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Abstract. We describe a numerical framework that uses random sampling to efficiently capture low-rank local solution
spaces of multiscale PDE problems arising in domain decomposition. In contrast to existing techniques, our method does
not rely on detailed analytical understanding of specific multiscale PDEs, in particular, their asymptotic limits. We present
the application of the framework on two examples — a linear kinetic equation and an elliptic equation with rough media.
On these two examples, this framework achieves the asymptotic preserving property for the kinetic equations and numerical
homogenization for the elliptic equations.
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1. Introduction. Partial differential equations (PDEs) that involve multiple temporal and spatial

scales are numerically challenging to solve. The current generation of efficient solvers exploits the analytic

solution structures that are intrinsic to each specific multiscale problem. In this work, we exploit instead

the “low-rank” property of the solution spaces that is common to many multiscale problems that are

“homogenizable” , and design a general framework in which analytic structures of solutions are discovered

automatically by the algorithms without the need for any problem-specific analysis.

We consider the following boundary value problem:

(1.1) Lεuε = 0 , with Buε = f ,

where Lε is a linear PDE operator with multiscale structure, with ε representing the small scale. B is the

boundary operator and f is the boundary condition. The solution uε contains information at both coarse

scale x and fine scale x/ε. A naive numerical scheme for (1.1) would require a fine discretization: The

mesh size h must resolve ε (that is, h� ε), and thus the number of grid points (the degrees of freedom)

Nε is of the order of ε−d, with d being the dimension of the problem. For small ε, the computational cost

is prohibitive. These observations have motivated research into algorithms for multiscale PDE problems

that are much more efficient than such naive schemes.

One strategy commonly used by efficient algorithms is to exploit the asymptotic behavior of the

multiscale problems as ε → 0. In particular, the “effective equations” that capture the behavior of the

solution as ε approaches zero have been derived for several specific multiscale problems. More specifically,

we seek a homogenized operator L∗, with no dependence on ε, such that the solution u∗ of the “effective

equation”

(1.2) L∗u∗ = 0 , with Bu∗ = f

satisfies

(1.3) ‖uε − u∗‖ → 0 as ε→ 0

∗
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Fig. 1. Green’s function superposition in discrete and continuous setting, for both Lε and the asymptotic limit L∗.
The column space of Gε, which typically has high dimension, can be well approximated well by the (lower-dimensional)
column space of G∗.

in a proper norm. Since u∗ is asymptotically equivalent to uε (1.3) and no small-scale oscillation is

present, solving (1.2) can typically be done in a much more efficient manner than directly solving (1.1)

with small ε.

Identifying the effective operator L∗, however, is mostly nontrivial. Different techniques are needed

for different equations. The hydrodynamic limit of kinetic equations is based on moment expansions and

entropic closures; the homogenization of elliptic equations with oscillatory media is based on corrector

equations and two-scale convergence analysis; and the semiclassical limit of Schrödinger equations is

based on WKB expansion and Wigner transformations. Each of these analytical tools leads to a different

algorithmic approach, so there is a wide variation in algorithms for different multiscale problems.

We describe in this paper a general approach to designing efficient algorithms for multiscale PDE

problems that does not rely on detailed analytical knowledge of the PDE and applies to a wide variety

of problems. Our approach not only has the advantage of a unified treatment, but also applies to

cases in which the asymptotic limit is not known, or is too complicated to derive. (See, for example,

an application in [18].) While the proposed approach might not be the most effective approach for

every multiscale problem (for example, many numerical approaches have been developed over the years

for elliptic PDEs with rough coefficients), its numerical performance compares favorably with known

approaches for particular problems. We believe that the broad applicability of our generic approach is a

significant advantage.

Our framework is based on domain decomposition together with random sampling to characterize the

local solution space on each patch in the decomposition. We make use of the fact that most multiscale

PDEs that have asymptotic limits independent of small scales also have local solution spaces of low

dimension.

We illustrate the relationships between the multiscale PDE, its discretization, and its asymptotic
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limits in Figure 1. The key points of this diagram are as follows.

1. Both u∗ and uε, the solutions to L∗ and Lε, respectively, are convolutions of Green’s functions

Gε/∗ with the boundary conditions.1

2. In the discrete setting, with L∗ and Lε denoting the discrete operators and G∗ and Gε the corre-

sponding Green’s matrices, the numerical solutions U∗ and Uε are in the column space spanned

by the respective Green’s matrices.

3. As discussed above, accurate discretization of Lε requires Nε ∼ ε−d degrees of freedom, while

discretization of L∗ usually requires a modest number N of degrees of freedom, independent of

ε, with N � Nε for interesting values of ε.

Figure 1 suggests that if U∗ and Uε are good numerical approximations to u∗ and uε, respectively,

and since u∗ and uε are close when ε is small, then U∗ and Uε should also be close to each other. Since

Uε and U∗ lie in the column spaces of Gε and G∗ respectively, the two matrices should therefore have

similar column spaces. Without knowing the effective equations, it may not be possible to identify G∗

explictly, but we can still obtain essential information contained in G∗ from Gε. For this task, we need

to determine, first, how much column-space information is contained in Gε and, second, how to extract

this information.

Regarding the first question, we define “numerical rank” to be the minimum number of degrees of

freedom required to capture the solution space of a PDE to within a preset error tolerance. The concept is

closely connected to Kolmogorov N -width. To address the second question, we employ random sampling:

The range of a matrix with low numerical rank can be captured by multiplying the matrix by a set

of random vectors. We adapt this strategy to sketch the local solution space of the PDE via random

sampling.

Random sampling for numerical PDEs has been explored in previous works, mainly for multiscale

elliptic equations. In particular, it has been used to construct local basis functions for the generalized

finite element method; see [15, 16, 60] and our previous work [17], in which we report on numerical

experiments to determine optimal sampling strategies. In [66, 67], numerical homogenization is refor-

mulated as a Bayesian inference problem through observation of random samplings, where orthogonal

basis functions in H1
0 (Ω) could be obtained by nested measurements of solutions or source terms. This

approach is consistent with randomized linear algebra approaches that use random projections of a ma-

trix to provide good approximations to the left/right singular-vector space corresponding to the largest

singular values of that matrix. Similar connections to randomized linear algebra have been made in

[15, 17] for numerical homogenization of elliptic equations. From another perspective [59, 63], random-

ized linear algebra algorithms are used to compress the Green’s matrix of elliptic equations based on the

framework of hierarchical matrices [34]. Most of these works that exploit randomized sampling consider

only elliptic equations with oscillatory media, while the method we propose in this paper applies to more

general situations. (The authors learnt about [15] while drafting the current paper. That work also seeks

low-rank representations based on domain decomposition for elliptic equations, but it does not utilize

homogenization theory, nor does it extend to general multiscale PDEs. As mentioned previously, the

main value of the proposed approach is that it brings a unified framework for various PDE problems

exhibiting multiscale features.)

The remainder of the paper is organized as follows. In section 2, we review two representative case

studies of multiscale PDEs: the linear kinetic equation with small Knudsen number and an elliptic PDE

with oscillatory media. Motivated by the essential similarity of these multiscale problems, we define

in section 3 the notion of numerical rank and design a general framework for efficient algorithms based

on domain decomposition and random sampling of local solution space. section 4 and section 5 describe

details of the application of our framework to the two problems introduced in section 2. Numerical results

1With slight danger of confusion, we adopt a generalized notion of “Green’s function” in this work, which might vary
from conventional terminology for specific PDEs. For example, for elliptic PDEs with Dirichlet boundary condition, the
“Green’s function” would be given by the Poisson kernel, that is, the derivative of the usual Green’s function (Newtonian
kernel).
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demonstrate that the general methodology yields competitive algorithms, without the need for detailed

analytical knowledge of the specific structure of the multiscale problems at hand.

2. Asymptotic preserving scheme and numerical homogenization. In this section we briefly

summarize the asymptotic preserving scheme and numerical homogenization. These approaches were

developed for two rather different multiscale problems, but they share the similar philosophy of finding a

set of “effective equations” that are numerically simpler than the original PDE in some sense, and utilizing

these equations in efficient numerical solvers. These approaches are closely related to our randomized

methodology and will serve to motivate our approach.

