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Abstract

We study Nash equilibria for inventory-averse high-frequency traders (HFTs), who trade
to exploit information about future price changes. For discrete trading rounds, the HFTs’
optimal trading strategies and their equilibrium price impact are described by a system of
nonlinear equations; explicit solutions obtain around the high-frequency limit. Unlike in the
risk-neutral case, the optimal inventories become mean-reverting and vanish as the number of
trading rounds becomes large. In contrast, the HFTs’ risk-adjusted profits and the equilibrium
price impact converge to their risk-neutral counterparts. Compared to a social-planner solution
for cooperative HFTs, Nash competition leads to excess trading, so that marginal transaction
taxes in fact decrease market liquidity.
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competition.

AMS MSC 2010: 91B24, 91B44, 91B52, 91G10.

JEL Classification: G14, G11, C61, C68.

1 Introduction

Information, inventories, and competition are crucial elements of high-frequency trading. Indeed,
many high-frequency strategies are based on gaining access to proprietary information and ex-
ploiting it before it becomes public knowledge. A typical example is “latency arbitrage”, where
high-frequency traders act based on price changes on other exchanges before these are incorporated
into the consolidated “national best bid-offer (NBBO) price”.

These strategies are not based on any longer-term view on the market. Accordingly, the main
associated risk is the inventory that is built up along the way, which exposes the trader to adverse
price moves. Thus, the natural tradeoff in this context is to exploit the available information as
much as possible while simultaneously controlling the associated inventories. Crucially, HFTs do not
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make these decisions in isolation but in an environment where several competitors try to implement
very similar strategies.

In this paper, we study an equilibrium model with asymmetric information in the spirit of [14, 1]
that allows us to analyze the interplay of these features in a tractable manner. We consider a market
where risk-neutral, competitive dealers clear the orders of exogenous noise traders as well as several
strategic HFTs. As in the latency-arbitrage trades mentioned above, these HFTs have access to
future asset value changes one period before they become public knowledge. They in turn trade in
Nash competition to exploit this additional information. Like in the classic literature on inventory
costs (see, e.g., [11, 15]) and many more recent papers), their inventory is penalized. For tractability,
this is modelled by a quadratic running cost as in [16, 17].

Since our model is based on a discrete informational advantage, we start from the equilibrium in
a discrete-time setting and then study its convergence as the trading frequency increases to the high-
frequency limit.1 In order to make the discrete-time model stationary, we postpone the terminal
time indefinitely and show that a linear equilibrium exists for sufficiently frequent (but discrete)
trading. Here, “linear” means that the dealers break even by adjusting the publicly known part of
the asset value linearly for the net order flow (as in risk-neutral versions of the model, cf. [14, 1]
and many more recent studies) and for the positions accumulated by the HFTs. Since these are
not observable in practice, the dealer uses a linear forecast based on market observables. To obtain
a consistent equilibrium, we in turn require that the HFTs have no incentive to deviate from the
dealers’ predictions. The HFTs’ optimal strategies then also turn out to be linear in their positions
as well as in their signals about future price changes. A key tractability feature of our equilibrium
is that for an individual HFT’s optimization problem given the equilibrium pricing rule, the other
HFTs’ predicted inventories are irrelevant; cf. Remark 4.5.

Our equilibrium is determined by a system of nonlinear algebraic equations. As the discretiza-
tion parameter tends to zero, all relevant quantities admit asymptotic expansions around their
high-frequency limit. Irrespective of the HFTs’ inventory aversions, several aspects of this limit
correspond to the risk-neutral version of the model studied by [1]. Indeed, market depth, the HFTs’
exploitation of future signals, and their optimal performance all converge to their risk-neutral coun-
terparts. In contrast, the corresponding inventories are reduced to zero as the trading frequency
increases. Highly frequent inventory management thereby allows the HFTs to achieve almost the
same performance as without risk penalties.

The impact of inventory aversion on market liquidity and welfare becomes visible at the next-
to-leading order in our expansions. However, we illustrate through numerical examples that the
magnitude of these welfare and liquidity effects is small on the very short time scales relevant for
high-frequency trading. In contrast, Nash competition between several HFTs plays a crucial role in
our equilibrium like in the risk-neutral equilibrium in [1]. Indeed, each HFT only internalizes the
negative effects of her price impact on herself but not on others. Therefore, each of them trades too
aggressively compared to the efficient allocation that would be achieved by coordinating through a
central planner. As a consequence, increased competition between HFTs improves market liquidity.

In contrast, transaction taxes have the opposite effect. Indeed, as first observed in a one-period
model with risk-neutral HFTs by [18], a (quadratic) transaction tax forces the HFTs to scale back
their trading, thereby moving them closer to their collusive optimum. As succinctly summarized
by [18], “this causes the transaction tax to have a perverse effect: it reduces market liquidity (and
increases the adverse price impact faced by informationless traders), but it also reduces informed
trader profits”. This is an important mechanism to keep in mind when discussing transaction

1These convergence results provide a new justification for the direct study of models with infinitesimally short
trading rounds as in [17].
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taxes as a tool to improve market quality by curbing high-frequency trading. To become socially
optimal, these negative effects of taxation have to be outweighed by reducing costs for information
acquisition [18] or (over-)investment in trading technologies [4] for example. Incorporating such
features into the present dynamic equilibrium model is an intriguing but challenging direction for
further research.

The present paper builds on the model studied in [16], extending it in two crucial directions.
First, we study imperfect Nash competition between several HFTs with possibly heterogeneous risk-
aversion parameters,2 rather than focusing on a single informed agent. Second, we solve for a full
equilibrium, where the execution price allows the dealers to break even in each trading round rather
than only on average over the whole trading interval. We show that in the high-frequency limit,
most predictions of the model are robust. This provides some justification for the use of simpler
pricing rules as in [16] or [17, Section 4.1].

The HFTs in our model repeatedly receive short-lived informational advantages in the sense
that all their private signals are revealed after only one trading round as in [1]. This complements
a large body of literature dealing with various kinds of long-lived informational advantages [14, 12,
13, 7, 3, 2, 6, 5, 8], mostly in risk-neutral settings. Closer to our work is Roşu [17], who studies a
model of long-lived informational advantage, but also considers a quadratic inventory penalty for
informed traders. To deal with the resulting more involved filtering problems, [17] directly works in
a model with “infinitesimally short” times between trades and optimizes in several parametric classes
of trading strategies. In contrast, we start from a fully discrete model, solve for the corresponding
equilibrium, and then study its convergence to a high-frequency limit.3 With our information
structure, linear autoregressive strategies indeed turn out to be optimal. However, whereas HFTs in
the model of [17] “no longer speculate on the long term value, but just pass their inventory to slower
traders”, our model predicts that they initially exploit their trading signals in a very similar manner
as their risk-neutral counterparts but quickly unwind their positions after their informational edge
has evaporated.

This article is organized as follows. In Section 2, we introduce the basic ingredients of our
market with asymmetric information. Subsequently, in Section 3, we set the stage by discussing the
benchmark case of a single HFT who monopolizes access to the additional information. (By a change
of variables, this can also be interpreted as a collusive equilibrium, where several homogeneous HFTs
coordinate by letting a social planner maximize their aggregate welfare.) The full version of our
model with imperfect competition between several, possibly inhomogeneous HFTs is in turn studied
in Section 4. For better readability, all proofs are delegated to the appendix.

2 Market

We consider a market for a risky asset. At each time

tn = n∆t, ∆t > 0, n = 1, 2, . . . ,

a new increment ∆Sn of its fundamental value is revealed. This can be interpreted as the change
of the National Best Bid Offer (NBBO) price aggregated across exchanges. The value increments

2Other types of heterogeneity have been considered in the literature. For example, [10] compare two groups of
risk-averse HFTs that acquire private information at different rounds in a two-period model. [7] consider heterogeneity
in the initial private signals; see also [2] for a continuous-time version of this model.

3In particular, the strategies of our HFTs are determined by an optimal tradeoff between expected profits and
inventory costs at any trading frequency. In contrast, the inventory cost vanishes in the infinitesimal model of [17],
so that both the optimal weight placed on new signals and the rate of inventory management are determined by
maximizing expected profits from trades with slower agents.
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are independent and identically normally distributed with mean zero and variance σ2
S∆t > 0.4 The

risky asset is traded at times tn, n = 1, 2, . . ., by three types of market participants:

(i) Noise traders, who trade according to their own objectives (e.g., long-term investment or
hedging) and have no private information about the next value increment. Their aggregate
order size at time tn is modeled by an exogenous random variable ∆Kn, which is normally
distributed with mean zero and variance σ2

K∆t > 0 and independent from the fundamental
value of the risky asset.5

(ii) High-frequency traders (HFTs), with initial inventory L0 ∈ R, who already observe the in-
crement ∆Sn of the asset value before trading at time tn and utilize it to choose their trade
∆Ln at time tn to maximize their discounted expected profits penalized for the corresponding
squared inventories.6

(iii) Risk-neutral, competitive dealers, who set an execution price Pn at time tn at which they
can clear the market while achieving zero expected profits conditional on each realization
of the net order flow ∆Yn = ∆Kn + ∆Ln and the past value increments {∆Sm,m < n}.
This means that the dealers incorporate information about the fundamental value that has
already become public knowledge. Conditioning on the current order flow means that prices
are volume-dependent, akin to quotes in a limit-order book.

