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Abstract

This paper presents an hp a posteriori error analysis for the 2D Helmholtz equation that
is robust in the polynomial degree p and the wave number k. For the discretization, we
consider a discontinuous Galerkin formulation that is unconditionally well posed. The a
posteriori error analysis is based on the technique of equilibrated fluxes applied to a shifted
Poisson problem, with the error due to the nonconformity of the discretization controlled by
a potential reconstruction. We prove that the error estimator is both reliable and efficient,
under the condition that the initial mesh size and polynomial degree is chosen such that the
discontinuous Galerkin formulation converges, i.e., it is out of the regime of pollution. We
confirm the efficiency of an hp-adaptive refinement strategy based on the presented robust
a posteriori error estimator via several numerical examples.

Keywords a posteriori error analysis, hp discontinuous Galerkin finite element method, equilibrated
fluxes, potential reconstruction, Helmholtz problem
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1 Introduction

In this paper, we consider the following Helmholtz problem with impedance boundary condition:
Find a (complex) solution u ∈ H2(Ω) such that

−∆u− k2u = f in Ω,

∇u · n− iku = g on ∂Ω,
(1.1)

where Ω ⊂ R2 is a bounded, Lipschitz domain, n denotes the outer unit normal on the boundary
∂Ω, f ∈ L2(Ω), g ∈ L2(∂Ω), and k > 0 is the (constant) wavenumber.

The problem (1.1) was shown to be well-posed in [18]. A polynomial-based discontinuous
Galerkin (DG) approximation was presented in [19], which uses the same numerical fluxes as in
the ultra weak variational formulation/plane wave DG methods [9, 10, 15]. A DG discretization
with stabilization terms also containing jumps in high order derivatives was presented in [14]. A
residual-based a posteriori error estimator for the DG method of [19] is derived and analyzed in
[23].
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In this paper we will develop an a posteriori error estimator based on a local reconstruction
of equilibrated fluxes [11, 12]. Since (1.1) is highly indefinite, it is not clear how to localize
the Helmholtz problem in order to obtain localized problems for the error approximation that
are well posed. However, as noted in [1], the error has two components, the interpolation error
and the pollution error. While the pollution error is global and hence cannot be estimated with
local error indicators, it is possible to derive equilibrated a posteriori error estimators for the
interpolation error.

This analysis is based on considering a shifted Poisson problem with inhomogeneous Neumann
boundary conditions. Therefore, we can apply the unified framework for equilibrated fluxes [12] to
this auxiliary elliptic problem with an extension for the extra terms resulting from the handling of
the inhomogeneous Robin boundary condition by the DG method. Additionally, an extra lifting
operator is required due to the additional gradient stabilization terms in the DG formulation for
Helmholtz. In order to measure the nonconformity of the DG method we locally reconstruct a
conforming potential approximation.

By construction, the a posteriori error estimator captures possible singularities of the solution
correctly, but is only reliable up to an additional L2 error which resembles the pollution error.
Note that also the residual a posteriori error estimator for the DG method in [23] is only reliable
up to the pollution error, see [23, Lemma 3.2].

We will apply the theory of equilibrated flux and potential reconstructions [11, 12] and derive
the a posteriori error estimator of the form

η2
hp :=

∑
T∈T

(
‖G(uhp) + σhp‖0,T +

hT
j1,1
‖f + k2uhp − divσhp‖0,T

+ Ctr
∑

E∈E(T )∩E(∂Ω)

h
1/2
E ‖σhp · n+ g + ikuhp − γk

h

p
(g −∇huhp · n+ ikuhp)‖0,E

2

+
∑
T∈T
‖G(uhp)−∇shp‖20,T ,

where G(uhp) denotes a discrete gradient (which we call the DG gradient), σhp an equilibrated
flux reconstruction, and shp a potential reconstruction. The parameter γ, as well as the mesh
function h and the polynomial degree function p already enter the definition of the DG methods
(see (2.3) below), hT and hE are the diameter of the element T of the mesh T and the edge E
of T , respectively, Ctr is a trace inequality constant, cf. Lemma 3.2, and j1,1 is the first positive
root of the Bessel function of the first kind. We prove that the a posteriori error estimator is
reliable and efficient, for suitably chosen functions σhp and shp, up to generic constants which
are independent of the wave number, the polynomial degrees, and the element sizes.

This paper is organized as follows. In Section 2, we will recall the DG method from [19].
In Section 3, we will present the a posteriori error estimator and prove its reliability for any
admissible flux and potential reconstructions. In Section 4, we define specific local reconstructions
of flux and potential functions, such that the error estimator is efficient. Finally, in Section 5,
we present some numerical experiments.

Throughout this paper, we employ the standard notation for (complex) Sobolev spacesHm(ω)
with norm ‖ · ‖m,ω for (sub)-domains ω ⊆ Ω, and define H(div; Ω) = {τ ∈ [L2(ω)]2 : div τ ∈
L2(ω)}. We denote the (complex) L2 inner product by (·, ·)ω; if ω = Ω we simply write (·, ·). The
(complex) L2 inner product on the boundary is indicated by a subscript, e.g. (·, ·)∂ω. By ., we
abbreviate the inequality x ≤ Cy, with a generic constant C independent of the wave number,
the mesh size, and the polynomial degree, but possibly dependent on the shape regularity of the
mesh.
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2 The discontinuous Galerkin method

In this section, we discuss a numerical approximation to (1.1) based on employing an hp-version
DG finite element method. We consider the same formulation as in [19].

The weak formulation of (1.1) is defined as follows: Find u ∈ H1(Ω) such that

a(u, v) = F (v) for all v ∈ H1(Ω), (2.1)

with the complex-valued sequilinear form a(·, ·) and linear form F (·) given by

a(u, v) := (∇u,∇v)− k2(u, v)− ik(u, v)∂Ω and F (v) := (f, v) + (g, v)∂Ω.

Let T be a triangulation of Ω with the set of nodes N and the set of edges E . For simplicity
of the presentation we restrict ourselves to shape-regular conforming triangulations. Let E(Ω)
and E(∂Ω) denote the subset of interior and boundary edges, respectively, and let E(T ) denote
the edges of the element T ∈ T . Let N (∂Ω) denote the subset of nodes on the boundary of
Ω, N (T ) denote the set of nodes of an element T ∈ T , and N (E) the set of nodes of an edge
E ∈ E . The subset of triangles that share a common node z ∈ N is denoted by T (z), and the
subset of edges sharing the node z by E(z). For any node z ∈ N , we denote by ωz ⊆ Ω the union
of triangles that share the node z. The set of triangles that share a common edge E ∈ E(Ω)
is denoted by T (E). For any E ∈ E(Ω), we denote by ωE ⊆ Ω the union of the two triangles
T± ∈ T that share the edge E; we set ωE = T for E ∈ E(∂Ω). We denote by hT and hE the
diameter of T and the length of E, respectively.

We make use of the standard notation on averages and jumps of scalar functions v across
edges E ∈ E(Ω) with E = ∂T+ ∩ ∂T−

{{v}} :=
1

2

(
v|T+

+ v|T−

)
, [[v]]N := v|T+

n+ + v|T−n−, (2.2)

and, for vector-valued functions τ ,

{{τ}} :=
1

2

(
τ |T+

+ τ |T−

)
, [[τ ]]N := τ |T+

· n+ + τ |T− · n−,

where n± denotes the unit outer normal vector of T±. For any scalar function v = v(x1, x2) we
denote by rot v = [ ∂v∂x2

,− ∂v
∂x1

]> the rotation of v, and we denote the elementwise application of
the gradient and rotation by ∇h and roth, respectively, i.e., (∇h·)|T = ∇(·)|T and (roth ·)|T =
rot(·)|T for all T ∈ T .

