Robust adaptive $h p$ discontinuous Galerkin finite element methods for the Helmholtz equation*

Scott Congreve ${ }^{\dagger} \quad$ Joscha Gedicke ${ }^{\ddagger} \quad$ Ilaria Perugia ${ }^{\S}$

Abstract

This paper presents an $h p$ a posteriori error analysis for the 2D Helmholtz equation that is robust in the polynomial degree p and the wave number k. For the discretization, we consider a discontinuous Galerkin formulation that is unconditionally well posed. The a posteriori error analysis is based on the technique of equilibrated fluxes applied to a shifted Poisson problem, with the error due to the nonconformity of the discretization controlled by a potential reconstruction. We prove that the error estimator is both reliable and efficient, under the condition that the initial mesh size and polynomial degree is chosen such that the discontinuous Galerkin formulation converges, i.e., it is out of the regime of pollution. We confirm the efficiency of an $h p$-adaptive refinement strategy based on the presented robust a posteriori error estimator via several numerical examples.

Keywords a posteriori error analysis, $h p$ discontinuous Galerkin finite element method, equilibrated fluxes, potential reconstruction, Helmholtz problem
AMS subject classification 65N15, 65N30, 65N50

1 Introduction

In this paper, we consider the following Helmholtz problem with impedance boundary condition: Find a (complex) solution $u \in H^{2}(\Omega)$ such that

$$
\begin{align*}
-\Delta u-k^{2} u=f & \text { in } \Omega \\
\nabla u \cdot \boldsymbol{n}-i k u=g & \text { on } \partial \Omega \tag{1.1}
\end{align*}
$$

where $\Omega \subset \mathbb{R}^{2}$ is a bounded, Lipschitz domain, \boldsymbol{n} denotes the outer unit normal on the boundary $\partial \Omega, f \in L^{2}(\Omega), g \in L^{2}(\partial \Omega)$, and $k>0$ is the (constant) wavenumber.

The problem (1.1) was shown to be well-posed in [18]. A polynomial-based discontinuous Galerkin (DG) approximation was presented in [19], which uses the same numerical fluxes as in the ultra weak variational formulation/plane wave DG methods [9, 10, 15]. A DG discretization with stabilization terms also containing jumps in high order derivatives was presented in [14]. A residual-based a posteriori error estimator for the DG method of [19] is derived and analyzed in [23].

[^0]In this paper we will develop an a posteriori error estimator based on a local reconstruction of equilibrated fluxes [11, 12]. Since (1.1) is highly indefinite, it is not clear how to localize the Helmholtz problem in order to obtain localized problems for the error approximation that are well posed. However, as noted in [1], the error has two components, the interpolation error and the pollution error. While the pollution error is global and hence cannot be estimated with local error indicators, it is possible to derive equilibrated a posteriori error estimators for the interpolation error.

This analysis is based on considering a shifted Poisson problem with inhomogeneous Neumann boundary conditions. Therefore, we can apply the unified framework for equilibrated fluxes [12] to this auxiliary elliptic problem with an extension for the extra terms resulting from the handling of the inhomogeneous Robin boundary condition by the DG method. Additionally, an extra lifting operator is required due to the additional gradient stabilization terms in the DG formulation for Helmholtz. In order to measure the nonconformity of the DG method we locally reconstruct a conforming potential approximation.

By construction, the a posteriori error estimator captures possible singularities of the solution correctly, but is only reliable up to an additional L^{2} error which resembles the pollution error. Note that also the residual a posteriori error estimator for the DG method in [23] is only reliable up to the pollution error, see [23, Lemma 3.2].

We will apply the theory of equilibrated flux and potential reconstructions [11, 12] and derive the a posteriori error estimator of the form

$$
\begin{aligned}
\eta_{h p}^{2}:= & \sum_{T \in \mathcal{T}}\left(\left\|\mathcal{G}\left(u_{h p}\right)+\boldsymbol{\sigma}_{h p}\right\|_{0, T}+\frac{h_{T}}{j_{1,1}}\left\|f+k^{2} u_{h p}-\operatorname{div} \boldsymbol{\sigma}_{h p}\right\|_{0, T}\right. \\
& \left.+C_{t r} \sum_{E \in \mathcal{E}(T) \cap \mathcal{E}(\partial \Omega)} h_{E}^{1 / 2}\left\|\boldsymbol{\sigma}_{h p} \cdot \boldsymbol{n}+g+i k u_{h p}-\gamma k \frac{\mathrm{~h}}{\mathrm{p}}\left(g-\nabla_{h} u_{h p} \cdot \boldsymbol{n}+i k u_{h p}\right)\right\|_{0, E}\right)^{2} \\
& +\sum_{T \in \mathcal{T}}\left\|\mathcal{G}\left(u_{h p}\right)-\nabla s_{h p}\right\|_{0, T}^{2}
\end{aligned}
$$

where $\mathcal{G}\left(u_{h p}\right)$ denotes a discrete gradient (which we call the $D G$ gradient), $\boldsymbol{\sigma}_{h p}$ an equilibrated flux reconstruction, and $s_{h p}$ a potential reconstruction. The parameter γ, as well as the mesh function h and the polynomial degree function p already enter the definition of the DG methods (see (2.3) below), h_{T} and h_{E} are the diameter of the element T of the mesh \mathcal{T} and the edge E of T, respectively, $C_{t r}$ is a trace inequality constant, cf. Lemma 3.2 , and $j_{1,1}$ is the first positive root of the Bessel function of the first kind. We prove that the a posteriori error estimator is reliable and efficient, for suitably chosen functions $\boldsymbol{\sigma}_{h p}$ and $s_{h p}$, up to generic constants which are independent of the wave number, the polynomial degrees, and the element sizes.

This paper is organized as follows. In Section 2, we will recall the DG method from [19]. In Section 3, we will present the a posteriori error estimator and prove its reliability for any admissible flux and potential reconstructions. In Section 4, we define specific local reconstructions of flux and potential functions, such that the error estimator is efficient. Finally, in Section 5, we present some numerical experiments.

Throughout this paper, we employ the standard notation for (complex) Sobolev spaces $H^{m}(\omega)$ with norm $\|\cdot\|_{m, \omega}$ for (sub)-domains $\omega \subseteq \Omega$, and define $H(\operatorname{div} ; \Omega)=\left\{\boldsymbol{\tau} \in\left[L^{2}(\omega)\right]^{2}: \operatorname{div} \boldsymbol{\tau} \in\right.$ $\left.L^{2}(\omega)\right\}$. We denote the (complex) L^{2} inner product by $(\cdot, \cdot)_{\omega}$; if $\omega=\Omega$ we simply write (\cdot, \cdot). The (complex) L^{2} inner product on the boundary is indicated by a subscript, e.g. $(\cdot, \cdot)_{\partial \omega}$. By \lesssim, we abbreviate the inequality $x \leq C y$, with a generic constant C independent of the wave number, the mesh size, and the polynomial degree, but possibly dependent on the shape regularity of the mesh.

2 The discontinuous Galerkin method

In this section, we discuss a numerical approximation to (1.1) based on employing an $h p$-version DG finite element method. We consider the same formulation as in [19].

The weak formulation of (1.1) is defined as follows: Find $u \in H^{1}(\Omega)$ such that

$$
\begin{equation*}
a(u, v)=F(v) \quad \text { for all } v \in H^{1}(\Omega) \tag{2.1}
\end{equation*}
$$

with the complex-valued sequilinear form $a(\cdot, \cdot)$ and linear form $F(\cdot)$ given by

$$
a(u, v):=(\nabla u, \nabla v)-k^{2}(u, v)-i k(u, v)_{\partial \Omega} \quad \text { and } \quad F(v):=(f, v)+(g, v)_{\partial \Omega}
$$

Let \mathcal{T} be a triangulation of Ω with the set of nodes \mathcal{N} and the set of edges \mathcal{E}. For simplicity of the presentation we restrict ourselves to shape-regular conforming triangulations. Let $\mathcal{E}(\Omega)$ and $\mathcal{E}(\partial \Omega)$ denote the subset of interior and boundary edges, respectively, and let $\mathcal{E}(T)$ denote the edges of the element $T \in \mathcal{T}$. Let $\mathcal{N}(\partial \Omega)$ denote the subset of nodes on the boundary of $\Omega, \mathcal{N}(T)$ denote the set of nodes of an element $T \in \mathcal{T}$, and $\mathcal{N}(E)$ the set of nodes of an edge $E \in \mathcal{E}$. The subset of triangles that share a common node $z \in \mathcal{N}$ is denoted by $\mathcal{T}(z)$, and the subset of edges sharing the node z by $\mathcal{E}(z)$. For any node $z \in \mathcal{N}$, we denote by $\omega_{z} \subseteq \Omega$ the union of triangles that share the node z. The set of triangles that share a common edge $E \in \mathcal{E}(\Omega)$ is denoted by $\mathcal{T}(E)$. For any $E \in \mathcal{E}(\Omega)$, we denote by $\omega_{E} \subseteq \Omega$ the union of the two triangles $T_{ \pm} \in \mathcal{T}$ that share the edge E; we set $\omega_{E}=T$ for $E \in \mathcal{E}(\partial \Omega)$. We denote by h_{T} and h_{E} the diameter of T and the length of E, respectively.

We make use of the standard notation on averages and jumps of scalar functions v across edges $E \in \mathcal{E}(\Omega)$ with $E=\partial T_{+} \cap \partial T_{-}$

$$
\begin{equation*}
\{v\}:=\frac{1}{2}\left(\left.v\right|_{T_{+}}+\left.v\right|_{T_{-}}\right), \quad \llbracket v \rrbracket_{N}:=\left.v\right|_{T_{+}} \boldsymbol{n}_{+}+\left.v\right|_{T_{-}} \boldsymbol{n}_{-}, \tag{2.2}
\end{equation*}
$$

and, for vector-valued functions $\boldsymbol{\tau}$,

$$
\{\boldsymbol{\tau}\}:=\frac{1}{2}\left(\left.\boldsymbol{\tau}\right|_{T_{+}}+\left.\boldsymbol{\tau}\right|_{T_{-}}\right), \quad \llbracket \boldsymbol{\tau} \rrbracket_{N}:=\left.\boldsymbol{\tau}\right|_{T_{+}} \cdot \boldsymbol{n}_{+}+\left.\boldsymbol{\tau}\right|_{T_{-}} \cdot \boldsymbol{n}_{-},
$$

where $\boldsymbol{n}_{ \pm}$denotes the unit outer normal vector of $T_{ \pm}$. For any scalar function $v=v\left(x_{1}, x_{2}\right)$ we denote by $\operatorname{rot} v=\left[\frac{\partial v}{\partial x_{2}},-\frac{\partial v}{\partial x_{1}}\right]^{\top}$ the rotation of v, and we denote the elementwise application of the gradient and rotation by ∇_{h} and rot_{h}, respectively, i.e., $\left.\left(\nabla_{h} \cdot\right)\right|_{T}=\left.\nabla(\cdot)\right|_{T}$ and $\left.\left(\operatorname{rot}_{h} \cdot\right)\right|_{T}=$ $\left.\boldsymbol{\operatorname { r o t }}(\cdot)\right|_{T}$ for all $T \in \mathcal{T}$.

Let $V_{h p}$ denote the discontinuous finite element space of piecewise polynomial basis functions

$$
V_{h p}:=\left\{v_{h p} \in L^{2}(\Omega):\left.v_{h p}\right|_{T} \in \mathbb{P}_{p_{T}}(T) \text { for all } T \in \mathcal{T}\right\}
$$

where $\mathbb{P}_{p_{T}}(T)$ denotes the space of polynomials of degree less than or equal to $p_{T} \geq 1$ on a triangle $T \in \mathcal{T}$. Let us denote by h and p the piecewise constant mesh size function and polynomial degree function, respectively, defined on the mesh interfaces as follows: $\left.\mathbf{h}\right|_{E}=\min \left(h_{T_{+}}, h_{T_{-}}\right)$ and $\left.\mathrm{p}\right|_{E}=\max \left(p_{T_{+}}, p_{T_{-}}\right)$, if $E=\partial T_{+} \cap \partial T_{-}$, or $\left.\mathrm{h}\right|_{E}=h_{T}$ and $\left.\mathrm{p}\right|_{E}=p_{T}$, if $E=\partial T \cap \partial \Omega$.

The discrete problem then reads: Find $u_{h p} \in V_{h p}$ such that

$$
\begin{equation*}
a_{h p}\left(u_{h p}, v_{h p}\right)=F_{h p}\left(v_{h p}\right) \quad \text { for all } v_{h p} \in V_{h p} \tag{2.3}
\end{equation*}
$$

where

$$
\begin{aligned}
a_{h p}(u, v):= & \left(\nabla_{h} u, \nabla_{h} v\right)-k^{2}(u, v) \\
& \left.-\sum_{E \in \mathcal{E}(\Omega)}\left(\llbracket u \rrbracket_{N},\left\{\llbracket \nabla_{h} v\right\}\right)_{E}-\sum_{E \in \mathcal{E}(\Omega)}\left(\llbracket \nabla_{h} u\right\}, \llbracket v \rrbracket_{N}\right)_{E} \\
& -\left(\gamma k \frac{\mathrm{~h}}{\mathrm{p}} u, \nabla_{h} v \cdot \boldsymbol{n}\right)_{\partial \Omega}-\left(\gamma k \frac{\mathrm{~h}}{\mathrm{p}} \nabla_{h} u \cdot \boldsymbol{n}, v\right)_{\partial \Omega} \\
& -i \sum_{E \in \mathcal{E}(\Omega)}\left(\beta \frac{\mathrm{h}}{\mathrm{p}} \llbracket \nabla_{h} u \rrbracket_{N}, \llbracket \nabla_{h} v \rrbracket_{N}\right)_{E}-i \sum_{E \in \mathcal{E}(\Omega)}\left(\alpha \frac{\mathrm{p}^{2}}{\mathrm{~h}} \llbracket u \rrbracket_{N}, \llbracket v \rrbracket_{N}\right)_{E} \\
& -i\left(\gamma \frac{\mathrm{~h}}{\mathrm{p}} \nabla_{h} u \cdot \boldsymbol{n}, \nabla_{h} v \cdot \boldsymbol{n}\right)_{\partial \Omega}-i\left(k\left(1-\gamma k \frac{\mathrm{~h}}{\mathrm{p}}\right) u, v\right)_{\partial \Omega},
\end{aligned}
$$

and

$$
F_{h p}(v):=(f, v)-i\left(\frac{\gamma \mathrm{~h}}{\mathrm{p}} g, \nabla_{h} v \cdot \boldsymbol{n}\right)_{\partial \Omega}+\left(\left(1-\gamma k \frac{\mathrm{~h}}{\mathrm{p}}\right) g, v\right)_{\partial \Omega}
$$

The constants $\alpha>0, \beta>0$, and $0<\gamma<1 / 3$ are fixed constants. Note that $\beta>0$ guarantees the unconditional well posedness of the discrete problem; cf. [19].

