖ → 0.
Let x be a sequential weak cluster point of the bounded sequence (xk). From (14),

1
λk−1

(
xk−1 − xk + λk−1 (B(xk)−B(xk−1))

+ λk−2 (B(xk−2)−B(xk−1))
)
∈ (A+B)(xk) ∀k ≥ 1. (25)

Since A + B is maximally monotone [5, Corollaries 24.4(i) & 20.25], its graph is demiclosed (i.e.,
sequentially closed in the weak-strong topology on H×H) [5, Proposition 20.33]. Thus, by taking
the limit along a subsequence of (xk) which converges to x in (25) and noting that λk ≥ ε for all
k ∈ N, we deduce that 0 ∈ (A+B)(x). To show that (xk) is weakly convergent, first note that, by
combining (22) and (24), we deduce existence of the limit

lim
k→∞

(
‖xk − x‖2 + 2λk−1 〈B(xk)−B(xk−1), x− xk〉+ 1

2‖xk − xk−1‖2
)
. (26)

Since (xk) and (λk) are bounded, ‖xk − xk+1‖ → 0, and B is continuous, it then follows that the
limit (26) is equal to limk→∞ ‖xk − x‖2. Since the cluster point x of (xk) was chosen arbitrarily,
the sequence (xk) is weakly convergent by Lemma 2.2 and the proof is complete.

As an immediate consequence of Theorem 2.5, we obtain the following corollary when the
stepsize sequence (λk) is constant.

Corollary 2.6. Let A : H ⇒ H be maximally monotone, let B : H → H be monotone and L-
Lipschitz, and suppose that (A+B)−1(0) 6= ∅. Choose λ ∈

(
0, 1

2L

)
. Given x0, x−1 ∈ H, define the

sequence (xk) according to

xk+1 = JλA
(
xk − 2λB(xk) + λB(xk−1)

)
∀k ∈ N.

Then (xk) converges weakly to a point contained in (A+B)−1(0).

Remark 2.7. In practice, it can be desirable to analyze an algorithm with respect to an auxiliary
metric to encourage faster convergence. This is done by considering the metric induced by the inner
product 〈·, ·〉M corresponding to a symmetric positive definite operator M : H → H. In the case of
saddle point problems, for example, choosing the operator M to be a diagonal scaling matrix gives
different weights to primal and dual variables. To keep our presentation as simple and as clear as
possible, we present our analysis only for the case whenM = I. Nevertheless, the more general case
can be easily obtained through a straightforward modification of the proof. In particular, instead
of (13), we can consider the iteration

xk+1 = JMλkA

(
xk −M−1 [λkB(xk) + λk−1(B(xk)−B(xk−1))]

)
∀k ∈ N,

where JMA = (I +M−1A)−1 denotes the generalized resolvent of A.
Remark 2.8. Since the main focus of this work lies in the development and analysis of new methods,
we delay a more thorough computation comparison for future investigation. Nevertheless, the
following example provides a specific problem for which the forward-reflected-backward method is
faster than Tseng’s method. We make no claims about the performance of the proposed method
in general.

Consider (1) with H = Rn × Rn, A(z1, z2) = (0, 0) and B(z1, z2) = (z2,−z1). Note that zero
is the unique solution to this problem and that the operator B is 1-Lipschitz. Let us also denote
the identity operators on H and Rn by IH and In, respectively. This is a classical example of a
monotone inclusion, where the forward-backward method fails.
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Tseng’s method By eliminating yk from (10) and using the identity B2 = −IH, Tseng’s method
can be expressed as

xk+1 = T (xk) = T k+1(x0) where T := (1− λ2)IH − λB.

Since 〈xk, B(xk)〉 = 0 and ‖xk‖ = ‖B(xk)‖, we have

‖xk+1‖2 = ‖T (xk)‖2 =
(
(1− λ2)2 + λ2)‖xk‖2.

Let λ ∈ (0, 1). The sequence (xk) therefore converges Q-linearly to zero with rate

ρ :=
√

(1− λ2)2 + λ2 =
√

1− λ2 + λ4 < 1.

In fact, this shows the optimal stepsize is λ = 1/
√

2 which gives a rate of
√

3/2. (Note that the
optimal rate does not occur for the largest possible stepsize).

Forward-reflected-backward splitting The forward-reflected-backward method with constant
stepsize λ ∈ (0, 1/2) can be expressed as(

xk+1
xk

)
= T

(
xk
xk−1

)
= T k+1

(
x0
x−1

)
where T :=

[
IH − 2λB λB

IH 0

]

The eigenvalues of T are given by 1
2 ±

1
2 i
√

8λ2 − 1− 4i λ
√

1− 4λ2. By choosing the stepsize
λ ≈ 1/2, we deduce that (xk) converges R-linearly with a rate that be made arbitrarily close to∣∣∣12 ± 1

2 i
∣∣∣ = 1√

2 .

Since 1/
√

2 <
√

3/2, we conclude that the forward-reflected-backward method is faster than
Tseng’s method for this particular problem. Note that this comparison is in terms of the number
of iterations.