2.1. Asymptotic preserving scheme for kinetic equations. The asymptotic preserving (AP)

scheme was developed originally in the context of numerical methods for kinetic theory. We will explain

the idea using the radiative transfer equation, a particular linear Boltzmann equation that is a model

problem in kinetic theory.

In radiative transfer, we seek a function uε(x, v), defined on the phase space (x, v) ∈ K × V, that

represents the density of photons at location x with speed v. The equation is

(2.1) − v · ∇xuε +
1

ε
S[uε] = g(x) , (x, v) ∈ K × V ,

where the linear collision operator S is defined as follows:

(2.2) Su(x, v) =

∫
V
k(x, v, v′)u(x, v′)dv′ −

∫
V
k(x, v′, v)dv′u(x, v) .

In Eq. (2.1), the evolution of photon density is governed by the transport term v · ∇xuε, that describes

the photons free streaming with speed v in direction x, and the collision term S that characterizes the

interaction of the particles with the background media. The first term in S represents particles with

velocity v′ that are scattered off to obtain v, while the second term indicates the particles whose velocity

changes from v to v′. The specific form of k(x, v, v′) depends on the media. When the scattering is

homogeneous in velocity, we can write k(x, v, v′) = σ(x) for some σ, so that (2.2) becomes

Su(x, v) = σ(x)

∫
V

(u(x, v′)− u(x, v)) dv′ .(2.3)

In the radiative transfer equation (2.1), the quantity ε, which captures the strength of the collision

term, is called the Knudsen number. When ε is small, the collision term dominates the transport term,

and we have S[uε] = 0, to leading order. In this case, the solution is close to lying in the null space of

S, that is, the solution profile nearly achieves local equilibrium for every x. Via asymptotic expansion,

we have that uε(x, v) → M(v)u∗(x), where u∗(x) solves the heat equation and M(v) (called the local

equilibrium or the Maxwellian) spans NullS. More specifically, we have the following result [11, 50, 69]

for homogeneous collision (2.3).

Theorem 2.1. Suppose that uε solves (2.1) with collision term (2.3) in K, which is a bounded domain

in R3 with C1 boundary, with V = S2, and with boundary condition

(2.4) uε(x, v) = φ(x, v) on x ∈ ∂K , v · nx < 0 .

Then M(v) = 1 and

(2.5) ‖uε(x, v)− u∗(x)‖L2(dxdv) → 0 ,

where u∗(x) solves

(2.6)
1

3
∇x ·

(
1

σ
∇xu∗

)
= g(x) , x ∈ K ,
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with the boundary condition

u∗(x) = ξφ(x) , on x ∈ ∂K ,

where ξφ(x) is obtained by solving the boundary layer equation [69].

This result indicates that the limiting operator as ε → 0 is L∗ := (1/3)∇x · ((1/σ)∇x), which is

independent of the velocity variable. The constant changes with the dimension of v; 1/3 is the appropriate

value for K ⊂ R3.

Remark 2.2. Here we only present the least complicated case, in which the collision is homoge-

neous (2.3), and we do not specify the convergence rate in (2.5). If the collision operator S is not

homogeneous in v, the Maxwellian M(v) could have a complicated form, and the theorem must be modi-

fied accordingly. It was long believed that with the correct boundary-layer equation introduced in [69] to

translate the boundary conditions from that of uε to that of u∗, the convergence rate is first order (that

is, uε − u∗ = O(ε)). Recently, however, this was shown not to be the case; see [53, 55, 76], which show

that the boundary layer corrector can reduce the convergence order to less than 1. The sharpest bound

is still unknown.

AP, both as a term and a concept, was coined in [42], although the development of AP in the context

of the radiative transfer equation dates back to earlier works [43, 51]. The fundamental idea is that a good

numerical method, besides being consistent and stable, should also (for fixed discretization) preserve the

asymptotic limit of the original equation. As shown in Figure 2, one designs a method Fhε for a system

Fε, and asks (1) whether the discrete system, with fixed h, converges when ε shrinks; and (2) if it does

converge, whether the limit as h→ 0 correctly discretizes F∗, the limiting system on the continuous level.

If Fhε satisfies both properties, it is said to be asymptotic preserving.

F"F⇤

Fh
⇤ Fh

"

" ! 0

h ! 0

?

?

Fig. 2. Commuting diagram of asymptotic preserving (AP) schemes. An AP solver Fh
ε should, in the zero limit of ε

for fixed h, capture the solution to F∗.

This AP property is not easy to satisfy in general. For conventional schemes, we need h � ε for

accuracy, so we cannot in practice fix h as ε → 0. AP schemes have to be designed carefully by using

analytic knowledge about the limiting operator F∗. Much progress has been made in the past decade. For

linear equations, an even-odd decomposition approach has been designed, with the even part capturing

the limit and the odd part capturing the second order expansion [33, 44, 47, 52]. Another approach

uses a preconditioned conjugate gradient that exploits the structure of the discrete matrix [6, 57]. In

the nonlinear setting, the BGK penalization method was developed in [13, 28] and methods based on

the Wild sum [74] were described in [20, 56] (see also [19, 39]). Most of these methods are designed

for time-dependent problems. Because of the limited analytic knowledge about kinetic boundary layers,

there are very few AP solvers for time-independent problems (see [30, 53, 54]).
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2.2. Numerical homogenization. Consider elliptic equations in divergence form with highly os-

cillatory media:

(2.7)

{
∇x ·

(
a
(
x
ε

)
∇xuε

)
= g in K ,

uε = f on ∂K ,
where K is a bounded Lipchitz domain and 0 < ε� 1 characterizes the small scale in the problem. We

assume a(·) is bounded below and above by positive constants. We also assume a(·) is Hölder continuous

and 1-periodic, so problem (2.7) is elliptic with highly-oscillatory media. As ε goes to zero, the solution

uε converges to that of a homogenized equation

(2.8)

{
∇x · (a∗(x)∇xu∗) = g in K ,
u∗ = f , on ∂K ,

in the sense that

‖uε − u∗‖2 = O(ε) .

Here a∗ is termed the effective media [5, 14, 64].

Theorem 2.3 (Theorem 1.1 in [46]). Denote uε is the solution to Equation (2.7) and u∗ the solution

to the effective equation (2.8). With same assumptions on K and a(·) as above, then for any g ∈ L2(K)

and f ∈ H1(∂K), if u∗ ∈ H2(K), then we have the strong convergence in L2:

(2.9) ‖uε − u∗‖L2(K) ≤ Cσε| ln(ε)| 12 +σ
[
‖g‖L2(K) + ‖f‖H1(∂K)

]
for any σ > 0.

The aim of numerical homogenization, or numerical treatment for elliptic equations with rough media

to a larger extent, which has a long history, is to develop efficient solvers with two key properties:

1. the discretization is independent of ε;

2. the numerical solutions capture the correct limiting solutions on the discrete level.

Many methods have been developed for elliptic equations, including the multiscale Finite Element Method

(MsFEM) [25, 37, 38], the heterogeneous multiscale method (HMM) [4, 21, 22], the reduced basis type

method [2, 3], local orthogonal decomposition [62], subspace decomposition methods [48, 49], local basis

construction methods [7, 9, 66, 68], and the global-local approach [8, 40, 65], to name just a few. Many

of them have been extended to treat a large class of other equations as well [1, 27, 70]. The focus for

these methods are slightly different. For example, MsFEM intends to capture the fine scale oscillation

while HMM mainly targets at finding the solution to the effective equation. The comparison of these

methods is tangential to the goal of the current work. Interested readers are referred to review papers

and books [21, 24, 71].

3. General solution framework based on domain decomposition and random sampling.

The asymptotic preserving and numerical homogenization schemes reviewed in the previous section are

two efficient schemes for solving multiscale problems with highly oscillatory solutions. Although these

schemes tackle different problems in different ways, both schemes achieve efficiency by exploiting the fact

that the solutions are close to their asymptotic limits, which lie in a low-dimensional subspace. The design

of these schemes relies heavily on a sophisticated understanding of the equation and its asymptotic limit.