3 Equilibrium with Monopolistic Insider

We first consider the case of a single HFT, who monopolizes the access to the information about
the next-period value increment.

3.1 Dealers’ Pricing Rule

The dealers’ information set just before the n-th trading round consists of the past value increments
{∆Sm,m < n} and the past and current order flow {∆Ym,m ≤ n}, and we denote the corresponding
conditional expectation operator by Ẽn[·]. They quote an execution price Pn that allows them to
break even on average in each trading round:

Pn = Ẽn[Sn] = Sn−1 + Ẽn[∆Sn], n = 1, 2, . . . .

We focus on linear pricing rules of the form

Pn = Sn−1 + λ∆Yn + µMn−1. (3.1)

We do not assume that the dealers can observe the evolution of the HFT’s inventories. Therefore,
instead of the actual position, the dealers’ pricing rule depends on the inventory prediction process
M = (Mn)n≥0 given by M0 = L0 and

∆Mn = β∆Sn − ϕMn−1, for some β > 0 and ϕ ∈ (0, 1]. (3.2)

The execution price Pn in turn adjusts the fundamental value Sn−1 that has already been revealed
linearly for the dealers’ prediction Mn−1 of the HFT’s inventory and for the new order flow ∆Yn.
To obtain a consistent equilibrium, we require that the HFT has no incentive to deviate from the
dealers’ inventory prediction, so that this estimate indeed is accurate, cf. Definition 3.3 below.

4That is, the high-frequency limit of the fundamental value is a Brownian motion W S with volatility σS.
5That is, the high-frequency limit of the noise trades is a Brownian motion WK independent of the one driving

the fundamental value.
6The more realistic case of noisy signals is a challenging direction for future research; see Remark 3.5.
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Remark 3.1. All four coefficients µ, λ, β, ϕ are expected to be positive in equilibrium:

• The order-flow sensitivity λ is similar to “Kyle’s lambda”, in that it allows the dealers to charge
higher prices if large order flows indicate that the HFT wants to buy to exploit increases in
the asset value.

• The inventory sensitivity µ adjusts the execution price for the rebalancing trades the HFT
implements to manage her inventory. For instance, a very large inventory makes it attractive
for the HFT to sell, so that the same positive order flow is likely to correspond to an even
larger value increase that needs to be offset by a higher execution price.

• The signal sensitivity β describes how strongly the HFT is predicted to react to their infor-
mation about value changes.

• The inventory sensitivity ϕ determines how fast the HFT is predicted to reduce large (positive
or negative) inventories.

Remark 3.2. We assume that the initial inventory prediction is correct, i.e., M0 = L0. In reality,
the dealers do not know the actual initial inventory of the HFT. However, as HFTs are very reluctant
to hold inventories overnight, a zero inventory L0 = 0 at the start of a trading day is a reasonable
assumption in our context. Moreover, as we discuss in Remark 4.4, if the initial inventory prediction
is incorrect, it is optimal for the HFT to gradually reduce that discrepancy.

The case where the initial inventory L0 is random from the point of view of dealers leads to
similar difficulties as the case of noisy signals (see Remark 3.5).

3.2 HFT’s Optimization

The HFT has a discount rate ρ∆t ∈ (0, 1) and, as in [17, 16], a holding cost γ∆t/2 > 0 levied on her
squared inventory in the risky asset. (This means that ρ and γ are the discount rate and inventory
cost per unit time, respectively.) The HFT’s information set just before the n-th trading round
consists of the past and current value increments {∆Sm,m ≤ n}, and we denote the corresponding
conditional expectation by En[·].

We next derive the HFT’s goal functional. We postpone the terminal time to infinity to obtain
a stationary objective. To wit, the HFT optimizes the discounted sum of her expected one-period
wealth changes, penalized for holding large inventories, similarly to [9]. Consider trading round n.
Prior to trading, the HFT holds Ln−1 shares of the risky asset (and a cash position) and submits an
order of size ∆Ln. This order is executed at the dealers’ execution price Pn. Since the market price
is based on the dealers’ inferior information, we assume that the HFT uses her own, more accurate
forecast Sn of the fundamental value to evaluate her risky position. Thus, the HFT’s wealth change
due to trading in round n is

LnSn − Ln−1Sn−1 − Pn∆Ln = Ln−1∆Sn + (Sn − Pn)∆Ln;

here, Ln−1Sn−1 and LnSn are the HFT’s valuations of the risky position before and after trading in
round n, respectively, and Pn∆Ln is the change in the cash position due to the trade ∆Ln. Since
∆Sn and Ln−1 are independent and ∆Sn has mean 0, the wealth change Ln−1∆Sn corresponding
to the shares already held before trading round n has expectation zero, and it suffices to consider
the wealth change (Sn − Pn)∆Ln corresponding to the purchase or sale of ∆Ln shares in round n.

Suppose that the dealers have chosen a pricing rule (λ, µ, β, ϕ) with corresponding inventory
prediction process M . Then, purchasing ∆Ln new shares at time tn costs

Pn∆Ln = (Sn−1 + λ∆Yn + µMn−1)∆Ln.

5



Comparing this to the HFT’s valuation Sn = Sn−1 + ∆Sn and taking into account that the noise
trades are independent with mean zero, it follows that the expected change of the HFT’s wealth
due to the new trade is (∆Sn − λ∆Ln − µMn−1)∆Ln.

Now, complement this with the inventory penalty γ∆t
2 (Ln−1 + ∆Ln)

2 for trading round n and
discount the expected wealth change and inventory penalty at time tn with the simply compounded
discount factor (1 − ρ∆t)n. For an infinite planning horizon, this leads to the following stationary
goal functional:

E1

[ ∞∑

n=1

(1− ρ∆t)n
{(

∆Sn − λ∆Ln − µMn−1

)
∆Ln − γ∆t

2
(Ln−1 +∆Ln)

2
}]

→ max
∆L∈A

! (3.3)

Here,

A =
{
(∆Ln)n≥1 : E[L

2
n] is bounded in n

}

denotes the set of admissible strategies. We note that ∆M ∈ A by Lemma A.6. Using this, one can
show that the expectation in (3.3) is well defined and finite for all ∆L ∈ A.

3.3 Definition of Equilibrium

We can now formalize our notion of equilibrium. As already outlined above, the key consistency
condition is that the dealers’ inventory predictions indeed come true, because the HFT has no
incentive to deviate from them:

Definition 3.3. Let (λ, µ, β, ϕ) be a pricing rule with corresponding inventory prediction process
M as in (3.2). We say that (λ, µ, β, ϕ) forms a (linear) equilibrium if:

(i) Given the pricing rule (λ, µ, β, ϕ), the dealers’ inventory prediction ∆M is an admissible
strategy and optimal for the HFT’s goal functional (3.3).

(ii) Given that the HFT uses the strategy ∆M , the dealers’ conditional expected profits in each
trading round are zero:

Ẽn[∆Sn] = λ∆Yn + µMn−1, n ≥ 1. (3.4)

A couple of remarks are in order.

Remark 3.4. The coefficients (λ, µ, β, ϕ) of a linear equilibrium are time-independent. This is due
to two facts:

(i) The HFT’s optimization problem has an infinite time horizon. If the HFTs optimization
problem had a finite time horizon, optimal strategies (and then also pricing rules) would
become time-dependent.

(ii) The HFT’s informational advantage is fully reset after each trading round: the old increment
is revealed to the public, the HFT receives a new signal which is uncorrelated with previous
observations, and past order flow observations become irrelevant. If, from the dealers’ point of
view, there was unrevealed randomness in the HFT’s inventory (e.g., due to a random initial
inventory or noisy signals), then the dealers would use past order flow observations to compute
expected value increments and the pricing rule would likely become time-dependent.
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Remark 3.5. Recall that in our model, the HFT observes ∆Sn before trading at tn. It is more
realistic to assume that the HFT only receives a noisy (correlated) observation ∆̃Sn of ∆Sn. In
the risk-neutral version [1] of the model, noisy signals can be incorporated without much difficulty.
However, with inventory aversion, challenging problems appear.

Consider the dealers’ situation before the n-trading round. In view of the zero-profit condition
(3.4), the dealers need to compute the conditional expectation Ẽn[∆Sn] based on the past and
current order flows {∆Ym : m ≤ n} and past value increments {∆Sm : m < n}.