In order to define the DG gradient, see Definition 2.1 below, we need to introduce two lifting operators. For any $E \in \mathcal{E}(\Omega)$, let

$$
\mathbb{P}_{0}(\mathcal{T}(E))^{2}:=\left\{v_{h p} \in\left[L^{2}\left(\omega_{E}\right)\right]^{2}:\left.v_{h p}\right|_{T} \in\left[\mathbb{P}_{0}(T)\right]^{2} \text { for all } T \in \mathcal{T}(E)\right\}
$$

then, we define $\mathcal{L}_{E}^{0} \in \mathbb{P}_{0}(\mathcal{T}(E))^{2}$ as

$$
\int_{\omega_{E}} \mathcal{L}_{E}^{0}\left(\llbracket v_{h p} \rrbracket_{N}\right) \cdot \overline{\boldsymbol{\tau}}_{h p} d x=\int_{E} \llbracket v_{h p} \rrbracket_{N} \cdot\left\{\left\{\overline{\boldsymbol{\tau}}_{h p}\right\}\right\} d s
$$

for all $\boldsymbol{\tau}_{h p} \in \mathbb{P}_{0}(\mathcal{T}(E))^{2}$, and $\mathcal{L}_{E}^{1} \in \mathbb{P}_{0}(\mathcal{T}(E))^{2}$ as

$$
\int_{\omega_{E}} \mathcal{L}_{E}^{1}\left(\llbracket \nabla_{h} v_{h p} \rrbracket_{N}\right) \cdot \overline{\boldsymbol{\tau}}_{h p} d x=i \beta \int_{E} \frac{\mathrm{~h}}{\mathrm{p}} \llbracket \nabla_{h} v_{h p} \rrbracket_{N} \llbracket \overline{\boldsymbol{\tau}}_{h p} \rrbracket_{N} d s
$$

for all $\boldsymbol{\tau}_{h p} \in \mathbb{P}_{0}(\mathcal{T}(E))^{2}$.
For a given integer $p \geq 0$, let $\Pi_{E}^{p}: L^{2}(E) \rightarrow \mathbb{P}_{p}(E)$ denote the local L^{2}-orthogonal projection onto the space of polynomials of degree at most p along the edge $E \in \mathcal{E}$. Similarly we define $\Pi_{T}^{p}: L^{2}(T) \rightarrow \mathbb{P}_{p}(T)$ to be the local L^{2}-orthogonal projection onto the space of polynomials of degree at most p on a triangle $T \in \mathcal{T}$.

We can derive the following stability estimates following the lines of the proof of [21, Proposition 4.2].

Lemma 2.1. The lifting operators \mathcal{L}_{E}^{0} and \mathcal{L}_{E}^{1} are stable in the sense that

$$
\begin{aligned}
\left\|\mathcal{L}_{E}^{0}\left(\llbracket v_{h p} \rrbracket_{N}\right)\right\|_{0, T} & \lesssim h_{E}^{-1 / 2}\left\|\Pi_{E}^{0}\left(\llbracket v_{h p} \rrbracket_{N}\right)\right\|_{0, E}, \\
\left\|\mathcal{L}_{E}^{1}\left(\llbracket \nabla v_{h p} \rrbracket_{N}\right)\right\|_{0, T} & \lesssim \beta h_{E}^{1 / 2}\left\|\mathrm{p}^{-1} \Pi_{E}^{0}\left(\llbracket \nabla v_{h p} \rrbracket_{N}\right)\right\|_{0, E},
\end{aligned}
$$

for $T=T_{ \pm}$, where $T_{ \pm}$are the two elements sharing the edge E.

Proof. For any $\boldsymbol{\tau}_{h p} \in \mathbb{P}_{0}(\mathcal{T}(E))^{2}$, we have that $h_{E}^{-1}\left\|\tau_{h p}\right\|_{0, E}^{2}=|T|^{-1}\left\|\tau_{h p}\right\|_{0, T}^{2}, T=T_{ \pm}$. Hence,

$$
\begin{aligned}
\left\|\mathcal{L}_{E}^{0}\left(\llbracket v_{h p} \rrbracket_{N}\right)\right\|_{0, T} & \leq\left\|\mathcal{L}_{E}^{0}\left(\llbracket v_{h p} \rrbracket_{N}\right)\right\|_{0, \omega_{E}} \\
& =\sup _{\boldsymbol{\tau}_{h p} \in \mathbb{P}_{0}(\mathcal{T}(E))^{2},\left\|\boldsymbol{\tau}_{h p}\right\|_{0, \omega_{E}}=1} \int_{\omega_{E}} \mathcal{L}_{E}^{0}\left(\llbracket v_{h p} \rrbracket_{N}\right) \cdot \overline{\boldsymbol{\tau}}_{h p} d x \\
& \left.=\sup _{\boldsymbol{\tau}_{h p} \in \mathbb{P}_{0}(\mathcal{T}(E))^{2},\left\|\boldsymbol{\tau}_{h p}\right\|_{0, \omega_{E}=1}} \int_{E} \Pi_{E}^{0}\left(\llbracket v_{h p} \rrbracket_{N}\right) \cdot\left\{\overline{\boldsymbol{\tau}}_{h p}\right\}\right\} d s \\
& \leq C h_{E}^{-1 / 2}\left\|\Pi_{E}^{0}\left(\llbracket v_{h p} \rrbracket_{N}\right)\right\|_{0, E},
\end{aligned}
$$

where $C=h_{E} \max \left\{\left|T_{+}\right|^{-1 / 2},\left|T_{-}\right|^{-1 / 2}\right\}$ is bounded by shape regularity. The second bound follows similarly.

Definition 2.1 (DG gradient). We define the DG gradient by

$$
\begin{equation*}
\mathcal{G}\left(u_{h p}\right):=\nabla_{h} u_{h p}-\sum_{E \in \mathcal{E}(\Omega)} \mathcal{L}_{E}^{0}\left(\llbracket u_{h p} \rrbracket_{N}\right)-\sum_{E \in \mathcal{E}(\Omega)} \mathcal{L}_{E}^{1}\left(\llbracket \nabla u_{h p} \rrbracket_{N}\right) . \tag{2.4}
\end{equation*}
$$

Remark 2.1. The lifting operators \mathcal{L}_{E}^{0} arise already in [12] for the DG discretization of the Poisson problem; whereas the lifting operators \mathcal{L}_{E}^{1} are required due to the additional gradient stabilization terms in the formulation 2.3.

3 A posteriori error estimator and reliability

In this section, we derive an equilibrated a posteriori error estimator based on a shifted Poisson problem and prove that it is reliable, up to additional L^{2} and boundary errors. The definition of this estimator involves flux and potential reconstructions, which will be defined below. This approach is also related to the a posteriori error analysis for the eigenvalue problem via equilibrated fluxes developed in [5, 6].

For simplicity of the presentation of the equilibrated flux technique, we restrict ourselves to conforming meshes with no hanging nodes. For the necessary modifications to handle irregular meshes we refer the reader to [11].

We approach the a posteriori error estimation of the DG finite element approximation of the Helmholtz problem by considering the following (shifted) Poisson problem with Neumann boundary conditions: Find a (complex) function $w \in H^{2}(\Omega)$ such that

$$
\begin{align*}
-\Delta w & =f+k^{2} u_{h p} & & \text { in } \Omega, \\
\nabla w \cdot \boldsymbol{n} & =g+i k u_{h p}-\gamma k \frac{\mathrm{~h}}{\mathrm{p}}\left(g-\nabla_{h} u_{h p} \cdot \boldsymbol{n}+i k u_{h p}\right) & & \text { on } \partial \Omega . \tag{3.1}
\end{align*}
$$

Note that the boundary condition is chosen in such a way that the compatibility condition for the pure Neumann problem is satisfied due to (2.3).
Definition 3.1 (Flux reconstruction). For a given $u_{h p} \in V_{h p}$, we define an equilibrated flux reconstruction for $u_{h p}$ as any function $\boldsymbol{\sigma}_{h p} \in H(\operatorname{div} ; \Omega)$ which satisfies

$$
\begin{align*}
\int_{T} \operatorname{div} \boldsymbol{\sigma}_{h p} d x & =\int_{T} f+k^{2} u_{h p} d x & \forall T \in \mathcal{T}, \\
\int_{E} \boldsymbol{\sigma}_{h p} \cdot \boldsymbol{n} d s & =\int_{E}-\left(g+i k u_{h p}\right)+\gamma k \frac{\mathrm{~h}}{\mathrm{p}}\left(g-\nabla_{h} u_{h p} \cdot \boldsymbol{n}-i k u_{h p}\right) d s & \forall E \in \mathcal{E}(\partial \Omega) \tag{3.2}
\end{align*}
$$

Since the compatibility condition of the pure Neumann problem is satisfied, the existence of such a function follows from the mixed theory applied to the homogeneous Neumann problem in $H_{0}(\operatorname{div} ; \Omega) \times L_{0}^{2}(\Omega)$, where

$$
\begin{aligned}
H_{0}(\operatorname{div} ; \Omega) & :=\{\tau \in H(\operatorname{div} ; \Omega): \tau \cdot \boldsymbol{n}=0 \text { on } \partial \Omega\} \\
L_{0}^{2}(\Omega) & :=\left\{v \in L^{2}(\Omega): \int_{\Omega} v d x=0\right\}
\end{aligned}
$$

By proceeding as in the Dirichlet case [3, Example 4.2.1], this relies on the surjectivity of div : $H_{0}(\operatorname{div} ; \Omega) \rightarrow L_{0}^{2}(\Omega)$ (see, e.g., [3, Equation (4.2.62)]).

We point out that $\boldsymbol{\sigma}_{h p}$ is not necessarily a piecewise polynomial function; the subscript $h p$ simply indicates that it is associated with a piecewise polynomial function (namely $u_{h p}$).
Definition 3.2 (Potential). We define a potential as any function

$$
s_{h p} \in H_{*}^{1}(\Omega):=\left\{v \in H^{1}(\Omega):(v, 1)=0\right\}
$$

As for $\boldsymbol{\sigma}_{h p}$, the subscript $h p$ indicates that $s_{h p}$ will be constructed from $u_{h p}$; see Section 4.2 below. For this reason, we will call $s_{h p}$ a potential reconstruction for $u_{h p}$.

For the proof of reliability of the error estimator (see (3.4) below), the following Poincaré and trace estimates, with explicit constants for triangles, are required.

Lemma 3.1 (Poincaré inequality on triangles [17]). For any $v \in H^{1}(T)$, where T is a triangle, it holds that

$$
\begin{equation*}
\left\|v-\Pi_{T}^{0} v\right\|_{0, T} \leq \frac{h_{T}}{j_{1,1}}\|\nabla v\|_{0, T} \tag{3.3}
\end{equation*}
$$

where $j_{1,1} \approx 3.83170597020751$ denotes the first positive root of the Bessel function of the first kind.

Lemma 3.2. For any $v \in H^{1}(T)$, where T is a triangle, we have the following trace estimate for any edge E of T,

$$
h_{E}^{-1 / 2}\left\|v-\Pi_{T}^{0} v\right\|_{0, E} \leq C_{t r}\|\nabla v\|_{0, T}
$$

where $C_{t r}^{2}=\left(j_{1,1}^{-1}+j_{1,1}^{-2}\right) \frac{h_{T}^{2}}{|T|} \leq 0.3291 \frac{h_{T}^{2}}{|T|}$.
Proof. The trace identity of [8, Lemma 2.1] leads to the inequality

$$
h_{E}^{-1}\left\|v-\Pi_{T}^{0} v\right\|_{0, E}^{2} \leq \frac{h_{T}}{|T|}\left\|v-\Pi_{T}^{0} v\right\|_{0, T}\|\nabla v\|_{0, T}+\frac{1}{|T|}\left\|v-\Pi_{T}^{0} v\right\|_{0, T}^{2}
$$

This, together with the Poincaré inequality (3.3), yields

$$
h_{E}^{-1}\left\|v-\Pi_{T}^{0} v\right\|_{0, E}^{2} \leq \frac{h_{T}^{2}}{j_{1,1}|T|}\|\nabla v\|_{0, T}^{2}+\frac{h_{T}^{2}}{j_{1,1}^{2}|T|}\|\nabla v\|_{0, T}^{2}
$$

Remark 3.1. For the adaptive meshes used in Section 5, which consist only of right-angled triangles, it holds that $h_{T}^{2} /|T|=4$ and, therefore, $C_{t r} \leq 1.14733$.