Let Vhp denote the discontinuous finite element space of piecewise polynomial basis functions

Vhp := {vhp ∈ L2(Ω) : vhp|T ∈ PpT (T ) for all T ∈ T },

where PpT (T ) denotes the space of polynomials of degree less than or equal to pT ≥ 1 on a triangle
T ∈ T . Let us denote by h and p the piecewise constant mesh size function and polynomial
degree function, respectively, defined on the mesh interfaces as follows: h|E = min(hT+

, hT−)
and p|E = max(pT+

, pT−), if E = ∂T+ ∩ ∂T−, or h|E = hT and p|E = pT , if E = ∂T ∩ ∂Ω.
The discrete problem then reads: Find uhp ∈ Vhp such that

ahp(uhp, vhp) = Fhp(vhp) for all vhp ∈ Vhp, (2.3)

3
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where

ahp(u, v) := (∇hu,∇hv)− k2(u, v)

−
∑

E∈E(Ω)

([[u]]N , {{∇hv}})E −
∑

E∈E(Ω)

({{∇hu}}, [[v]]N )E

−
(
γk

h

p
u,∇hv · n

)
∂Ω

−
(
γk

h

p
∇hu · n, v

)
∂Ω

− i
∑

E∈E(Ω)

(
β
h

p
[[∇hu]]N , [[∇hv]]N

)
E

− i
∑

E∈E(Ω)

(
α
p2

h
[[u]]N , [[v]]N

)
E

− i
(
γ
h

p
∇hu · n,∇hv · n

)
∂Ω

− i
(
k(1− γkh

p
)u, v

)
∂Ω

,

and

Fhp(v) := (f, v)− i
(
γh

p
g,∇hv · n

)
∂Ω

+

(
(1− γkh

p
)g, v

)
∂Ω

.

The constants α > 0, β > 0, and 0 < γ < 1/3 are fixed constants. Note that β > 0 guarantees
the unconditional well posedness of the discrete problem; cf. [19].

In order to define the DG gradient, see Definition 2.1 below, we need to introduce two lifting
operators. For any E ∈ E(Ω), let

P0(T (E))2 := {vhp ∈ [L2(ωE)]2 : vhp|T ∈ [P0(T )]2 for all T ∈ T (E)};

then, we define L0
E ∈ P0(T (E))2 as

ˆ
ωE

L0
E([[vhp]]N ) · τhp dx =

ˆ
E

[[vhp]]N · {{τhp}} ds

for all τhp ∈ P0(T (E))2, and L1
E ∈ P0(T (E))2 as

ˆ
ωE

L1
E([[∇hvhp]]N ) · τhp dx = iβ

ˆ
E

h

p
[[∇hvhp]]N [[τhp]]N ds

for all τhp ∈ P0(T (E))2.
For a given integer p ≥ 0, let Πp

E : L2(E)→ Pp(E) denote the local L2-orthogonal projection
onto the space of polynomials of degree at most p along the edge E ∈ E . Similarly we define
Πp
T : L2(T ) → Pp(T ) to be the local L2-orthogonal projection onto the space of polynomials of

degree at most p on a triangle T ∈ T .
We can derive the following stability estimates following the lines of the proof of [21, Propo-

sition 4.2].

Lemma 2.1. The lifting operators L0
E and L1

E are stable in the sense that

‖L0
E([[vhp]]N )‖0,T . h

−1/2
E ‖Π0

E([[vhp]]N )‖0,E ,

‖L1
E([[∇vhp]]N )‖0,T . βh

1/2
E ‖p

−1Π0
E([[∇vhp]]N )‖0,E ,

for T = T±, where T± are the two elements sharing the edge E.

4
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Proof. For any τhp ∈ P0(T (E))2, we have that h−1
E ‖τhp‖20,E = |T |−1‖τhp‖20,T , T = T±. Hence,

‖L0
E([[vhp]]N )‖0,T ≤ ‖L0

E([[vhp]]N )‖0,ωE

= sup
τhp∈P0(T (E))2, ‖τhp‖0,ωE

=1

ˆ
ωE

L0
E([[vhp]]N ) · τhp dx

= sup
τhp∈P0(T (E))2, ‖τhp‖0,ωE

=1

ˆ
E

Π0
E([[vhp]]N ) · {{τhp}} ds

≤ Ch−1/2
E ‖Π0

E([[vhp]]N )‖0,E ,

where C = hE max{|T+|−1/2, |T−|−1/2} is bounded by shape regularity. The second bound
follows similarly.

Definition 2.1 (DG gradient). We define the DG gradient by

G(uhp) := ∇huhp −
∑

E∈E(Ω)

L0
E([[uhp]]N )−

∑
E∈E(Ω)

L1
E([[∇uhp]]N ). (2.4)

Remark 2.1. The lifting operators L0
E arise already in [12] for the DG discretization of the

Poisson problem; whereas the lifting operators L1
E are required due to the additional gradient

stabilization terms in the formulation 2.3.

3 A posteriori error estimator and reliability

In this section, we derive an equilibrated a posteriori error estimator based on a shifted Poisson
problem and prove that it is reliable, up to additional L2 and boundary errors. The definition of
this estimator involves flux and potential reconstructions, which will be defined below. This ap-
proach is also related to the a posteriori error analysis for the eigenvalue problem via equilibrated
fluxes developed in [5, 6].

For simplicity of the presentation of the equilibrated flux technique, we restrict ourselves to
conforming meshes with no hanging nodes. For the necessary modifications to handle irregular
meshes we refer the reader to [11].

We approach the a posteriori error estimation of the DG finite element approximation of
the Helmholtz problem by considering the following (shifted) Poisson problem with Neumann
boundary conditions: Find a (complex) function w ∈ H2(Ω) such that

−∆w = f + k2uhp in Ω,

∇w · n = g + ikuhp − γk
h

p
(g −∇huhp · n+ ikuhp) on ∂Ω.

(3.1)

Note that the boundary condition is chosen in such a way that the compatibility condition for
the pure Neumann problem is satisfied due to (2.3).

Definition 3.1 (Flux reconstruction). For a given uhp ∈ Vhp, we define an equilibrated flux recon-
struction for uhp as any function σhp ∈ H(div; Ω) which satisfies

ˆ
T

divσhp dx =

ˆ
T

f + k2uhp dx ∀T ∈ T ,
ˆ
E

σhp · n ds =

ˆ
E

−(g + ikuhp) + γk
h

p
(g −∇huhp · n− ikuhp) ds ∀E ∈ E(∂Ω).

(3.2)

5
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Since the compatibility condition of the pure Neumann problem is satisfied, the existence of
such a function follows from the mixed theory applied to the homogeneous Neumann problem in
H0(div; Ω)× L2

0(Ω), where

H0(div; Ω) := {τ ∈ H(div; Ω) : τ · n = 0 on ∂Ω},

L2
0(Ω) :=

{
v ∈ L2(Ω) :

ˆ
Ω

v dx = 0

}
.

By proceeding as in the Dirichlet case [3, Example 4.2.1], this relies on the surjectivity of div :
H0(div; Ω)→ L2

0(Ω) (see, e.g., [3, Equation (4.2.62)]).
We point out that σhp is not necessarily a piecewise polynomial function; the subscript hp

simply indicates that it is associated with a piecewise polynomial function (namely uhp).

Definition 3.2 (Potential). We define a potential as any function

shp ∈ H1
∗ (Ω) := {v ∈ H1(Ω) : (v, 1) = 0}.

As for σhp, the subscript hp indicates that shp will be constructed from uhp; see Section 4.2
below. For this reason, we will call shp a potential reconstruction for uhp.

For the proof of reliability of the error estimator (see (3.4) below), the following Poincaré and
trace estimates, with explicit constants for triangles, are required.

Lemma 3.1 (Poincaré inequality on triangles [17]). For any v ∈ H1(T ), where T is a triangle,
it holds that

‖v −Π0
T v‖0,T ≤

hT
j1,1
‖∇v‖0,T , (3.3)

where j1,1 ≈ 3.83170597020751 denotes the first positive root of the Bessel function of the first
kind.

Lemma 3.2. For any v ∈ H1(T ), where T is a triangle, we have the following trace estimate
for any edge E of T,

h
−1/2
E ‖v −Π0

T v‖0,E ≤ Ctr‖∇v‖0,T ,

where C2
tr = (j−1

1,1 + j−2
1,1)

h2
T

|T | ≤ 0.3291
h2
T

|T | .