For many PDEs, this level of understanding is not available [18]. Our goal of this work is to propose a

general numerical framework that can be applied to various multiscale problems, capturing the efficient

representation of the solutions without an explicit reliance on the analytical understanding.

A first step in developing our framework is to relate the AP and numerical homogenization schemes to

the numerical linear algebra concept of low rank. When the matrix operator in a linear algebra problem

has low rank, the solution lies in a subspace of low dimension; there are efficient numerical schemes,

based on random sampling, that exploit this property. Drawing on these ideas from linear algebra, we

propose a method under the domain decomposition framework, that utilizes random sampling to search

representative modes in the solution space.
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3.1. Numerical rank. In this section, we tackle the questions of low-rankness of a PDE operator

and low dimensionality of the solution space in a general setting, and estimate the rank and dimension

for several problems of interest. In this way, we aim to unify the AP and numerical homogenization

schemes, and develop numerical schemes for more general multiscale problems.

We consider a bounded linear operator A:

(3.1)
A : X → Y

f 7→ u

that maps f ∈ X to a Hilbert space Y. In the PDE setting, Amaps the boundary conditions and/or source

term to the solution of the problem. We define the following neighborhood of A that is parametrized by

a positive scalar τ :

Sτ := {Ã ∈ L(X ,Y) : ‖A − Ã‖X→Y ≤ τ} .
The set Sτ is the collection of all operators whose operator norm is within distance τ of A. When the

context is clear, we suppress the subscript in the operator norm ‖ · ‖X→Y .

Definition 3.1 (Numerical rank). The numerical τ -rank of A is the rank of the lowest-rank operator

in Sτ , that is,

kτ (A) := dim ranAτ ; Aτ := arg min{dim ran Ã : Ã ∈ Sτ} .
That is, Aτ is the operator within distance τ of A whose range space has the smallest dimension, and

kτ (A) is this dimension. We set kτ (A) to ∞ if all Ã ∈ Sτ have range spaces of infinite dimension.

The definition of numerical rank is closely related to Kolmogorov N -width, which we define here.

Definition 3.2 (Kolmogorov N -width). Given the linear operator in (3.1), the Kolmogorov N -

width dN (A) is the shortest distance to an N -dimensional space, that is,

dN (A) := min
S:dimS=N

d(A, S) = min
S:dimS=N

sup
f

min
v∈S
‖Af − v‖Y
‖f‖X

.

Definition 3.1 and Definition 3.2 are connected through the following proposition:

Proposition 3.3. For the operator A specified in (3.1), the following are true.

(a) If the numerical τ -rank is N , then dN (A) ≤ τ .

(b) If dN (A) ≤ τ < dN−1(A), then the numerical τ -rank is N .

Proof. We use PS to denote the projection operator onto a finite dimensional subspace S. Note that

the Kolmogorov N -width is a non-increasing function of N .

For (a), let Aτ ∈ Sτ be the operator that achieves the numerical τ -rank of N , and denote by S the

range of Aτ . We then have

τ ≥ ‖A−Aτ‖ = sup
f

‖Af −Aτf‖Y
‖f‖X

≥ sup
f

min
v∈S
‖Af − v‖Y
‖f‖X

≥ dN (A) ,

where the last inequality is from Definition 3.2.

For (b), suppose that dN ≤ τ < dN−1(A). First, for an arbitrary (N − 1)-dimensional subspace S,

we have

τ < dN−1(A) ≤ sup
f

min
v∈S
‖Af − v‖Y
‖f‖X

≤ sup
f

‖Af −PSAf‖Y
‖f‖X

= ‖A −PSA‖ ,

then according to Definition 3.1, there is no (N − 1)-dimensional operator that achieves τ accuracy, so

we must have kτ (A) ≥ N . Second, since dN (A) ≤ τ , then there exists a N -dimensional subspace S such

that

dN (A) = sup
f

min
v∈S
‖Af − v‖Y
‖f‖X

= sup
f

‖Af −PSAf‖Y
‖f‖X

= ‖A −PSA‖ ≤ τ .

Defining Aτ = PSA, we see that the numerical τ -rank is N .
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The numerical rank and the Kolmogorov N -width both depend on optimal approximations, which

typically require basis set construction that is adaptive to the given problem. The pre-defined basis sets

conventionally used in numerical discretization, such as local polynomials and global Fourier functions (as

used in finite difference/element methods and spectral methods), are not optimal, except in very special

cases (heat equation, for example). In fact, there are counterexamples that show them to be arbitrarily

bad; see [73] for the spectral method and [10] for finite elements.

It is important to distinguish between numerical rank and degrees of freedom (DOF). The DOF is the

number of variables needed to represent the solutions (to a certain specified error tolerance), when the

basis functions are given. Each numerical method utilizes a certain set of pre-specified basis functions,

and the DOF changes according to the method used. The numerical rank, however, depends on the

optimal representation, so is the minimum DOF across all possible methods. We study two examples and

give rough computation of DOF using standard finite element methods, thus yielding upper bound of

the respective numerical ranks. Numerical rank, as a concept, was explicitly explored in several papers

on numerical homogenization, including [7, 16, 32, 62]. In [7], it was proved that the singular values of

a confinement map decay almost exponentially. This concept, however, was not as developed in other

sub-areas of multiscale computation. We compare numerical rank and DOF explicitly below.

3.1.1. Numerical rank of the radiative transfer equation. To estimate the numerical rank of

the solution operator A for the radiative transfer equation (2.1), (2.2) and its diffusion limit, we consider

the following cases. We assume in this section that the boundary condition φ in (2.4) satisfies φ ∈W 2,∞,

so that the solution u and uε attain the same regularity [26]. The boundary-to-solution map A thus maps

W 2,∞ to W 2,∞. For simplicity, we study the numerical rank of A associated with L2 norm.

a) Let ε = 1 in (2.1). If we use the upwind method for ∂x and the trapezoidal rule for S, the method

is first-order in x and second-order in v. By equating the numerical error estimate to the accuracy

required, we have

O(N−1
x +N−2

v ) = τ ⇒ Nx = O(1/τ) , Nv = O(1/
√
τ) .

For τ -accuracy, we thus obtain the following DOF:

Nε=1 = NxNv = O(1/τ3/2) .

b) Suppose that ε is extremely small in (2.1) and we use the same method as shown above. Then, defining

Cε = ‖∂2
xu

ε‖∞ = O( 1
ε2 ), we have that

O(CεN
−1
x +N−2

v ) = τ ⇒ Nx = O(Cε/τ) = O
(

1

τε2

)
, Nv = O(1/

√
τ) .

Note that Cε blows up for small ε, since uε has sharp transitions. For τ -accuracy, the DOF is

(3.2) Nε = NxNv = O
(

1

ε2τ3/2

)
.

c) If hat functions are used to construct the finite element basis for the limiting Poisson equation (2.6),

the method is second-order convergent in x, and we obtain

O(N−2
x ) = τ ⇒ Nx = O

(
1/
√
τ
)
.

The DOF in this case is thus:

N∗ = Nx = O(1/
√
τ) .

d) If we make use of the diffusion limit, the triangle inequality yields

‖uε − U‖ ≤ ‖uε − u∗‖+ ‖u∗ − U‖ ≤ O(ε) +O(N−2
x ) ,
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with U being the numerical solution to u∗. By comparing with the tolerance τ and taking the zero

limit of ε, we obtain for the DOF that

(3.3) Nap
ε = O

(
1√
|τ − ε|

)
= O(1/

√
τ) as ε→ 0 .

This is the approximation used by the AP method, hence our notation Nap
ε .

We see by comparing (3.3) and (3.2) that different schemes produce vastly different DOF. Numerical

rank of A, bounded by the smallest DOF, is thus controlled by Nap
ε . The homogenization scheme gives

a much sharper bound on numerical rank than the brute-force finite difference method.

3.1.2. Numerical rank of elliptic equation with oscillatory coefficients. A similar analysis

to the previous subsection can be conducted for the diffusion equation (2.7) with rough media. Again, we

assume H3/2 regularity for the boundary condition g, so that the solution u and uε gain H2 regularity.