We can now define the following error estimator:

$$
\begin{align*}
\eta_{h p}^{2}:= & \sum_{T \in \mathcal{T}}\left(\left\|\mathcal{G}\left(u_{h p}\right)+\boldsymbol{\sigma}_{h p}\right\|_{0, T}+\frac{h_{T}}{j_{1,1}}\left\|f+k^{2} u_{h p}-\operatorname{div} \boldsymbol{\sigma}_{h p}\right\|_{0, T}\right. \\
& \left.+C_{t r} \sum_{E \in \mathcal{E}(T) \cap \mathcal{E}(\partial \Omega)} h_{E}^{1 / 2}\left\|\boldsymbol{\sigma}_{h p} \cdot \boldsymbol{n}+g+i k u_{h p}-\gamma k \frac{\mathrm{~h}}{\mathrm{p}}\left(g-\nabla_{h} u_{h p} \cdot \boldsymbol{n}+i k u_{h p}\right)\right\|_{0, E}\right)^{2} \tag{3.4}\\
& +\sum_{T \in \mathcal{T}}\left\|\mathcal{G}\left(u_{h p}\right)-\nabla s_{h p}\right\|_{0, T}^{2}
\end{align*}
$$

where $\boldsymbol{\sigma}_{h p} \in H(\operatorname{div} ; \Omega)$ is an equilibrated flux reconstruction of $u_{h p}$ as in Definition 3.1, and $s_{h p} \in H_{*}^{1}(\Omega)$ is a potential as in Definition 3.2. In the following theorem, we prove reliability of the estimator defined in (3.4), up to additional L^{2} and boundary errors. Notice that we are still in the abstract setting, where $\boldsymbol{\sigma}_{h p}$ and $s_{h p}$ are any admissible flux and potential reconstructions, according to Definitions 3.1 and 3.2 respectively. A specific choice of $\boldsymbol{\sigma}_{h p}$ and $s_{h p}$, for which efficiency can also be proven, will be given in Section 4 below.

Theorem 3.3 (Reliability). Let $u \in H^{1}(\Omega)$ be the weak solution of the Helmholtz problem (2.1), and $u_{h p} \in V_{h p}$ be the discrete solution of (2.3). Then, for the error estimator defined in (3.4), we have that

$$
\begin{align*}
\left\|\nabla u-\mathcal{G}\left(u_{h p}\right)\right\|_{0, \Omega} \lesssim & \eta_{h p}+k^{2}\left\|u-u_{h p}\right\|_{0, \Omega}+k\left\|u-u_{h p}\right\|_{0, \partial \Omega} \\
& +\left\|\gamma k \frac{\mathrm{~h}}{\mathrm{p}}\left(g-\nabla_{h} u_{h p} \cdot \boldsymbol{n}+i k u_{h p}\right)\right\|_{0, \partial \Omega} . \tag{3.5}
\end{align*}
$$

Proof. We follow the general ideas of the proof of [12, Theorem 3.3]. However, in order to connect with the shifted Poisson problem (3.1), some extra terms need to be bounded. We repeat the full proof for completeness.

Let $s \in H_{*}^{1}(\Omega)$ be defined by the projection

$$
\begin{equation*}
(\nabla s, \nabla v)=\left(\mathcal{G}\left(u_{h p}\right), \nabla v\right) \quad \text { for all } v \in H^{1}(\Omega) \tag{3.6}
\end{equation*}
$$

Then, by orthogonality, we have that

$$
\begin{equation*}
\left\|\nabla u-\mathcal{G}\left(u_{h p}\right)\right\|_{0, \Omega}^{2}=\|\nabla(u-s)\|_{0, \Omega}^{2}+\left\|\nabla s-\mathcal{G}\left(u_{h p}\right)\right\|_{0, \Omega}^{2} . \tag{3.7}
\end{equation*}
$$

Since $s \in H_{*}^{1}(\Omega)$ is the orthogonal projection, we have

$$
\left\|\nabla s-\mathcal{G}\left(u_{h p}\right)\right\|_{0, \Omega}=\min _{v \in H_{*}^{1}(\Omega)}\left\|\nabla v-\mathcal{G}\left(u_{h p}\right)\right\|_{0, \Omega}
$$

Hence, for any $s_{h p} \in H_{*}^{1}(\Omega)$, we get the following bound for the second term in (3.7)

$$
\begin{equation*}
\left\|\nabla s-\mathcal{G}\left(u_{h p}\right)\right\|_{0, \Omega}^{2} \leq\left\|\nabla s_{h p}-\mathcal{G}\left(u_{h p}\right)\right\|_{0, \Omega}^{2} \tag{3.8}
\end{equation*}
$$

The first term of (3.7) is estimated by the flux reconstruction as follows. We have

$$
\begin{aligned}
\|\nabla(u-s)\|_{0, \Omega} & =\sup _{v \in H_{*}^{1}(\Omega),\|\nabla v\|_{0, \Omega}=1}(\nabla(u-s), \nabla v) \\
& =\sup _{v \in H_{*}^{1}(\Omega),\|\nabla v\|_{0, \Omega}=1}\left(\nabla u-\mathcal{G}\left(u_{h p}\right), \nabla v\right),
\end{aligned}
$$

where the second identity follows from (3.6). Adding and subtracting an equilibrated flux reconstruction $\boldsymbol{\sigma}_{h p} \in H(\operatorname{div} ; \Omega)$ leads to

$$
\begin{equation*}
\left(\nabla u-\mathcal{G}\left(u_{h p}\right), \nabla v\right)=\left(\nabla u+\boldsymbol{\sigma}_{h p}, \nabla v\right)-\left(\mathcal{G}\left(u_{h p}\right)+\boldsymbol{\sigma}_{h p}, \nabla v\right) \tag{3.9}
\end{equation*}
$$

Using the weak formulation (2.1) and integrating by parts in the first term on the right-hand side of (3.9) yields, for any $v \in H_{*}^{1}(\Omega)$ with $\|\nabla v\|_{0, \Omega}=1$,

$$
\begin{align*}
\left(\nabla u+\boldsymbol{\sigma}_{h p}, \nabla v\right)= & (\nabla u, \nabla v)+\left(\boldsymbol{\sigma}_{h p}, \nabla v\right) \\
= & \left(f+k^{2} u-\operatorname{div} \boldsymbol{\sigma}_{h p}, v\right)+\left(g+i k u+\boldsymbol{\sigma}_{h p} \cdot \boldsymbol{n}, v\right)_{\partial \Omega} \\
= & \left(f+k^{2} u_{h p}-\operatorname{div} \boldsymbol{\sigma}_{h p}, v\right)+\left(g+i k u_{h p}+\boldsymbol{\sigma}_{h p} \cdot \boldsymbol{n}, v\right)_{\partial \Omega} \tag{3.10}\\
& +k^{2}\left(u-u_{h p}, v\right)+i k\left(u-u_{h p}, v\right)_{\partial \Omega} .
\end{align*}
$$

Here, the proof differs from that of [12, Theorem 3.3], in that we introduce the last two extra terms. From Definition 3.1 of the equilibrated flux reconstruction $\boldsymbol{\sigma}_{h p}$ we get for the first term on the right-hand side of (3.10), for each element $T \in \mathcal{T}$ that

$$
\begin{aligned}
\left(f+k^{2} u_{h p}-\operatorname{div} \boldsymbol{\sigma}_{h p}, v\right)_{T} & =\left(f+k^{2} u_{h p}-\operatorname{div} \boldsymbol{\sigma}_{h p}, v-\Pi_{T}^{0} v\right)_{T} \\
& \leq\left\|f+k^{2} u_{h p}-\operatorname{div} \boldsymbol{\sigma}_{h p}\right\|_{0, T}\left\|v-\Pi_{T}^{0} v\right\|_{0, T} \\
& \leq \frac{h_{T}}{j_{1,1}}\left\|f+k^{2} u_{h p}-\operatorname{div} \boldsymbol{\sigma}_{h p}\right\|_{0, T}\|\nabla v\|_{0, T}
\end{aligned}
$$

where in the last step we have used the bound (3.3). For the second term on the right-hand side of (3.10), we write

$$
\begin{aligned}
(g+ & \left.i k u_{h p}+\boldsymbol{\sigma}_{h p} \cdot \boldsymbol{n}, v\right)_{\partial \Omega} \\
= & \left(\boldsymbol{\sigma}_{h p} \cdot \boldsymbol{n}+g+i k u_{h p}-\gamma k \frac{\mathrm{~h}}{\mathrm{p}}\left(g-\nabla_{h} u_{h p} \cdot \boldsymbol{n}-i k u_{h p}\right), v\right)_{\partial \Omega} \\
& +\left(\gamma k \frac{\mathrm{~h}}{\mathrm{p}}\left(g-\nabla_{h} u_{h p} \cdot \boldsymbol{n}-i k u_{h p}\right), v\right)_{\partial \Omega}
\end{aligned}
$$

where we need to introduce the last term in order to connect to the shifted Poisson problem (3.1). Again, from the definition of $\boldsymbol{\sigma}_{h p}$, for any boundary edge E belonging to the triangle T, we have that

$$
\begin{aligned}
& \left(\boldsymbol{\sigma}_{h p} \cdot \boldsymbol{n}+g+i k u_{h p}-\gamma k \frac{\mathrm{~h}}{\mathrm{p}}\left(g-\nabla_{h} u_{h p} \cdot \boldsymbol{n}-i k u_{h p}\right), v\right)_{E} \\
& \quad=\left(\boldsymbol{\sigma}_{h p} \cdot \boldsymbol{n}+g+i k u_{h p}-\gamma k \frac{\mathrm{~h}}{\mathrm{p}}\left(g-\nabla_{h} u_{h p} \cdot \boldsymbol{n}-i k u_{h p}\right), v-\Pi_{T}^{0} v\right)_{E} \\
& \quad \leq\left\|\boldsymbol{\sigma}_{h p} \cdot \boldsymbol{n}+g+i k u_{h p}-\gamma k \frac{\mathrm{~h}}{\mathrm{p}}\left(g-\nabla_{h} u_{h p} \cdot \boldsymbol{n}-i k u_{h p}\right)\right\|_{0, E}\left\|v-\Pi_{T}^{0} v\right\|_{0, E} \\
& \quad \leq C_{t r} h_{E}^{1 / 2}\left\|\boldsymbol{\sigma}_{h p} \cdot \boldsymbol{n}+g+i k u_{h p}-\gamma k \frac{\mathrm{~h}}{\mathrm{p}}\left(g-\nabla_{h} u_{h p} \cdot \boldsymbol{n}-i k u_{h p}\right)\right\|_{0, E}\|\nabla v\|_{0, T}
\end{aligned}
$$

where in the last step we have used the bound from Lemma 3.2.
From the Cauchy-Schwarz inequality, the above estimates, the Poincaré and trace estimates, and

$$
\left(\mathcal{G}\left(u_{h p}\right)+\boldsymbol{\sigma}_{h p}, \nabla v\right)_{T} \leq\left\|\mathcal{G}\left(u_{h p}\right)+\boldsymbol{\sigma}_{h p}\right\|_{0, T}\|\nabla v\|_{0, T}
$$

noting that $\|\nabla v\|_{0, \Omega}=1$, we deduce the bound

$$
\begin{aligned}
\left(\nabla u-\mathcal{G}\left(u_{h p}\right), \nabla v\right) \lesssim & \eta_{h p}+k^{2}\left\|u-u_{h p}\right\|_{0, \Omega}+k\left\|u-u_{h p}\right\|_{0, \partial \Omega} \\
& +\left\|\gamma k \frac{\mathrm{~h}}{\mathrm{p}}\left(g-\nabla_{h} u_{h p} \cdot \boldsymbol{n}-i k u_{h p}\right)\right\|_{0, \partial \Omega}
\end{aligned}
$$

for (3.9). Then, inserting this bound and (3.8) into (3.7) completes the proof.
Remark 3.2. Assuming that the resolution conditions established in [23] are satisfied, and that an appropriate mesh refinement near the domain corners is applied, the L^{2} error terms appearing on the right-hand side of the reliability bound (3.5) in Theorem 3.3 are actually higher-order terms, compared to the left-hand side.

4 Efficiency of the error estimator

The result in the previous section holds for any equilibrated flux and potential reconstructions; cf., Definitions $3.1 \& 3.2$, respectively. In this section, we locally define equilibrated flux and potential reconstructions, for which we can show that the error estimator (3.4) is efficient.

In Section 4.1, we start by constructing equilibrated fluxes on nodal patches by solving local mixed problems with Raviart-Thomas finite elements. We then show that the sum of these local fluxes satisfy the definition of an admissible flux reconstruction (see Definition 3.1). We prove efficiency of this flux reconstruction in Theorem 4.4 below. The technique of this proof involves two steps: an estimate for the strong residual and the p-robustness of the mixed approximation (see Lemmas 4.2 and 4.3, respectively).

In Section 4.2, we construct local potentials by solving minimization problems again on nodal patches. We reformulate these minimization problems as coercive variational problems, which can only be done in two dimensions. By combining these local potentials, we construct an admissible potential reconstruction, according to Definition 3.2, and prove its efficiency (see Theorem 4.5).

In Section 4.3, we show efficiency of the remaining data terms and state the final efficiency result.

4.1 Localized equilibrated flux reconstruction

We first define a computable equilibrated flux reconstruction $\boldsymbol{\sigma}_{h p}$, such that the terms in the error estimator (3.4) containing this reconstruction are efficient.