Proof. The trace identity of [8, Lemma 2.1] leads to the inequality

h−1
E ‖v −Π0

T v‖20,E ≤
hT
|T |
‖v −Π0

T v‖0,T ‖∇v‖0,T +
1

|T |
‖v −Π0

T v‖20,T .

This, together with the Poincaré inequality (3.3), yields

h−1
E ‖v −Π0

T v‖20,E ≤
h2
T

j1,1|T |
‖∇v‖20,T +

h2
T

j2
1,1|T |

‖∇v‖20,T .

Remark 3.1. For the adaptive meshes used in Section 5, which consist only of right-angled
triangles, it holds that h2

T /|T | = 4 and, therefore, Ctr ≤ 1.14733.

6
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We can now define the following error estimator:

η2
hp :=

∑
T∈T

(
‖G(uhp) + σhp‖0,T +

hT
j1,1
‖f + k2uhp − divσhp‖0,T

+ Ctr
∑

E∈E(T )∩E(∂Ω)

h
1/2
E ‖σhp · n+ g + ikuhp − γk

h

p
(g −∇huhp · n+ ikuhp)‖0,E

2

+
∑
T∈T
‖G(uhp)−∇shp‖20,T ,

(3.4)

where σhp ∈ H(div; Ω) is an equilibrated flux reconstruction of uhp as in Definition 3.1, and
shp ∈ H1

∗ (Ω) is a potential as in Definition 3.2. In the following theorem, we prove reliability of
the estimator defined in (3.4), up to additional L2 and boundary errors. Notice that we are still
in the abstract setting, where σhp and shp are any admissible flux and potential reconstructions,
according to Definitions 3.1 and 3.2 respectively. A specific choice of σhp and shp, for which
efficiency can also be proven, will be given in Section 4 below.

Theorem 3.3 (Reliability). Let u ∈ H1(Ω) be the weak solution of the Helmholtz problem (2.1),
and uhp ∈ Vhp be the discrete solution of (2.3). Then, for the error estimator defined in (3.4),
we have that

‖∇u− G(uhp)‖0,Ω . ηhp + k2‖u− uhp‖0,Ω + k‖u− uhp‖0,∂Ω

+ ‖γkh
p

(g −∇huhp · n+ ikuhp)‖0,∂Ω.
(3.5)

Proof. We follow the general ideas of the proof of [12, Theorem 3.3]. However, in order to connect
with the shifted Poisson problem (3.1), some extra terms need to be bounded. We repeat the
full proof for completeness.

Let s ∈ H1
∗ (Ω) be defined by the projection

(∇s,∇v) = (G(uhp),∇v) for all v ∈ H1(Ω). (3.6)

Then, by orthogonality, we have that

‖∇u− G(uhp)‖20,Ω = ‖∇(u− s)‖20,Ω + ‖∇s− G(uhp)‖20,Ω. (3.7)

Since s ∈ H1
∗ (Ω) is the orthogonal projection, we have

‖∇s− G(uhp)‖0,Ω = min
v∈H1

∗(Ω)
‖∇v − G(uhp)‖0,Ω.

Hence, for any shp ∈ H1
∗ (Ω), we get the following bound for the second term in (3.7)

‖∇s− G(uhp)‖20,Ω ≤ ‖∇shp − G(uhp)‖20,Ω. (3.8)

The first term of (3.7) is estimated by the flux reconstruction as follows. We have

‖∇(u− s)‖0,Ω = sup
v∈H1

∗(Ω), ‖∇v‖0,Ω=1

(∇(u− s),∇v)

= sup
v∈H1

∗(Ω), ‖∇v‖0,Ω=1

(∇u− G(uhp),∇v),

7
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where the second identity follows from (3.6). Adding and subtracting an equilibrated flux recon-
struction σhp ∈ H(div; Ω) leads to

(∇u− G(uhp),∇v) = (∇u+ σhp,∇v)− (G(uhp) + σhp,∇v). (3.9)

Using the weak formulation (2.1) and integrating by parts in the first term on the right-hand
side of (3.9) yields, for any v ∈ H1

∗ (Ω) with ‖∇v‖0,Ω = 1,

(∇u+ σhp,∇v) = (∇u,∇v) + (σhp,∇v)

= (f + k2u− divσhp, v) + (g + iku+ σhp · n, v)∂Ω

= (f + k2uhp − divσhp, v) + (g + ikuhp + σhp · n, v)∂Ω

+ k2(u− uhp, v) + ik(u− uhp, v)∂Ω.

(3.10)

Here, the proof differs from that of [12, Theorem 3.3], in that we introduce the last two extra
terms. From Definition 3.1 of the equilibrated flux reconstruction σhp we get for the first term
on the right-hand side of (3.10), for each element T ∈ T that

(f + k2uhp − divσhp, v)T = (f + k2uhp − divσhp, v −Π0
T v)T

≤ ‖f + k2uhp − divσhp‖0,T ‖v −Π0
T v‖0,T

≤ hT
j1,1
‖f + k2uhp − divσhp‖0,T ‖∇v‖0,T ,

where in the last step we have used the bound (3.3). For the second term on the right-hand side
of (3.10), we write

(g + ikuhp + σhp · n, v)∂Ω

= (σhp · n+ g + ikuhp − γk
h

p
(g −∇huhp · n− ikuhp), v)∂Ω

+ (γk
h

p
(g −∇huhp · n− ikuhp), v)∂Ω,

where we need to introduce the last term in order to connect to the shifted Poisson problem
(3.1). Again, from the definition of σhp, for any boundary edge E belonging to the triangle T ,
we have that

(σhp · n+ g + ikuhp − γk
h

p
(g −∇huhp · n− ikuhp), v)E

= (σhp · n+ g + ikuhp − γk
h

p
(g −∇huhp · n− ikuhp), v −Π0

T v)E

≤ ‖σhp · n+ g + ikuhp − γk
h

p
(g −∇huhp · n− ikuhp)‖0,E‖v −Π0

T v‖0,E

≤ Ctrh1/2
E ‖σhp · n+ g + ikuhp − γk

h

p
(g −∇huhp · n− ikuhp)‖0,E‖∇v‖0,T ,

where in the last step we have used the bound from Lemma 3.2.
From the Cauchy-Schwarz inequality, the above estimates, the Poincaré and trace estimates,

and

(G(uhp) + σhp,∇v)T ≤ ‖G(uhp) + σhp‖0,T ‖∇v‖0,T ,

8
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noting that ‖∇v‖0,Ω = 1, we deduce the bound

(∇u− G(uhp),∇v) . ηhp + k2‖u− uhp‖0,Ω + k‖u− uhp‖0,∂Ω

+ ‖γkh
p

(g −∇huhp · n− ikuhp)‖0,∂Ω,

for (3.9). Then, inserting this bound and (3.8) into (3.7) completes the proof.

Remark 3.2. Assuming that the resolution conditions established in [23] are satisfied, and that
an appropriate mesh refinement near the domain corners is applied, the L2 error terms appearing
on the right-hand side of the reliability bound (3.5) in Theorem 3.3 are actually higher-order
terms, compared to the left-hand side.

4 Efficiency of the error estimator

The result in the previous section holds for any equilibrated flux and potential reconstructions;
cf., Definitions 3.1 & 3.2, respectively. In this section, we locally define equilibrated flux and
potential reconstructions, for which we can show that the error estimator (3.4) is efficient.

In Section 4.1, we start by constructing equilibrated fluxes on nodal patches by solving local
mixed problems with Raviart-Thomas finite elements. We then show that the sum of these local
fluxes satisfy the definition of an admissible flux reconstruction (see Definition 3.1). We prove
efficiency of this flux reconstruction in Theorem 4.4 below. The technique of this proof involves
two steps: an estimate for the strong residual and the p-robustness of the mixed approximation
(see Lemmas 4.2 and 4.3, respectively).