2.1 Linear Convergence

In this section, we establish R-linear convergence of the sequence generated by the forward-reflected-
backward method when A is strongly monotone. Recall that A : H⇒ H is m-strongly monotone if
m > 0 and

〈x− y, u− v〉 ≥ m ‖x− y‖2 ∀(x, u), (y, v) ∈ graA.
Strong monotonicity is a standard assumption for proving linear convergence of first order methods.
We also note that there is no loss of generality in assuming that A is strongly monotone. For if
B is m-strongly monotone, we can always augment the operators by the identity, i.e., A + B =
(A+mI) + (B −mI), without destroying monotonicity and Lipschitz continuity. Notice this does
not complicate computing the resolvent of (A + mI), as we have JA+mI(x) = J A

1+m

(
x

1+m
)
for all

x ∈ H.

Theorem 2.9. Let A : H ⇒ H be maximally monotone and m-strongly monotone, let B : H → H
be monotone and L-Lipschitz, and suppose (A+B)−1(0) 6= ∅. Let λ ∈

(
0, 1

2L

)
. Given x0, x−1 ∈ H,

define the sequence (xk) according to

xk+1 = JλA
(
xk − 2λB(xk) + λB(xk−1)

)
∀k ∈ N.

Then (xk) converges R-linearly to the unique element of (A+B)−1(0).

Proof. Let x ∈ (A + B)−1(0). Using strong monotonicity of A (in place of monotonicity) in
Proposition 2.3 and propagating the resulting inequality through the proof of Lemma 2.4 gives the
inequality

(1 + 2mλ) ‖xk+1 − x‖2 + 2λ 〈B(xk+1)−B(xk), x− xk+1〉+ (1− λL) ‖xk+1 − xk‖2

≤ ‖xk − x‖2 + 2λ 〈B(xk)−B(xk−1), x− xk〉+ 1
2 ‖xk − xk−1‖2 .
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By denoting ε := min{1
2 − λL, 5mλ} > 0, this inequality implies

(1 + 4mλ)ak+1 + bk+1 + ε‖xk+1 − xk‖2 ≤ ak + bk, (27)

where the nonnegative sequences (ak) and (bk) are given by

ak := 1
2 ‖xk − x‖

2 ≥ 0,

bk := 1
2 ‖xk − x‖

2 + 2λ 〈B(xk)−B(xk−1), x− xk〉+ 1
2 ‖xk − xk−1‖2

≥ 1
2 ‖xk − x‖

2 − 2λL ‖xk − xk−1‖ ‖xk − x‖+ 1
2 ‖xk − xk−1‖2 ≥ 0.

Using Lipschitzness of B, we have

(1 + 4mλ)ak+1 + bk+1 + ε‖xk+1 − xk‖2

=
(

1 + 4mλ− ε

2

)
ak+1 +

(
1 + ε

2

)
bk+1 + 3ε

4 ‖xk+1 − xk‖2 − ελ 〈B(xk+1)−B(xk), x− xk+1〉

≥
(

1 + 4mλ− ε

2

)
ak+1 +

(
1 + ε

2

)
bk+1 + 3ε

4 ‖xk+1 − xk‖2 − ελL‖xk+1 − xk‖‖xk+1 − x‖

≥
(

1 + 4mλ− 3ε
4

)
ak+1 +

(
1 + ε

2

)
bk+1 + ε

2‖xk+1 − xk‖2. (28)

Denote α := min{1 + 4mλ − 3ε/4, 1 + ε/2} > 1, which is true due to ε ≤ 5mλ. Combining (27)
and (28) yields α(ak+1 + bk+1) ≤ ak + bk. Iterating this inequality gives

ak+1 ≤ ak+1 + bk+1 ≤
1
α

(ak + bk) ≤ · · · ≤
1

αk+1 (a0 + b0),

which establishes that xk → x with R-linear rate. Since x was chosen arbitrarily from (A+B)−1(0),
it must be unique.

3 Forward-reflected-backward splitting with linesearch
The algorithm presented in the previous section required information about the single-valued oper-
ator’s Lipschitz constant in order to select an appropriate stepsize. In practice, this requirement is
undesirable for several reasons. Firstly, obtaining the Lipschitz constant (or an estimate) is usually
non-trivial and often a computationally expensive problem itself. Secondly, as a global constant,
the (global) Lipschitz constant can often lead to over-conservative stepsizes although local prop-
erties (around the current iterate) may permit the use of larger stepsizes and ultimately lead to
faster convergence. Finally, when the single-valued operator is not Lipschitz continuous, any fixed
stepsize scheme based on Lipschitz continuity will potentially fail to converge.

To address these shortcomings, most known methods can incorporate an additional procedure
called linesearch (or backtracking) which is run in each iteration. It is worth noting however, that
in the more restrictive context of variational inequalities, the method proposed in [27] overcomes
the aforementioned difficulties without resorting to a linesearch procedure.