Using the partition of unity property of the linear hat-functions, we can localize the construction of $\boldsymbol{\sigma}_{h p}$ on nodal patches ω_{z} by solving local patch problems in mixed formulation. For a given node $z \in \mathcal{N}$, with given integer $p_{z} \geq 1$, we define the space

$$
\Sigma_{h p}\left(\omega_{z}\right):=\left\{\boldsymbol{\tau}_{h p} \in H\left(\operatorname{div}, \omega_{z}\right):\left.\boldsymbol{\tau}_{h p}\right|_{T} \in R T_{p_{z}}(T) \text { for all } T \in \mathcal{T}(z)\right\}
$$

of Raviart-Thomas finite elements $R T_{p_{z}}(T):=\left\{\left[\mathbb{P}_{p_{z}}(T)\right]^{2}+\widetilde{\mathbb{P}}_{p_{z}}(T)\left[x_{1}, x_{2}\right]^{t}\right\}$, where $\widetilde{\mathbb{P}}_{p_{z}}(T)$ is the space of homogeneous polynomials of degree p_{z}, and the space

$$
Q_{h p}\left(\omega_{z}\right)=\left\{q_{h p} \in L^{2}\left(\omega_{z}\right):\left.q_{h p}\right|_{T} \in \mathbb{P}_{p_{z}}(T) \text { for all } T \in \mathcal{T}(z)\right\}
$$

Let $\psi_{z} \in H^{1}(\Omega)$ denote the piecewise linear hat function for the vertex $z \in \mathcal{N}$ with patch ω_{z}. Inserting ψ_{z} as test functions into the discrete weak formulation (2.3), we get, via straightforward
S. Congreve, J. Gedicke, and I. Perugia: Robust adaptive $h p$-DG for Helmholtz
calculations, the following hat function orthogonality,

$$
\begin{align*}
\left(\mathcal{G}\left(u_{h p}\right)\right. & \left., \nabla \psi_{z}\right)_{\omega_{z}}-\left(f+k^{2} u_{h p}, \psi_{z}\right)_{\omega_{z}} \\
= & \left(g+i k u_{h p}, \psi_{z}\right)_{\partial \omega_{z} \cap \partial \Omega}-\left(\gamma k \frac{\mathrm{~h}}{\mathrm{p}}\left(g-\nabla_{h} u_{h p} \cdot \boldsymbol{n}+i k u_{h p}\right), \psi_{z}\right)_{\partial \omega_{z} \cap \partial \Omega} \tag{4.1}\\
& -i \gamma \frac{\mathrm{~h}}{\mathrm{p}}\left(g-\nabla_{h} u_{h p} \cdot \boldsymbol{n}+i k u_{h p}, \nabla_{h} \psi_{z} \cdot \boldsymbol{n}\right)_{\partial \omega_{z} \cap \partial \Omega}
\end{align*}
$$

Define for $z \in \mathcal{N}$, and a given function $g^{z} \in L^{2}\left(\partial \omega_{z} \cap \partial \Omega\right)$, the local mixed finite element spaces

$$
\begin{aligned}
\Sigma_{g^{z}, h p}^{z}:=\left\{\boldsymbol{\tau}_{h p} \in \Sigma_{h p}\left(\omega_{z}\right):\right. & \boldsymbol{\tau}_{h p} \cdot \boldsymbol{n}=0 \text { on } \partial \omega_{z} \backslash \partial \Omega \\
& \left.\left.\boldsymbol{\tau}_{h p} \cdot \boldsymbol{n}\right|_{E}=\Pi_{E}^{p_{z}} g^{z} \text { for all } E \subset \partial \omega_{z} \cap \partial \Omega\right\} \\
Q_{h p}^{z}:=\left\{q_{h p} \in Q_{h p}\left(\omega_{z}\right):\right. & \left.\left(q_{h p}, 1\right)_{\omega_{z}}=0\right\} .
\end{aligned}
$$

For each node $z \in \mathcal{N}$, we solve the following local problem in mixed form: Find an approximation $\left(\boldsymbol{\zeta}_{h p}^{z}, r_{h p}^{z}\right) \in \Sigma_{g^{z}, h p}^{z} \times Q_{h p}^{z}$ such that

$$
\begin{align*}
\left(\boldsymbol{\zeta}_{h p}^{z}, \boldsymbol{\tau}_{h p}\right)_{\omega_{z}}- & \left(r_{h p}^{z}, \operatorname{div} \boldsymbol{\tau}_{h p}\right)_{\omega_{z}}=-\left(\psi_{z} \mathcal{G}\left(u_{h p}\right), \boldsymbol{\tau}_{h p}\right)_{\omega_{z}} & & \text { for all } \boldsymbol{\tau}_{h p} \in \Sigma_{0, h p}^{z} \tag{4.2}\\
& \left(\operatorname{div} \boldsymbol{\zeta}_{h p}^{z}, q_{h p}\right)_{\omega_{z}}=\left(f^{z}, q_{h p}\right)_{\omega_{z}} & & \text { for all } q_{h p} \in Q_{h p}^{z}
\end{align*}
$$

where the function f^{z} is given by

$$
\begin{equation*}
f^{z}:=\left(f+k^{2} u_{h p}\right) \psi_{z}-\mathcal{G}\left(u_{h p}\right) \cdot \nabla \psi_{z} \tag{4.3}
\end{equation*}
$$

and the function $g^{z} \in L^{2}\left(\partial \omega_{z} \cap \partial \Omega\right)$ in the definition of $\Sigma_{g^{z}, h}^{z}$ is given by

$$
\begin{align*}
g^{z}:= & -\left(g+i k u_{h p}-\gamma k \frac{\mathrm{~h}}{\mathrm{p}}\left(g-\nabla_{h} u_{h p} \cdot \boldsymbol{n}+i k u_{h p}\right)\right) \psi_{z} \tag{4.4}\\
& +i \gamma \frac{\mathrm{~h}}{\mathrm{p}}\left(g-\nabla_{h} u_{h p} \cdot \boldsymbol{n}+i k u_{h p}\right)\left(\nabla_{h} \psi_{z} \cdot \boldsymbol{n}\right) .
\end{align*}
$$

Actually, f^{z} and g^{z} are defined such that, from the hat function orthogonality (4.1), we get

$$
\begin{equation*}
\left(f^{z}, 1\right)_{\omega_{z}}=\left(g^{z}, 1\right)_{\partial \omega_{z} \cap \partial \Omega} \tag{4.5}
\end{equation*}
$$

which is the pure Neumann problem compatibility condition.
Remark 4.1. From integration by parts, the boundary condition on $\partial \omega_{z}$, and the compatibility condition (4.5), we note that

$$
\left(\operatorname{div} \boldsymbol{\zeta}_{h p}^{z}, 1\right)_{\omega_{z}}=\int_{\partial \omega_{z}} \boldsymbol{\zeta}_{h p}^{z} \cdot \boldsymbol{n} d x=\int_{\partial \omega_{z} \cap \partial \Omega} g^{z} d x=\left(f^{z}, 1\right)_{\omega_{z}}
$$

Hence, together with (4.2) we have that

$$
\begin{equation*}
\left(\operatorname{div} \boldsymbol{\zeta}_{h p}^{z}, q_{h p}\right)_{\omega_{z}}=\left(f^{z}, q_{h p}\right)_{\omega_{z}} \quad \text { for all } q_{h p} \in Q_{h p}\left(\omega_{z}\right) \tag{4.6}
\end{equation*}
$$

We can now define the equilibrated flux reconstruction $\boldsymbol{\sigma}_{h p}$ as

$$
\begin{equation*}
\boldsymbol{\sigma}_{h p}:=\sum_{z \in \mathcal{N}} \boldsymbol{\zeta}_{h p}^{z} \tag{4.7}
\end{equation*}
$$

and prove that it satisfies Definition 3.1.

Lemma 4.1. The flux approximation $\boldsymbol{\sigma}_{h p}$, defined in (4.7), is an equilibrated flux reconstruction in $H(\operatorname{div} ; \Omega)$ which satisfies, for any $T \in \mathcal{T}$,

$$
\left(f+k^{2} u_{h p}-\operatorname{div} \boldsymbol{\sigma}_{h p}, q_{h p}\right)_{T}=0
$$

for all $\left.q_{h p} \in \bigcap_{z \in \mathcal{N}(T)} Q_{h p}\left(\omega_{z}\right)\right|_{T}$, and for any $E \in \mathcal{E}(\partial \Omega)$,

$$
\left(\boldsymbol{\sigma}_{h p} \cdot \boldsymbol{n}+g+i k u_{h p}-\gamma k \frac{\mathrm{~h}}{\mathrm{p}}\left(g-\nabla_{h} u_{h p} \cdot \boldsymbol{n}+i k u_{h p}\right), q_{h p}\right)_{E}=0
$$

for all $\left.q_{h p} \in \bigcap_{z \in \mathcal{N}(E)} Q_{h p}\left(\omega_{z}\right)\right|_{E}$.
Proof. For all $z \in \mathcal{N}$, by extension of $\boldsymbol{\zeta}_{h p}^{z}$ by zero in $\Omega \backslash \omega_{z}$, we have that $\boldsymbol{\zeta}_{h p}^{z} \in H(\operatorname{div} ; \Omega)$; therefore, $\boldsymbol{\sigma}_{h p} \in H(\operatorname{div} ; \Omega)$ also holds. For any $T \in \mathcal{T}$, by using the partition of unity property of ψ_{z}, the definition of $\boldsymbol{\sigma}_{h p}$, and (4.6), it holds that

$$
\begin{aligned}
\left(f+k^{2} u_{h p}-\operatorname{div} \boldsymbol{\sigma}_{h p}, q_{h p}\right)_{T} & =\sum_{z \in \mathcal{N}(T)}\left(\psi_{z}\left(f+k^{2} u_{h p}\right)-\operatorname{div} \boldsymbol{\zeta}_{h p}^{z}, q_{h p}\right)_{T} \\
& =\sum_{z \in \mathcal{N}(T)}\left(\mathcal{G}\left(u_{h p}\right) \cdot \nabla \psi_{z}, q_{h p}\right)_{T} \\
& =0
\end{aligned}
$$

for all $q_{h p} \in Q_{h p}$, where in the last step we used the fact that $\sum_{z \in \mathcal{N}(T)} \nabla \psi_{z}=0$. Using the partition of unity property of ψ_{z} along the boundary edges, the definition of $\boldsymbol{\sigma}_{h p}$, and the fact that $\zeta_{h p}^{z} \in \Sigma_{g^{z}, h p}^{z}$, we get for any $E \in \mathcal{E}(\partial \Omega)$, with associated element $T_{E} \in \mathcal{T}$, that

$$
\begin{aligned}
\left(\boldsymbol{\sigma}_{h p} \cdot \boldsymbol{n}, q_{h p}\right)_{E} & =\sum_{z \in \mathcal{N}\left(T_{E}\right)}\left(\boldsymbol{\zeta}_{h p}^{z} \cdot \boldsymbol{n}, q_{h p}\right)_{E}=\sum_{z \in \mathcal{N}\left(T_{E}\right)}\left(g^{z}, q_{h p}\right)_{E} \\
& =\left(-\left(g+i k u_{h p}\right)+\gamma k \frac{\mathrm{~h}}{\mathrm{p}}\left(g-\nabla_{h} u_{h p} \cdot \boldsymbol{n}+i k u_{h p}\right), q_{h p}\right)_{E}
\end{aligned}
$$

for all $q_{h p} \in Q_{h p}$, where we use the fact that $\sum_{z \in \mathcal{N}\left(T_{E}\right)} \psi_{z}=1$ and the fact that $\sum_{z \in \mathcal{N}\left(T_{E}\right)} \nabla \psi_{z}$. $\boldsymbol{n}=0$ on E.

We proceed by showing that the flux reconstruction (4.7) is efficient. In order to do that, we start by defining the following data oscillation terms.
Definition 4.1 (Data oscillations). We define

$$
\begin{aligned}
\operatorname{osc}^{2}\left(f^{z}\right) & =\sum_{T \in \mathcal{T}(z)} \frac{h_{T}^{2}}{j_{1,1}^{2}}\left\|f^{z}-\Pi_{T}^{p_{z}} f^{z}\right\|_{0, T}^{2}, \\
\operatorname{osc}^{2}\left(g^{z}\right) & =\sum_{E \in \mathcal{E}(z) \cap \mathcal{E}(\partial \Omega)} C_{t r}^{2} h_{E}\left\|g^{z}-\Pi_{E}^{p_{z}} g^{z}\right\|_{0, E}^{2}
\end{aligned}
$$

for all $z \in \mathcal{N}$, and

$$
\operatorname{osc}^{2}(f)=\sum_{z \in \mathcal{N}} \operatorname{osc}^{2}\left(f^{z}\right), \quad \operatorname{osc}^{2}(g)=\sum_{z \in \mathcal{N}(\partial \Omega)} \operatorname{osc}^{2}\left(g^{z}\right)
$$

Now, we derive an estimate of the strong residual. The following lemma is based on the results in [7].
S. Congreve, J. Gedicke, and I. Perugia: Robust adaptive $h p$-DG for Helmholtz

Lemma 4.2 (Continuous efficiency, flux reconstruction). Let w be the weak solution of the (shifted) Poisson problem (3.1), with $u_{h p} \in V_{h p}$ being the hp-DG approximation given by (2.3). Furthermore, let $z \in \mathcal{N}$ and $r^{z} \in H_{*}^{1}\left(\omega_{z}\right):=\left\{v \in H^{1}\left(\omega_{z}\right):(v, 1)_{\omega_{z}}=0\right\}$ be the solution to the continuous problem

$$
\begin{align*}
\left(\nabla r^{z}, \nabla v\right)_{\omega_{z}}= & -\left(\psi_{z} \mathcal{G}\left(u_{h p}\right), \nabla v\right)_{\omega_{z}}+\sum_{T \in \mathcal{T}(z)}\left(\Pi_{T}^{p_{z}} f^{z}, v\right)_{T} \tag{4.8}\\
& -\sum_{E \in \mathcal{E}(z) \cap \mathcal{E}(\partial \Omega)}\left(\Pi_{E}^{p_{z}} g^{z}, v\right)_{E}
\end{align*}
$$

for all $v \in H^{1}\left(\omega_{z}\right)$, with the right hand side f^{z} and the boundary function g^{z} given in (4.3) and (4.4), respectively. Then, it holds that

$$
\begin{aligned}
\left\|\nabla r^{z}\right\|_{0, \omega_{z}} \lesssim & \left\|\nabla w-\mathcal{G}\left(u_{h p}\right)\right\|_{0, \omega_{z}}+\left\|i \gamma \frac{\sqrt{\mathrm{~h}}}{\mathrm{p}}\left(g-\nabla_{h} u_{h p} \cdot \boldsymbol{n}+i k u_{h p}\right)\right\|_{0, \partial \omega_{z} \cap \partial \Omega} \\
& +\operatorname{osc}\left(f^{z}\right)+\operatorname{osc}\left(g^{z}\right)
\end{aligned}
$$

