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Abstract

We first propose a hybridizable discontinuous Galerkin (HDG) method to approximate the
solution of a convection dominated Dirichlet boundary control problem. Dirichlet boundary
control problems and convection dominated problems are each very challenging numerically
due to solutions with low regularity and sharp layers, respectively. Although there are some
numerical analysis works in the literature on diffusion dominated convection diffusion Dirichlet
boundary control problems, we are not aware of any existing numerical analysis works for
convection dominated boundary control problems. Moreover, the existing numerical analysis
techniques for convection dominated PDEs are not directly applicable for the Dirichlet boundary
control problem because of the low regularity solutions. In this work, we obtain an optimal a
priori error estimate for the control under some conditions on the domain and the desired state.
We also present some numerical experiments to illustrate the performance of the HDG method
for convection dominated Dirichlet boundary control problems.

1 Introduction

Let Q c R? (d = 2,3) be a Lipschitz polyhedral domain with boundary I' = Q. We consider the
following Dirichlet boundary control problem:

. 1 0l
min J(y, u) = >y — yalZeq) + 2lulBagy, 7 >0, (L1)
2 2
subject to

—eAy+V-(By)+oy=f inQ,

1.2
y=u onl, (12)

where f € L?(Q),e < 1, and we make other assumptions on 3 and ¢ for our analysis.
Researchers have performed numerical analysis of computational methods for Dirichlet bound-
ary control problems for over a decade. Many researchers considered the standard finite element
method and obtained an error estimate for the optimal control of order h® for all s < min{1,7/2w},
where w is the largest angle of the boundary polygon; see, e.g., . Apel et al. in con-
sidered special meshes and obtained an optimal convergence rate with s < min{3/2,7/w — 1/2}.
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Some mixed finite element methods have also been used for Dirichlet boundary control problems
because the essential Dirichlet boundary condition becomes natural, i.e., the Dirichlet boundary
data directly enters the variational setting. In [22], Gong et al. used a standard mixed method to
obtain an error estimate for all s < min{1, 7/2w}. Recently, we used an HDG method to obtain an
optimal convergence rate for all s < min{3/2,7/w — 1/2} without using higher order elements or
a special mesh [30]. Moreover, the number of degrees of freedom are lower for HDG methods than
standard mixed methods.

All of the above works focus on Dirichlet boundary control of the Poisson equation. However,
Dirichlet boundary control problems play an important role in many applications governed by
more complicated models, such as the Navier-Stokes equations; see, e.g., [21,24-27]. In order
to work towards numerical analysis results for more difficult PDEs, one essential and necessary
step is to fully understand the convection diffusion Dirichlet boundary control problem. Benner
and Ytcel in [4] used a local discontinuous Galerkin (LDG) method and they obatined an error
estimate for the control of order O(h?®) for all s < min{1,7/2w}. Also, very recently, we proposed
a new HDG method to study this problem and obtained an optimal convergence rate O(h*) for all
s <min{3/2,m/w — 1/2}; see [23]29] for more details.

However, the previous works only approximated solutions of convection diffusion Dirichlet
boundary control problems in the diffusion dominated case. They did not consider the more
difficult convection dominated case, i.e., ¢ < |3|. Even without the Dirichlet boundary control, so-
lutions of convection dominated diffusion PDEs typically have layers; therefore, designing a robust
numerical scheme for this problem is a major difficulty difficulty and has been considered in many
works; see, e.g., |7,[19L32,/38] and the references therein. Discontinuous Galerkin (DG) methods
have proved very useful for solving convection dominated PDEs; see, e.g., [6,9/12}13,/16,33,41] for
standard DG methods and [20,31] for HDG methods. For more information on HDG methods; see,
e.g., |10L|11}/14}/15,/17,(18L39}40]. Moreover, there are some existing convection dominated diffusion
distributed optimal control numerical analysis works; see, e.g., [3,28,34]. However, the techniques in
the above works are not applicable for convection dominated Dirichlet boundary control problems
since the solutions of (1.1)-(L.2) frequently have low regularity, i.e., y € H I+s(Q) with 0 < s < 1/2.

Formally, the optimal control u € L?(T") and the optimal state y € L?(Q2) minimizing the cost
functional satisfy a mixed weak formulation of the optimality system

—eAy+V-(By)+oy=f in Q, (1.3a)

y=u on T, (1.3b)

—eAz =V -(B2)+(V-B+o)z=y—ys inQ, (1.3c)
z2=0 on T, (1.3d)

yu—eVz-n=0 on I (1.3e)

In this work, we use polynomials of degree k to approximate the state gy, dual state z and their
fluxes ¢ = —eVy and p = —eVz, respectively. Moreover, we also use polynomials of degree k to
approximate the numerical trace of the state and dual state on the edges (or faces) of the spatial
mesh, which are the only globally coupled unknowns. The HDG method considered here is different
from the HDG method we considered for convection diffusion Dirichlet boundary control problems
in [231]29]. A major difference is that the HDG method here has a lower computational cost.