In what follows, we show that the forward-reflected-backward method with such a linesearch
procedure converges whenever the single-valued operator is locally Lipschitz.
Remark 3.1. The parameter ρ in Algorithm 1 has been introduced to allow for greater flexibility in
the choice of possible stepsizes. Indeed, there are two possible scenarios for the value of λk in the first
iteration of the linesearch procedure (i.e., when i = 0): either ρ = σ−1 and λk = σ−1λk−1 > λk−1,
or ρ = 1 and λk = λk−1. The former, more aggressive scenario allows for the possibility of larger
stepsizes at the price of a potential increase in the number of linesearch iterations.

The following lemma shows that the linesearch procedure described in Algorithm 1 is well-
defined so long as the operator B is locally Lipschitz continuous.
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Algorithm 1 The forward-reflected-backward method with linesearch.
Initialization: Choose x0, x−1 ∈ H, λ0, λ−1 > 0, δ ∈ (0, 1), and σ ∈ (0, 1).
Iteration: Having xk, λk−1, and B(xk−1), choose ρ ∈ {1, σ−1} and compute

xk+1 := JλkA

(
xk − λkB(xk)− λk−1(B(xk)−B(xk−1))

)
, (29)

where λk = ρλk−1σ
i with i being the smallest nonnegative integer satisfying

λk ‖B(xk+1)−B(xk)‖ ≤
δ

2 ‖xk+1 − xk‖ . (30)

Lemma 3.2. Suppose B : H → H is locally Lipschitz. Then the linesearch procedure in (29)–(30)
always terminates. i.e., (λk) is well defined.

Proof. Denote xk+1(λ) := JλA(xk − λB(xk)− λk−1(B(xk)−B(xk−1))). From [5, Theorem 23.47],
we have that JλA(xk+1(0)) → PdomA(xk+1(0)) as λ ↘ 0 which, together with the nonexpansivity
of JλA, yields ∥∥xk+1(λ)− PdomA xk+1(0)

∥∥
≤ ‖xk+1(λ)− JλA(xk+1(0))‖+

∥∥JλA(xk+1(0))− PdomA(xk+1(0))
∥∥

≤ λ‖B(xk)‖+
∥∥JλA(xk+1(0))− PdomA(xk+1(0))

∥∥ .
By taking the limit as λ↘ 0, we deduce that xk+1(λ)→ PdomA(xk+1(0)).

Now, by way of a contradiction, suppose that the linesearch procedure in Algorithm 1 fails to
terminate at the k-th iteration. Then, for all λ = ρλk−1σ

i with i = 0, 1, . . . , we have

ρλk−1σ
i ‖B(xk+1(λ))−B(xk)‖ >

δ

2 ‖xk+1(λ)− xk‖ . (31)

On one hand, taking the limit as i → ∞ in (29) gives PdomA(xk+1(0)) = xk. On the other hand,
since B is locally Lipschitz at xk there exists L > 0 such that for i sufficiently large, we have

ρλk−1σ
i ‖B(xk+1(λ))−B(xk)‖ >

δ

2 ‖xk+1(λ)− xk‖ ≥
δL

2 ‖B(xk+1(λ))−B(xk)‖ .

Dividing both sides by ‖B(xk+1(λ))−B(xk)‖ gives δL/2 < ρλk−1σ
i. Since σi → 0 as i→∞, this

inequality gives a contradiction which completes the proof.

The next lemma is a direct extension of Lemma 2.4.

Lemma 3.3. Let x ∈ (A + B)−1(0) and let (xk) be generated by Algorithm 1. Then there exists
ε > 0 such that, for all k ∈ N, we have

‖xk+1 − x‖2 + 2λk 〈B(xk+1)−B(xk), x− xk+1〉+
(1

2 + ε

)
‖xk+1 − xk‖2

≤ ‖xk − x‖2 + 2λk−1 〈B(xk)−B(xk−1), x− xk〉+ 1
2 ‖xk − xk−1‖2 . (32)

Proof. The proof is exactly the same as Lemma 2.4 with the only change being that instead of
using Lipschitzness of B to deduce the inequality (21), we use (30), which is well-defined due to
Lemma 3.2.

Theorem 3.4. Let H be finite dimensional, A : H⇒ H be maximally monotone, and B : H → H be
monotone and locally Lipschitz continuous, and suppose that (A+B)−1(0) 6= ∅. Then the sequence
(xk) generated by Algorithm 1 converges to a point contained in (A+B)−1(0).
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Proof. We argue similarly to Theorem 2.5 but using Lemma 3.3 in place of Lemma 2.4, and (30)
in place of Lipschitzness of B. This yields (24) from which we deduce that (xk) is bounded and
‖xk − xk+1‖ → 0. As a locally Lipschitz operator on finite dimensional space, B is Lipschitz on
bounded sets. Thus, since (xk) is bounded, there exists a constant L > 0 such that

‖B(xk+1)−B(xk)‖ ≤ L‖xk+1 − xk‖ ∀k ∈ N. (33)

By combining (30) and (33), we see that (λk) is bounded away from zero. The remainder of the
proof is the same as Theorem 2.5.