Proof. Since the right hand side f^{z} and the boundary function g^{z} are constructed such that the compatibility condition (4.5) is satisfied on ω_{z} it is, therefore, also satisfied for their L^{2} projections. This, together with the Lax-Milgram lemma, implies that (4.8) is well posed. We have that

$$
\begin{equation*}
\left\|\nabla r^{z}\right\|_{0, \omega_{z}}=\sup _{v \in H_{*}^{1}\left(\omega_{z}\right),\|\nabla v\|_{0, \omega_{z}}=1}\left(\nabla r^{z}, \nabla v\right)_{\omega_{z}} \tag{4.9}
\end{equation*}
$$

moreover, for $v \in H_{*}^{1}\left(\omega_{z}\right),\|\nabla v\|_{0, \omega_{z}}=1$, we can write

$$
\begin{aligned}
\left(\nabla r^{z}, \nabla v\right)_{\omega_{z}}= & -\left(\psi_{z} \mathcal{G}\left(u_{h p}\right), \nabla v\right)_{\omega_{z}}+\sum_{T \in \mathcal{T}(z)}\left(\Pi_{T}^{p_{z}} f^{z}, v\right)_{T}-\sum_{E \in \mathcal{E}(z) \cap \mathcal{E}(\partial \Omega)}\left(\Pi_{E}^{p_{z}} g^{z}, v\right)_{E} \\
= & -\left(\psi_{z} \mathcal{G}\left(u_{h p}\right), \nabla v\right)_{\omega_{z}}+\left(f^{z}, v\right)_{\omega_{z}}-\left(g^{z}, v\right)_{\partial \omega_{z} \cap \partial \Omega} \\
& +\sum_{T \in \mathcal{T}(z)}\left(\Pi_{T}^{p_{z}} f^{z}-f^{z}, v-\Pi_{T}^{0} v\right)_{T}-\sum_{E \in \mathcal{E}(z) \cap \mathcal{E}(\partial \Omega)}\left(\Pi_{E}^{p_{z}} g^{z}-g^{z}, v-\Pi_{T}^{0} v\right)_{E}
\end{aligned}
$$

The last two terms on the right-hand side are bounded by $\operatorname{osc}\left(f^{z}\right)$ and $\operatorname{osc}\left(g^{z}\right)$, respectively, by applying the Cauchy-Schwarz inequality, Lemmas $3.2 \& 3.3$, and the fact that $\|\nabla v\|_{0, \omega_{z}}=1$. For the first three terms on the right-hand side, by application of integration by parts, the Cauchy-Schwarz inequality, and the definitions of f^{z}, g^{z}, and w, we obtain

$$
\begin{aligned}
-\left(\psi_{z} \mathcal{G}(\right. & \left.\left.u_{h p}\right), \nabla v\right)_{\omega_{z}}+\left(f^{z}, v\right)_{\omega_{z}}-\left(g^{z}, v\right)_{\partial \omega_{z} \cap \partial \Omega} \\
= & -\left(\psi_{z} \mathcal{G}\left(u_{h p}\right), \nabla v\right)_{\omega_{z}}+\left(\left(f+k^{2} u_{h p}\right) \psi_{z}, v\right)_{\omega_{z}}-\left(\mathcal{G}\left(u_{h p}\right) \cdot \nabla \psi_{z}, v\right)_{\omega_{z}} \\
& -\left(g^{z}, v\right)_{\partial \omega_{z} \cap \partial \Omega} \\
= & \left(\nabla w-\mathcal{G}\left(u_{h p}\right), \nabla_{h}\left(\psi_{z} v\right)\right)_{\omega_{z}} \\
& -\left(i \gamma \frac{\mathrm{~h}}{\mathrm{p}}\left(g-\nabla_{h} u_{h p} \cdot \boldsymbol{n}+i k u_{h p}\right)\left(\nabla_{h} \psi_{z} \cdot \boldsymbol{n}\right), v\right)_{\partial \omega_{z} \cap \partial \Omega} \\
\leq & \left\|\nabla w-\mathcal{G}\left(u_{h p}\right)\right\|_{0, \omega_{z}}\left\|\nabla_{h}\left(\psi_{z} v\right)\right\|_{0, \omega_{z}} \\
& +\left\|i \gamma \frac{\sqrt{\mathrm{~h}}}{\mathrm{p}}\left(g-\nabla_{h} u_{h p} \cdot \boldsymbol{n}+i k u_{h p}\right)\right\|_{0, \partial \omega_{z} \cap \partial \Omega}\left\|\sqrt{\mathrm{~h}}\left(\nabla_{h} \psi_{z} \cdot \boldsymbol{n}\right) v\right\|_{0, \partial \omega_{z} \cap \partial \Omega}
\end{aligned}
$$

By the triangle inequality, the scaling of the hat-functions, shape regularity, and the Poincaré inequality, we have that

$$
\left\|\nabla_{h}\left(\psi_{z} v\right)\right\|_{0, \omega_{z}} \leq\left\|v \nabla_{h} \psi_{z}\right\|_{0, \omega_{z}}+\left\|\psi_{z} \nabla v\right\|_{0, \omega_{z}} \lesssim\|\mathrm{~h} v\|_{0, \omega_{z}}+\|\nabla v\|_{0, \omega_{z}} \lesssim\|\nabla v\|_{0, \omega_{z}}=1
$$

a similar bound holds for $\left\|\sqrt{\mathrm{h}}\left(\nabla_{h} \psi_{z} \cdot \boldsymbol{n}\right) v\right\|_{0, \partial \omega_{z} \cap \partial \Omega}$ after application of shape regularity and the trace estimates. Therefore, we conclude from the previous estimates that

$$
\begin{aligned}
\left(\nabla r^{z}, \nabla v\right)_{\omega_{z}} \lesssim & \lesssim \nabla \nabla-\mathcal{G}\left(u_{h p}\right) \|_{0, \omega_{z}} \\
& +\left\|i \gamma \frac{\sqrt{\mathrm{~h}}}{\mathrm{p}}\left(g-\nabla_{h} u_{h p} \cdot \boldsymbol{n}+i k u_{h p}\right)\right\|_{0, \partial \omega_{z} \cap \partial \Omega}+\operatorname{osc}\left(f^{z}\right)+\operatorname{osc}\left(g^{z}\right)
\end{aligned}
$$

for all $v \in H_{*}^{1}\left(\omega_{z}\right)$, such that $\|\nabla v\|_{0, \omega_{z}}=1$. Inserting this result into (4.9) completes the proof.

In the following lemma, we essentially report [4, Theorem 7], which is a key result in the proof of p-robustness.

Lemma 4.3. Let $u_{h p} \in V_{h p}$ be the hp-DG approximation given by (2.3); furthermore, for $z \in \mathcal{N}$, let $\boldsymbol{\zeta}_{h p}^{z} \in \Sigma_{g^{z}, h p}^{z}$ be the solution to the local nodal mixed problem (4.2), $\psi_{z} \in H^{1}(\Omega)$ be the nodal hat function associated with the node z, and $r^{z} \in H_{*}^{1}\left(\omega_{z}\right)$ be defined as in Lemma 4.2. Then, the stability result

$$
\left\|\psi_{z} \mathcal{G}\left(u_{h p}\right)+\boldsymbol{\zeta}_{h p}^{z}\right\|_{0, \omega_{z}} \leq C\left\|\nabla r^{z}\right\|_{0, \omega_{z}}
$$

holds, with a constant $C>0$ that is independent of the polynomial degree, mesh size, and wave number, but depends on the shape regularity of the mesh.

Proof. As in [12, Corollary 3.16], the proof is essentially [4, Theorem 7]. Note that,

$$
\left\|\nabla r^{z}\right\|_{0, \omega_{z}}=\sup _{v \in H_{*}^{1}\left(\omega_{z}\right),\|\nabla v\|_{0, \omega_{z}}=1}\left(\nabla r^{z}, \nabla v\right)_{\omega_{z}}
$$

In fact, from (4.8) we have that

$$
\begin{aligned}
& \left(\nabla r^{z}, \nabla v\right)_{\omega_{z}}=-\left(\psi_{z} \mathcal{G}\left(u_{h p}\right), \nabla v\right)_{\omega_{z}}+\sum_{T \in \mathcal{T}(z)}\left(\Pi_{T}^{p_{z}} f^{z}, v\right)_{T}-\sum_{E \in \mathcal{E}(z) \cap \mathcal{E}(\partial \Omega)}\left(\Pi_{E}^{p_{z}} g^{z}, v\right)_{E} \\
& \quad=\sum_{T \in \mathcal{T}(z)} \int_{T}\left(\operatorname{div}\left(\psi_{z} \mathcal{G}\left(u_{h p}\right)\right)+\Pi_{T}^{p_{z}} f^{z}\right) v d x+\sum_{E \in \mathcal{E}(z) \cap \mathcal{E}(\Omega)} \int_{E} \llbracket-\psi_{z} \mathcal{G}\left(u_{h p}\right) \rrbracket_{N} v d s \\
& \quad-\sum_{E \in \mathcal{E}(z) \cap \mathcal{E}(\partial \Omega)} \int_{E}\left(\Pi_{E}^{p_{z}} g^{z}+\psi_{z} \mathcal{G}\left(u_{h p}\right)\right) v d s
\end{aligned}
$$

for all $v \in H_{*}^{1}\left(\omega_{z}\right)$ such that $\|\nabla v\|_{0, \omega_{z}}=1$.
Defining $r_{T}:=\operatorname{div}\left(\psi_{z} \mathcal{G}\left(u_{h p}\right)\right)+\sum_{T \in \mathcal{T}(z)} \Pi_{T}^{p^{z}} f^{z}, r_{E}:=\llbracket-\psi_{z} \mathcal{G}\left(u_{h p}\right) \rrbracket_{N}$ for interior edges, and $r_{E}:=-\sum_{E \in \mathcal{E}(z) \cap \mathcal{E}(\partial \Omega)}\left(\Pi_{E}^{p_{z}} g^{z}+\psi_{z} \mathcal{G}\left(u_{h p}\right)\right)$ for edges on the boundary, we have that $\left\|\nabla r^{z}\right\|_{0, \omega_{z}}$ in our notation is $\|r\|_{\left[H^{1}(\omega) \backslash \mathbb{R}\right]}$ in the notation of [4, Lemma 7]. Moreover,

$$
\left\|\psi_{z} \mathcal{G}\left(u_{h p}\right)+\boldsymbol{\zeta}_{h p}^{z}\right\|_{0, \omega_{z}}=\inf _{\substack{\left.\boldsymbol{\tau}_{h p} \in \sum_{g^{z} z, h p} \\ \operatorname{div}\left(\boldsymbol{\tau}_{h p}\right)\right|_{T}=\Pi_{T}^{p z} f^{z} \forall T \in \mathcal{T}(z)}}\left\|\psi_{z} \mathcal{G}\left(u_{h p}\right)+\boldsymbol{\tau}_{h p}\right\|_{0, \omega_{z}},
$$

S. Congreve, J. Gedicke, and I. Perugia: Robust adaptive $h p$-DG for Helmholtz
which, in the notation of [4], reads as

$$
\inf _{\sigma \in \mathrm{RT}_{-1,0}^{p}, \operatorname{div} \sigma=r}\|\sigma\|_{0}
$$

formulated in the broken Raviart-Thomas finite element space with imposed jumps $\llbracket-\psi_{z} \mathcal{G}\left(u_{h p}\right) \rrbracket_{N}$.

Finally, by using Lemmas 4.2 and 4.3 , we prove a p-robust efficiency bound of the first term in the error estimator (3.4).

Theorem 4.4 (Flux reconstruction efficiency). Let $u \in H^{1}(\Omega)$ be the weak solution of the Helmholtz problem (2.1), $u_{h p} \in V_{h p}$ be the discrete solution of (2.3), and $\boldsymbol{\sigma}_{h p} \in H(\operatorname{div} ; \Omega)$ be the equilibrated flux reconstruction of $u_{h p}$ defined in (4.7); then,

$$
\begin{aligned}
\left\|\mathcal{G}\left(u_{h p}\right)+\boldsymbol{\sigma}_{h p}\right\|_{0, \Omega} \lesssim & \left\|\nabla u-\mathcal{G}\left(u_{h p}\right)\right\|_{0, \Omega}+k^{2}\left\|u-u_{h p}\right\|_{0, \Omega}+k\left\|u-u_{h p}\right\|_{0, \partial \Omega} \\
& +\operatorname{osc}(f)+\operatorname{osc}(g)+\left\|\gamma k \frac{\mathrm{~h}}{\mathrm{p}}\left(g-\nabla_{h} u_{h p} \cdot \boldsymbol{n}+i k u_{h p}\right)\right\|_{0, \partial \Omega} \\
& +\left\|i \gamma \frac{\sqrt{\mathrm{~h}}}{\mathrm{p}}\left(g-\nabla_{h} u_{h p} \cdot \boldsymbol{n}+i k u_{h p}\right)\right\|_{0, \partial \Omega}
\end{aligned}
$$

Proof. The uniform stability of the local mixed problems from Lemma 4.3, and the partition of unity property prove that

$$
\left\|\mathcal{G}\left(u_{h p}\right)+\boldsymbol{\sigma}_{h p}\right\|_{0, \Omega} \leq \sum_{z \in \mathcal{N}}\left\|\psi_{z} \mathcal{G}\left(u_{h p}\right)+\boldsymbol{\zeta}_{h p}^{z}\right\|_{0, \omega_{z}} \leq C \sum_{z \in \mathcal{N}}\left\|\nabla r^{z}\right\|_{0, \omega_{z}}
$$

Applying Lemma 4.2, noting the finite overlap of the patches ω_{z}, bounds this term by osc (f), $\operatorname{osc}(g),\left\|\nabla w-\mathcal{G}\left(u_{h p}\right)\right\|_{0, \Omega}$, and the boundary terms appearing in the right-hand side of the required bound; therefore, all that remains is to bound $\left\|\nabla w-\mathcal{G}\left(u_{h p}\right)\right\|_{0, \Omega}$. By the triangle inequality, we have

$$
\begin{align*}
\left\|\nabla w-\mathcal{G}\left(u_{h p}\right)\right\|_{0, \Omega} & \leq\left\|\nabla u-\mathcal{G}\left(u_{h p}\right)\right\|_{0, \Omega}+\|\nabla(w-u)\|_{0, \Omega} \\
& =\left\|\nabla u-\mathcal{G}\left(u_{h p}\right)\right\|_{0, \Omega}+\sup _{v \in H_{*}^{1}(\Omega),\|\nabla v\|_{0, \Omega}=1}(\nabla(w-u), \nabla v) . \tag{4.10}
\end{align*}
$$