We thus consider the solution operator A to be a mapping from H3/2 to H2, and study the numerical

rank of A associated with L2 norm.

a) Let ε = 1 in (2.7). If one uses the classical finite element method with piecewise hat functions as basis

functions for ∇x · (a(x, x/ε)∇x), the method is second-order convergent. By equating the numerical

error to the required accuracy τ , we obtain

O(N−2
x ) = τ ⇒ Nx = O(1/

√
τ) ,

so that the DOF within τ -accuracy is Nε=1 = Nx = O(1/τ1/2).

b) Suppose that 0 < ε� 1 in (2.7). If we use the classical finite element method with hat functions, as

above, the discretization needs to resolve the oscillations, leading to the estimate

O
(

1

ε2
N−2
x

)
= τ ⇒ Nx = O

(
1

ε
√
τ

)
,

where the factor 1/ε2 arises from Theorem 4.4 in [36]. We thus have

(3.4) Nε = Nx = O
(

1

ε
√
τ

)
.

c) If the finite element method with hat-function basis is applied to the limiting effective equation with

smooth media (2.8), the solution is smooth and the derivative is order one. Since the method is

second-order, we obtain

O(N−2
x ) = τ ⇒ Nx = O(1/

√
τ) ,

which leads to a DOF of N∗ = Nx = O(1/
√
τ).

d) The homogenization route and the triangle inequality leads to

‖uε − U‖ ≤ ‖uε − u∗‖+ ‖u∗ − U‖ ≤ O(ε) +O(N−2
x ) ≤ τ ,

so that

(3.5) Nhom
ε = Nx ≥ O

(
1√
|τ − ε|

)
→ O(1/

√
τ) as ε→ 0 .

By comparing (3.4) and (3.5), we see that the DOF obtained from homogenization gives a much sharper

bound on the numerical rank. Moreover, the numerical rank is finite, even in the zero limit of ε.

The discussions above show that the DOF depends on both the approximate solution space and the

choice of basis functions, while numerical rank, by contrast, reflects the size of the basis required to
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approximate the solution up to a certain given accuracy. Heuristically, it also implies that the singular

values of stiffness matrix decay rapidly, while the size of this matrix explodes as ε → 0. When DOF

is significantly higher than the numerical rank, fast matrix-vector multiplication methods, which may

exploit the sparsity of the stiffness matrix, may accelerate the computation. However, this topic is

beyond the focus of this paper. We take the alternative route here of identifying lower-dimensional

spaces that approximate the solution space well and economically, using techniques that are motivated

by randomized algorithms in numerical linear algebra.

Remark 3.4. The discussion above has been justified rigorously in [7] for elliptic equation with rough

media. This paper shows the optimal local basis functions are indeed the singular vectors of a restriction

operator P , and that the Kolmogorov N -width of P is exponentially decaying, that is,

dN (P ) / e−n
1/(d+1)

,

where d is dimension of physical space. Therefore, the numerical τ -rank of P is small and the optimal

representation of solution of elliptic equation has small DOF. The work [7] constructed optimal basis via

an eigenvalue problem, whereas our work proposes to use a randomized algorithm.

3.2. Random sampling in numerical linear algebra. Random sampling algorithms have a long

history in numerical linear algebra [29, 31, 35, 41, 45, 61, 72]; we will focus here on those related to low-

rank approximations of a matrix. Given a matrix A ∈ Rm×n that is known to be approximately low rank,

a standard way to obtain the most important modes in its range is via the singular value decomposition

(SVD). Without loss of generality, we assume m ≥ n and write the singular value decomposition as

(3.6) A = UΣV> =

n∑
i=1

σiuiv
>
i ,

where U = [u1 , u2 , . . . , un] ∈ Rm×n contains the left singular vectors, V = [v1 , v2 , . . . , vn] ∈ Rn×n
contains the right singular vectors and Σ = diag (σ1, σ2, . . . , σn) contains the singular values in descending

order: σ1 ≥ σ2 ≥ . . . σn ≥ 0. U and V are orthogonal matrices. It is well known that the best k-rank

approximation to A (in spectral norm) is given by thresholding the singular value decomposition at k-th

order, termed Ak here:

Ak = UkΣkVk =

k∑
i=1

σiuiv
>
i ,

where Uk and Vk contain the first k columns in U and V. We say the matrix is approximately rank-k if

‖A− Ak‖ = σk+1 � σ1. In this case, we have

‖A− Ak‖ = ‖A− UkU
>
k A‖ = σk+1 � σ1 = ‖A‖ .

In terms of the discussion in the previous subsection, the range space of A is approximately the same

as the range space of Ak, which equals the span of the columns of Uk, which is the subspace we seek.

Computation of the SVD (3.6) is a classical problem in numerical linear algebra, requiring O(mn2)

operations.

Randomized SVD efficiently computes the low-rank approximation of a given matrix by means of

random sampling of its column space. The particular version of the algorithm we describe here was

developed in [58, 75]; see [35] for a review.

The idea behind the algorithm is simple: if an m × n matrix A is of approximate low rank k, the

matrix maps an n-dimensional sphere to an m-dimensional ellipsoid that is “skinny:” k of its axes are

significantly larger than the rest. With high probability, vectors that are randomly sampled vector on

the n-dimensional sphere are mapped by A to vectors that lie mostly in a k-dimensional subspace of Rm,

which is the range of A. An approximation to Ak can be obtained by projecting onto this subspace.
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The precise statement of the randomized SVD algorithm and its error estimates are recalled in the

following theorem.

Theorem 3.5 (Theorems 10.6 and 10.8 of [35]). Let A be defined as in (3.6) and let the target rank

k be at least 2. Define

(3.7) Y = AΩ ,

where Ω = [ω1 , . . . , ωk+p] is a matrix of size n× (k+ p) with its entries randomly drawn from i.i.d. nor-

mal distribution, where p is an oversampling parameter. If A is approximately k-rank, then with large

probability, PY(A), the projection of A onto the space spanned by Y, defined by

PY(A) = Y(YY>)−1Y>A ,

yields the following error bounds.

a) Average spectral error:

E ‖A− PY(A)‖ ≤
(

1 +
k

p− 1

)
σk+1 +

e
√
k + p

p

(∑
j>k

σ2
j

)1/2

� σ1 .

b) Deviation bound:

‖A− PY(A)‖ ≤

(1 + t

√
3k

p+ 1

)
σk+1 + t

e
√
k + p

p+ 1

(∑
j>k

σ2
j

)1/2
+ ut

e
√
k + p

p+ 1
σk+1 � σ1,

with failure probability at most 2t−p + e−u
2/2, for all u, t > 1.

We emphasize two advantages of the algorithm: It captures the approximate range within n(k + p)

operations (p is fixed and small), and it does not require full knowledge of A, only the ability to evaluate

the matrix-vector product AΩ.

3.3. General solution framework for multiscale problems. Finding a low-rank representation

of solution space is the key to reducing complexity. In this section, we adapt the low-rank approxima-

tion scheme from numerical linear algebra into a general methodology for solving multiscale PDEs. The

method requires limited knowledge on the specific structure of the solution spaces, so the solvers are

expected to be applicable to a large class of multiscale problems. Our framework uses domain decom-

position to sketch the local solution space via randomized sampling, in an offline step. This is followed

by an online step, in which the solution is patched together by imposing continuity conditions across the

domains.

We wish to solve the problem (1.1), that is,

(3.8)

{
(Lεuε)(x) = 0 , x ∈ K ,
Bu(x) = φ(x) , x ∈ Γ ,

where B is the boundary condition operator, Γ the boundary associated with domain K and f the

boundary data. We adopt the domain decomposition approach, partitioning K into M non-overlapping

subdomains, as follows:

K =

M⋃
m=1

Km , with K◦m ∩ K◦n = ∅ (m 6= n) ,

where Km denotes the m-th local patch. Accordingly, we denote by Γm the boundary associated with

Km. Different types of equations require various kinds of boundary conditions, as we will make explicit

in section 4 and section 5. Each subdomain is further discretized with a conformal mesh. We denote h
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as the largest meshsize and assume that it is fine enough such that h � ε. The number of subdomains

M does not depend on ε.