In Section 4.2, we construct local potentials by solving minimization problems again on nodal
patches. We reformulate these minimization problems as coercive variational problems, which can
only be done in two dimensions. By combining these local potentials, we construct an admissible
potential reconstruction, according to Definition 3.2, and prove its efficiency (see Theorem 4.5).

In Section 4.3, we show efficiency of the remaining data terms and state the final efficiency
result.

4.1 Localized equilibrated flux reconstruction

We first define a computable equilibrated flux reconstruction σhp, such that the terms in the
error estimator (3.4) containing this reconstruction are efficient.

Using the partition of unity property of the linear hat-functions, we can localize the construc-
tion of σhp on nodal patches ωz by solving local patch problems in mixed formulation. For a
given node z ∈ N , with given integer pz ≥ 1, we define the space

Σhp(ωz) := {τhp ∈ H(div, ωz) : τhp|T ∈ RTpz (T ) for all T ∈ T (z)}

of Raviart-Thomas finite elements RTpz (T ) :=
{

[Ppz (T )]2 + P̃pz (T )[x1, x2]t
}

, where P̃pz (T ) is

the space of homogeneous polynomials of degree pz, and the space

Qhp(ωz) = {qhp ∈ L2(ωz) : qhp|T ∈ Ppz (T ) for all T ∈ T (z)}.

Let ψz ∈ H1(Ω) denote the piecewise linear hat function for the vertex z ∈ N with patch ωz.
Inserting ψz as test functions into the discrete weak formulation (2.3), we get, via straightforward

9
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calculations, the following hat function orthogonality,

(G(uhp),∇ψz)ωz
− (f + k2uhp, ψz)ωz

= (g + ikuhp, ψz)∂ωz∩∂Ω −
(
γk

h

p
(g −∇huhp · n+ ikuhp), ψz

)
∂ωz∩∂Ω

− iγ h
p

(g −∇huhp · n+ ikuhp,∇hψz · n)∂ωz∩∂Ω .

(4.1)

Define for z ∈ N , and a given function gz ∈ L2(∂ωz ∩ ∂Ω), the local mixed finite element
spaces

Σzgz,hp := {τhp ∈ Σhp(ωz) : τhp · n = 0 on ∂ωz\∂Ω,

τhp · n|E = Πpz
E g

z for all E ⊂ ∂ωz ∩ ∂Ω},
Qzhp := {qhp ∈ Qhp(ωz) : (qhp, 1)ωz

= 0}.

For each node z ∈ N , we solve the following local problem in mixed form: Find an approxi-
mation (ζzhp, r

z
hp) ∈ Σzgz,hp ×Qzhp such that

(ζzhp, τhp)ωz
− (rzhp,div τhp)ωz

= −(ψzG(uhp), τhp)ωz
for all τhp ∈ Σz0,hp,

(div ζzhp, qhp)ωz = (fz, qhp)ωz for all qhp ∈ Qzhp,
(4.2)

where the function fz is given by

fz := (f + k2uhp)ψz − G(uhp) · ∇ψz, (4.3)

and the function gz ∈ L2(∂ωz ∩ ∂Ω) in the definition of Σzgz,h is given by

gz := −
(
g + ikuhp − γk

h

p
(g −∇huhp · n+ ikuhp)

)
ψz

+ iγ
h

p
(g −∇huhp · n+ ikuhp) (∇hψz · n) .

(4.4)

Actually, fz and gz are defined such that, from the hat function orthogonality (4.1), we get

(fz, 1)ωz = (gz, 1)∂ωz∩∂Ω, (4.5)

which is the pure Neumann problem compatibility condition.

Remark 4.1. From integration by parts, the boundary condition on ∂ωz, and the compatibility
condition (4.5), we note that

(div ζzhp, 1)ωz =

ˆ
∂ωz

ζzhp · n dx =

ˆ
∂ωz∩∂Ω

gz dx = (fz, 1)ωz .

Hence, together with (4.2) we have that

(div ζzhp, qhp)ωz
= (fz, qhp)ωz

for all qhp ∈ Qhp(ωz). (4.6)

We can now define the equilibrated flux reconstruction σhp as

σhp :=
∑
z∈N

ζzhp, (4.7)

and prove that it satisfies Definition 3.1.

10
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Lemma 4.1. The flux approximation σhp, defined in (4.7), is an equilibrated flux reconstruction
in H(div; Ω) which satisfies, for any T ∈ T ,

(f + k2uhp − divσhp, qhp)T = 0

for all qhp ∈
⋂
z∈N (T )Qhp(ωz)|T , and for any E ∈ E(∂Ω),

(σhp · n+ g + ikuhp − γk
h

p
(g −∇huhp · n+ ikuhp), qhp)E = 0

for all qhp ∈
⋂
z∈N (E)Qhp(ωz)|E.

Proof. For all z ∈ N , by extension of ζzhp by zero in Ω \ ωz, we have that ζzhp ∈ H(div; Ω);
therefore, σhp ∈ H(div; Ω) also holds. For any T ∈ T , by using the partition of unity property
of ψz, the definition of σhp, and (4.6), it holds that

(f + k2uhp − divσhp, qhp)T =
∑

z∈N (T )

(ψz(f + k2uhp)− div ζzhp, qhp)T

=
∑

z∈N (T )

(G(uhp) · ∇ψz, qhp)T

= 0,

for all qhp ∈ Qhp, where in the last step we used the fact that
∑
z∈N (T )∇ψz = 0. Using the

partition of unity property of ψz along the boundary edges, the definition of σhp, and the fact
that ζzhp ∈ Σzgz,hp, we get for any E ∈ E(∂Ω), with associated element TE ∈ T , that

(σhp · n, qhp)E =
∑

z∈N (TE)

(ζzhp · n, qhp)E =
∑

z∈N (TE)

(gz, qhp)E

=

(
−(g + ikuhp) + γk

h

p
(g −∇huhp · n+ ikuhp), qhp

)
E

,

for all qhp ∈ Qhp, where we use the fact that
∑
z∈N (TE) ψz = 1 and the fact that

∑
z∈N (TE)∇ψz ·

n = 0 on E.

We proceed by showing that the flux reconstruction (4.7) is efficient. In order to do that, we
start by defining the following data oscillation terms.

Definition 4.1 (Data oscillations). We define

osc2(fz) =
∑

T∈T (z)

h2
T

j2
1,1

‖fz −Πpz
T f

z‖20,T ,

osc2(gz) =
∑

E∈E(z)∩E(∂Ω)

C2
trhE‖gz −Πpz

E g
z‖20,E ,

for all z ∈ N , and

osc2(f) =
∑
z∈N

osc2(fz), osc2(g) =
∑

z∈N (∂Ω)

osc2(gz).

Now, we derive an estimate of the strong residual. The following lemma is based on the
results in [7].

11
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Lemma 4.2 (Continuous efficiency, flux reconstruction). Let w be the weak solution of the
(shifted) Poisson problem (3.1), with uhp ∈ Vhp being the hp-DG approximation given by (2.3).
Furthermore, let z ∈ N and rz ∈ H1

∗ (ωz) := {v ∈ H1(ωz) : (v, 1)ωz = 0} be the solution to the
continuous problem

(∇rz,∇v)ωz = −(ψzG(uhp),∇v)ωz +
∑

T∈T (z)

(Πpz
T f

z, v)T

−
∑

E∈E(z)∩E(∂Ω)

(Πpz
E g

z, v)E
(4.8)

for all v ∈ H1(ωz), with the right hand side fz and the boundary function gz given in (4.3) and
(4.4), respectively. Then, it holds that

‖∇rz‖0,ωz
. ‖∇w − G(uhp)‖0,ωz

+ ‖iγ
√
h

p
(g −∇huhp · n+ ikuhp) ‖0,∂ωz∩∂Ω

+ osc(fz) + osc(gz).