4 Relaxed inertial forward-reflected-backward splitting
In this section, we consider a relaxed inertial variant of the forward-reflected-backward splitting
algorithm. Such variants are of interest in practice because they have the potential to improve
performance as well as the range of admissible stepsizes. A treatment of a relaxed inertial variant
of the forward-backward method with B cocoercive and its relation to Nesterov-type acceleration
techniques can be found in [4].

Consider the monotone inclusion

find x ∈ H such that 0 ∈ (A+B)(x),

where A : H ⇒ H is maximally monotone, and B : H → H is either monotone and L-Lipschitz
continuous or 1/L-cocoercive. The relaxed inertial algorithm is given by zk+1 := JλA

(
xk − λB(xk)−

λ

β
(B(xk)−B(xk−1)) + α

β
(xk − xk−1)

)
xk+1 := (1− β)xk + βzk+1

(34)

for all k ∈ N and for appropriately chosen parameters α ≥ 0 and β, λ > 0 whose precise form
depends on the properties of B. By denoting B′ := B − α

λ I, the scheme can be expressed as zk+1 := JλA
(
xk − λB(xk)−

λ

β
(B′(xk)−B′(xk−1))

)
xk+1 := (1− β)xk + βzk+1

∀k ∈ N. (35)

To prove convergence of this scheme, we first prove two lemmas.

Lemma 4.1. Suppose B : H → H is monotone and ρ ≥ 0. Then the operator B′ := B − ρI is
L′-Lipschitz with L′ given by

L′ :=


L+ ρ if B is L-Lipschitz,
L− ρ if B is 1/L-cocoercive and ρ ≤ L

2 ,

ρ if B is 1/L-cocoercive and ρ > L
2 .

(36)

Proof. Let x, y ∈ H. When B is L-Lipschitz, we have

‖(B − ρI)x− (B − ρI)y‖ ≤ ‖Bx−By‖+ ρ ‖x− y‖ ≤ (L+ ρ) ‖x− y‖ ,

which establishes the first case. For the second and third cases, first observe that 1/L-cocoercivity
of B yields

‖(B − ρI)x− (B − ρI)y‖2 = ‖Bx−By‖2 − 2ρ 〈Bx−By, x− y〉+ ρ2 ‖x− y‖2

≤
(

1− 2ρ
L

)
‖Bx−By‖2 + ρ2 ‖x− y‖2 .
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On one hand, if ρ > L
2 , then 1 − 2ρ

L < 0 and ρ-Lipschitzness of B′ follows. On the other hand, if
ρ ≤ L

2 , then

‖(B − ρI)x− (B − ρI)y‖2 ≤
(
L2 − 2ρ

L
L2 + ρ2

)
‖x− y‖2

= (L− ρ)2 ‖x− y‖2 ,

which shows that B′ is (L− ρ)-Lipschitz. The proof is now complete.

Note that it is possible to slightly improve the estimate of L′ in the case when B is L-Lipschitz
and monotone to L′ =

√
L2 + ρ2. However, the benefits of using a new bound are minimal since,

in our case ρ, will take small values relative to L.
In the following lemma, we use the following form of (19) from Proposition 2.3.

‖d2 − x‖2 + 2 〈u− u1, x− d2〉 ≤ ‖d1 − x‖2 + 2 〈v1 − u0, x− d1〉
+ 2 〈v1 − u0, d1 − d2〉 − ‖d1 − d2‖2 . (37)

Lemma 4.2. Let x ∈ (A + B)−1(0), let (xk) be given by (35) and consider constants α ≥ 0 and
β, λ > 0. Then

(1− α) ‖xk+1 − x‖2 + 2λ
〈
B′(xk+1)−B′(xk), x− xk+1

〉
+ bk+1

≤ (1− α)‖xk − x‖2 + 2λ
〈
B′(xk)−B′(xk−1), x− xk

〉
+ bk

+ λL′

β
‖xk − xk−1‖2 −

(2− β − λL′

β
− α

)
‖xk+1 − xk‖2 .

where bk := 2λ 〈B(x)−B(xk), x− xk〉 ≥ 0 and L′ is the Lipschitz constant of B′.

Proof. Let u := λB(x). As u ∈ −λA(x), applying (37) with

F := λA

u1 := λB(xk)
d1 := xk

d2 := zk+1

u0 := (λ/β)B′(xk−1)
v1 := (λ/β)B′(xk)

yields the inequality

‖zk+1 − x‖2 + 2λ 〈B(x)−B(xk), x− zk+1〉 ≤ ‖xk − x‖2 − ‖xk − zk+1‖2

+ 2λ
β

〈
B′(xk)−B′(xk−1), x− xk

〉
+ 2λ

β

〈
B′(xk)−B′(xk−1), xk − zk+1

〉
. (38)