In our equilibrium, the dealers can perfectly predict the HFT’s inventory in terms of {∆Sm :
m < n}. Hence, the dealers can predict the HFT’s trade in round n as a function of ∆Sn. Since past
order flows Y1, . . . , Yn−1 are uncorrelated with the next value increment ∆Sn, only ∆Yn is relevant
for computing the conditional expectation Ẽn[∆Sn].

If the HFT receives noisy signals, the situation is different. From the dealers’ point of view, the
HFT’s noisy signals lead to noise in the HFT’s inventory (since it is unrealistic to assume that the
noisy signals are being revealed to the public after each trading round). Thus, at best, the dealers
can predict the HFT’s trade as a function of ∆Sn and Ln−1. Hence, Yn is correlated with both ∆Sn

and Ln−1. But Ln−1 also depends on all previous noisy signals. Consequently, one expects that the
conditional expectation Ẽn[∆Sn] depends not only on the current order flow Yn but also on all past
order flows Y1, . . . , Yn−1. This leads to considerably more complex computations.

3.4 Existence and Asymptotics

If the trading frequency is sufficiently high, a linear equilibrium exists and is unique in the proposed
class. All relevant quantities can be expressed in terms of the solution of a quartic equation. In
the high-frequency limit, this leads to closed-form approximations by means of the implicit function
theorem. The proof of these results is a special case of the more general Theorem 4.2 below, which
is established in Appendix A.

Theorem 3.6.

(i) For sufficiently small ∆t ≥ 0, the quartic equation

0 = β4(1− ρ∆t)− (2− ρ∆t+ βγ∆t)

(
σK
σS

)2

β2 +

(
σK
σS

)4

(1− βγ∆t) (3.5)

has a unique solution β ∈ (0, σK

σS
]. This solution has the following asymptotics as ∆t → 0:

β =
σK
σS

−
(
γσ3

K

2σ3
S

)1/2 √
∆t+O(∆t).

(ii) Define, for sufficiently small ∆t ≥ 0,7

λ =
βσ2

S

σ2
K + β2σ2

S

=
σS
2σK

− γ

8
∆t+O((∆t)3/2), (3.6)

ϕ = 1− λβ

1− λβ
=

(
2γσK
σS

)1/2 √
∆t+O(∆t), (3.7)

µ = λϕ =

(
γσS
2σK

)1/2 √
∆t+O(∆t). (3.8)

7Note that λβ < 1, so that ϕ is well defined.
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Then, for sufficiently small ∆t > 0, the pricing rule (λ, µ, β, ϕ) forms a linear equilibrium. In
particular, the strategy

∆Ln = ∆Mn = β∆Sn − ϕMn−1

is optimal for the HFT.8

(iii) The optimal performance of the HFT at time 0 is

−A

2
L2
0 +

B

2
∆S2

1 − CL0∆S1 +D,

where

A =
(1− ρ∆t)(1− ϕ)2

1− (1− ρ∆t)(1− ϕ)2
γ∆t =

√
2

4
γ1/2

(
σS
σK

)1/2 √
∆t+O(∆t),

B = (1− ρ∆t)β(2(1 − λβ)− β(A+ γ∆t)) =
σK
σS

−
√
2

4
γ1/2

(
σK
σS

)3/2 √
∆t+O(∆t),

C = (1− ρ∆t)(β(1− ϕ)(A + γ∆t) + ϕ(1− λβ)) =
3
√
2

4
γ1/2

(
σK
σS

)1/2 √
∆t+O(∆t),

D =
(1− ρ∆t)Bσ2

S

2ρ
=

σSσK
2ρ

−
√
2

8
γ1/2

σ
1/2
S σ

3/2
K

ρ

√
∆t+O(∆t).

Remark 3.7. The linear equilibrium from Theorem 3.6 is unique for sufficiently small ∆t > 0. We
outline the main steps of the argument.

Let (λ, µ, β, ϕ) be a linear equilibrium. The dealers’ zero profit condition necessitates that λ
and µ are related to β and ϕ by (3.6) and (3.8), respectively. Next, one can use either dynamic
programming or perturbation arguments to analyze the optimality of the strategy (∆Mn)n≥1 for
the HFT, i.e., that the HFT does not have any incentive to deviate from the dealers’ prediction.
This yields that ϕ is given in terms of λ and β by (3.7) and that β satisfies the quartic equation
(3.5). It thus remains to analyze which solutions to the quartic equation produce an equilibrium.

It turns out that the quartic equation (3.5) has precisely two distinct real roots. The first
root lies in (0, σK

σS
) and leads to the equilibrium of Theorem 3.6. The second root lies in (σK

σS
,∞).

However, β > σK

σS
implies that the corresponding mean-reversion parameter ϕ is negative. Hence,

by Lemma A.6, the corresponding strategy (∆Mn)n≥1 is not admissible. Moreover, this strategy
would also not be optimal in any larger admissibility class. Indeed, the performance of the strategy
(∆Mn)n≥1 can be computed explicitly in terms of β, ϕ, and λ using the explicit representation for
Mn from the proof of Lemma A.6. Then, it turns out that for ϕ < 0 and sufficiently small ∆t > 0,
the inventory penalty dominates the expected profits and leads to the performance −∞.

3.5 Comparative Statics

We now discuss the optimal trading strategy, pricing rule, and optimal HFT performance for the
equilibrium of Theorem 3.6. The high-frequency limit ∆t → 0 of the equilibrium coincides with its
risk-neutral counterpart [1]; the effects of inventory aversion only become visible in the leading-order

8With this choice of ∆Ln and because M0 = L0 by assumption, the dealers’ inventory prediction in the equilibrium
is correct at all times, i.e., Mn = Ln for all n. In particular, the HFT’s optimal strategy could equivalently be
formulated as ∆Ln = β∆Sn − ϕLn−1.
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Figure 1: Trading weight β for new signals (left panel) and mean reversion speed ϕ/∆t (right
panel) plotted against the discretization parameter ∆t: high-frequency limit (dotted), first-order
approximation (dashed), and exact solution (solid). Note that 0.004 = 1/250 is approximately one
trading day.

correction terms for ∆t > 0. Indeed, in this limit, the optimal trading strategy ∆Ln = σK

σS
∆Sn and

the linear pricing rule Pn = Sn−1 +
σS

2σK
∆Yn coincide with the risk-neutral equilibrium of [1].

For the rest of this section, we turn to the case of sufficiently small, but positive ∆t, where the
impact of the inventory aversion becomes visible. For the numerical illustrations in Figures 1–3,
we use the volatilities σS = σK = 1 as in [18], the inventory aversion parameter γ = 1, which is of
the same order of magnitude as the parameter values used in [17], and the discount rate ρ = 5%;
note, however, that as in the high-frequency limits, almost all results are virtually independent of
ρ in any case. (The only exception is the optimal performance D, for which both the limit and the
leading-order correction are inversely proportional to the discount rate.)

Trading strategy. The HFT’s equilibrium position (Ln)n≥0 follows an autoregressive process of
order one, where the mean-reversion speed is governed by the parameter ϕ and the innovations are
given by β times the value increments ∆Sn. The mean-reversion component ensures that the HFT’s
position does not become too large (positive or negative). Note that this inventory management
term does not scale with ∆t as for a discretized Ornstein–Uhlenbeck process. Instead, it scales
with

√
∆t so that the half life of the HFT’s position converges to zero as the trading frequency

increases. This allows the HFT to achieve the same performance as without inventory aversion in
the high-frequency limit.

Figure 1 displays the equilibrium signal sensitivity β and the mean-reversion rate ϕ/∆t as a
function of the discretization parameter ∆t. We see that β is (in relative terms) close to its high-
frequency limit even for rather large values of the discretization parameter ∆t. In contrast, the
optimal mean-reversion rate is quite sensitive to ∆t and explodes quickly as the trading frequency
grows. Nevertheless, the first-order expansion for ϕ in Theorem 3.6 provides an excellent approxi-
mation for the optimal mean-reversion rate.

HFT’s optimal performance. Unsurprisingly, inventory aversion has a negative effect on the
quantity D, which measures the optimal performance the HFT can achieve starting from a zero
position and no initial signal. The optimal performance is plotted against the discretization pa-
rameter ∆t in Figure 2. We observe that the inventory effect is clearly visible for intermediate
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Figure 2: HFTs optimal performance D plotted against the discretization parameter ∆t: high-
frequency limit (dotted), first-order approximation (dashed), and exact solution (solid). The left
panel shows intermediate trading frequencies lower than once per day. The right panel zooms in on
higher trading frequencies of more than 100 trades per day.

trading frequencies, but quickly dwindles below 1% for trading frequencies higher than 100 times
per day. At the much shorter time scales corresponding to high frequency trading, the (risk-neutral)
high-frequency limit studied directly in [17] is clearly an excellent approximation.