Proof. Since the right hand side fz and the boundary function gz are constructed such that
the compatibility condition (4.5) is satisfied on ωz it is, therefore, also satisfied for their L2-
projections. This, together with the Lax-Milgram lemma, implies that (4.8) is well posed. We
have that

‖∇rz‖0,ωz
= sup
v∈H1

∗(ωz),‖∇v‖0,ωz=1

(∇rz,∇v)ωz
; (4.9)

moreover, for v ∈ H1
∗ (ωz), ‖∇v‖0,ωz

= 1, we can write

(∇rz,∇v)ωz
= −(ψzG(uhp),∇v)ωz

+
∑

T∈T (z)

(Πpz
T f

z, v)T −
∑

E∈E(z)∩E(∂Ω)

(Πpz
E g

z, v)E

= −(ψzG(uhp),∇v)ωz
+ (fz, v)ωz

− (gz, v)∂ωz∩∂Ω

+
∑

T∈T (z)

(Πpz
T f

z − fz, v −Π0
T v)T −

∑
E∈E(z)∩E(∂Ω)

(Πpz
E g

z − gz, v −Π0
T v)E .

The last two terms on the right-hand side are bounded by osc(fz) and osc(gz), respectively, by
applying the Cauchy-Schwarz inequality, Lemmas 3.2 & 3.3, and the fact that ‖∇v‖0,ωz = 1.
For the first three terms on the right-hand side, by application of integration by parts, the
Cauchy-Schwarz inequality, and the definitions of fz, gz, and w, we obtain

−(ψzG(uhp),∇v)ωz
+ (fz, v)ωz

− (gz, v)∂ωz∩∂Ω

= −(ψzG(uhp),∇v)ωz
+ ((f + k2uhp)ψz, v)ωz

− (G(uhp) · ∇ψz, v)ωz

− (gz, v)∂ωz∩∂Ω

= (∇w − G(uhp),∇h(ψzv))ωz

− (iγ
h

p
(g −∇huhp · n+ ikuhp) (∇hψz · n), v)∂ωz∩∂Ω

≤ ‖∇w − G(uhp)‖0,ωz‖∇h(ψzv)‖0,ωz

+ ‖iγ
√
h

p
(g −∇huhp · n+ ikuhp) ‖0,∂ωz∩∂Ω‖

√
h(∇hψz · n)v‖0,∂ωz∩∂Ω.

12



S. Congreve, J. Gedicke, and I. Perugia: Robust adaptive hp-DG for Helmholtz

By the triangle inequality, the scaling of the hat-functions, shape regularity, and the Poincaré
inequality, we have that

‖∇h(ψzv)‖0,ωz
≤ ‖v∇hψz‖0,ωz

+ ‖ψz∇v‖0,ωz
. ‖hv‖0,ωz

+ ‖∇v‖0,ωz
. ‖∇v‖0,ωz

= 1;

a similar bound holds for ‖
√
h(∇hψz ·n)v‖0,∂ωz∩∂Ω after application of shape regularity and the

trace estimates. Therefore, we conclude from the previous estimates that

(∇rz,∇v)ωz . ‖∇w − G(uhp)‖0,ωz

+ ‖iγ
√
h

p
(g −∇huhp · n+ ikuhp) ‖0,∂ωz∩∂Ω + osc(fz) + osc(gz),

for all v ∈ H1
∗ (ωz), such that ‖∇v‖0,ωz

= 1. Inserting this result into (4.9) completes the
proof.

In the following lemma, we essentially report [4, Theorem 7], which is a key result in the
proof of p-robustness.

Lemma 4.3. Let uhp ∈ Vhp be the hp-DG approximation given by (2.3); furthermore, for z ∈ N ,
let ζzhp ∈ Σzgz,hp be the solution to the local nodal mixed problem (4.2), ψz ∈ H1(Ω) be the nodal

hat function associated with the node z, and rz ∈ H1
∗ (ωz) be defined as in Lemma 4.2. Then, the

stability result

‖ψzG(uhp) + ζzhp‖0,ωz ≤ C‖∇rz‖0,ωz

holds, with a constant C > 0 that is independent of the polynomial degree, mesh size, and wave
number, but depends on the shape regularity of the mesh.

Proof. As in [12, Corollary 3.16], the proof is essentially [4, Theorem 7]. Note that,

‖∇rz‖0,ωz = sup
v∈H1

∗(ωz), ‖∇v‖0,ωz=1

(∇rz,∇v)ωz .

In fact, from (4.8) we have that

(∇rz,∇v)ωz = −(ψzG(uhp),∇v)ωz +
∑

T∈T (z)

(Πpz
T f

z, v)T −
∑

E∈E(z)∩E(∂Ω)

(Πpz
E g

z, v)E

=
∑

T∈T (z)

ˆ
T

(div(ψzG(uhp)) + Πpz
T f

z)v dx+
∑

E∈E(z)∩E(Ω)

ˆ
E

[[−ψzG(uhp)]]Nv ds

−
∑

E∈E(z)∩E(∂Ω)

ˆ
E

(Πpz
E g

z + ψzG(uhp))v ds

for all v ∈ H1
∗ (ωz) such that ‖∇v‖0,ωz

= 1.

Defining rT := div(ψzG(uhp)) +
∑
T∈T (z) Πpz

T f
z, rE := [[−ψzG(uhp)]]N for interior edges, and

rE := −
∑
E∈E(z)∩E(∂Ω)(Π

pz
E g

z + ψzG(uhp)) for edges on the boundary, we have that ‖∇rz‖0,ωz

in our notation is ‖r‖[H1(ω)\R] in the notation of [4, Lemma 7]. Moreover,

‖ψzG(uhp) + ζzhp‖0,ωz
= inf

τhp∈Σz
gz,hp

div(τhp)|T =Πpz
T fz ∀T∈T (z)

‖ψzG(uhp) + τhp‖0,ωz
,

13
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which, in the notation of [4], reads as

inf
σ∈RTp

−1,0, div σ=r
‖σ‖0,

formulated in the broken Raviart-Thomas finite element space with imposed jumps [[−ψzG(uhp)]]N .

Finally, by using Lemmas 4.2 and 4.3, we prove a p-robust efficiency bound of the first term
in the error estimator (3.4).

Theorem 4.4 (Flux reconstruction efficiency). Let u ∈ H1(Ω) be the weak solution of the
Helmholtz problem (2.1), uhp ∈ Vhp be the discrete solution of (2.3), and σhp ∈ H(div; Ω) be the
equilibrated flux reconstruction of uhp defined in (4.7); then,

‖G(uhp) + σhp‖0,Ω . ‖∇u− G(uhp)‖0,Ω + k2‖u− uhp‖0,Ω + k‖u− uhp‖0,∂Ω

+ osc(f) + osc(g) + ‖γkh
p

(g −∇huhp · n+ ikuhp)‖0,∂Ω

+ ‖iγ
√
h

p
(g −∇huhp · n+ ikuhp) ‖0,∂Ω.

Proof. The uniform stability of the local mixed problems from Lemma 4.3, and the partition of
unity property prove that

‖G(uhp) + σhp‖0,Ω ≤
∑
z∈N
‖ψzG(uhp) + ζzhp‖0,ωz ≤ C

∑
z∈N
‖∇rz‖0,ωz .

Applying Lemma 4.2, noting the finite overlap of the patches ωz, bounds this term by osc(f),
osc(g), ‖∇w − G(uhp)‖0,Ω, and the boundary terms appearing in the right-hand side of the
required bound; therefore, all that remains is to bound ‖∇w − G(uhp)‖0,Ω. By the triangle
inequality, we have

‖∇w − G(uhp)‖0,Ω ≤ ‖∇u− G(uhp)‖0,Ω + ‖∇(w − u)‖0,Ω
= ‖∇u− G(uhp)‖0,Ω + sup

v∈H1
∗(Ω), ‖∇v‖0,Ω=1

(∇(w − u),∇v). (4.10)

Applying integration by parts, the definition of w from (3.1), (1.1), and Cauchy-Schwarz, we get
that

(∇(w − u),∇v) = −(∆(w − u), v) + (∇(w − u) · n, v)∂Ω

= (f + k2uhp − (f + k2u), v)

+ (g + ikuhp − γk
h

p
(g −∇huhp · n+ ikuhp)− (g + iku), v)∂Ω

≤ k2‖u− uhp‖0,Ω‖v‖0,Ω + k‖u− uhp‖0,∂Ω‖v‖0,∂Ω

+ ‖γkh
p

(g −∇huhp · n+ ikuhp)‖0,∂Ω‖v‖0,∂Ω,

for all v ∈ H1
∗ (Ω) such that ‖∇v‖0,Ω = 1. From the Poincaré inequality we get that ‖v‖0,Ω ≤

C‖∇v‖0,Ω = C, where the constant C depends only on the domain Ω, and similarly by applying
a trace estimate ‖v‖0,∂Ω ≤ C ′‖∇v‖0,Ω = C ′; therefore, inserting this result into (4.10) completes
the proof.
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4.2 Localized potential reconstruction

In this section, we define the potential reconstruction such that the error estimator (3.4) is
efficient.