Using the identity zk+1 =
(
xk+1 − (1 − β)xk

)
/β and the definition of B′, the second term in (38)

can be expressed as

2λ 〈B(x)−B(xk), x− zk+1〉+ 1− β
β

bk −
1
β
bk+1

= 2λ
β

〈
B′(xk+1)−B′(xk), x− xk+1

〉
+ 2α

β
〈xk+1 − xk, x− xk+1〉

= 2λ
β

〈
B′(xk+1)−B′(xk), x− xk+1

〉
+ α

β

(
‖xk − x‖2 − ‖xk+1 − xk‖2 − ‖xk+1 − x‖2

)
Substituting this back into (38) and using zk+1 − xk = (xk+1 − xk)/β gives

‖zk+1 − x‖2 −
α

β
‖xk+1 − x‖2 + 2λ

β

〈
B′(xk+1)−B′(xk), x− xk+1

〉
+ 1
β
bk+1

≤
(

1− α

β

)
‖xk − x‖2 + 2λ

β

〈
B′(xk)−B′(xk−1), x− xk

〉
+ 1− β

β
bk

+ 2λ
β

〈
B′(xk)−B′(xk−1), xk − zk+1

〉
+
(
α

β
− 1
β2

)
‖xk+1 − xk‖2 . (39)
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Figure 1: The upper bound for admissible values for λL as a function of α and β according to (41)
and (42). Black regions denote infeasible combinations. Lighter colors indicate a higher admissible
value.

By using the identity

‖zk+1 − x‖2 = 1
β
‖xk+1 − x‖2 −

1− β
β
‖xk − x‖2 + 1− β

β2 ‖xk+1 − xk‖2

in (39) and multiplying both sides by β, we obtain

(1− α) ‖xk+1 − x‖2 + 2λ
〈
B′(xk+1)−B′(xk), x− xk+1

〉
+ bk+1

≤ (1− α)‖xk − x‖2 + 2λ
〈
B′(xk)−B′(xk−1), x− xk

〉
+ (1− β)bk

+ 2λ
〈
B′(xk)−B′(xk−1), xk − zk+1

〉
−
(2− β

β
− α

)
‖xk+1 − xk‖2 . (40)

Since B′ is L′-Lipschitz, the second last term can be estimated by

2λ
〈
B′(xk)−B′(xk−1), xk − zk+1

〉
= 2λ

β

〈
B′(xk)−B′(xk−1), xk − xk+1

〉
≤ λL′

β

(
‖xk − xk−1‖2 + ‖xk+1 − xk‖2

)
.

The claimed inequality follows by substituting this estimate back into (40).

Theorem 4.3. Let A : H ⇒ H be maximally monotone and let B : H → H be monotone with
(A+B)−1(0) 6= ∅. Suppose α ∈ [0, 1), β ∈ (0, 1], λ > 0 and either

(a) B is L-Lipschitz and

λ < min
{2− β − αβ − 2α

2L ,
1− α− αβ

βL

}
, or (41)

(b) B is (1/L)-cocoercive, α < 2−β
2+β and

λ < min
{2− β − αβ + 2α

2L ,
1− α+ αβ

βL

}
. (42)

Given x0, x−1 ∈ H, define the sequences (xk) and (zk) according to (34) Then (xk) converges weakly
to a point in (A+B)−1(0).
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Proof. Let L′ denote the Lipschitz constant of B′ := B − α
λ I. By combining Lemma 4.1 with the

assumptions in each of the respective cases, we obtain

ε := min
{2− β(1 + α)

2 ,
1− α
β

}
− λL′ > 0. (43)

Then Lemma 35 together with (43) gives

(1− α) ‖xk+1 − x‖2 + 2λ
〈
B′(xk+1)−B′(xk), x− xk+1

〉
+ bk+1

≤ (1− α)‖xk − x‖2 + 2λ
〈
B′(xk)−B′(xk−1), x− xk

〉
+ bk

+ λL′

β
‖xk − xk−1‖2 −

(
λL′

β
+ ε

)
‖xk+1 − xk‖2 ,

which telescopes to yield

(1− α) ‖xk+1 − x‖2 + 2λ
〈
B′(xk+1)−B′(xk), x− xk+1

〉
+ bk+1

≤ (1− α)‖x0 − x‖2 + 2λ
〈
B′(x0)−B′(x−1), x− x0

〉
+ b0

+ λL′

β
‖x0 − x−1‖2 −

λL′

β
‖xk+1 − xk‖2 − ε

k∑
i=1
‖xi+1 − xi‖2 . (44)

The L′-Lipschitz continuity of B′ together with (43) gives

2λ
〈
B′(xk+1)−B′(xk), x− xk+1

〉
≥ −2λL′ ‖xk+1 − xk‖ ‖xk+1 − x‖

≥ −λL
′

β
‖xk+1 − xk‖2 − βλL′ ‖xk+1 − x‖2

≥ −λL
′

β
‖xk+1 − xk‖2 − (1− α− βε) ‖xk+1 − x‖2 .

This, together with (44) and the fact that bk+1 ≥ 0, yields the inequality

βε ‖xk+1 − x‖2 + ε
k∑
i=1
‖xi+1 − xi‖2

≤ (1− α)‖x0 − x‖2 + 2λ
〈
B′(x0)−B′(x−1), x− x0

〉
+ b0 + λL′

β
‖x0 − x−1‖2 ,

which shows that (xk) is bounded and ‖xk − xk+1‖ → 0. The remainder of the proof follows a
similar argument to Theorem 2.5.