Pricing rule. The equilibrium pricing rule adjusts the already revealed part Sn−1 of the asset’s
fundamental value linearly for the net order flow ∆Yn in trading round n and the HFT’s predicted
inventory Mn−1 (cf. (3.1)). At the leading-order, the price impact parameter λ is decreasing in
the inventory aversion parameter γ: the HFT’s inventory management interferes with the optimal
exploitation of the informational advantage that is possible in the risk-neutral case. This in turn
allows the dealers to break even on average with a smaller price impact parameter. The equilibrium
sensitivity µ = λϕ of the execution price with respect to the HFT’s predicted inventory is increasing
in the inventory aversion parameter γ at the order O(

√
∆t). The reason is that, for a given predicted

inventory (say, positive), a larger risk aversion parameter γ implies that the HFT has a stronger
incentive to sell. Therefore, the same net order flow is likely to correspond to an even larger buying
incentive that needs to be offset by a higher execution price. Finally, observe that µ = λϕ leads to
an equilibrium execution price

Pn = Sn−1 + λ∆Yn + µMn−1 = Sn−1 + λ(∆Kn + β∆Sn)

that does not (functionally) depend on the HFT’s predicted inventory.
Figure 3 shows the parameters λ and µ describing the equilibrium pricing rule as a function of

∆t. For the sensitivity λ of the pricing rule with respect to the net order flow, we find that the
high-frequency limit, its asymptotic expansion up to terms of order ∆t, and the exact solution of the
quartic equation from Theorem 3.6 virtually coincide even for trading frequencies as low as once per
trading day. This demonstrates that the formula for Kyle’s lambda [14] is very robust with respect
to the introduction of inventory aversion. In particular, the apparent welfare differences for noise
traders in the present model and in the partial equilibrium setting of [16] are negligible in practice.
The sensitivity µ of the execution price with respect to the HFT’s predicted inventory is nonzero,
unlike its high-frequency limit, but the first-order expansion from Theorem 3.6 again provides an
excellent approximation even for low trading frequencies.

Remark 3.8. Let us compare our results with the model of [16], who focus on a pricing rule with
λ > 0 but µ = 0. Accordingly, in their model, the dealers cannot break even in each trading round,

10
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Figure 3: Equilibrium pricing rule parameters λ (left panel) and µ (right panel) plotted against the
discretization parameter ∆t: high-frequency limit (dotted), first-order approximation (dashed), and
exact solution (solid).

but only over the entire time horizon. Despite these differences, the high-frequency limits of β, λ,
and ϕ are the same in both models. This provides some justification for focusing on simple pricing
rules that do not depend on the HFTs’ positions as in [17, 16].

At the next-to-leading order, the effect of the dealers’ position-dependent pricing rule becomes
visible. Translated into our notation, [16] obtains the following asymptotics:

β =
σK
σS

− 3

4

(
γσ3

K

σ3
S

)1/2 √
∆t+O(∆t),

λ =
σS
2σK

− 1

8

(
γσS
σK

)1/2 √
∆t+O(∆t),

ϕ =

(
γσK
σS

)1/2 √
∆t+O(∆t).

Both in the partial equilibrium setting of [16] and in the present full equilibrium, dealers can
increase market depth (i.e., decrease λ) with an inventory-averse HFT since these have to balance
the exploitation of their informational advantage against inventory management. However, the
increase in liquidity in our model is asymptotically smaller than in [16] (O(∆t) in (3.6) compared to
O(

√
∆t) in [16]). Accordingly, the expected losses of noise traders in our model are comparatively

larger. In this sense, noise traders pay the price for enforcing the dealers’ zero profit condition in
each trading round rather than just over the entire time horizon.

For the signal sensitivity β and the mean-reversion speed ϕ, the first-order corrections are
of the order O(

√
∆t) in both models, but the coefficients of the corresponding correction terms

differ. Since the sensitivity to order flow is lower, the HFT exploits her signal about future price
changes (slightly) more aggressively than in [16], in that the β coefficient is reduced less compared
to the high-frequency limit. As the position-dependent execution prices are higher when the HFT’s
position is larger, the HFT can also employ a mean-reversion speed ϕ that is asymptotically larger
by a factor of

√
2 in our model compared to [16].
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4 Equilibrium with Competing Insiders

4.1 Nash Competition

We now turn to the case of k > 1 possibly heterogeneous HFTs, who compete to exploit their
common information about the next-period value increment. Each HFT i has some initial inventory
Li
0 ∈ R, an individual holding cost γi∆t/2 > 0 levied on its squared inventory in the risky asset,

and an individual discount rate ρi∆t ∈ (0, 1).
The dealers now clear the market consisting of the k HFTs and the noise traders. They use a

separate inventory prediction process for each HFT: for each i, the process M i = (M i
n)n≥0 is defined

by M i
0 = Li

0 and

∆M i
n = βi∆Sn − ϕiM

i
n−1, (4.1)

for some ~β = (β1, . . . , βk) ∈ R
k and ~ϕ = (ϕ1, . . . , ϕk) ∈ (0, 1]k. Consequently, the dealers’ linear

pricing rule now is of the form

Pn = Sn−1 + λ∆Yn +

k∑

j=1

µjM
j
n−1,

for some λ ∈ R and ~µ = (µ1, . . . , µk) ∈ R
k.

As before, risk-neutral HFTs maximize the expectation of their one-period wealth changes. With
several HFTs, the cost of purchasing ∆Li

n new shares at time tn for HFT i is

Pn∆Li
n =

(
Sn−1 + λ∆Yn +

k∑

j=1

µjM
j
n−1

)
∆Li

n.

Here, ∆Yn = ∆Kn+
∑k

j=1∆Lj
n is the net order flow in trading round n. Comparing this execution

price to the HFTs’ valuation Sn and taking into account that the noise trades ∆Kn are independent
with mean zero, it follows that, given the other HFTs trade ∆Lj

n, j 6= i, the expected change of
HFT i’s wealth due to her new trade ∆Li

n is

(
∆Sn − λ

k∑

j=1

∆Lj
n −

k∑

j=1

µjM
j
n−1

)
∆Li

n.

Now, complement this with the inventory penalty, discount, and send the terminal time to
infinity. This in turn leads to the following stationary goal functional for HFT i:

E1

[ ∞∑

n=1

(1− ρi∆t)n
{(

∆Sn − λ
k∑

j=1

∆Lj
n −

k∑

j=1

µjM
j
n−1

)
∆Li

n − γi∆t

2
(Li

n−1 +∆Li
n)

2
}]

, (4.2)

where ∆Lj, j 6= i, are fixed admissible strategies and the optimization runs over ∆Li ∈ A. Our
goal is to find an equilibrium in the following sense:

Definition 4.1. Let (λ, ~µ, ~β, ~ϕ) be a pricing rule with corresponding inventory prediction processes
M1, . . . ,Mk as in (4.1). We say that (λ, ~µ, ~β, ~ϕ) forms a (linear) equilibrium if:

(i) Given the pricing rule (λ, ~µ, ~β, ~ϕ), the strategies (∆M1, . . . ,∆Mk) are admissible and form a
Nash equilibrium. That is, each HFT i cannot improve her performance by deviating from
the strategy ∆M i while the other HFTs’ strategies ∆M j, j 6= i, remain unchanged.

12



(ii) Given that the HFTs use the strategies (∆M1, . . . ,∆Mk), the dealers’ conditional expected
profits in each trading round are zero:

Ẽn[∆Sn] = λ∆Yn +

k∑

j=1

µjM
j
n−1, n ≥ 1, (4.3)

where ∆Yn = ∆Kn +
∑k

j=1∆M j
n is the net order flow in trading round n.

4.2 Existence and Asymptotics

The following result identifies a Nash equilibrium for k competing HFTs through a system of non-
linear equations:

Theorem 4.2 (Equilibrium).