Domain decomposition approach consists of two stages, as follows.

(1) Offline stage: Prepare local solution space. Denote by Gm the collection of local solutions in each

local patch Km, m = 1, 2, . . . ,M , that is,

Gm = [bm,1 , bm,2 . . . ] ,

where each local function bm,n is one solution to the equation on the subdomain Km, that is,

Lεbm,n = 0 , x ∈ Km ,

with boundary condition on Γm. These solutions are computed on fine grids with discretization h.

(2) Online stage: The global solution is written as

u =
M∑
m=1

um =

M∑
m=1

Gmcm,

with um being u confined on Km. cm is a vector of coefficients determined by the boundary conditions

φ and conditions that enforce continuity across patches.

The online stage is a standard step in domain decomposition. Its cost is governed by the number of

basis functions chosen in the offline step. In the offline stage, there are many ways to construct the local

solution space Gm. Since this space contains all possible local solutions, it can be regarded as a full

library of all Green’s functions. One possible way to define Gm is to define the boundary conditions on

the mth patch to be delta functions defined over a grid on the boundary Γm, that is,{
Lεbm,n = 0 , x ∈ Km
bm,n = δm,n , x ∈ Γm ,

where δm,n is the Kronecker delta function that takes the value 1 at the n-th grid point on Γm and zero

on the other grid points on ∂Km. Since h � ε, the number of functions nm in Gm grows as ε shrinks.

This strategy, summarized in Algorithm DetLocalSolu, is referred to as the full-basis approach.

An alternative way to construct basis functions for each patch also makes use of a grid defined on

the boundary Γm, but takes the boundary conditions for each function bm,n to be a set of random values

on the grid points, rather than a δ function. Specifically, we have{
Lεrm,n = 0 , x ∈ Km,
rm,n = ωm,n , x ∈ Γm,

where ωm,n is defined to have a random value drawn i.i.d. from a normal distribution at each grid

point in Γm. Since the local solution space is homogenizable and low rank, we expect that the number

of basis functions km required to represent it adequately will be much smaller than nm defined above,

and independent of ε. This strategy, which we refer to as the randomized reduced-basis approach, is

summarized in Algorithm RandLocalSolu. In practice, one could add a QR-decomposition at the end

of algorithm RandLocalSolu to return basis functions that are orthonormal. This would improve the

condition number of the global online problems (for example, (4.13) and (5.14)).

Denote by Gbm the collection of full basis {bm,n} and Grm the collection of random reduced basis

{rm,n}, we have the following relationship:

Grm = GbmΩ ,

where Ω is a random i.i.d. matrix with entries ωm,n.
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Algorithm 3.1 Multiscale solver for Lεuε = 0 over K with Bu = f on Γ

1: Domain Decomposition

2: Partition domain into non-overlapping patches K =
⋃M
m=1Km.

3: Form the ansatz u =
∑M
m=1 um =

∑M
m=1 Gm~cm.

4: Offline Stage:

5: Call function Gm=DetLocalSolu(Km) or Gm=RanLocalSolu(Km).

6: Online Stage:

7: Use continuity condition and global boundary data f to determine [~c1, . . . ,~cM ].

8: Return: approximated global solution û =
∑M
i=1 Gm~cm.

1: function DetLocalSolu(Km)

2: Prepare full list of numerical delta functions δm,i, i = 1, . . . , nm on Γm.

3: Call function um,i=LocalPDESolver(Km,δm,i) for i = 1, 2, . . . , nm.

4: Return: Local solution space span Gm = [um,1, . . . , um,nm ].

5: end function

1: function RanLocalSolu(Km)

2: Prepare km random i.i.d. Gaussian vector ωm,i, i = 1, . . . , km on Γm.

3: Call function um,i=LocalPDESolver(Km,ωm,i) for i = 1, 2, . . . , km.

4: Return: Approximated local solution space span Gm = [um,1, . . . , um,km ].

5: end function

1: function LocalPDESolver(Local domain Km, Boundary condition φ)

2: Use standard Finite Element/Difference Methods to solve PDE Lεuεm = 0 over Km with uεm = φ

over Γm, for solution uεm.

3: Return: Local solution uεm.

4: end function

The complete scheme, which includes the two alternative implementations of the offline stage de-

scribed above, is specified as Algorithm 3.1.

In practice, for RandLocalSolu, we often use a slightly larger patch K̃m ⊃⊃ Km that augments

Km by a buffer zone. The local solution is obtained on K̃m, with random boundary conditions on its

associated boundary Γ̃m, and then restricted on Km, as follows:{
Lεb̃m,n = 0 , x ∈ K̃m
b̃m,n = ωm,n , x ∈ Γ̃m .

Use of the buffer zone helps to remove boundary layer effects and the effect of the singularity at the

boundary. This technique will be discussed further for the particular PDEs considered in the next two

sections.

Remark 3.6. We emphasize that such connection between PDE and linear algebra has been observed

by several previous works, including [15, 66, 68]. Our proposed method especially coincides with that

of [68], in which the author explicitly connects the random sampling in H−1 (seen in the source) to the

representative basis functions in H1 (seen in the solution space). In our case the random sampling is

done on the boundary condition, but the method shares the same spirit as reported in [68].
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4. Example 1: Radiative transfer equation. We now describe the application of our framework

to the radiative transfer equation with zero source, which is

(4.1) Lεuε = v∂xu
ε(x, v)− 1

ε
S[uε] = 0 , (x, v) ∈ K = Ω× V = [0, 1]× [−1, 1] ,

where the collision term S is given by

Su(x, v) =

∫ 1

−1

k(x, v, v′)u(x, v′)dv′ −
∫ 1

−1

k(x, v′, v)dv′u(x, v) .

We use the Henyey-Greenstein model, in which the scattering coefficient is defined by

(4.2) k(x, v, v′) =
1

2

1− g2

1 + g2 + 2g(vv′)
,

where g ∈ (−1, 1) is a specified constant. To impose boundary conditions properly for radiative transfer

equations, we denote by Γ± the outgoing / incoming part of the boundary:

Γ± = {(x, v) : x ∈ ∂Ω, ±v · nx > 0} ,

where nx is the exterior normal direction at x ∈ ∂Ω. In particular, for the problem (4.1) on the spatial

domain Ω = [0, 1], we have

Γ− = {(x = 0, v > 0)} ∪ {(x = 1, v < 0)} , Γ+ = {(x = 0, v < 0)} ∪ {(x = 1, v > 0)} .

The equation (4.1) is well-posed if a Dirichlet boundary condition is imposed on the incoming boundary,

also known as the incoming boundary condition: uε|Γ− = φ.

To implement domain decomposition, we partition the domain as follows:

(4.3) K = [0, 1]× [−1, 1] =

M⋃
m=1

Km , with Km = [xm−1 , xm]× [−1, 1] ,

where xm = m/M forms a set of (M + 1) equi-spaced grid points on [0, 1] and Km is the m-th patch of

the domain. The incoming / outgoing parts of the boundary of each patch are

Γm,− = {(xm−1, v > 0)} ∪ {(xm, v < 0)} , and Γm,+ = {(xm−1, v < 0)} ∪ {(xm, v > 0)} .

We denote by Lm,m+1 = Km ∩ Km+1 = {(xm, v) : v ∈ [−1, 1]} the line segment that separates Km and

Km+1. The geometry of the domain and the patches is plotted in Figure 3.

As described in section 3, the domain decomposition approach prepares the local solution space

in the offline step and patches together solutions via continuity and boundary conditions in the online

step. We describe the two options for constructing the basis functions — the full-basis approach and the

randomized reduced-basis approach — in the following two subsections.