The admissible values of α and β for the two cases in Theorem 4.3 are shown in Figure 1. By
setting β = 1 in Theorem 4.3, we obtain the following inertial algorithm.
Corollary 4.4. Let A : H ⇒ H be maximally monotone and let B : H → H be monotone with
(A+B)−1(0) 6= ∅. Suppose α ∈ [0, 1/3), λ > 0, and either
(a) B is L-Lipschitz and λ < 1−3α

2L , or

(b) B is (1/L)-cocoercive and λ < 1+α
2L .

Given x0, x−1 ∈ H, define the sequence (xk) according to

xk+1 := JλA
(
xk − 2λB(xk) + λB(xk−1) + α(xk − xk−1)

)
(45)

Then (xk) converges weakly to a point contained in (A+B)−1(0).
Remark 4.5. Although Corollary 4.4 establishes that inertia increases the range of admissible step-
sizes when B is cocoercive, it has the opposite effect when B is merely monotone. A similar
phenomena with Tseng’s method was observed in [7].
Remark 4.6. By setting B = 0 in Corollary 4.4, the scheme (45) reduces to the classical inertial
proximal algorithm first considered in [1]. It is interesting to note that the proof presented here
does not follow the technique from [1], which is used in the analysis of most other first order inertial
operator splitting methods [7, 25,30].
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5 Three operator splitting
In this section, we consider a structured three operator monotone inclusion. Specifically, we consider
the inclusion

find x ∈ H such that 0 ∈ (A+B + C)(x), (46)

where A : H⇒ H is maximal monotone, B : H → H is monotone and L1-Lipschitz, and C : H → H
is 1/L2-cocoercive. This problem could be solved using the two operator splitting algorithm in
Section 2 applied to A and (B + C), where we note that (B + C) is L-Lipschitz continuous with
L = L1 + L2. Consequently, to apply Theorem 2.5, the stepsize λ should satisfy

λ <
1

2L = 1
2L1 + 2L2

.

In this section, we show that this can be improved by exploiting the additional structure in (46).
Indeed, we propose a modification which only requires λ > 0 to satisfy

λ <
2

4L1 + L2
= 1

2L1 + 1
2L2

.

Given initial points x0, x−1 ∈ H, our modified scheme is given by

xk+1 = JλA
(
xk − 2λB(xk) + λB(xk−1)− λC(xk)

)
∀k ∈ N. (47)

In other words, the algorithm only uses a standard forward step of the operator C, as is employed
in the forward-backward method (9). For an algorithm for the case when C is Lipschitz but not
necessarily cocoercive, see [37].

We begin our analysis with the three operator analogue of Lemma 2.4.

Lemma 5.1. Let x ∈ (A + B + C)−1(0) and let the sequence (xk) be given by (47). Suppose
λ ∈

(
0, 2

4L1+L2

)
. Then there exists an ε > 0 such that, for all k ∈ N, we have

‖xk+1 − x‖2 + 2λ 〈B(xk+1)−B(xk), x− xk+1〉+ (λL1 + ε) ‖xk+1 − xk‖2

≤ ‖xk − x‖2 + 2λ 〈B(xk)−B(xk−1), x− xk〉+ λL1 ‖xk − xk−1‖2 .

Proof. Since 0 ∈ (A+B +C)(x), we have −(B +C)(x) ∈ A(x). Combined with the monotonicity
of A, this gives

0 ≤ 〈xk+1 − xk + λ(B + C)(xk) + λ(B(xk)−B(xk−1))− λ(B + C)(x), x− xk+1〉 ,

which we rewrite as

0 ≤ 〈xk+1 − xk, x− xk+1〉+ λ 〈B(xk)−B(x), x− xk+1〉
+ λ 〈B(xk)−B(xk−1), x− xk〉+ λ 〈B(xk)−B(xk−1), xk − xk+1〉

+ λ 〈C(xk)− C(x), x− xk〉+ λ 〈C(xk)− C(x), xk − xk+1〉 . (48)

The first through fourth terms can be estimated as in Lemma 2.4. Using 1/L2-cocoercivity of C,
the fifth term can be estimated as

〈C(xk)− C(x), x− xk〉 ≤ −
1
L2
‖C(xk)− C(x)‖2 ,

and the final term can estimated as

〈C(xk)− C(x), xk − xk+1〉 ≤ ‖C(xk)− C(x)‖ ‖xk+1 − xk‖

≤ 1
L2
‖C(xk)− C(x)‖2 + L2

4 ‖xk+1 − xk‖2 .
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Thus, altogether, (48) implies that

0 ≤ ‖xk − x‖2 − ‖xk+1 − xk‖2 − ‖xk+1 − x‖2 − 2λ 〈B(xk+1)−B(xk), x− xk+1〉

+ 2λ 〈B(xk)−B(xk−1), x− xk〉+ λL1
(
‖xk − xk−1‖2 + ‖xk+1 − xk‖2

)
− 2λ
L2
‖C(xk)− C(x)‖2 + λ

( 2
L2
‖C(xk)− C(x)‖2 + L2

2 ‖xk+1 − xk‖2
)
,

which, on rearranging, gives

‖xk+1 − x‖2 + 2λ 〈B(xk+1)−B(xk), x− xk+1〉+
(

1− λL1 −
λL2

2

)
‖xk+1 − xk‖2

≤ ‖xk − x‖2 + 2λ 〈B(xk)−B(xk−1), x− xk〉+ λL1 ‖xk − xk−1‖2 .