Applying integration by parts, the definition of w from (3.1), (1.1), and Cauchy-Schwarz, we get that

$$
\begin{aligned}
(\nabla(w-u), \nabla v)= & -(\Delta(w-u), v)+(\nabla(w-u) \cdot \boldsymbol{n}, v)_{\partial \Omega} \\
= & \left(f+k^{2} u_{h p}-\left(f+k^{2} u\right), v\right) \\
& +\left(g+i k u_{h p}-\gamma k \frac{\mathrm{~h}}{\mathrm{p}}\left(g-\nabla_{h} u_{h p} \cdot \boldsymbol{n}+i k u_{h p}\right)-(g+i k u), v\right)_{\partial \Omega} \\
\leq & k^{2}\left\|u-u_{h p}\right\|_{0, \Omega}\|v\|_{0, \Omega}+k\left\|u-u_{h p}\right\|_{0, \partial \Omega}\|v\|_{0, \partial \Omega} \\
& +\left\|\gamma k \frac{\mathrm{~h}}{\mathrm{p}}\left(g-\nabla_{h} u_{h p} \cdot \boldsymbol{n}+i k u_{h p}\right)\right\|_{0, \partial \Omega}\|v\|_{0, \partial \Omega},
\end{aligned}
$$

for all $v \in H_{*}^{1}(\Omega)$ such that $\|\nabla v\|_{0, \Omega}=1$. From the Poincaré inequality we get that $\|v\|_{0, \Omega} \leq$ $C\|\nabla v\|_{0, \Omega}=C$, where the constant C depends only on the domain Ω, and similarly by applying a trace estimate $\|v\|_{0, \partial \Omega} \leq C^{\prime}\|\nabla v\|_{0, \Omega}=C^{\prime}$; therefore, inserting this result into (4.10) completes the proof.
S. Congreve, J. Gedicke, and I. Perugia: Robust adaptive $h p$-DG for Helmholtz

4.2 Localized potential reconstruction

In this section, we define the potential reconstruction such that the error estimator (3.4) is efficient.

In order to define a localized polynomial space on patches we need to distinguish between boundary and interior nodes. For a given boundary node $z \in \mathcal{N}(\partial \Omega)$, with associated integer $p_{z} \geq 1$ as defined in Section 4.1, we define the localized polynomial space

$$
V_{h p}^{z}:=\left\{v_{h p} \in C^{0}\left(\overline{\omega_{z}}\right):\left.v_{h p}\right|_{T} \in \mathbb{P}_{p_{z}+1}(T) \quad \forall T \in \mathcal{T}(z), v_{h p}=0 \text { on } \partial \omega_{z} \backslash \partial \Omega\right\}
$$

for an internal node $z \in \mathcal{N} \backslash \mathcal{N}(\partial \Omega)$, with integer p_{z}, we define the localized polynomial space as

$$
V_{h p}^{z}:=\left\{v_{h p} \in C^{0}\left(\overline{\omega_{z}}\right):\left.v_{h p}\right|_{T} \in \mathbb{P}_{p_{z}+1}(T) \quad \forall T \in \mathcal{T}(z), v_{h p}=0 \text { on } \partial \omega_{z}\right\}
$$

We then choose $\widetilde{s}_{h p} \in H^{1}(\Omega)$ as

$$
\widetilde{s}_{h p}:=\sum_{z \in \mathcal{N}} s_{h p}^{z},
$$

where

$$
\begin{equation*}
s_{h p}^{z}:=\underset{v_{h p} \in V_{h p}^{z}}{\arg \min }\left\|\nabla_{h}\left(\psi_{z} u_{h p}\right)-\nabla v_{h p}\right\|_{0, \omega_{z}} \tag{4.11}
\end{equation*}
$$

with extension by zero in $\Omega \backslash \omega_{z}$, which is equivalent to finding $s_{h p}^{z}$ such that

$$
\left(\nabla s_{h p}^{z}, \nabla v_{h p}\right)_{\omega_{z}}=\left(\nabla_{h}\left(\psi_{z} u_{h p}\right), \nabla v_{h p}\right)_{\omega_{z}} \quad \text { for all } v_{h p} \in V_{h p}^{z}
$$

Then, the potential reconstruction $s_{h p} \in H_{*}^{1}(\Omega)$ is defined as

$$
\begin{equation*}
s_{h p}:=\widetilde{s}_{h p}-\frac{1}{|\Omega|} \int_{\Omega} \widetilde{s}_{h p} d x \tag{4.12}
\end{equation*}
$$

which clearly satisfies Definition 3.2.
It has been noted in [12, Remark 3.10] that the local minimization in (4.11) in primal form is equivalent to the following minimization in mixed form

$$
\boldsymbol{\zeta}_{h p}^{z}:=\underset{\tau_{h p} \in \Sigma_{0, h p}^{z}, \operatorname{div}\left(\boldsymbol{\tau}_{h p}\right)=0}{\arg \min }\left\|\operatorname{rot}_{h}\left(\psi_{z} u_{h p}\right)+\boldsymbol{\tau}_{h p}\right\|_{\omega_{z}},
$$

which is equivalent to solving the following (local) mixed problem: Find $\left(\boldsymbol{\zeta}_{h p}^{z}, r_{h p}^{z}\right) \in \Sigma_{0, h p}^{z} \times Q_{h p}^{z}$ such that

$$
\begin{array}{rlrl}
\left(\boldsymbol{\zeta}_{h p}^{z}, \boldsymbol{\tau}_{h p}\right)_{\omega_{z}}- & \left(r_{h p}^{z}, \operatorname{div} \boldsymbol{\tau}_{h p}\right)_{\omega_{z}} & =-\left(\boldsymbol{\operatorname { r o t }}_{h}\left(\psi_{z} u_{h p}\right), \boldsymbol{\tau}_{h p}\right)_{\omega_{z}} & \\
& & \text { for all } \boldsymbol{\tau}_{h p} \in \Sigma_{0, h p}^{z}, \\
& \left(\operatorname{div} \boldsymbol{\zeta}_{h p}^{z}, q_{h p}\right)_{\omega_{z}}=0 & & \text { for all } q_{h p} \in Q_{h p}^{z} .
\end{array}
$$

For the underlying continuous problem we have the primal formulation: Find $r^{z} \in H_{*}^{1}\left(\omega_{z}\right)$ such that

$$
\left(\nabla r^{z}, \nabla v\right)_{\omega_{z}}=-\left(\operatorname{rot}_{h}\left(\psi_{z} u_{h p}\right), \nabla v\right)_{\omega_{z}} \quad \text { for all } v \in H^{1}\left(\omega_{z}\right)
$$

Proceeding as in [12, Section 4.3.2] leads to the analogue of Lemma 4.2,

$$
\left\|\nabla r^{z}\right\|_{0, \omega_{z}}^{2} \lesssim\left\|\nabla_{h}\left(u-u_{h p}\right)\right\|_{0, \omega_{z}}^{2}+\sum_{E \in \mathcal{E}(z) \cap \mathcal{E}(\Omega)} h_{E}^{-1}\left\|\Pi_{E}^{0} \llbracket u-u_{h p} \rrbracket_{N}\right\|_{0, E}^{2} .
$$

S. Congreve, J. Gedicke, and I. Perugia: Robust adaptive $h p$-DG for Helmholtz

Following the lines of proof of the local efficiency in [12, Theorem 3.17], yields

$$
\left\|\nabla_{h}\left(u_{h p}-s_{h p}\right)\right\|_{0, T} \lesssim \sum_{z \in \mathcal{N}(T)}\left\|\operatorname{rot}_{h}\left(\psi_{z} u_{h p}\right)+\zeta_{h p}^{z}\right\|_{0, \omega_{z}} \lesssim \sum_{z \in \mathcal{N}(T)}\left\|\nabla r^{z}\right\|_{0, \omega_{z}}
$$

Therefore,

$$
\begin{aligned}
\left\|\nabla_{h}\left(u_{h p}-s_{h p}\right)\right\|_{0, T}^{2} \lesssim & \sum_{z \in \mathcal{N}(T)}\left\|\nabla_{h}\left(u-u_{h p}\right)\right\|_{0, \omega_{z}}^{2} \\
& +\sum_{z \in \mathcal{N}(T) E \in \mathcal{E}(z) \cap \mathcal{E}(\Omega)} h_{E}^{-1}\left\|\Pi_{E}^{0} \llbracket u-u_{h p} \rrbracket_{N}\right\|_{0, E}^{2} .
\end{aligned}
$$

Hence, due to the stability of the lifting operators in Lemma 2.1 we can derive the following efficiency estimate for the final term in the error estimator (3.4).

Theorem 4.5 (Potential reconstruction efficiency). Let $u \in H^{1}(\Omega)$ be the weak solution of the Helmholtz problem (2.1), $u_{h p} \in V_{h p}$ be the discrete solution of (2.3), and $s_{h p} \in H_{*}^{1}(\Omega)$ be the potential reconstruction defined as in (4.12); then,

$$
\begin{gathered}
\left\|\mathcal{G}\left(u_{h p}\right)-\nabla s_{h p}\right\|_{0, \Omega}^{2} \lesssim\left\|\nabla_{h}\left(u-u_{h p}\right)\right\|_{0, \Omega}^{2}+\sum_{E \in \mathcal{E}(\Omega)} h_{E}^{-1}\left\|\Pi_{E}^{0} \llbracket u_{h p} \rrbracket_{N}\right\|_{0, E}^{2} \\
+\sum_{E \in \mathcal{E}(\Omega)} \beta^{2} h_{E}\left\|\mathrm{p}^{-1} \Pi_{E}^{0} \llbracket \nabla u_{h p} \rrbracket_{N}\right\|_{0, E}^{2} .
\end{gathered}
$$

4.3 Efficiency result

We can now combine Theorems 4.4 and 4.5 to show that the complete error indicator (3.4) is efficient.

Theorem 4.6 (Error estimator efficiency). Let $u \in H^{1}(\Omega)$ be the weak solution of the Helmholtz problem (2.1), $u_{h p} \in V_{h p}$ be the discrete solution of (2.3), $\eta_{h p}$ be the error estimator (3.4), $\boldsymbol{\sigma}_{h p} \in H(\operatorname{div} ; \Omega)$ be the equilibrated flux reconstruction of $u_{h p}$ defined in (4.7), and $s_{h p} \in H_{*}^{1}(\Omega)$ be the potential reconstruction defined as in (4.12); then,

$$
\begin{aligned}
\eta_{h p} \lesssim & \left\|\nabla_{h}\left(u-u_{h p}\right)\right\|_{0, \Omega}+k^{2}\left\|u-u_{h p}\right\|_{0, \Omega}+k\left\|u-u_{h p}\right\|_{0, \partial \Omega}+\operatorname{osc}(f)+\operatorname{osc}(g) \\
& +\left\|\gamma k \frac{\mathrm{~h}}{\mathrm{p}}\left(g-\nabla_{h} u_{h p} \cdot \boldsymbol{n}+i k u_{h p}\right)\right\|_{0, \partial \Omega}+\left\|i \gamma \frac{\sqrt{\mathrm{~h}}}{\mathrm{p}}\left(g-\nabla_{h} u_{h p} \cdot \boldsymbol{n}+i k u_{h p}\right)\right\|_{0, \partial \Omega} \\
& +\left(\sum_{E \in \mathcal{E}(\Omega)} h_{E}^{-1}\left\|\Pi_{E}^{0} \llbracket u_{h p} \rrbracket_{N}\right\|_{0, E}^{2}\right)^{1 / 2}+\left(\sum_{E \in \mathcal{E}(\Omega)} \beta^{2} h_{E}\left\|\mathrm{p}^{-1} \Pi_{E}^{0} \llbracket \nabla u_{h p} \rrbracket_{N}\right\|_{0, E}^{2}\right)^{1 / 2} .
\end{aligned}
$$

Proof. The efficiency of the first and last terms of the error estimator (3.4) are given by Theorems 4.4 and 4.5 , respectively, noting that

$$
\begin{aligned}
\left\|\nabla u-\mathcal{G}\left(u_{h p}\right)\right\|_{0, \Omega} \leq & \left\|\nabla_{h}\left(u-u_{h p}\right)\right\|_{0, \Omega}+\left(\sum_{E \in \mathcal{E}(\Omega)} h_{E}^{-1}\left\|\Pi_{E}^{0} \llbracket u_{h p} \rrbracket_{N}\right\|_{0, E}^{2}\right)^{1 / 2} \\
& +\left(\sum_{E \in \mathcal{E}(\Omega)} \beta^{2} h_{E}\left\|\mathrm{p}^{-1} \Pi_{E}^{0} \llbracket \nabla u_{h p} \rrbracket_{N}\right\|_{0, E}^{2}\right)^{1 / 2}
\end{aligned}
$$

due to the triangle inequality and Lemma 2.1. Therefore, to complete the proof, we need to derive efficiency estimates for the two remaining terms of the error estimator (3.4) that contain f and g. From the partition of unity property of the hat functions ψ_{z}, the definition (4.3), and the property (4.6), we deduce

$$
\left\|f+k^{2} u_{h p}-\operatorname{div} \boldsymbol{\sigma}_{h p}\right\|_{0, T}=\left\|\sum_{z \in \mathcal{N}(T)}\left(f^{z}-\operatorname{div} \boldsymbol{\xi}_{h p}^{z}\right)\right\|_{0, T} \leq \sum_{z \in \mathcal{N}(T)}\left\|f^{z}-\Pi_{T}^{p_{z}} f^{z}\right\|_{0, T}
$$