(i) For sufficiently small ∆t ≥ 0, the constrained system

βΣ =

k∑

j=1

βj , (4.4)

0 = (1− ρi∆t)β2
i β

2
Σ − (2− ρi∆t+ βΣγi∆t)

(σK
σS

)2
βiβΣ +

(σK
σS

)4
(1− βiγi∆t), i = 1, . . . , k,

(4.5)

0 < βΣ, and 0 < βiβΣ ≤ σ2
K

σ2
S

, i = 1, . . . , k, (4.6)

has a unique solution (βΣ, ~β) = (βΣ, β1, . . . , βk). This solution has the following asymptotics
as ∆t → 0:

βi = k−
1
2
σK
σS

− (1 + k)1/2

2k3/4

(
2γ

1/2
i − 1

k

k∑

j=1

γ
1/2
j

)(
σK
σS

)3/2 √
∆t+O(∆t), (4.7)

βΣ = k
1
2
σK
σS

− (1 + k)1/2

2k3/4

k∑

j=1

γ
1/2
j

(
σK
σS

)3/2 √
∆t+O(∆t). (4.8)

(ii) Define, for sufficiently small ∆t ≥ 0,9

λ =
βΣσ

2
S

σ2
K + β2

Σσ
2
S

=
k1/2

1 + k

σS
σK

+
k1/4(k − 1)

2(1 + k)3/2
1

k

k∑

j=1

γ
1/2
j

(
σS
σK

)1/2 √
∆t+O(∆t), (4.9)

ϕi = 1− λβi
1− λβΣ

=
(1 + k)1/2

k1/4
γ
1/2
i

(
σK
σS

)1/2 √
∆t+O(∆t), (4.10)

µi = λϕi =
k1/4

(1 + k)1/2
γ
1/2
i

(
σS
σK

)1/2 √
∆t+O(∆t), (4.11)

and set ~ϕ = (ϕ1, . . . , ϕk) and ~µ = (µ1, . . . , µk). Then, for sufficiently small ∆t > 0, the
pricing rule (λ, ~µ, ~β, ~ϕ) forms a linear equilibrium.

9Note that λβΣ < 1, so that ϕi is well defined. Moreover, the upper bound on βi in (4.6) is equivalent to ϕi being
nonnegative.
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The optimal performance of HFT i in the equilibrium can be computed explicitly in terms of
βi, βΣ, and the model parameters:

Proposition 4.3 (HFT i’s optimization). Let (λ, ~µ, ~β, ~ϕ) be as in Theorem 4.2. Recall that for
each j = 1, . . . , k, the inventory prediction process M j = (M j

n)n≥0 is defined by M j
0 = Lj

0 and

∆M j
n = βj∆Sn − ϕjM

j
n−1.

Fix i and suppose that the dealers use the pricing rule (λ, ~µ, ~β, ~ϕ) and that each other HFT j 6= i
uses the strategy ∆M j. Then, for sufficiently small ∆t > 0, the strategy ∆M i is optimal for HFT i
and her optimal performance at time 0 is

−Ai

2
(Li

0)
2 +

Bi

2
(∆S1)

2 − CiL
i
0∆S1 +Di,

where

Ai =
(1− ρi∆t)(1− ϕi)

2

1− (1− ρi∆t)(1− ϕi)2
γi∆t =

k1/4

2(1 + k)1/2
γ
1/2
i

(
σS
σK

)1/2 √
∆t+O(∆t),

Bi = (1− ρi∆t)βi(2(1 − λβΣ)− βi(Ai + γi∆t))

=
2

k1/2(1 + k)

σK
σS

+
1

2k3/4(1 + k)3/2

[
(2 + 6k)

1

k

k∑

j=1

γ
1/2
j − 5(1 + k)γ

1/2
i

](σK
σS

)3/2 √
∆t+O(∆t),

Ci = (1− ρi∆t)(βi(1− ϕi)(Ai + γi∆t) + ϕi(1− λβΣ))

=
3

2k1/4(1 + k)1/2
γ
1/2
i

(
σK
σS

)1/2 √
∆t+O(∆t),

Di =
(1− ρi∆t)Biσ

2
S

2ρi
(4.12)

=
1

k1/2(1 + k)

σSσK
ρi

+
1

4k3/4(1 + k)3/2

[
(2 + 6k)

1

k

k∑

j=1

γ
1/2
j − 5(1 + k)γ

1/2
i

]σ1/2
S σ

3/2
K

ρi

√
∆t+O(∆t).

The proofs of Theorem 4.2 and Proposition 4.3 are provided in Appendix A.

Remark 4.4. The equilibrium from Theorem 4.2 has a certain stability property with respect
to mispredicted inventories. Indeed, the proof of Proposition 4.3 in Appendix A (in particular,
Lemma A.4) shows that HFT i’s optimal strategy is given by

∆Li
n = ∆M i

n − ζi(L
i
n−1 −M i

n−1), for some ζi ∈ (0, 1).

If the dealers’ initial inventory prediction is correct (M i
0 = Li

0), this shows the optimality of ∆Li =
∆M i for HFT i. But even if the dealers’ inventory prediction is incorrect, the HFT has an incentive
to gradually reduce the distance between her actual inventory and the prediction:

∆(Li −M i)n = −ζi(L
i
n−1 −M i

n−1).

Remark 4.5. In the equilibrium, the goal functional (4.2) of HFT i simplifies considerably. Indeed,
by plugging µj = λϕj and ∆Lj

n = ∆M j
n = βj∆Sj − ϕjM

j
n−1 into (4.2) for j 6= i, the inventory

prediction processes M j , j 6= i, drop out of the optimization criterion. Whence, the value function
of HFT i only needs to keep track of the value increments and HFT i’s own actual inventory Li and
inventory prediction M i but not the other HFTs’ inventory predictions. This reduces the dimension
of the problem from 2 + k to 3.
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4.3 Comparative Statics

We now discuss the comparative statics of the equilibrium with several competing HFTs.

High-frequency limit. As for the monopolistic case covered by Theorem 3.6, the high-frequency
limits of all relevant quantities are very good approximations at the fast trading speeds relevant for
high-frequency trading. For the dealers’ equilibrium pricing rule, (4.9) and (4.11) show convergence
towards the risk-neutral model with imperfect competition studied by [1, 18]. Indeed, like for one
monopolistic HFT, the sensitivities µ1, . . . , µk of the execution price with respect to the HFTs’
positions vanish at rate

√
∆t, whereas the sensitivity λ with respect to the net order flow converges

to its risk-neutral counterpart. Likewise, the weight βi that is placed on new trading signals also
converges to its risk-neutral counterpart. As in the monopolistic case, the mean-reversion rate ϕi/∆t
diverges as the trading frequency increases. Consequently, the HFT i’s performance Di converges
to its risk-neutral counterpart, as the inventory penalty disappears in the high-frequency limit.

Nash competition. To understand how the Nash competition between the HFTs impacts the
scaling of the high-frequency limits, it is helpful to compare them to the corresponding results that
obtain if the HFTs coordinate their actions through a central planner who aims to maximize their
aggregate performance. We focus on the high-frequency limit of k homogeneous HFTs that have
the same cost and preference parameters γ and ρ and initial inventories. Then, the central planner
problem reduces to the case of a monopolistic HFT studied in Section 3, but with γ replaced by
γ/k. That is, the “aggregate HFT” accumulates all of the individual inventory tolerances. Since the
limiting price impact and trading strategy in Theorem 3.6 are independent of inventory aversion,
we observe the typical effects of Nash competition on trading and welfare. Indeed, with imperfect
competition, the HFTs overuse their common informational advantage in that their aggregate sig-
nal sensitivity is too large: βΣ = k1/2σK/σS under competition compared to βΣ = σK/σS with
coordination. As observed by [18], this is an incarnation of the classical “tragedy of the commons”:
the HFTs overuse their common good, the liquidity available in the market. Put differently, each
of them only internalizes their own price impact cost, but not the negative effect this has for the
others. This excess trading volume (with the same informational advantage) drives down the HFTs’
aggregate performance by a factor of 2k1/2/(1+ k) ∈ (0, 1]. This in turn allows the dealers to break
even with a smaller price impact parameter λ; it is reduced by the same factor 2k1/2/(1+k) ∈ (0, 1].

Inventory aversion. Under Nash competition, the first-order correction term of the price impact
parameter λ (cf. (4.9)) is of the order O(

√
∆t) and increases with the inventory aversion parameter

γ. This is in stark contrast to the monopolistic case where the first-order correction term is of
the order O(∆t) and decreasing in γ (cf. (3.6)). This initially surprising effect is explained by the
excessive trading due to Nash competition. Indeed, with inventory aversion, the HFTs scale back
their aggregate trades on their signals as described by βΣ in (4.8). This moves the HFTs closer
to their coordinated equilibrium and forces the dealers to recuperate their lost trading profits by
increasing λ.

Regarding an HFT’s individual performance, increasing inventory aversion has two opposing
effects. On the one hand, increasing inventory aversion of course lowers the HFT’s performance
through the higher inventory penalty. On the other hand, as above, it moves the competitive HFTs
closer to their coordinated equilibrium and thereby improves each HFT’s individual performance.
This counterplay is reflected in the first-order correction term of an HFT’s performance Di in (4.12).
For example, in the case of homogeneous HFTs, the first-order correction term is negative for k ≤ 2,
positive for k ≥ 4, and vanishes for k = 3. Whence, under sufficiently strong competition, inventory
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Figure 4: Sensitivity λ of the execution price with respect to the net order flow plotted against the
number k of competing HFTs, for 1 trading round per day (left panel) and 100 trading rounds per
day (right panel): high-frequency limit (triangles), first-order approximation (crosses), and exact
solution (circles).

aversion has a beneficial effect on the HFTs’ performance compared to the corresponding risk-neutral
equilibrium.