In order to define a localized polynomial space on patches we need to distinguish between
boundary and interior nodes. For a given boundary node z ∈ N (∂Ω), with associated integer
pz ≥ 1 as defined in Section 4.1, we define the localized polynomial space

V zhp := {vhp ∈ C0(ωz) : vhp|T ∈ Ppz+1(T ) ∀T ∈ T (z), vhp = 0 on ∂ωz \ ∂Ω};

for an internal node z ∈ N \N (∂Ω), with integer pz, we define the localized polynomial space as

V zhp := {vhp ∈ C0(ωz) : vhp|T ∈ Ppz+1(T ) ∀T ∈ T (z), vhp = 0 on ∂ωz}.

We then choose s̃hp ∈ H1(Ω) as

s̃hp :=
∑
z∈N

szhp,

where

szhp := arg min
vhp∈V z

hp

‖∇h(ψzuhp)−∇vhp‖0,ωz
(4.11)

with extension by zero in Ω \ ωz, which is equivalent to finding szhp such that

(∇szhp,∇vhp)ωz = (∇h(ψzuhp),∇vhp)ωz for all vhp ∈ V zhp.

Then, the potential reconstruction shp ∈ H1
∗ (Ω) is defined as

shp := s̃hp −
1

|Ω|

ˆ
Ω

s̃hp dx, (4.12)

which clearly satisfies Definition 3.2.
It has been noted in [12, Remark 3.10] that the local minimization in (4.11) in primal form

is equivalent to the following minimization in mixed form

ζzhp := arg min
τhp∈Σz

0,hp, div(τhp)=0

‖ roth(ψzuhp) + τhp‖ωz
,

which is equivalent to solving the following (local) mixed problem: Find (ζzhp, r
z
hp) ∈ Σz0,hp×Qzhp

such that

(ζzhp, τhp)ωz − (rzhp,div τhp)ωz = −(roth(ψzuhp), τhp)ωz for all τhp ∈ Σz0,hp,

(div ζzhp, qhp)ωz
= 0 for all qhp ∈ Qzhp.

For the underlying continuous problem we have the primal formulation: Find rz ∈ H1
∗ (ωz) such

that

(∇rz,∇v)ωz = −(roth(ψzuhp),∇v)ωz for all v ∈ H1(ωz).

Proceeding as in [12, Section 4.3.2] leads to the analogue of Lemma 4.2,

‖∇rz‖20,ωz
. ‖∇h(u− uhp)‖20,ωz

+
∑

E∈E(z)∩E(Ω)

h−1
E ‖Π

0
E [[u− uhp]]N‖20,E .
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Following the lines of proof of the local efficiency in [12, Theorem 3.17], yields

‖∇h(uhp − shp)‖0,T .
∑

z∈N (T )

‖ roth(ψzuhp) + ζzhp‖0,ωz
.

∑
z∈N (T )

‖∇rz‖0,ωz
.

Therefore,

‖∇h(uhp − shp)‖20,T .
∑

z∈N (T )

‖∇h(u− uhp)‖20,ωz

+
∑

z∈N (T )

∑
E∈E(z)∩E(Ω)

h−1
E ‖Π

0
E [[u− uhp]]N‖20,E .

Hence, due to the stability of the lifting operators in Lemma 2.1 we can derive the following
efficiency estimate for the final term in the error estimator (3.4).

Theorem 4.5 (Potential reconstruction efficiency). Let u ∈ H1(Ω) be the weak solution of the
Helmholtz problem (2.1), uhp ∈ Vhp be the discrete solution of (2.3), and shp ∈ H1

∗ (Ω) be the
potential reconstruction defined as in (4.12); then,

‖G(uhp)−∇shp‖20,Ω . ‖∇h(u− uhp)‖20,Ω +
∑

E∈E(Ω)

h−1
E ‖Π

0
E [[uhp]]N‖20,E

+
∑

E∈E(Ω)

β2hE‖p−1Π0
E [[∇uhp]]N‖20,E .

4.3 Efficiency result

We can now combine Theorems 4.4 and 4.5 to show that the complete error indicator (3.4) is
efficient.

Theorem 4.6 (Error estimator efficiency). Let u ∈ H1(Ω) be the weak solution of the Helmholtz
problem (2.1), uhp ∈ Vhp be the discrete solution of (2.3), ηhp be the error estimator (3.4),
σhp ∈ H(div; Ω) be the equilibrated flux reconstruction of uhp defined in (4.7), and shp ∈ H1

∗ (Ω)
be the potential reconstruction defined as in (4.12); then,

ηhp . ‖∇h(u− uhp)‖0,Ω + k2‖u− uhp‖0,Ω + k‖u− uhp‖0,∂Ω + osc(f) + osc(g)

+ ‖γkh
p

(g −∇huhp · n+ ikuhp)‖0,∂Ω + ‖iγ
√
h

p
(g −∇huhp · n+ ikuhp) ‖0,∂Ω

+

 ∑
E∈E(Ω)

h−1
E ‖Π

0
E [[uhp]]N‖20,E

1/2

+

 ∑
E∈E(Ω)

β2hE‖p−1Π0
E [[∇uhp]]N‖20,E

1/2

.

Proof. The efficiency of the first and last terms of the error estimator (3.4) are given by Theo-
rems 4.4 and 4.5, respectively, noting that

‖∇u− G(uhp)‖0,Ω ≤ ‖∇h(u− uhp)‖0,Ω +

 ∑
E∈E(Ω)

h−1
E ‖Π

0
E [[uhp]]N‖20,E

1/2

+

 ∑
E∈E(Ω)

β2hE‖p−1Π0
E [[∇uhp]]N‖20,E

1/2

,
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due to the triangle inequality and Lemma 2.1. Therefore, to complete the proof, we need to
derive efficiency estimates for the two remaining terms of the error estimator (3.4) that contain
f and g. From the partition of unity property of the hat functions ψz, the definition (4.3), and
the property (4.6), we deduce

‖f + k2uhp − divσhp‖0,T = ‖
∑

z∈N (T )

(fz − div ξzhp)‖0,T ≤
∑

z∈N (T )

‖fz −Πpz
T f

z‖0,T .

Hence, summing over all T ∈ T and rearranging the summations, we arrive at∑
T∈T

h2
T

j2
1,1

‖f + k2uhp − divσhp‖20,T ≤ osc2(f).

Similarly, for any boundary edge E ∈ E(∂Ω) with associated element TE ∈ T , we get that

‖σhp · n+ g + ikuhp − γk
h

p
(g −∇huhp · n+ ikuhp)‖0,E

= ‖
∑

z∈N (TE)

(ξzhp · n− gz)‖0,E ≤
∑

z∈N (TE)

‖gz −Πpz
E g

z‖0,E ,

which proves∑
E∈E(∂Ω)

C2
trhE‖σhp · n+ g + ikuhp − γk

h

p
(g −∇huhp · n+ ikuhp)‖20,E ≤ osc2(g).

Combining these results completes the proof.