4.1. Full basis approach.

Offline step. We prepare a full basis of the local solution space by enumerating all possible boundary

conditions, up to a discretization. Since the problem (4.1) is linear, we can obtain each basis function

by solving a problem over a patch with a Dirichlet boundary condition that is nonzero at only one grid

point. Specifically, for the patch Km, each basis function bm,i is obtained by solving

(4.4)

{
v∂xbm,i − 1

εS[bm,i] = 0 , (x, v) ∈ Km ,
bm,i|Γm,− = δm,i,
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Fig. 3. Domain decomposition for RTE and the boundaries of the local patch.

where δm,i is a numerical delta function supported on a grid point on Γm,− and the index i enumerates

all grid points on the incoming boundary. The full basis for the local solution space is then given by

(4.5) Gεm = [bm,1 , . . . , bm,nm
] ,

where Gεm is a Green’s matrix whose columns are the basis functions bm,i. Here, nm is the total number

of grid points on the incoming boundary Γm,− of Km. In other words, the Green’s matrix Gεm is the

analog of the operator Aεm : f 7→ b defined by{
v∂xb− 1

εS[b] = 0 , (x, v) ∈ Km ,
b|Γm,− = f.

Online step. The online step obtains the global solution as a linear combination of all local basis

functions, as follows:

(4.6) uε =
∑
m

uεm =
∑
m

∑
i

cm,ibm,i ,

where the coefficients cm,i are chosen to satisfy the following conditions:

∗ Continuity: um(Lm,m+1) = um+1(Lm,m+1), which can be stated in more detail as

(4.7)

{
um(Γm,+ ∩ Lm,m+1) = um+1(Γm,+ ∩ Lm,m+1) = um+1(Γm+1,− ∩ Lm,m+1) ,

um(Γm,− ∩ Lm,m+1) = um+1(Γm,− ∩ Lm,m+1) = um+1(Γm+1,+ ∩ Lm,m+1) .

In both equations, the first equality comes from the continuity condition and the second equality

follows from

Γm,± ∩ Lm,m+1 = Γm+1,∓ ∩ Lm,m+1,

as illustrated in Figure 3.

∗ Boundary condition:

(4.8) u|Γ− = φ .
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Algebraically, we denote by Mm the matrix that maps inflow boundary condition cm = um(Γm,−)

to outflow data um(Γm,+), and denote by Ilm (resp. Irm) the restriction operator on the left edge Lm−1,m

(resp. the right edge Lm,m+1) of patch Km. Using this notation, (4.7) and (4.8) can be written as follows:[
IrmMm −Ilm+1

−Irm Ilm+1Mm+1

] [
cm
cm+1

]
=

[
0

0

]
,

[
Il1 0

0 IrM

] [
c1
cM

]
=

[
Il1φ
IrMφ

]
.

Assembling these conditions over all patches, we obtain

(4.9) Pc = d ,

where

P =



Il1 0 0 . . . 0

Ir1M1 −Il2 0 . . . 0

−Ir1 Il2M2 0 . . . 0
. . .

. . .
. . .

0 . . . 0 IrM−1MM−1 −IlM
0 . . . 0 −IrM−1 IlMMM

0 . . . 0 0 IrM


, c =


c1
c2
...

cM

 , d =


Il1φ
0
...

0

IrMφ

 .

We obtain the solution by substituting the coefficients {cm,i : i = 1, . . . , nm ,m = 1, . . . ,M} from (4.9)

into (4.6).

4.2. Reduced basis approach. An approximation to the local solution space for a patch Km
starts by defining the larger “buffered” patch K̃m ⊃⊃ Km. The buffered patch has boundaries Γ̃±,m,

as illustrated in Figure 4. We denote by G̃εm the Green’s matrix obtained by solving the local equation

on the buffered patch K̃m with all possible boundary conditions, as in the construction of (4.5), but

restricted to the domain Km. More precisely, we can obtain b̃m,i by solving{
v∂xb̃m,i − 1

εS[̃bm,i] = 0 , (x, v) ∈ K̃m ,
b̃m,i|Γ̃m,−

= δi,

where Γ̃m,− is the incoming portion of the boundary of ∂K̃m, and then define

G̃εm =
[
b̃m,1|Km

, . . . , b̃m,ñm
|Km

]
,

where ñm is the number of incoming boundary grid points. It is clear that each column of G̃εm solves (4.4)

inside Km, and thus is in spanGεm (since the latter consists of all possible local solutions). Moreover, the

solution to the global equation restricted to Km also lies in span G̃εm.

Due to the diffusion limit, as discussed in subsection 2.1, the Green’s matrix G̃εm is approximately

low-rank and can be compressed through random sampling.2 As in subsection 3.3, we solve the following

system with randomized boundary conditions to obtain each basis function r̃m,i:

(4.10)

{
v∂xr̃m,i − 1

εS[r̃m,i] = 0 , (x, v) ∈ K̃m ,
r̃m,i|Γ̃m,−

= ωm,i ,

2We do not directly approximate Gε
m, which is not low-rank due to the singularity near ∂Km caused by the incoming

Dirichlet boundary condition at Γm,−. For G̃ε
m, because of the presence of the buffer, this singularity does not appear in

Km, causing G̃ε
m to be approximately low-rank. The use of a buffer is similar to the oversampling approach in the multiscale

finite element method [37].
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where ωm,i takes i.i.d. standard Gaussian at all grid points on the boundary Γ̃m,− and i is the index of

random samples corresponds to different realizations of the boundary data. We then take restrictions

rm,i = r̃m,i|Km
and assemble them into local reduced Green’s matrix:

Gε,rm = [rm,1 , . . . , rm,km ] = G̃εm [ωm,1 , . . . , ωm,km ] .

According to Theorem 3.5, we have with high probability that

‖G̃εm − PG̃ε,r
m

(G̃εm)‖
‖G̃εm‖

� 1.

Because of the approximate low-rank property, we can take km � nm, thus reducing significantly the

dimension of the local solution space (and also the dimension of the global linear system in the online

step). For m = 1 and m = M (for which the patch Km is at the boundary of full domain), we use the

full basis matrix Gε,rm = Gεm, so that we can capture the boundary conditions that are imposed on the full

domain.

In the online step, we write the solution as

(4.11) uε =
∑
m

uεm ≈
∑
m

∑
i

c̃m,irm,i ,

with {c̃m,i,m = 1, 2, . . . ,M, i = 1, 2, . . . , km} being the coefficients for the reduced basis. We de-

note by M̃m and W̃m the matrix that maps c̃m to outflow data
∑
i c̃m,irm,i(Γm,+) and inflow data∑

i c̃m,irm,i(Γm,−) respectively. Note that the analogous W would become identity in the full basis

approach. By imposing the continuity condition and exterior boundary condition, we obtain[
IrmM̃m −Ilm+1W̃m+1

−IrmW̃m Ilm+1M̃m+1

] [
c̃m
c̃m+1

]
=

[
0

0

]
,

[
Il1W̃1 0

0 IrMW̃M

] [
c̃1
c̃M

]
=

[
Il1φ
IrMφ

]
.

Assembling these equations, we obtain

(4.12) P̃c̃ = d ,

where

P̃ =



Il1W̃1 0 0 . . . 0

Ir1M̃1 −Il2W̃2 0 . . . 0

−Ir1W̃1 Il2M̃2 0 . . . 0
. . .

. . .
. . .

0 . . . 0 IrM−1M̃M−1 −IlMW̃M

0 . . . 0 −IrM−1W̃M−1 IlMM̃M

0 . . . 0 0 IrMW̃M


, c̃ =


c̃1
c̃2
...

c̃M

 , d =


Il1φ
0
...

0

IrMφ

 .

Since we are working in an approximate local solution space due to the random sampling, this global

linear system constraint is overdetermined and cannot be solved exactly in general. Instead, we use the

least-squares solution defined by

(4.13) c̃ = arg min
e
‖P̃e− d‖2 ⇒ c̃ = (P̃>P̃)−1P̃>d .

Remark 4.1. The matrix P̃ is of size Mp × Np where Mp =
∑M
m=1 nm and Np =

∑M
m=1 km. The

typical time complexity for this linear regression problem is of order O
(
N2
p (MP +Np)

)
whereas for the

full basis approach (4.9), the matrix P is of size Mp by Mp and time complexity is O(M3
p ). Because

Np �Mp, the computation cost of our approach is considerably lower.
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Fig. 4. Buffered domain decomposition

4.3. Numerical test. We set g = 1/2 in (4.2), and decompose the domain as in (4.3) with M = 10.

In the velocity domain, we use the grid points vj = −1 + j
Nv

with Nv = 120 so that the mesh size in the

velocity domain is ∆v = 1
60 . We define the buffered patches K̃m to be twice as large as the original patches

Km, with equal margins on each side. When solving the local problems, we use spatial discretization with

fine mesh size ∆x = 0.01. The setup is shown in Figure 4.