Heterogeneity. While the aggregate signal sensitivity βΣ is always decreasing in the individual
HFTs’ inventory aversions, the sign of the first-order correction of the individual signal sensitivity
βi (cf. (4.7)) of HFT i depends on how her inventory aversion relates to those of the other HFTs.
Indeed, if an HFT’s inventory costs are sufficiently low compared to the others’, then imperfect
competition allows to exploit price signals even more aggressively than in the risk-neutral case,
thereby also improving the respective performance (cf. (4.12)). For HFTs with comparatively high
inventory costs, the situation is reversed.

The effects described above are interesting from a theoretical point of view. However, Figure 4
illustrates that while the impact of inventory aversion is clearly visible at low trading frequencies
(e.g., daily), it disappears quickly as ∆t tends to zero. Accordingly, these effects only play a
secondary role in a high-frequency context.

4.4 Transaction Taxes

Transaction taxes are often mentioned as a possible tool to improve market quality by curbing
high-frequency trading. As in the risk-neutral one-period model of [18], quadratic transaction taxes
can also be incorporated into the present framework.10 This means that HFTs incur an additional
transaction cost that is proportional to the squared sizes of their individual trades. The stationary
goal functional (4.2) then becomes

E1

[ ∞∑

n=1

(1− ρi∆t)n
{(

∆Sn − c∆Li
n − λ

k∑

j=1

∆Lj
n −

k∑

j=1

µjM
j
n−1

)
∆Li

n − γi∆t

2
(Li

n−1 +∆Li
n)

2
}]

for some transaction tax parameter c > 0.

10Other specifications such as taxes proportional to the trade size are not tractable because they lead to nonlinear
filtering problems. However, we expect the broad conclusions for such models to be similar.
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Figure 5: Total trading costs λ+ c (dashed) and price impact λ (solid) with respect to the net order
flow plotted against the transaction tax parameter c, for a monopolistic HFT (left panel) and two
competitors (right panel). The trading frequency is 100 times per day.

In analogy to Theorem 4.2, one can show that an equilibrium pricing rule is identified by the
solution of (βΣ, β1, . . . , βk) of the constrained system11

βΣ =

k∑

j=1

βj ,

0 = (1− ρi∆t)β2
i

[
βΣ + 2c

((σK
σS

)2
+ β2

Σ

)]2

−
[(

2c
((σK

σS

)2
+ β2

Σ

)
+ βΣ

)
(2− ρi∆t) + β2

Σγi∆t

](σK
σS

)2
βi

+
(σK
σS

)4
(1− βiγi∆t), i = 1, . . . , k,

0 < βΣ, and 0 < βi ≤
σ2
K

2c(σ2
K + β2

Σσ
2
S) + βΣσ2

S

, i = 1, . . . , k.

The corresponding price impact parameter λ and total trading costs λ+c are depicted in Figure 5,
both for a monopolistic HFT and for two competitors. Our results corroborate the findings of [18] in
a one-period model with risk-neutral HFTs. The total trading costs λ+c are in both cases increasing
in the transaction tax c. Regarding price impact only, the comparative statics are different in the
monopolistic and the oligopolistic case. For a monopolistic insider, a small transaction tax decreases
price impact. In contrast, with Nash competition, transaction taxes tend to increase price impact.
The reason is again the negative externality inherent in the HFTs choices: “without a transaction
tax, [. . . ] they end up trading ‘too much’ in equilibrium, that is, in a dissipative fashion such
that their profits decrease in the total number of informed agents in the market, leading to greater
market liquidity. A transaction tax causes them to scale back their trading to the extent that, while
their profits net of the transaction tax are decreasing in the tax, the profits gross of the transaction
tax are increasing in the tax. This causes the transaction tax to have a perverse effect: it reduces
market liquidity (and increases the adverse price impact faced by informationless traders), but it
also reduces informed trader profits” [18].

11While λ and µi are still given by (4.9) and (4.11), respectively, ϕi is determined by ϕi = 1− (λ+2c)βi

1−λβΣ

. The upper
bound on βi is equivalent to ϕi being nonnegative.
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This basic mechanism should be kept in mind when discussing transaction taxes in the context
of high-frequency trading. In the modeling framework considered here, market liquidity cannot be
improved by taxation but only by encouraging more competition among HFTs, compare Figure 4.
Taxes can, however, become socially preferable if one considers costs for information acquisition [18]
or (over-)investment in trading technologies [4]. Incorporating such features into the present model
is a challenging but important direction for future research.

A Proofs

In this section, we prove Theorem 4.2 and Proposition 4.3. We start with the existence of a local
solution to the system (4.4)–(4.6) for small ∆t.

Lemma A.1. There is ε > 0 such that for all ∆t ∈ [0, ε), the system (4.4)–(4.6) has a unique
solution (βΣ, β1, . . . , βk) with the asymptotics (4.7)–(4.8).

Proof. Step 1. We note that for ∆t = 0, the system (4.4)–(4.6) simplifies to

βΣ =
k∑

j=1

βj , βiβΣ =

(
σK
σS

)2

, 0 < βΣ, 0 < βiβΣ ≤ σ2
K

σ2
S

, i = 1, . . . , k,

which has the unique solution β̄Σ = k
1
2
σK

σS
, β̄i = k−

1
2
σK

σS
, i = 1, . . . , k.

Step 2. We next show the existence of a solution for small ∆t > 0. First, we transform the system
(4.4)–(4.6) to an equivalent system which is amenable to the implicit function theorem. Consider
the following reparameterization of the domain (0,∞) ×R

1+k of the variables (∆t, βΣ, β1, . . . , βk):

δ =
√
∆t, x =

1

δ

(
βΣ − β̄Σ

)
, yi =

1

δ

(
βi − β̄i

)
, i = 1, . . . , k.

After inserting this change of variables into (4.4)–(4.6), simplifying, and multiplying the resulting
equations by convenient nonzero terms, it follows that for any 0 < ∆t = δ2, the original system
(4.4)–(4.6) is equivalent to the system

0 = h0(δ, x, y1, . . . , yk),

0 = hi(δ, x, y1, . . . , yk), i = 1, . . . , k,
(A.1)

−β̄Σ < δx,

−σ2
K

σ2
S

< δβ̄i(x+ kyi) + δ2xyi ≤ 0, i = 1, . . . , k,
(A.2)

where

h0(δ, x, y1, . . . , yk) = x−
k∑

j=1

yj,

hi(δ, x, y1, . . . , yk) = (x+ kyi)
2 − k

1
2 (1 + k)γi

(
σK
σS

)3

+ (∗) δ + (∗) δ2 + (∗) δ3 + (∗) δ4.

Here, the (∗)-terms stand for generic polynomials in x, y1, . . . , yk, which do not depend on δ and
are not important for the subsequent calculations.
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Second, we show that the transformed system (A.1)–(A.2) has a solution (x(δ), y1(δ), . . . , yk(δ))
in a neighborhood of δ = 0. It is readily verified that

x̄ = −(1 + k)1/2

2k3/4

k∑

j=1

γ
1/2
j

(
σK
σS

)3/2

,

ȳi = −(1 + k)1/2

2k3/4


2γ

1/2
i − 1

k

k∑

j=1

γ
1/2
j




(
σK
σS

)3/2

, i = 1, . . . , k,

(A.3)

is a solution to the quadratic system that arises from (A.1) by inserting δ = 0. Moreover, the
Jacobian of (h0, h1, . . . , hk) with respect to the variables (x, y1, . . . , yk), evaluated at δ = 0 and
(x, y1, . . . , yk) = (x̄, ȳ1, . . . , ȳk), is




1 −1 −1 · · · −1
a1 ka1
a2 ka2
...

. . .

ak kak




,

where ai = 2(x̄ + kȳi) < 0 and zero entries are omitted. Using row (or column) transforma-
tions, one can verify that this matrix is invertible. Therefore, the implicit function theorem yields
an ε′ > 0 and a continuously differentiable function (x, y1, . . . , yk) : (−ε′, ε′) → R

1+k such that
(x(δ), y1(δ), . . . , yk(δ)) solves (A.1) for all δ ∈ (−ε′, ε′) and x(0) = x̄ and yi(0) = ȳi for i = 1, . . . , k.
Since x̄ + kȳi < 0, making ε′ smaller if necessary, we can also ensure that (x(δ), y1(δ), . . . , yk(δ))
satisfies the inequalities (A.2) for all δ ∈ (−ε′, ε′).