Remark 4.2. In the numerical experiments we will be interested in the efficiency index ηhp/‖∇u−
G(uhp)‖0,Ω to be close to one. While we have proven asymptotic reliability of ηhp for any pz ≥ 1,
the efficiency of the flux reconstruction in Theorem 4.4 also depends on the efficiency of the
data terms. Hence, for osc(f), and osc(g) to be comparably small, one has to at least match
the polynomial degree pz of the Raviart-Thomas finite element space to that of uhpψz, i.e.,
pz = maxT∈T (z) pT + 1, for the flux reconstruction. On the contrary, the efficiency of the
potential reconstruction in Theorem 4.5 does not depend on the data oscillations; therefore, the
choice pz = maxT∈T (z) pT is sufficient in order to match the (local) polynomial degree of uhpψz
in the local minimization problems (4.11).

5 Numerical results

In this section we present numerical results for four different benchmark problems.
For efficiency of the error estimator, we approximate the local mixed problems with Raviart-

Thomas finite elements of (varying) order pz = maxT∈T (z) pT + 1 for the flux reconstruction
and pz = maxT∈T (z) pT for the potential reconstruction, cf. Remark 4.2. To reduce the ill-
conditioning of the basis for the local problems with high pz, we use the hierarchical basis func-
tions for the Raviart-Thomas finite element space presented in [2]. In comparison to a standard
residual a posteriori error estimator, the computation of the flux and potential reconstructions
is more costly; however, since all local problems are independent, they can be solved in parallel.
In addition, the number of local problems is independent of the polynomial degree.

We compare p- and adaptive h-refinement to an adaptive hp-refinement strategy. For the hp-
refinement we use the decision mechanism of Melenk & Wohlmuth [20, Algorithm 4.4] outlined in
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Algorithm 1 hp-refinement algorithm.

1: if T is marked for refinement then
2: if ηT,` > ηpred

T,` then
3: Perform h–refinement: Subdivide T into 2 children T±, and set
4: (ηpred

T±,`+1)2 ← 1
2γh

(
1
2

)pT
η2
T,`.

5: else
6: Perform p–refinement: pT ← pT + 1
7: (ηpred

T,`+1)2 ← γpη
2
T,`

8: end if
9: else

10: (ηpred
T,`+1)2 ← γn(ηpred

T,` )2

11: end if

Algorithm 1, which determines for h- or p-refinement on the refinement level ` based on verifying
the decay of the local error indicators. We choose the constants γh = 4, γp = 0.4, γn = 1, and

the initial values ηpredT,0 =∞, for all T ∈ T . Hence, the algorithm prefers p- over h-refinement in
the first step. For the mesh refinement, we use the newest vertex bisection algorithm, and mark
elements based on the maximum marking strategy with parameter 0.75.

In order to shorten the pre-asymptotic region, we choose the initial mesh size h and (uniform)
polynomial degree p as

p = dln(k)e and
kh

p
≤ Cres, (5.1)

where the resolution constant Cres depends on the problem under consideration; cf. [23, Section
5]. Additional numerical experiments, in which the initial conditions (5.1) are violated, are also
presented in the following in order to demonstrate that the method under consideration is able
to escape the pre-asymptotic region regardless of the initial mesh.

For the DG formulation we choose the parameters α = 10, β = 1, and γ = 1/4.

5.1 Square domain

Let Ω = (0, 1)2, f = 0, and select g such that the solution of (2.1) is given by

u(x) = H(1)
0

(
k
√

(x1 + 1/4)2 + x2
2

)
,

where H(1)
0 denotes the zeroth order Hankel function of the first kind. In Figure 5.1, we observe

convergence of O(hp), p = 2, 3, 4, for uniform h-refinement, and exponential convergence for
uniform p-refinement. Note that the error estimator is very close to the error and the corre-
sponding lines are in fact overlapping. In Figure 5.2 we observe exponential convergence of the
error ‖∇u−G(uhp)‖0,Ω for both p- and adaptive hp-refinement for wavenumbers k = 20, 50. For
hp- and p-refinement we observe efficiency indices ηhp/‖∇u−G(uhp)‖0,Ω asymptotically close to
1. For the construction of the initial mesh, we choose Cres = 2. Note that for coarse h and p
the pollution error is still dominant and, hence, ηhp underestimates the error ‖∇u−G(uhp)‖0,Ω;
therefore, the efficiency indices are initially less than one. The final hp-refined mesh for k = 20, 50
are displayed in Figure 5.3.

Next, we compare four variants of the hp-refinement strategy for k = 50. First, instead
of bisecting a triangle into just two new triangles we divide it into four using the red-green-
blue-refinement strategy [24, Section 4.1]. The effect of this is a more aggressive h-refinement.
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Figure 5.1: Algebraic convergence O(hp) for the h-version (left) and exponential convergence of
the p-version (right) of the error ehp = ‖∇u−G(uhp)‖0,Ω and the estimator ηhp for the example
in Section 5.1 with k = 20.
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Figure 5.2: Exponential convergence (left) and efficiency indices (right) of the p- and hp-version
for the example in Section 5.1.
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Figure 5.3: hp-refined mesh for the example in Section 5.1 with k = 20 (left) and k = 50 (right),
where the polynomial degree is indicated with different shading.
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Figure 5.4: Exponential convergence (left) and efficiency indices (right) for different hp-
refinement strategies for the example in Section 5.1 with k = 50.
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Figure 5.5: Exponential convergence (left) and efficiency indices (right) of the h- and hp-version
for the example in Section 5.2.

Note that our implementation of mesh refinement is based on conforming refinements, which
means that there also occurs additional refinement to remove hanging nodes. This overhead is
significantly larger for red-green-blue-refinement than for refinement based on bisection. The
second variation is to use a fixed fraction marking strategy instead of the maximum marking
strategy, where 25% of the elements with the largest indicators are refined. This leads to a
more aggressive refinement between two consecutive levels. In Figure 5.4, we observe that less
h-refinement is more effective; hence, the errors corresponding to refinement by bisection lead
to less degrees of freedom than those corresponding to red-green-blue-refinement for the same
level of accuracy. The two different marking strategies lead to comparable errors in this smooth
example. We draw the conclusion that even though in principle we are using the same hp-
marking strategy, the actual performance of the method depends significantly on the concrete
implementation. Note that, for this experiment, the choice of the initial values p = 1 and
h = 1/4 violates both conditions in (5.1), and, neglecting the first mesh, the error is initially
underestimated. Nevertheless, all strategies are capable of eventually refining enough so that
the pollution error becomes sufficiently small, such that the efficiency indices are asymptotically
close to 1 for all four strategies.

5.2 L-shaped domain

Let Ω = (−1, 1)2\((0, 1)× (−1, 0)), f = 0, and select g such that the solution of (2.1) is given in
polar coordinates (r, ϕ) by

u(r, ϕ) = J2/3(kr) sin(2ϕ/3),

where J2/3 denotes the Bessel function of first kind. Note that the gradient of u is singular at
the origin; therefore, adaptive mesh refinement towards the origin is needed. Notice that we
approximate (1.1) with g = ∇u · n − iku, and g is singular at (0, 0). As g enters (4.2) as an
essential boundary condition, we use a high polynomial degree for the flux reconstruction in the
patch associated with (0, 0).

For the initial mesh refinement we choose Cres = 2. In Figure 5.5 we observe algebraic
convergence of adaptive h-refinement and exponential convergence of adaptive hp-refinement
for k = 20, 50. More precisely, the convergence for hp-refinement is of the form exp(−b 3

√
N),
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Figure 5.6: hp-refined mesh for the example in Section 5.2 with k = 20 (left) and k = 50 (right),
where the polynomial degree is indicated with different shading.
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Figure 5.7: Exponential convergence (left) and efficiency indices (right) of different hp-refinement
strategies for the example in Section 5.2 with k = 50.
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Figure 5.8: Exponential convergence (left) and efficiency indices (right) of the hp-version for the
equilibrated a posteriori error estimator in comparison to the residual a posteriori error estimator
for the example in Section 5.2.

and we observe that b ≈ 0.61 for k = 20 and b ≈ 0.41 for k = 50. This indicates that the
rate of exponential convergence deteriorates for larger k. We note that higher wavenumbers
result in more h-refinement, cf. Figure 5.6, and smaller elements generally result in a slower
rate of exponential convergence, cf. Figure 5.1. Therefore, we cannot conclude whether the
rate deterioration is a direct result of the increased wavenumber, or is due to the increased h-
refinement, which results from the higher wavenumber. In all cases, the efficiency indices are
asymptotically close to 1.