Hence, summing over all $T \in \mathcal{T}$ and rearranging the summations, we arrive at

$$
\sum_{T \in \mathcal{T}} \frac{h_{T}^{2}}{j_{1,1}^{2}}\left\|f+k^{2} u_{h p}-\operatorname{div} \boldsymbol{\sigma}_{h p}\right\|_{0, T}^{2} \leq \operatorname{osc}^{2}(f)
$$

Similarly, for any boundary edge $E \in \mathcal{E}(\partial \Omega)$ with associated element $T_{E} \in \mathcal{T}$, we get that

$$
\begin{aligned}
& \left\|\boldsymbol{\sigma}_{h p} \cdot \boldsymbol{n}+g+i k u_{h p}-\gamma k \frac{\mathrm{~h}}{\mathrm{p}}\left(g-\nabla_{h} u_{h p} \cdot \boldsymbol{n}+i k u_{h p}\right)\right\|_{0, E} \\
& \quad=\left\|\sum_{z \in \mathcal{N}\left(T_{E}\right)}\left(\boldsymbol{\xi}_{h p}^{z} \cdot \boldsymbol{n}-g^{z}\right)\right\|_{0, E} \leq \sum_{z \in \mathcal{N}\left(T_{E}\right)}\left\|g^{z}-\Pi_{E}^{p_{z}} g^{z}\right\|_{0, E},
\end{aligned}
$$

which proves

$$
\sum_{E \in \mathcal{E}(\partial \Omega)} C_{t r}^{2} h_{E}\left\|\boldsymbol{\sigma}_{h p} \cdot \boldsymbol{n}+g+i k u_{h p}-\gamma k \frac{\mathrm{~h}}{\mathrm{p}}\left(g-\nabla_{h} u_{h p} \cdot \boldsymbol{n}+i k u_{h p}\right)\right\|_{0, E}^{2} \leq \operatorname{osc}^{2}(g) .
$$

Combining these results completes the proof.
Remark 4.2. In the numerical experiments we will be interested in the efficiency index $\eta_{h p} / \| \nabla u-$ $\mathcal{G}\left(u_{h p}\right) \|_{0, \Omega}$ to be close to one. While we have proven asymptotic reliability of $\eta_{h p}$ for any $p_{z} \geq 1$, the efficiency of the flux reconstruction in Theorem 4.4 also depends on the efficiency of the data terms. Hence, for $\operatorname{osc}(f)$, and $\operatorname{osc}(g)$ to be comparably small, one has to at least match the polynomial degree p_{z} of the Raviart-Thomas finite element space to that of $u_{h p} \psi_{z}$, i.e., $p_{z}=\max _{T \in \mathcal{T}(z)} p_{T}+1$, for the flux reconstruction. On the contrary, the efficiency of the potential reconstruction in Theorem 4.5 does not depend on the data oscillations; therefore, the choice $p_{z}=\max _{T \in \mathcal{T}(z)} p_{T}$ is sufficient in order to match the (local) polynomial degree of $u_{h p} \psi_{z}$ in the local minimization problems (4.11).

5 Numerical results

In this section we present numerical results for four different benchmark problems.
For efficiency of the error estimator, we approximate the local mixed problems with RaviartThomas finite elements of (varying) order $p_{z}=\max _{T \in \mathcal{T}(z)} p_{T}+1$ for the flux reconstruction and $p_{z}=\max _{T \in \mathcal{T}(z)} p_{T}$ for the potential reconstruction, cf. Remark 4.2. To reduce the illconditioning of the basis for the local problems with high p_{z}, we use the hierarchical basis functions for the Raviart-Thomas finite element space presented in [2]. In comparison to a standard residual a posteriori error estimator, the computation of the flux and potential reconstructions is more costly; however, since all local problems are independent, they can be solved in parallel. In addition, the number of local problems is independent of the polynomial degree.

We compare p - and adaptive h-refinement to an adaptive $h p$-refinement strategy. For the $h p$ refinement we use the decision mechanism of Melenk \& Wohlmuth [20, Algorithm 4.4] outlined in

```
Algorithm \(1 h p\)-refinement algorithm.
    if \(T\) is marked for refinement then
        if \(\eta_{T, \ell}>\eta_{T, \ell}^{\text {pred }}\) then
            Perform \(h\)-refinement: Subdivide \(T\) into 2 children \(T_{ \pm}\), and set
            \(\left(\eta_{T_{ \pm}, \ell+1}^{\text {pred }}\right)^{2} \leftarrow \frac{1}{2} \gamma_{h}\left(\frac{1}{2}\right)^{p_{T}} \eta_{T, \ell}^{2}\).
        else
            Perform \(p\)-refinement: \(p_{T} \leftarrow p_{T}+1\)
            \(\left(\eta_{T, \ell+1}^{\text {pred }}\right)^{2} \leftarrow \gamma_{p} \eta_{T, \ell}^{2}\)
        end if
    else
        \(\left(\eta_{T, \ell+1}^{\text {pred }}\right)^{2} \leftarrow \gamma_{n}\left(\eta_{T, \ell}^{\text {pred }}\right)^{2}\)
    end if
```

Algorithm 1, which determines for h - or p-refinement on the refinement level ℓ based on verifying the decay of the local error indicators. We choose the constants $\gamma_{h}=4, \gamma_{p}=0.4, \gamma_{n}=1$, and the initial values $\eta_{T, 0}^{p r e d}=\infty$, for all $T \in \mathcal{T}$. Hence, the algorithm prefers p - over h-refinement in the first step. For the mesh refinement, we use the newest vertex bisection algorithm, and mark elements based on the maximum marking strategy with parameter 0.75 .

In order to shorten the pre-asymptotic region, we choose the initial mesh size h and (uniform) polynomial degree p as

$$
\begin{equation*}
p=\lceil\ln (k)\rceil \quad \text { and } \quad \frac{k h}{p} \leq C_{\mathrm{res}} \tag{5.1}
\end{equation*}
$$

where the resolution constant $C_{\text {res }}$ depends on the problem under consideration; cf. [23, Section 5]. Additional numerical experiments, in which the initial conditions (5.1) are violated, are also presented in the following in order to demonstrate that the method under consideration is able to escape the pre-asymptotic region regardless of the initial mesh.

For the DG formulation we choose the parameters $\alpha=10, \beta=1$, and $\gamma=1 / 4$.

5.1 Square domain

Let $\Omega=(0,1)^{2}, f=0$, and select g such that the solution of (2.1) is given by

$$
u(x)=\mathcal{H}_{0}^{(1)}\left(k \sqrt{\left(x_{1}+1 / 4\right)^{2}+x_{2}^{2}}\right)
$$

where $\mathcal{H}_{0}^{(1)}$ denotes the zeroth order Hankel function of the first kind. In Figure 5.1, we observe convergence of $\mathcal{O}\left(h^{p}\right), p=2,3,4$, for uniform h-refinement, and exponential convergence for uniform p-refinement. Note that the error estimator is very close to the error and the corresponding lines are in fact overlapping. In Figure 5.2 we observe exponential convergence of the error $\left\|\nabla u-\mathcal{G}\left(u_{h p}\right)\right\|_{0, \Omega}$ for both p - and adaptive $h p$-refinement for wavenumbers $k=20,50$. For $h p$ - and p-refinement we observe efficiency indices $\eta_{h p} /\left\|\nabla u-\mathcal{G}\left(u_{h p}\right)\right\|_{0, \Omega}$ asymptotically close to 1. For the construction of the initial mesh, we choose $C_{\mathrm{res}}=2$. Note that for coarse h and p the pollution error is still dominant and, hence, $\eta_{h p}$ underestimates the error $\left\|\nabla u-\mathcal{G}\left(u_{h p}\right)\right\|_{0, \Omega}$; therefore, the efficiency indices are initially less than one. The final $h p$-refined mesh for $k=20,50$ are displayed in Figure 5.3.

Next, we compare four variants of the $h p$-refinement strategy for $k=50$. First, instead of bisecting a triangle into just two new triangles we divide it into four using the red-green-blue-refinement strategy [24, Section 4.1]. The effect of this is a more aggressive h-refinement.
S. Congreve, J. Gedicke, and I. Perugia: Robust adaptive hp-DG for Helmholtz

Figure 5.1: Algebraic convergence $\mathcal{O}\left(h^{p}\right)$ for the h-version (left) and exponential convergence of the p-version (right) of the error $e_{h p}=\left\|\nabla u-\mathcal{G}\left(u_{h p}\right)\right\|_{0, \Omega}$ and the estimator $\eta_{h p}$ for the example in Section 5.1 with $k=20$.

Figure 5.2: Exponential convergence (left) and efficiency indices (right) of the p - and $h p$-version for the example in Section 5.1.
S. Congreve, J. Gedicke, and I. Perugia: Robust adaptive hp-DG for Helmholtz

Figure 5.3: $h p$-refined mesh for the example in Section 5.1 with $k=20$ (left) and $k=50$ (right), where the polynomial degree is indicated with different shading.

Figure 5.4: Exponential convergence (left) and efficiency indices (right) for different $h p$ refinement strategies for the example in Section 5.1 with $k=50$.

Figure 5.5: Exponential convergence (left) and efficiency indices (right) of the h - and $h p$-version for the example in Section 5.2.

Note that our implementation of mesh refinement is based on conforming refinements, which means that there also occurs additional refinement to remove hanging nodes. This overhead is significantly larger for red-green-blue-refinement than for refinement based on bisection. The second variation is to use a fixed fraction marking strategy instead of the maximum marking strategy, where 25% of the elements with the largest indicators are refined. This leads to a more aggressive refinement between two consecutive levels. In Figure 5.4, we observe that less h-refinement is more effective; hence, the errors corresponding to refinement by bisection lead to less degrees of freedom than those corresponding to red-green-blue-refinement for the same level of accuracy. The two different marking strategies lead to comparable errors in this smooth example. We draw the conclusion that even though in principle we are using the same $h p$ marking strategy, the actual performance of the method depends significantly on the concrete implementation. Note that, for this experiment, the choice of the initial values $p=1$ and $h=1 / 4$ violates both conditions in (5.1), and, neglecting the first mesh, the error is initially underestimated. Nevertheless, all strategies are capable of eventually refining enough so that the pollution error becomes sufficiently small, such that the efficiency indices are asymptotically close to 1 for all four strategies.

5.2 L-shaped domain

Let $\Omega=(-1,1)^{2} \backslash((0,1) \times(-1,0)), f=0$, and select g such that the solution of (2.1) is given in polar coordinates (r, φ) by

$$
u(r, \varphi)=\mathcal{J}_{2 / 3}(k r) \sin (2 \varphi / 3)
$$

where $\mathcal{J}_{2 / 3}$ denotes the Bessel function of first kind. Note that the gradient of u is singular at the origin; therefore, adaptive mesh refinement towards the origin is needed. Notice that we approximate (1.1) with $g=\nabla u \cdot \boldsymbol{n}-i k u$, and g is singular at (0,0). As g enters (4.2) as an essential boundary condition, we use a high polynomial degree for the flux reconstruction in the patch associated with $(0,0)$.

For the initial mesh refinement we choose $C_{\text {res }}=2$. In Figure 5.5 we observe algebraic convergence of adaptive h-refinement and exponential convergence of adaptive $h p$-refinement for $k=20,50$. More precisely, the convergence for $h p$-refinement is of the form $\exp (-b \sqrt[3]{N})$,
S. Congreve, J. Gedicke, and I. Perugia: Robust adaptive hp-DG for Helmholtz

Figure 5.6: $h p$-refined mesh for the example in Section 5.2 with $k=20$ (left) and $k=50$ (right), where the polynomial degree is indicated with different shading.

Figure 5.7: Exponential convergence (left) and efficiency indices (right) of different $h p$-refinement strategies for the example in Section 5.2 with $k=50$.

Figure 5.8: Exponential convergence (left) and efficiency indices (right) of the $h p$-version for the equilibrated a posteriori error estimator in comparison to the residual a posteriori error estimator for the example in Section 5.2.
and we observe that $b \approx 0.61$ for $k=20$ and $b \approx 0.41$ for $k=50$. This indicates that the rate of exponential convergence deteriorates for larger k. We note that higher wavenumbers result in more h-refinement, cf. Figure 5.6, and smaller elements generally result in a slower rate of exponential convergence, cf. Figure 5.1. Therefore, we cannot conclude whether the rate deterioration is a direct result of the increased wavenumber, or is due to the increased h refinement, which results from the higher wavenumber. In all cases, the efficiency indices are asymptotically close to 1 .

Figure 5.6 displays the final $h p$-refined mesh for $k=20,50$. Note that the displayed zoom at the re-entrant corner shows low polynomial degrees close to the origin.

For comparison, in Figure 5.7 we compare the four variants of $h p$-refinement described in the previous example. We observe again that the fewer h-refinements performed by bisection is advantageous over the larger h-refinements performed by red-green-blue-refinement. For higher accuracy, the maximum marking strategy appears to be more effective than the fixed fraction marking strategy. In all four cases, the efficiency indices are asymptotically close to 1 and the four $h p$-strategies are all able to overcome the pre-asymptotic region even when starting from $p=1$ and $h=1 / 4$.

In Figure 5.8, we compare the equilibrated a posteriori error estimator to the residual a posteriori error estimator [23]

$$
\begin{aligned}
\eta_{h p, \text { residual }}^{2}= & \sum_{T \in \mathcal{T}} \frac{h_{T}^{2}}{p_{T}^{2}}\left\|\Delta u_{h p}+k^{2} u_{h p}+f\right\|_{0, T}^{2}+\sum_{E \in \mathcal{E}(\Omega)} \beta \frac{\mathrm{h}}{\mathrm{p}}\left\|\llbracket \nabla_{h} u_{h p} \rrbracket_{N}\right\|_{0, E}^{2} \\
& +\sum_{E \in \mathcal{E}(\Omega)} \alpha \frac{\mathrm{p}^{2}}{\mathrm{~h}}\left\|\llbracket u_{h p} \rrbracket_{N}\right\|_{0, E}^{2}+\sum_{E \in \mathcal{E}(\partial \Omega)} \mathrm{h}\left\|g-\nabla_{h} u_{h p} \cdot \boldsymbol{n}+i k u_{h p}\right\|_{0, E}^{2} .
\end{aligned}
$$

We observe that the error $\left\|\nabla_{h}\left(u-u_{h p}\right)\right\|_{0, \Omega}$ for the residual a posteriori error estimator is very close to the error $\left\|\nabla u-\mathcal{G}\left(u_{h p}\right)\right\|_{0, \Omega}$ for the equilibrated a posteriori error estimator. In fact, in the case of $k=50$ both errors overlap. The difference, however, is in the efficiency. The efficiency indices for the equilibrated a posteriori error estimator are asymptotically close to 1 and robust in p; by contrast, the efficiency indices for the residual a posteriori error estimator are close to 5 and show a small but persistent growth in p.
S. Congreve, J. Gedicke, and I. Perugia: Robust adaptive hp-DG for Helmholtz

Figure 5.9: Real parts of solutions with 29° reflection (left) and 69° refraction (right) for $k=20$.