The claimed inequality follows with ε :=
(
1− λL1 − λL2

2

)
− λL1 = 1− 2λL1 − λL2

2 > 0.

The following theorem is our main result regarding convergence of the three operator splitting
scheme.

Theorem 5.2. Let A : H ⇒ H be maximally monotone, let B : H → H be monotone and L1-
Lipschitz, and let C : H → H be 1/L2-cocoercive. Suppose that (A + B + C)−1(0) 6= ∅ and λ ∈(
0, 2

4L1+L2

)
. Given x0, x−1 ∈ H, define the sequence (xk) according to

xk+1 = JλA
(
xk − 2λB(xk) + λB(xk−1)− λC(xk)

)
∀k ∈ N.

Then (xk) converges weakly to a point contained in (A+B + C)−1(0).

Proof. The proof is more or less the same as Theorem 2.5 but uses Lemma 5.1 in place of Lemma 2.4.
The only other thing to check is that

‖xk+1 − x‖2 + 2λ 〈B(xk+1)−B(xk), x− xk+1〉+ λL1 ‖xk+1 − xk‖2

is bounded from below by zero. To see this, observe that

2λ 〈B(xk+1)−B(xk), x− xk+1〉 ≥ −2λL1 ‖xk+1 − xk‖ ‖xk+1 − x‖

≥ −λL1
(
‖xk+1 − xk‖2 + ‖xk+1 − x‖2

)
,

and 1− λL1 > 0 since λ < 2
4L1+L2

< 1
L1

.

6 Between forward-backward and forward-reflected-backward
In this section, we consider a variant of the forward-reflected-backward method for a structured
version of the monotone inclusion (1) in a separable Hilbert space H. Precisely, we assume that
the second operator B : H → H is monotone and decomposable in the form

B = 1
n

n∑
i=1

Bi (49)

where Bi : H → H is L-Lipschitz continuous for i = 1, . . . , n. In what follows, we analyze the
following iteration{

Choose ik uniformly at random from {1, . . . , n}
xk+1 = JλA

(
xk − λB(xk)− λ(Bik(xk)−Bik(xk−1)

) ∀k ∈ N. (50)

In other words, the term B(xk)−B(xk−1) inside the resolvent is replaced by Bik(xk)−Bik(xk−1).
Although it is unclear if (50) has any practical value as it still requires one full evaluation of B
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in every iteration, it is surprising that such a small random perturbation still ensures its (almost
sure) convergence without cocoercivity. Indeed, without this correction, the algorithm reduces to
the forward-backward method which, in general, need not converge in this setting. The fact that
(50) converges suggests that the exact form of the correction to values of B may not be important.

In what follows, given a random variable X, E[X] denotes its expectation and Ek[X] de-
notes its conditional expectation with respect to the σ-algebra generated by the random variables
x1, x2, . . . , xk.

Lemma 6.1. Let x ∈ (A + B)−1(0) and let (xk) be given by (50). Suppose λ ∈
(
0, 1

2L

)
. Then

there exists an ε > 0 such that, for all k ∈ N, we have

‖xk+1 − x‖2 + 2λ 〈B(xk+1)−B(xk), x− xk+1〉+
(1

2 + ε

)
‖xk+1 − xk‖2

≤ ‖xk − x‖2 + 2λ 〈Bik(xk)−Bik(xk−1), x− xk〉+ 1
2‖xk − xk−1‖2. (51)

Proof. By applying Proposition 2.3 with

F := λA

u := λB(x)
d1 := xk

d2 := xk+1

u0 := λBik(xk−1)
u1 := λB(xk)

v1 := λBik(xk)
v2 := λB(xk+1),

we obtain the inequality

‖xk+1 − x‖2 + 2λ 〈B(xk+1)−B(xk), x− xk+1〉+ ‖xk+1 − xk‖2

≤ ‖xk − x‖2 + 2λ 〈Bik(xk)−Bik(xk−1), x− xk〉
+ 2λ 〈Bik(xk)−Bik(xk−1), xk − xk+1〉 − 2λ 〈B(xk+1)−B(x), xk+1 − x〉 .

Since B is monotone, the last term is nonnegative. Using Lipschitzness of Bik , the second last term
can be estimated as

〈Bik(xk)−Bik(xk−1), xk − xk+1〉 ≤ L ‖xk − xk−1‖ ‖xk − xk+1‖

≤ L

2
(
‖xk − xk−1‖2 + ‖xk − xk+1‖2

)
.