Figure 5.6 displays the final hp-refined mesh for k = 20, 50. Note that the displayed zoom at
the re-entrant corner shows low polynomial degrees close to the origin.

For comparison, in Figure 5.7 we compare the four variants of hp-refinement described in
the previous example. We observe again that the fewer h-refinements performed by bisection is
advantageous over the larger h-refinements performed by red-green-blue-refinement. For higher
accuracy, the maximum marking strategy appears to be more effective than the fixed fraction
marking strategy. In all four cases, the efficiency indices are asymptotically close to 1 and the
four hp-strategies are all able to overcome the pre-asymptotic region even when starting from
p = 1 and h = 1/4.

In Figure 5.8, we compare the equilibrated a posteriori error estimator to the residual a
posteriori error estimator [23]

η2
hp,residual =

∑
T∈T

h2
T

p2
T

‖∆uhp + k2uhp + f‖20,T +
∑

E∈E(Ω)

β
h

p
‖[[∇huhp]]N‖20,E

+
∑

E∈E(Ω)

α
p2

h
‖[[uhp]]N‖20,E +

∑
E∈E(∂Ω)

h‖g −∇huhp · n+ ikuhp‖20,E .

We observe that the error ‖∇h(u− uhp)‖0,Ω for the residual a posteriori error estimator is very
close to the error ‖∇u− G(uhp)‖0,Ω for the equilibrated a posteriori error estimator. In fact, in
the case of k = 50 both errors overlap. The difference, however, is in the efficiency. The efficiency
indices for the equilibrated a posteriori error estimator are asymptotically close to 1 and robust
in p; by contrast, the efficiency indices for the residual a posteriori error estimator are close to 5
and show a small but persistent growth in p.
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Figure 5.9: Real parts of solutions with 29◦ reflection (left) and 69◦ refraction (right) for k = 20.
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Figure 5.10: Exponential convergence (left) and efficiency indices (right) of the p- and hp-version
for the example in Section 5.3 with 29◦ reflection.

5.3 Internal reflection/refraction

Although not covered in the theoretical part, we now consider the benchmark from [16, Section
6.3] with non-constant refractive index εr; hence, we consider the following problem

−∆u− k2εru = 0 in Ω,

∇u · n− ik
√
εru = g on ∂Ω,

where

εr(x) =

{
n2

1 if x2 < 0,
n2

2 if x2 ≥ 0.

For Ω = (−1, 1)2, n1 = 2, n2 = 1, and 0 ≤ θ < π/2, one can show that this problem admits the
following solution

u(x) =

{
(1 +R) exp (i(K1x1 +K3x2)) if x2 ≥ 0,

exp (i(K1x1 +K2x2))) +R exp (i(K1x1 −K2x2)) if x2 < 0,
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Figure 5.11: Exponential convergence (left) and efficiency indices (right) of the p- and hp-version
for the example in Section 5.3 with 69◦ refraction.

Figure 5.12: hp-refined mesh for the example in Section 5.3 with 29◦ reflection using k = 20
(left) and k = 50 (right), where the polynomial degree is indicated with different shading.

Figure 5.13: hp-refined mesh for the example in Section 5.3 with 69◦ refraction using k = 20
(left) and k = 50 (right), where the polynomial degree is indicated with different shading.
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Figure 5.14: Real parts of Gaussian beam approximations for k = 20 (left) and k = 50 (right).

where K1 = kn1 cos(θ), K2 = kn1 sin(θ), K3 = k
√
n2

2 − n2
1 cos2(θ), and

R = −(K3 −K2)/(K3 +K2).

There exists a critical angle θ∗ such that for θ > θ∗ the wave is refracted, and for θ < θ∗ the
wave is internally reflected; therefore, we compute two examples with θ1 = 29◦, 69◦, in order to
demonstrate internal reflection and refraction, respectively.

The solutions for k = 20 and θ1, θ2 are displayed in Figure 5.9. Figures 5.10 and 5.11
show exponential convergence for both p- and adaptive hp-refinement, and the efficiency indices
are again asymptotically close to 1. Note that the initial mesh is chosen such that (5.1) is
fulfilled with Cres = 1/2 and the jump of the refractive index is resolved by the mesh, otherwise
strong anisotropic mesh refinement towards the interface would be needed for fast convergence.
Interestingly, we observe in Figure 5.10 that initially hp-refinement outperforms p-refinement;
however, we generally expect p-refinement to perform better, and indeed this occurs towards the
end of the refinement. Figures 5.12 and 5.13 display the final hp-refined meshes for k = 20, 50,
and θ1 and θ2 respectively.

5.4 Gaussian beam simulation

In the last example, we consider a Gaussian beam simulation similar to the one in [22, Section
3.7]. We choose the domain Ω = (0, 4)2, f = 0, and the inhomogeneous impedance boundary
condition g corresponding to the fundamental Gaussian beam mode that satisfies the paraxial
wave equation, which reads in polar coordinates as

v(r, ϕ) =
w0

w
exp

(
−r2

w2
− ikz − iπr2

λR
+ iθ0

)
,

where z(r, ϕ) is the radius of the orthogonal projection of (r, ϕ) onto the direction of propagation,
w0 is the beam waist radius, R(z) is the radius of curvature, w(z) is the beam radius, and φ0(z)
is the Gaussian beam phase shift. We choose a 40◦ angle for the direction of the beam, and the
beam waist radius w0 = 8π/k. For the other variables we have that λ = 2π/k,

R(z) = z +
1

z

(
πw2

0

λ

)2

, w(z) = w0

(
1 +

(
λz

πw2
0

)2
)1/2

, and tanφ0(z) =
λz

πw2
0

.
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Figure 5.15: Exponential convergence of the p- and hp-version for the Gaussian beam simulation
in Section 5.4.

Figure 5.16: hp-refined mesh for the Gaussian beam simulation in Section 5.4 with k = 20 (left)
and k = 50 (right), where the polynomial degree is indicated with different shading.
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Two Gaussian beam approximations for k = 20, 50 are displayed in Figure 5.14.
Since the exact solution is not known in this particular example, we only plot the values

for the equilibrated a posteriori error estimator for k = 20, 50 in Figure 5.15, whose values we
have demonstrated in the previous experiments should match well with those of the true error.
For the initial mesh construction we take the rather large value Cres = 2; hence, we observe
a pre-asymptotic region for the convergence, which in case of hp-refinement is longer than for
p-refinement. Due to this, hp-refinement leads to a higher number of degrees of freedom for
the same accuracy than p-refinement. However, both p- and hp-refinement lead to exponential
convergence of the a posteriori error estimator. The two final hp-refined meshes are displayed in
Figure 5.16. In particular, for k = 50 we observe that the polynomial degree is higher closer to
the beam than further away from the beam towards the upper left and lower right corners of the
domain.

6 Conclusion

We have presented an equilibrated a posteriori error estimator for the indefinite Helmholtz prob-
lem based on a non trivial extension of the unified theory for the elliptic problem using a shifted
Poisson problem. We have shown that the presented error estimator is both reliable and efficient,
providing that the equilibrated flux and potential reconstructions are suitably chosen. We have
provided several numerical experiments which verify that, after escaping the pollution regime,
the a posteriori error estimator is efficient and reliable. In contrast to a residual based a posteriori
error estimator, we demonstrated that the presented error estimator is robust in the polynomial
degree.

Note that the analysis for the potential reconstruction in Section 4.2 is a purely 2D argument.
A different analysis approach for the 3D case has recently been proposed in [13], together with
the extension of the 2D stability result of [4]. Therefore, a potential extension of this current
work would be to consider the three dimensional case.
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a posteriori bounds for Laplace eigenvalues and eigenvectors: conforming approximations.
SIAM J. Numer. Anal., 55(5):2228–2254, 2017.

[6] E. Cancès, G. Dusson, Y. Maday, B. Stamm, and M. Vohraĺık. Guaranteed and robust a
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