4.3.1. Local test. In Figure 5, we show the normalized singular values (that is the ratio σj/σ1

for j = 1, 2, . . . ) of Green’s matrix Gε2 and G̃ε2 for the second local patch and the buffered patch, with

Knudsen number ε = 2−6. Note that singular values enjoy fast decay when ε is small and that the use of

a buffer induces faster decay. In Figure 6, we plot a measure of relative error for different values of km
and ε. The quantity plotted is defined by

error =
‖G̃ε2 − QQ>G̃ε2‖2

‖G̃ε2‖2
, with Gε,r2 = QR ,

that is, Q is obtained from a QR decomposition of Gε,r2 , for which the number of columns increases as

km increases. As km increases, the range of Gε,r2 captures the range of G̃ε2 more and more accurately, and

that the approximation is satisfactory only for small values of ε.

In Figure 7, we construct random local solution space span{Gε,r2 } with k2 = 50 and show how well

this random solution space can capture the first 3 left singular modes of Gε2 with ε = 2−6.

4.3.2. Global test. In the global test, we consider solving (4.1) with boundary data

φ(v) =

{
3 + sin(2πv) , (x = 0, v > 0)

2 + sin(2πv) , (x = 1, v < 0),

and compare the numerical solutions of the full-basis and randomized reduced-basis approaches. Figure 8

shows three solutions: reference solution, the solution obtained from the reduced basis with km = 10,

and the solution obtained from the reduced basis with km = 50. Results are given for ε = 20 and

ε = 2−6. We see that the information contained in nm = 120 bases is largely captured by the random

bases with km = 10 (for all m) when ε = 2−6, at considerably lower computational cost. The quantitative

error-decay as a function of km is plotted in Figure 9.
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Fig. 6. Effectiveness of the random sampling for different Knudsen number: ε = 20, 2−2, 2−4, 2−6 on buffered domain
K̃2. For each ε, the approximate range captured by Gε,r

2 improves as the number of random modes km increases. Much
better approximations are obtained for smaller ε than for larger values.

5. Example 2: elliptic equation with highly oscillatory media. We now consider elliptic

equations with oscillatory media on the domain K = [0, 1]2 with Dirichlet boundary conditions. The

problem is

∇x ·
(
a
(
x,
x

ε

)
∇xuε

)
= 0 , in K = [0, 1]2 ,(5.1)

uε = φ(x) , on Γ = ∂K,(5.2)
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where the coefficient field a = a(x, x/ε) is oscillatory because of its explicit dependence on the fast variable

x/ε. (ε indicates the scale of oscillation in the coefficient field.)

We solve (5.1) on a coarse mesh {(xm1
, ym2

) | xm1
= m1H, ym2

= m2H} with H = 1/M . The

coarse mesh size H is chosen independent of the small parameter ε. The domain K is decomposed into

patches defined by

(5.3) K =
⋃
m

Km , with Km = [xm1−1, xm1
]× [ym2−1, ym2

] ,



RANDOM SAMPLING AND EFFICIENT ALGORITHMS FOR MULTISCALE PDES 21

10 20 30 40 50

Number of local random basis

0

0.1

0.2

0.3

R
e
la

ti
v
e
 E

rr
o
r

0

-2

-4

-6

Fig. 9. The global error as a function of km. As km, the number of random modes per patch increases, the relative
error decreases. For fixed number of random modes, the relative error is better for small ε.

x1
0 0.2 0.4 0.6 0.8 1

x 2

0

0.2

0.4

0.6

0.8

1

Km1,m2
Km1+1,m2

K

Fig. 10. Domain K is decomposed into patches, each defined by a multi-index m = (m1,m2).

where m = (m1,m2) is a multi-index. Two patches Km and Kn share boundaries if they are adjacent,

and we define the shared edge as follows:

Lmn = Km ∩ Kn .

Thus Lmn is nontrivial only if (m1,m2) = (n1 ± 1, n2) or (m1,m2) = (n1, n2 ± 1); see Figure 10. Note

too that Lmn = Lnm.

5.1. Full basis approach.
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Offline. In the full-basis scheme, we prepare the local solution space functions bm,i in the offline

step by solving (5.1) in every patch Km with boundary conditions that are non-vanishing at one just grid

point i on the boundary of the patch:

(5.4)

{
∇x ·

(
a
(
x, xε

)
∇xbm,i

)
= 0 , x ∈ Km,

bm,i = δi , x ∈ Γm = ∂Km ,

where δi = 1 at the i-th boundary grid point of Γm and is zero at all other grid points in Γm. The

solutions {bm,i , i = 1, . . . , nm} span the space of local solutions with all possible boundary conditions,

and we assemble them into the local Green’s matrix for Km:

(5.5) Gεm = [bm,1 , . . . , bm,nm
] .

Note that to compute the basis functions, we use fine discretization with meshsize h� ε, which leads to

nm = O(1/ε). (Details of the fine mesh are discussed in subsection 5.3.)

Online. We write the global solution as a linear combination of all local basis functions, with

coefficients cm,i:

(5.6) uε =
∑
m

uεm =
∑
m

nm∑
i=1

cm,ibm,i .

The coefficients are determined by enforcing the following constraints:

∗ Continuity across edges Lmn: um(Lmn) = un(Lmn) and a∂num(Lmn) = −a∂nun(Lmn) if Lmn 6=
∅, where ∂n denotes the outer normal derivative on the boundary;

∗ Boundary condition on ∂K: u|∂K = φ.

Denote by Mm,n the matrix that maps cm to um(Lmn), and by Wm,n the matrix that maps cm to

a∂nun(Lmn), that is,

Mm,ncm = um(Lmn) , Wm,ncm = a∂num(Lmn) .

(Note that Mm,n is a submatrix of Gεm.) From the continuity condition, we have

(5.7)

{
Mm,ncm −Mn,mcn = 0 , x ∈ Lmn
Wm,ncm + Wn,mcn = 0 , x ∈ Lmn.

Similarly, we define by Mm,ext the matrix that maps cm to the intersection of ∂Km with ∂K. From the

boundary condition, we have

(5.8) Mm,extcm = φ , x ∈ ∂Km ∩ ∂K .

By assembling the conditions (5.7) and (5.8) for allm and n, and solving for the coefficients {cm,i ,m =

1 , . . . ,M , i = 1 , . . . nm}, we obtain uε from (5.6). The linear system has the form

(5.9) Pc = d ,

with d = [φ, 0], c = [cm,i] and P is formed by the collection of Mm,n, Wm,n, and Mm,ext.

5.2. Reduced basis approach. As in subsection 4.2, we define buffered patches K̃m such that

Km ⊂⊂ K̃m, and solve a local problem on each buffered patch. When we restrict the local solutions to

Km, we find that (as before) these solutions lie approximately in a lower-dimensional space. Similarly to

Equation (5.4), we define the local problems as follows:

(5.10)

{
∇x ·

(
a(x, xε )∇xb̃m,i

)
= 0 , x ∈ K̃m,

b̃m,i|∂K̃m
= δi,
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then define the local solution space via the following Green’s matrix:

(5.11) G̃εm =
[
b̃m,1|Km , . . . , b̃m,ñm

|Km

]
,

Since span G̃εm contains all local solutions, we seek a good approximation to span G̃εm for the interior cells

during the offline stage. As shown in [12], and similarly to subsection 4.2, the matrix G̃εm is low rank and

can be compressed through random sampling. We solve (5.10) with the boundary condition δi replaced

by a function wi which takes on random values (specifically, i.i.d. normal random variables) at the grid

points of the boundary ∂K̃m, that is,

(5.12)

{
∇x ·

(
a(x, xε )∇xr̃m,i

)
= 0 , x ∈ K̃m,

r̃m,i|∂K̃m
= ωi.