Third, after reverting the change of variables and setting ε := (ε′)2, we can conclude that for
any ∆t ∈ [0, ε),

βΣ(∆t) := k
1
2
σK
σS

+ x(
√
∆t)

√
∆t, βi(∆t) := k−

1
2
σK
σS

+ yi(
√
∆t)

√
∆t, i = 1, . . . , k,

defines a solution to the original system (4.4)–(4.6). Moreover, the functions βΣ, βi, i = 1, . . . , k, are
continuously differentiable on (0, ε) and continuous on [0, ε) and, in view of the expressions (A.3),
have the asymptotic expansions (4.7)–(4.8).12

Step 3. We finally address the uniqueness of a solution for small ∆t > 0. Denote the right-hand
side of (4.5) by g(βΣ, βi,∆t), i.e.,

g(βΣ, βi,∆t) = (1− ρi∆t)β2
i β

2
Σ − (2− ρi∆t+ βΣγi∆t)

(σK
σS

)2
βiβΣ +

(σK
σS

)4
(1− βiγi∆t).

First, we show that for any ∆t > 0 and βΣ > 0, there is a unique β̂i = ui(βΣ,∆t) satisfying
g(βΣ, β̂i,∆t) = 0 and 0 < β̂iβΣ < σ2

K/σ2
S . For any ∆t > 0 and βΣ > 0, the discriminant of the

quadratic function g(βΣ, ·,∆t) is positive:

4βΣγi

(
σ2
K

σ2
S

+ β2
Σ

)
σ4
K

σ4
S

∆t+
(
γi
σ2
K

σ2
S

+ βΣ(βΣγi − ρi)
)2σ4

K

σ4
S

(∆t)2 > 0.

12Asymptotic expansions for βΣ, β1, . . . , βk up to order O(∆t) can be obtained by computing the derivatives
x′(0), y′

1(0), . . . , y
′
k(0) by means of the implicit function theorem.
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Hence, g(βΣ, ·,∆t) has two distinct real roots. Since furthermore

g(βΣ, 0,∆t) =
σ4
K

σ4
S

> 0,

g
(
βΣ,

σ2
K

βΣσ2
S

,∆t
)
= −γi

(
σ2
K

σ2
S

+ β2
Σ

)
σ4
K

βΣσ4
S

∆t < 0,

lim
βi→∞

g
(
βΣ, βi,∆t

)
= ∞,

the assertion follows from the intermediate value theorem.
Next, we argue that for any ∆t > 0 such that ρi∆t < 1, the function ui(·,∆t) is decreasing on

(0,∞). As ui(βΣ,∆t) is the (smaller) solution of a quadratic equation, we have an explicit formula
for ui(βΣ,∆t). By direct computations and simplifications, one can show that its partial derivative
∂ui

∂βΣ
(βΣ,∆t) is negative for βΣ > 0 and 0 < ρi∆t < 1.

Finally, fix ∆t > 0 small enough and let (βΣ, β1, . . . , βk) and (β′
Σ, β

′
1, . . . , β

′
k) be two solutions to

(4.4)–(4.6). In particular, βi = ui(βΣ) and β′
i = ui(β

′
Σ) for all i = 1, . . . , k. We may assume without

loss of generality that βΣ ≤ β′
Σ. Then, by the above, β′

i = ui(β
′
Σ) ≤ ui(βΣ) = βi for i = 1, . . . , k.

Therefore, β′
Σ = β′

1 + · · ·+ β′
k ≤ β1 + · · ·+ βk = βΣ. We conclude that βΣ = β′

Σ and βi = β′
i for all

i = 1, . . . , k.

Let (~β, βΣ) = (β1, . . . , βk, βΣ) be as in Theorem 4.2 (i). We now turn to the second part of
Theorem 4.2. We first note that ϕi = 1− λβi

1−λβΣ
is well defined since λβΣ ∈ [0, 1) by the definition of

λ. Moreover, writing ϕi =
1−λ(βΣ+βi)

1−λβΣ
shows that ϕi < 1. The expansions (4.9)–(4.11) follow from

the corresponding expansions for βi and βΣ. In particular, the expansion for ϕi shows that ϕi > 0
for ∆t > 0 small enough. In view of Lemma A.6, this implies the admissibility of the strategies
∆M i defined in (4.1):

Lemma A.2. For ∆t > 0 small enough, ∆M i ∈ A for all i = 1, . . . , k.

Next, we show that for the pricing rule and strategies defined in Theorem 4.2, the dealers’ zero
profit condition holds.

Lemma A.3. Suppose that the dealers use the pricing rule (λ, ~µ, ~β, ~ϕ) defined in Theorem 4.2 and
that each HFT i uses the strategy ∆M i as defined in (4.1). Then the zero profit condition (4.3)
holds.

Proof. In view of the definition of ∆M i in (4.1),

∆Yn = ∆Kn +

k∑

j=1

∆M j
n = ∆Kn + βΣ∆Sn −

k∑

j=1

ϕjM
j
n−1,

where βΣ =
∑k

j=1 βj . Since ∆Kn and ∆Sn are independent normally distributed random variables,
the random vector (∆Sn,Xn), where

Xn := ∆Yn +
k∑

j=1

ϕjM
j
n−1 = ∆Kn + βΣ∆Sn,
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has a bivariate normal distribution. Moreover, Xn is observable with respect to the dealers infor-
mation set at time n. Therefore, by the formula for the conditional marginal mean of a bivariate
normal random vector, we find that

Ẽn[∆Sn] =
Cov(∆Sn,Xn)

Var(Xn)
Xn =

βΣσ
2
S

σ2
K + β2

Σσ
2
S

(
∆Yn +

k∑

j=1

ϕjM
j
n−1

)
.

The zero profit condition (4.3) now follows from the definitions of λ and µj in (4.9) and (4.11).

To complete the proof of Theorem 4.2 (ii), we need to show that given the dealers’ pricing
rule (λ, ~µ, ~β, ~ϕ), the strategies (∆M1, . . . ,∆Mk) form a Nash equilibrium for the HFTs. So fix
i ∈ {1, . . . , k} and suppose that the dealers use the pricing rule (λ, ~µ, ~β, ~ϕ) and that every other
HFT j, j 6= i, uses the strategy

∆M j
n = βj∆Sn − ϕjM

j
n−1.

Plugging these strategies for j 6= i into the goal functional (4.2) of HFT i and using that µj = λϕj

by the definition of µj in (4.11), we see that the inventories of the other HFTs disappear:

E1

[ ∞∑

n=1

(1− ρi∆t)n
{(

(1− λ
∑

j 6=i βj)∆Sn − λ∆Li
n − µiM

i
n−1

)
∆Li

n − γi∆t

2
(Li

n−1 +∆Li
n)

2
}]

.

(A.4)

To wit, the individual optimization problem of HFT i in our equilibrium of k competitive HFTs
reduces to that of a single HFT who is facing the pricing rule (λ, µi, βi, ϕi) and is trading a risky
asset whose standard deviation of value increments is changed by a factor of 1− λ

∑
j 6=i βj .

It will be convenient to represent HFT i’s strategy ∆Li relative to its prediction ∆M i. We thus
consider a new state variable Zi, defined via

Li
n = M i

n + Zi
n, (A.5)

that keeps track of the deviation of the actual inventory Li of HFT i from the corresponding
prediction M i. It is clearly equivalent to control either ∆Li ∈ A or ∆Zi ∈ A (note that A is a
vector space and that ∆M i ∈ A by Lemma A.2), and we need to show that ∆Zi ≡ 0 is optimal.
Substituting (A.5) into (A.4) and using again the definitions of ∆M i and µi yields the following
reduced optimization problem:

J (M i
0,∆S1, Z

i
0;∆Zi) = E1

[ ∞∑

n=1

(1− ρi∆t)nf(M i
n−1,∆Sn, Z

i
n−1;∆Zi

n)

]
→ max

∆Zi∈A
! (A.6)

where f : R4 → R is given by

f(M,∆S,Z;∆Z) = (η∆S − λ∆Z)(βi∆S − ϕiM +∆Z)− γi∆t

2
(βi∆S + (1− ϕi)M + Z +∆Z)2

and

η = 1− λβΣ. (A.7)

The next lemma provides the value function for (A.6) and shows that the optimal feedback
control is of the form ∆Zi = −ζiZ

i for some ζi ∈ (0, 1). In particular, since M i
0 = Li

0, we have
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Zi
0 = 0, so that ∆Zi ≡ 0 is optimal for (A.6).13 As a consequence, ∆Li = ∆M i is an optimal

strategy for HFT i. This proves Proposition 4.3 and completes, together with Lemmas A.2–A.3,
the proof of Theorem 4.2 (ii).14

Lemma A.4. Fix i ∈ {1, . . . , k}, and let βi, βΣ, λ, ϕi, Ai, Bi, Ci,Di be defined as in Theorem 4.2
and Proposition 4.3 (for ∆t > 0 sufficiently small).