Thus, altogether, we obtain

‖xk+1 − x‖2 + 2λ 〈B(xk+1)−B(xk), x− xk+1〉+ (1− λL) ‖xk+1 − xk‖2

≤ ‖xk − x‖2 + 2λ 〈Bik(xk)−Bik(xk−1), x− xk〉+ λL ‖xk − xk−1‖2 .

The claimed inequality follows since λL < 1
2 and 1− λL < 1

2 .

Theorem 6.2. Suppose H is separable. Let A : H⇒ H be maximally monotone, and let B : H → H
be monotone with B =

∑n
i=1Bi for L-Lipschitz continuous operators Bi : H → H. Suppose that

(A+B)−1(0) 6= ∅ and that λ ∈
(
0, 1

2L

)
. Given x0, x−1 ∈ H, define the sequence (xk) according to

(50). Then (xk) converges weakly almost surely to a point contained in (A+B)−1(0).

Proof. Let x ∈ (A+B)−1(0) and let (ϕk) ⊆ R denote the sequence of random variables given by

ϕk := ‖xk − x‖2 + 2λ 〈B(xk)−B(xk−1), x− xk〉 + 1
2‖xk − xk−1‖2 ≥

1
2 ‖xk − x‖

2 , (52)

where the latter inequality is due to (24). Taking conditional expectation in Lemma 6.1 gives

Ek [ϕk+1] + εEk
[
‖xk+1 − xk‖2

]
≤ ϕk.

The supermartingale convergence theorem [35, Theorem 1] then implies that, almost surely, (ϕk)
converges to a nonnegative-valued random variable ϕ and that

∑∞
k=1 Ek

[
‖xk+1 − xk‖2

]
<∞. The
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latter implies that ‖xk+1 − xk‖2 → 0 almost surely. From (52), it then follows that (xk) is bounded
almost surely and that (‖xk − x‖2) converges almost surely to ϕ.

Now, consider a realization (xk(ω)) of (xk) such that ‖xk+1(ω)− xk(ω)‖ → 0 and ϕk(ω)→ ϕ(ω)
for some ϕ(ω) ≥ 0 (where ϕk(ω) denotes the corresponding realization of ϕk). Let x(ω) be a
sequential weak cluster point of the bounded sequence (xk(ω)). From (50), we have

1
λ

(
xk−1(ω)− xk(ω) + λ (B(xk(ω))−B(xk−1(ω)))

+ λ
(
Bik−1(xk−2(ω))−Bik−1(xk−1(ω))

) )
∈ (A+B)(xk(ω)) ∀k ≥ 1. (53)

Since the graph of A + B is demiclosed and B1, . . . , Bn are Lipschitz, taking the limit along a
subsequence of (xk(ω)) which converges to x(ω) in (53) yields x̄(ω) ∈ (A+B)−1(0). Altogether, we
have that the weak sequential cluster points of (xk) are almost surely contained in (A+B)−1(0). An
argument analogous to [14, Proposition 2.3] then shows that (xk) converges weakly almost surely
to a (A+B)−1(0)-valued random variable.

7 Concluding remarks
In this work, we have proposed a modification of the forward-backward algorithm for finding a zero
in the sum of two monotone operators which does not require cocoercivity. To conclude, we outline
three possible directions for further research into the method.

Fixed point interpretations: As the proof of the forward-reflected-backward method does
not conform to the usual Krasnoselskii–Mann framework, it would be interesting to see if the
method can be analyzed from the perspective of fixed point theory. To this end, consider the two
operators M,T : H×H → H×H given by

M :=
[
JλA 0

0 I

]
, T :=

[
I − 2λB λI

B 0

]
.

By introducing the auxiliary variable uk+1 := B(xk), it is easy to see that (15) may be expressed
as the fixed point iteration in H×H given by(

xk+1
uk+1

)
= (M ◦ T )

(
xk
uk

)
.

From the perspective of fixed point theory, it is not clear what properties the operator M ◦ T
possesses which can be used to deduce convergence. For instance, although M is firmly nonexpan-
sive, the operator T need not be. A similar question regarding interpretations of the golden ratio
algorithm, for which the operator M is of the same form, was posed in [27].

Stochastic and coordinate extensions: In large-scale problems, it is not always possible to
evaluate the operator B owing to its high computational cost. Two possibilities for reducing the
computational requirements are stochastic approximations of B(xk) and block coordinate variants
of the algorithm. Both approaches work by employing low-cost approximation of B(xk) in each
iteration. It would be interesting to consider stochastic and coordinate extensions of the method
proposed here.

Acceleration schemes: As explained in Section 1, the forward-reflected-backward method
can be specialized to solve a minimization problem involving the sum of two convex functions, one
of which is smooth. In 2007, in [31], Nesterov exploited his original idea from [32] to derive accel-
erated proximal gradient methods that enjoy better complexity rates than the standard forward-
backward method. It therefore seems reasonable that the forward-reflected-backward method could
be adapted to incorporate a Nesterov-type acceleration.
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