Figure 5.10: Exponential convergence (left) and efficiency indices (right) of the p - and $h p$-version for the example in Section 5.3 with 29° reflection.

5.3 Internal reflection/refraction

Although not covered in the theoretical part, we now consider the benchmark from [16, Section 6.3] with non-constant refractive index ϵ_{r}; hence, we consider the following problem

$$
\begin{aligned}
-\Delta u-k^{2} \epsilon_{r} u=0 & \text { in } \Omega \\
\nabla u \cdot \boldsymbol{n}-i k \sqrt{\epsilon_{r}} u=g & \text { on } \partial \Omega
\end{aligned}
$$

where

$$
\epsilon_{r}(x)= \begin{cases}n_{1}^{2} & \text { if } x_{2}<0 \\ n_{2}^{2} & \text { if } x_{2} \geq 0\end{cases}
$$

For $\Omega=(-1,1)^{2}, n_{1}=2, n_{2}=1$, and $0 \leq \theta<\pi / 2$, one can show that this problem admits the following solution

$$
u(x)=\left\{\begin{array}{cl}
(1+R) \exp \left(i\left(K_{1} x_{1}+K_{3} x_{2}\right)\right) & \text { if } x_{2} \geq 0 \\
\left.\exp \left(i\left(K_{1} x_{1}+K_{2} x_{2}\right)\right)\right)+R \exp \left(i\left(K_{1} x_{1}-K_{2} x_{2}\right)\right) & \text { if } x_{2}<0
\end{array}\right.
$$

S. Congreve, J. Gedicke, and I. Perugia: Robust adaptive hp-DG for Helmholtz

Figure 5.11: Exponential convergence (left) and efficiency indices (right) of the p - and $h p$-version for the example in Section 5.3 with 69° refraction.

Figure 5.12: $h p$-refined mesh for the example in Section 5.3 with 29° reflection using $k=20$ (left) and $k=50$ (right), where the polynomial degree is indicated with different shading.

Figure 5.13: $h p$-refined mesh for the example in Section 5.3 with 69° refraction using $k=20$ (left) and $k=50$ (right), where the polynomial degree is indicated with different shading.

Figure 5.14: Real parts of Gaussian beam approximations for $k=20$ (left) and $k=50$ (right).
where $K_{1}=k n_{1} \cos (\theta), K_{2}=k n_{1} \sin (\theta), K_{3}=k \sqrt{n_{2}^{2}-n_{1}^{2} \cos ^{2}(\theta)}$, and

$$
R=-\left(K_{3}-K_{2}\right) /\left(K_{3}+K_{2}\right)
$$

There exists a critical angle θ^{*} such that for $\theta>\theta^{*}$ the wave is refracted, and for $\theta<\theta^{*}$ the wave is internally reflected; therefore, we compute two examples with $\theta_{1}=29^{\circ}, 69^{\circ}$, in order to demonstrate internal reflection and refraction, respectively.

The solutions for $k=20$ and θ_{1}, θ_{2} are displayed in Figure 5.9. Figures 5.10 and 5.11 show exponential convergence for both p - and adaptive $h p$-refinement, and the efficiency indices are again asymptotically close to 1 . Note that the initial mesh is chosen such that (5.1) is fulfilled with $C_{\text {res }}=1 / 2$ and the jump of the refractive index is resolved by the mesh, otherwise strong anisotropic mesh refinement towards the interface would be needed for fast convergence. Interestingly, we observe in Figure 5.10 that initially $h p$-refinement outperforms p-refinement; however, we generally expect p-refinement to perform better, and indeed this occurs towards the end of the refinement. Figures 5.12 and 5.13 display the final $h p$-refined meshes for $k=20,50$, and θ_{1} and θ_{2} respectively.

5.4 Gaussian beam simulation

In the last example, we consider a Gaussian beam simulation similar to the one in [22, Section 3.7]. We choose the domain $\Omega=(0,4)^{2}, f=0$, and the inhomogeneous impedance boundary condition g corresponding to the fundamental Gaussian beam mode that satisfies the paraxial wave equation, which reads in polar coordinates as

$$
v(r, \varphi)=\frac{w_{0}}{w} \exp \left(\frac{-r^{2}}{w^{2}}-i k z-\frac{i \pi r^{2}}{\lambda R}+i \theta_{0}\right)
$$

where $z(r, \varphi)$ is the radius of the orthogonal projection of (r, φ) onto the direction of propagation, w_{0} is the beam waist radius, $R(z)$ is the radius of curvature, $w(z)$ is the beam radius, and $\phi_{0}(z)$ is the Gaussian beam phase shift. We choose a 40° angle for the direction of the beam, and the beam waist radius $w_{0}=8 \pi / k$. For the other variables we have that $\lambda=2 \pi / k$,

$$
R(z)=z+\frac{1}{z}\left(\frac{\pi w_{0}^{2}}{\lambda}\right)^{2}, \quad w(z)=w_{0}\left(1+\left(\frac{\lambda z}{\pi w_{0}^{2}}\right)^{2}\right)^{1 / 2}, \quad \text { and } \quad \tan \phi_{0}(z)=\frac{\lambda z}{\pi w_{0}^{2}}
$$

Figure 5.15: Exponential convergence of the p - and $h p$-version for the Gaussian beam simulation in Section 5.4.

Figure 5.16: $h p$-refined mesh for the Gaussian beam simulation in Section 5.4 with $k=20$ (left) and $k=50$ (right), where the polynomial degree is indicated with different shading.

Two Gaussian beam approximations for $k=20,50$ are displayed in Figure 5.14.
Since the exact solution is not known in this particular example, we only plot the values for the equilibrated a posteriori error estimator for $k=20,50$ in Figure 5.15, whose values we have demonstrated in the previous experiments should match well with those of the true error. For the initial mesh construction we take the rather large value $C_{\text {res }}=2$; hence, we observe a pre-asymptotic region for the convergence, which in case of $h p$-refinement is longer than for p-refinement. Due to this, $h p$-refinement leads to a higher number of degrees of freedom for the same accuracy than p-refinement. However, both p - and $h p$-refinement lead to exponential convergence of the a posteriori error estimator. The two final $h p$-refined meshes are displayed in Figure 5.16. In particular, for $k=50$ we observe that the polynomial degree is higher closer to the beam than further away from the beam towards the upper left and lower right corners of the domain.

6 Conclusion

We have presented an equilibrated a posteriori error estimator for the indefinite Helmholtz problem based on a non trivial extension of the unified theory for the elliptic problem using a shifted Poisson problem. We have shown that the presented error estimator is both reliable and efficient, providing that the equilibrated flux and potential reconstructions are suitably chosen. We have provided several numerical experiments which verify that, after escaping the pollution regime, the a posteriori error estimator is efficient and reliable. In contrast to a residual based a posteriori error estimator, we demonstrated that the presented error estimator is robust in the polynomial degree.

Note that the analysis for the potential reconstruction in Section 4.2 is a purely 2D argument. A different analysis approach for the 3D case has recently been proposed in [13], together with the extension of the 2D stability result of [4]. Therefore, a potential extension of this current work would be to consider the three dimensional case.

Acknowledgments

The authors thank the anonymous referees for their valuable comments and suggestions that lead to an improvement of the presentation of the paper.

References

[1] I. Babuška, F. Ihlenburg, T. Strouboulis, and S. K. Gangaraj. A posteriori error estimation for finite element solutions of Helmholtz' equation. I. The quality of local indicators and estimators. Internat. J. Numer. Methods Engrg., 40(18):3443-3462, 1997.
[2] S. Beuchler, V. Pillwein, and S. Zaglmayr. Sparsity optimized high order finite element functions for H (div) on simplices. Numer. Math., 122(2):197-225, 2012.
[3] D. Boffi, F. Brezzi, and M. Fortin. Mixed finite element methods and applications, volume 44 of Springer Series in Computational Mathematics. Springer, Heidelberg, 2013.
[4] D. Braess, V. Pillwein, and J. Schöberl. Equilibrated residual error estimates are p-robust. Comput. Methods Appl. Mech. Engrg., 198(13-14):1189-1197, 2009.

S. Congreve, J. Gedicke, and I. Perugia: Robust adaptive hp-DG for Helmholtz

[5] E. Cancès, G. Dusson, Y. Maday, B. Stamm, and M. Vohralík. Guaranteed and robust a posteriori bounds for Laplace eigenvalues and eigenvectors: conforming approximations. SIAM J. Numer. Anal., 55(5):2228-2254, 2017.
[6] E. Cancès, G. Dusson, Y. Maday, B. Stamm, and M. Vohralík. Guaranteed and robust a posteriori bounds for Laplace eigenvalues and eigenvectors: a unified framework. Numer. Math., 140(4):1033-1079, 2018.
[7] C. Carstensen and S. A. Funken. Fully reliable localized error control in the FEM. SIAM J. Sci. Comput., 21(4):1465-1484, 1999/00.
[8] C. Carstensen, J. Gedicke, and D. Rim. Explicit error estimates for Courant, CrouzeixRaviart and Raviart-Thomas finite element methods. J. Comput. Math., 30(4):337-353, 2012.
[9] O. Cessenat and B. Després. Application of an ultra weak variational formulation of elliptic PDEs to the two-dimensional Helmholtz problem. SIAM J. Numer. Anal., 35(1):255-299, 1998.
[10] O. Cessenat and B. Després. Using plane waves as base functions for solving time harmonic equations with the ultra weak variational formulation. J. Comput. Acoust., 11(2):227-238, 2003.
[11] V. Dolejší, A. Ern, and M. Vohralík. hp-adaptation driven by polynomial-degree-robust a posteriori error estimates for elliptic problems. SIAM J. Sci. Comput., 38(5):A3220-A3246, 2016.
[12] A. Ern and M. Vohralík. Polynomial-degree-robust a posteriori estimates in a unified setting for conforming, nonconforming, discontinuous Galerkin, and mixed discretizations. SIAM J. Numer. Anal., 53(2):1058-1081, 2015.
[13] A. Ern and M. Vohralík. Stable broken H^{1} and \mathbf{H} (div) polynomial extensions for polynomial-degree-robust potential and flux reconstruction in three space dimensions. arXiv:1701.02161 [math.NA], 2017.
[14] X. Feng and H. Wu. hp-discontinuous Galerkin methods for the Helmholtz equation with large wave number. Math. Comp., 80(276):1997-2024, 2011.
[15] C. J. Gittelson, R. Hiptmair, and I. Perugia. Plane wave discontinuous Galerkin methods: analysis of the h-version. M2AN Math. Model. Numer. Anal., 43(2):297-331, 2009.
[16] S. Kapita, P. Monk, and T. Warburton. Residual-based adaptivity and PWDG methods for the Helmholtz equation. SIAM J. Sci. Comput., 37(3):A1525-A1553, 2015.
[17] R. S. Laugesen and B. A. Siudeja. Minimizing Neumann fundamental tones of triangles: an optimal Poincaré inequality. J. Differential Equations, 249(1):118-135, 2010.
[18] J. M. Melenk. On generalized finite-element methods. ProQuest LLC, Ann Arbor, MI, 1995. Thesis (Ph.D.)-University of Maryland, College Park.
[19] J. M. Melenk, A. Parsania, and S. Sauter. General DG-methods for highly indefinite Helmholtz problems. J. Sci. Comput., 57(3):536-581, 2013.
[20] J. M. Melenk and B. I. Wohlmuth. On residual-based a posteriori error estimation in hpFEM. Adv. Comput. Math., 15(1-4):311-331 (2002), 2001.
S. Congreve, J. Gedicke, and I. Perugia: Robust adaptive hp-DG for Helmholtz
[21] I. Perugia and D. Schötzau. The $h p$-local discontinuous Galerkin method for low-frequency time-harmonic Maxwell equations. Math. Comp., 72(243):1179-1214, 2003.
[22] S. Petrides and L. F. Demkowicz. An adaptive DPG method for high frequency timeharmonic wave propagation problems. Comput. Math. Appl., 74(8):1999-2017, 2017.
[23] S. Sauter and J. Zech. A posteriori error estimation of $h p$-dG finite element methods for highly indefinite Helmholtz problems. SIAM J. Numer. Anal., 53(5):2414-2440, 2015.
[24] R. Verfürth. A review of a posteriori error estimation and adaptive mesh-refinement techniques. Chichester: John Wiley \& Sons; Stuttgart: B. G. Teubner, 1996.

[^0]: *The work of the authors has been funded by the Austrian Science Fund (FWF) through the projects F 65 and P 29197-N32, and by the Vienna Science and Technology Fund (WWTF) through the project MA14-006.
 ${ }^{\dagger}$ University of Vienna, Faculty of Mathematics, Oskar-Morgenstern-Platz 1, 1090 Vienna, Austria, scott.congreve@univie.ac.at
 ${ }^{\ddagger}$ University of Vienna, Faculty of Mathematics, Oskar-Morgenstern-Platz 1, 1090 Vienna, Austria, joscha.gedicke@univie.ac.at
 ${ }^{\S}$ University of Vienna, Faculty of Mathematics, Oskar-Morgenstern-Platz 1, 1090 Vienna, Austria, ilaria.perugia@univie.ac.at