(i) There are unique Ei > 0 and ζi > 0 such that

Ei

1− ρi∆t
= 2λζi and ζi =

Ei + γi∆t

Ei + γi∆t+ 2λ
. (A.8)

(ii) For ∆t > 0 sufficiently small, define Fi and Gi by

Fi

1− ρi∆t
=

λϕiζi + (1− ζi)(1− ϕi)γi∆t

ϕi + (1− ϕi)(ζi(1− ρi∆t) + ρi∆t)
, (A.9)

Gi

1− ρi∆t
= −βi(1− ζi)(Fi + γi∆t) + ζi(λβi − η). (A.10)

Then, the function

v(M,∆S,Z) = −Ai

2
M2 +

Bi

2
(∆S)2 − CiM∆S +Di −

Ei

2
Z2 − FiMZ +Gi∆SZ

is a solution of the dynamic programming equation (DPE)

v(M,∆S,Z)

1− ρi∆t
= sup

∆Z∈R

{f(M,∆S,Z;∆Z) + E[v(m,σS
√
∆tX, z)]|m=βi∆S+(1−ϕi)M, z=Z+∆Z},

(A.11)

where (M,∆S,Z) ∈ R
3 and X is a standard normal random variable. Moreover, the supremum

on the right-hand side is attained at ∆Z = −ζiZ.

(iii) Define ∆Ẑi = (∆Zi
n)n≥1 by Ẑi

0 = Zi
0 and ∆Ẑi

n = −ζiẐ
i
n−1. Then, ∆Ẑi ∈ A is an optimizer

for (A.6) and the maximum is given by v(M i
0,∆S1, Z

i
0).

Proof. To ease the notation, we drop all sub- and superscripts “i” in the proof.
(i): After eliminating ζ, the system reduces to a quadratic equation in E, which turns out to

have a unique positive solution.
(ii): First, we show that ∆Z = −ζZ maximizes the supremum on the right-hand side of the

DPE (A.11) for our candidate value function v. Using that

E[v(m,σS
√
∆tX, z)]|z=Z+∆Z = −A

2
m2 +

B

2
σ2
S∆t+D − E

2
(Z +∆Z)2 − Fm(Z +∆Z),

the right-hand side of (A.11) simplifies to a concave quadratic function in ∆Z. Solving its first-order
condition for ∆Z yields

∆Z =
η − β(F + γ∆t+ λ)

E + γ∆t+ 2λ
∆S − (F + γ∆t)(1− ϕ)− λϕ

E + γ∆t+ 2λ
M − E + γ∆t

E + γ∆t+ 2λ
Z.

13Note that HFT i’s optimal strategy is mean-reverting to zero in Zi. To wit, if the dealers’ initial inventory
prediction is incorrect, the HFT has an incentive to gradually align her actual inventory with the dealers’ prediction.
In this sense, the equilibrium is stable with respect to mispredicted inventories.

14The asymptotic expansions for λ, ϕi, and µi follow directly from (4.7)–(4.8).
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Since the Z-coefficient is equal to −ζ, it suffices to show that the other two terms vanish. We show
in Lemma A.5 below that F +γ∆t = λϕ/(1−ϕ). Hence, the M -coefficient vanishes and, moreover,
the numerator of the ∆S-coefficient simplifies to η−β( λϕ

1−ϕ +λ) = η− βλ
1−ϕ = 0 by (4.10) and (A.7).

Second, we show that v satisfies the DPE. After inserting the optimizer ∆Z = −ζZ and simpli-
fying, the right-hand side of the DPE (A.11) becomes

− 1

2

[
(A+ γ∆t)(1− ϕ)2

]
M2 +

1

2

[
2βη − β2(A+ γ∆t)

]
(∆S)2 −

[
β(1− ϕ)(A+ γ∆t) + ϕη

]
M∆S

+
[B
2
σ2
S∆t+D

]
− 1

2

[
(E + γ∆t)(1− ζ)2 + 2λζ2

]
Z2 −

[
(1− ζ)(1− ϕ)(F + γ∆t) + ζλϕ

]
MZ

+
[
− β(1− ζ)(F + γ∆t) + ζ(λβ − η)

]
∆SZ.

Substituting the definitions of A, B, C, D, F , and G from Proposition 4.3 and (A.9)–(A.10), one
can verify that the coefficients of the terms M2, (∆S)2, M∆S, MZ, and ∆SZ all match those on
the left-hand side of the DPE (A.11). It thus remains to consider the Z2-term and show that

− E

2(1− ρ∆t)
= −1

2

[
(E + γ∆t)(1− ζ)2 + 2λζ2

]
.

But after eliminating ζ using the second equation in (A.8), the right-hand side simplifies to

− E + γ∆t

E + γ∆t+ 2λ
λ = −λζ = − E

2(1− ρ∆t)
,

where we use both equations in (A.8) for the last two equalities. We conclude that v satisfies the
DPE (A.11).

(iii): Let ∆Z ∈ A. We need to show that

J (M0,∆S1, Z0;∆Z) ≤ v(M0,∆S1, Z0)

with equality if ∆Z = ∆Ẑ.
As v satisfies the DPE, we have for each n ≥ 1 that

(1− ρ∆t)nf(Mn−1,∆Sn, Zn−1;∆Zn)

≤ (1− ρ∆t)n−1v(Mn−1,∆Sn, Zn−1)− (1− ρ∆t)nEn[v(Mn,∆Sn+1, Zn)].

Here, by the last assertion of (ii), the inequality turns into an equality for ∆Zn = −ζZn−1. Taking
the expectation E1[·] on both sides and summing over n = 1, . . . , N yields

E1

[ N∑

n=1

(1− ρ∆t)nf(Mn−1,∆Sn, Zn−1;∆Zn)
]

≤ v(M0,∆S1, Z0)− (1− ρ∆t)NE1[v(MN ,∆SN+1, ZN )].

(A.12)

Next, we want to send N → ∞ in (A.12). To this end, we first observe that due to the quadratic
structure of the functions v and f , there is a constant c > 0 such that for all (L,∆S,Z,∆Z) ∈ R

4,

|v(M,∆S,Z)| ≤ c(1 +M2 + (∆S)2 + Z2),

|f(M,∆S,Z;∆Z)| ≤ c(M2 + (∆S)2 + Z2 + (∆Z)2).
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Moreover, ∆M,∆Z ∈ A implies that
∑∞

n=1(1 − ρ∆t)n(1 + M2
n−1 + (∆Sn)

2 + Z2
n−1 + (∆Zn)

2) is
integrable. This together with the estimates for v and f implies that the second term on the right-
hand side of (A.12) converges to zero as N → ∞ and that the left-hand side of (A.12) converges to
J (M0,∆S1, Z0;∆Z) as N → ∞. In summary, we obtain

J (M0,∆S1, Z0;∆Z) ≤ v(M0,∆S1, Z0).

Furthermore, this inequality turns into an equality for ∆Z = ∆Ẑ.

The following identity is used in the proof of Lemma A.4 (ii).

Lemma A.5. In the setting of Lemma A.4, we have Fi + γi∆t = λϕi

1−ϕi
.

Proof. This follows from equation (4.5) via a straightforward, but tedious calculation. We drop the
subscripts as in the previous proof. Using successively the definitions of F in (A.9), ϕ in (4.10),
and λ in (4.9), one can verify that

F + γ∆t− λϕ

1− ϕ
= c

{
(λϕρ− γ)∆t(1− ϕ) + λϕ2

}

= c
{
β2λ2(1− ρ∆t)− β(1 − βΣλ)(γ∆t+ λ(2− ρ∆t)) + (1− βΣλ)

2
}

= c
{
(1− ρ∆t)β2β2

Σ − (2− ρ∆t+ βΣγ∆t)
(σK
σS

)2
ββΣ +

(σK
σS

)4
(1− βγ∆t)

}

= 0,

where c is a nonzero term that changes from line to line.

Finally, the following lemma shows that the candidate equilibrium strategies are admissible
whenever the inventory management parameter ϕ lies in (0, 2).

Lemma A.6. Define M = (Mn)n≥0 by ∆Mn = β∆Sn − ϕMn−1 for some M0, β, ϕ ∈ R. Then
∆M ∈ A if and only if ϕ ∈ (0, 2).

Proof. The process M has the explicit representation

Mn = (1− ϕ)nM0 + β
n−1∑

j=0

(1− ϕ)j∆Sn−j.

Since the value increments are i.i.d. with mean zero and variance σ2
S∆t, it follows that

E[M2
n] = (1− ϕ)2nM2

0 + β2σ2
S∆t

n−1∑

j=0

(1− ϕ)2j

= (1− ϕ)2nM2
0 + β2σ2

S∆t

{
1−(1−ϕ)2n

1−(1−ϕ)2
, |1− ϕ| 6= 1,

n, |1− ϕ| = 1.

Thus, E[M2
n] is bounded in n if and only if ϕ ∈ (0, 2).
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