We do this for km choices of random boundary function wi and assemble the local reduced Green’s matrix

from the restricted solutions rm,i = r̃m,i|Km , i = 1, 2, . . . , km:

Gε,rm = [rm,1 , . . . , rm,km ] = G̃εm [ωm,1 , . . . , ωm,km ]
∣∣
Km

.

As done in the full basis approach, the coefficients are determined in the online step, namely, we express

the solution as

uε =
∑
m

uεm ≈
∑
m

km∑
i=1

c̃m,irm,i .

and determine the coefficients c̃m,i by imposing the continuity conditions in the interior boundaries and

and boundary conditions on the exterior boundary.

Similar to the full basis approach, denote M̃m,n and W̃m,n the matrices that map c̃m to um(Lmn)

and a∂nun(Lmn) respectively, that is,

M̃m,nc̃m = um(Lmn) , W̃m,nc̃m = a∂num(Lmn) .

By imposing the continuity condition and the exterior boundary condition, we obtain

(5.13)

{
M̃m,nc̃m − M̃n,mc̃n = 0 , x ∈ Lmn
W̃m,nc̃m + W̃n,mc̃n = 0 , x ∈ Lmn

, and M̃m,extcm = φ , x ∈ ∂Km ∩ ∂K .

Assembling the equations, we obtain:

P̃c̃ = d .

However, since the number of coefficients in the reduced basis approach is significantly smaller than

that in the full basis approach (km � nm in every patch Km), while the number of continuity condition

and the boundary condition is not changed, the system is overdetermined. We thus consider the least-

squares solution, that is:

(5.14) c̃ = argmine‖P̃e− d‖2 ⇒ c̃ = (P̃>P̃)−1P̃>d .

Alternatively, we could enforce the boundary conditions exactly and relax only the continuity condition,

as in the following constrained least-squares formulation: such that:

min
c

∑
m,n

‖M̃m,ncm − M̃n,mcn‖22,mn + ‖W̃m,ncm + W̃n,mcn‖22,mn , such that M̃m,extcm = φ .

Here ‖ · ‖2,mn denotes L2 norm confined on x ∈ Lmn. If we assume a uniform mesh with nm constant

for all patches, then matrix P̃ is of size Mp ×Np where Mp = 1
2

√
M(
√
M + 1)nm and Np =

∑M
m=1 km.

Similar to the case of RTE, the typical time complexity for linear regression problem (5.14) is of order

O(N2
p (Mp +Np)). Numerically, we obtain satisfactory results from (5.14), which we present in the next

subsection.
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Fig. 11. Left: Media used in elliptic equation (5.1). Right: illustration of buffered domain decomposition

5.3. Numerical test. We set the domain to be K = [0, 1]2 and define the media as follows, for

x = (x1, x2) ∈ K:

a
(
x,
x

ε

)
= 2 + sin(2πx1) cos(2πx2) +

2 + 1.8 sin( 2πx1

ε )

2 + 1.8 cos( 2πx2

ε )
+

2 + sin( 2πx2

ε )

2 + 1.8 cos( 2πx1

ε )
.

For the domain decomposition we set M = 5 (for a total of 25 patches), and each local patch is further

divided into a 20 by 20 fine mesh so that the mesh parameter h = 0.01 can resolve the smallest scales

ε = 2−4. A complete basis on each patch is formed from nm = 80 basis functions. These functions are

computed from a standard finite element P1 method with bilinear nodal basis. The buffered patch K̃m
is set to be a square concentric with Km but with all sides twice as long. Figure 11 illustrates the setup,

for ε = 2−4.

5.3.1. Local test. In Figure 12 we show the rank of the Green’s matrices Gε2,2 and G̃ε2,2 (defined

by (5.5) and (5.11), respectively) for the (2, 2) patch, with ε = 2−4. Use of buffers yields rapid decays in

the singular values of G̃ε2,2. We then define the relative error between Gε,r2,2 and Gε2,2 as follows:

error =
‖G̃ε2,2 − QQ>G̃ε2,2‖2

‖G̃ε2,2‖2
, with Gε,r2,2 = QR ,

where Q is obtained from QR decomposition of Gε,r2,2. We see in Figure 12 that the relative error decays

exponentially fast as km increases. In Figure 13, we plot the first three left singular vectors of G̃ε2,2 and

their projections onto span{Gε,r2,2} with k2,2 = 6. This plot shows that, visually, span{Gε,r2,2} captures well

the leading singular vectors of the full-basis Green’s matrix.

5.3.2. Global test. In the global test, the boundary condition is the sine function over the boundary

∂K. Equation (5.9) is computed with Gεm for the reference solution uref, and (5.14) is computed for the

approximate solution uapprox. Figure 14 shows the reference solution uref along with the approximated

solutions uapprox obtained using km = 10 and km = 50, respectively. The decay in relative error

relative error =
‖uref − uapprox‖2

‖uref‖2
as a function of km is plotted in Figure 15.

5.4. Comparison with MsFEM and GMsFEM. A number of successful existing numerical

homogenization methods share with our proposed method the property that that optimal basis functions
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Fig. 15. The global error as a function of number of random nodes per patch km. Note the rapid decay of error as
km increases.

are constructed offline. MsFEM (Multiscale Finite Element Method) [37] and GMsFEM (Generalized

MsFEM) [23] have been used with success in many examples and with excellent numerical performance.

MsFEM builds four basis functions by solving the local equation for a-harmonic functions that set 1 at the

four nodal points, while GMsFEM, prepares a full list of Green’s functions over the subdomain and select

the optimal ones according to a carefully designed spectral criterion (that translates into a generalized

eigenvalue problem). On the theoretical level, MsFEM has been shown to have good convergence (see [38]

for periodic media), and the theory for GMsFEM can be found in [23]. In this subsection we compare

our methods with these two approaches, for a challenging example in which the media contains both

multiscale structures and high contrasts:

a = 1 + 1000 1S(x, y) , S = {(x, y) ∈ [0, 1]2 : (x cos(100
√

(x− 0.5)2 + (y − 0.5)2)) ≤ y − 0.5} .

We plot the media in Figure 16, noting that our comparison is imperfect because the analytical result for

MsFEM assumes periodicity. Upon dividing the domain into fine mesh with h = 1
100 and coarse mesh

with H = 1
5 , we investigate the behavior of three different methods on the subdomain K2,2. We compute

the reference optimal basis function by first looping over the boundary to build the entire Green’s function

list, then performing SVD. Figure 17 shows that the random sampling method (using merely 6 samples)

can quickly capture the three leading basis functions and gives a higher accuracy, in comparison with

MsFEM. In Table 1, we report the CPU time needed for the three methods (MsFEM, GMsFEM and

random sampling) vs the reference solution computed directly from performing SVD, and report the

relative error in capturing the first three basis functions. Here the relative error is defined by:

(5.15) Error =
‖(I− QkQ

>
k )U3‖2

‖U3‖2
, ei =

‖(I− QkQ
>
k )ui‖2

‖ui‖2
where Qk collects the orthonormal first k-basis constructed via different methods and Un = [u1, u2, . . . , un]

collects the first n optimal basis functions ui. It is clear that GMsFEM is rather expensive while MsFEM

is the cheapest of the three approaches. In terms of the error, random sampling strategies performs much

better than MsFEM and similar to GMsFEM. We note that GMsFEM selects basis functions according

to a spectral method reflected via a generalized eigenvalue problem. Since it has a different definition for

“optimality”, the comparison is not truly fair.
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SVD (ref.) MsFEM
GMsFEM

Random sampling
snapshots ensemble spectral

CPU Time (s) 6.6569 0.1663 7.1168 0.2068 0.0051 0.3164

e1 — 0.2043 0.0867 0.1108

e2 — 0.5930 0.1236 0.1101

e3 — 0.7581 0.0451 0.0567

Error — 0.8206 0.1557 0.1289
Table 1

CPU time and error comparison of the methods MsFEM, GMsFEM and random sampling (proposed method). Error
is defined in (5.15).
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