In we obtain an optimal convergence rate for the optimal control in 2D under certain
basic assumptions on the desired state y4 and the domain 2; specifically, we prove

|u—upllr < Ch?, (1.4)
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for all s < min{3/2,7/w —1/2}, and the constant C' only depends on the exact solution, the
domain and the polynomial degree. To prove the estimate , we cannot use the numerical
analysis strategy from [4,2329] because the constants in their error estimates may blow up as
€ approaches zero. In order to obtain the estimate with the constant C' independent of ¢,
we follow a strategy from [20] and use weighted test functions in an energy argument. However,
the techniques used in [20] are not directly applicable for solutions with low regularity. Moreover,
unlike all the previous Dirichlet boundary control numerical analysis works, we only assume the
mesh is shape regular, not quasi-uniform. We present numerical results in to illustrate
the performance of the HDG method.

2 Optimality system, regularity and HDG formulation

We begin with some notation. For any bounded domain A C R? (d = 2,3), let H™(A) and

H{*(A) denote the usual mth-order Sobolev spaces on A, and let || - || 4, | - [m,a denote the norm
and seminorm on these spaces. We use (-,)m a to denote the inner product on H™(A), and set
(,)A == (-,-)o.a- When A = Q, we denote || - ||m == || - |lmq, and | - |;m = | - |m.q. Also, when A is

the boundary of a set in R?, we use (-,-)5 to replace (-,-)x. Bold face fonts will be used for vector
Sobolev spaces along with vector-valued functions. In addition, we introduce the following space:

H(div,A) := {v e [L*(A)]?: V- v € L*(A)}.
We now present the optimality system for problem (|1.1])-(1.2)) and give a regularity result.

2.1 Optimality system and regularity

Throughout the paper, we suppose (2 is a convex polygonal domain, and let w € [7/3,7) denote
its largest interior angle. The optimal control u is determined by the optimality system for the
state y and the dual state z. For the HDG method, we use a mixed formulation of the optimality
system; therefore we introduce the primary flux ¢ = —eVy and the dual flux p = —eVz. The
well-posedness and regularity of the mixed formulation of the optimality system is contained in
the result below. The proof of is omitted here since it is very similar with a proof of a
similar result in [29].

Theorem 1. If y; € H'(Q) for some 0 < t* < 1, 0 € L=®(Q) N HY(Q), f = 0 and the velocity
vector field 3 satisfies

Be[L®)? V-BecL>®Q), o+ lv -B>0, VV-B¢c[L*Q)] (2.1)

then problem (L.1)-(1.2) has a unique solution u € L?(I'). Moreover, for any s > 0 satisfying
s<1/24t* and s <min{3/2,m/w —1/2}, we have

(u,q,p,y.2) € H*(T) x H*"3(Q) x H* 3(Q) x H* 3(Q) x (H*"2(Q) N H (),

is the unique solution of

e Mg, ")~ (y,V T+ (u,7-n)r =0, (2.2a)
(V- (g + By), w)a + (oy, w)a = 0, (2.2b)

e (p,m)a — (2,V-1)a =0, (2.2¢)

(V- (p—B2),w)a+ (V:B+0)y,w) = (y — ya, w), (2.:2d)
(yu+p-n,v)r =0, (2.2¢)

for all (r,w,v) € H(div,Q) x L?(Q) x L*(T). Furthermore, we have Ay € L?().
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2.2 The HDG formulation

Let 7n, = U{T'} be a conforming simplex mesh that partitions the domain Q. For any T € T}, we
let At be the diameter of T" and denote the mesh size by h := maxrc7;, hr. Denote the edges of
T by E, let &, be the set of all edges F, let 5;? be the set of edges F such that £ C I, and set
Ep =&\ 8,? . Let hg denote the diameter of E. The mesh dependent inner products are denoted
by

(w,U)Th = Z (w,v)r, <C’p>87'h = Z <C7p>8T :

TeT TeT

We use V and V- to denote the broken gradient and broken divergence with respect to 7. For an
integer k > 0, Px(A) denotes the set of all polynomials defined on A with degree not greater than
k. We introduce the discontinuous finite element spaces.

Vi i= {v € [L2()]? : v|r € [PR(T)])%, VT € T},
Wi, := {w e L*(Q) : w|p € Pr(T),VT € Ty},
My = {p € L*(&,) : plg € Pu(E),YE € &, and u|r = 0},
M = {n € L*(&]) : ple € Pe(E),VE € &},
In our earlier works [23}29], we used a Py local space for the spaces W}, and Mp,. In this work,
we use polynomial degree k for all spaces. Since the globally coupled degrees of freedom depend
on the space M}, the computational cost of the HDG method in this paper is much lower than the
HDG method in [23,29].

The HDG method for mixed weak form of the optimality system (2.2)) is to find (qn, Yn, ., Phs 2n, 25> Un)
€ [V, x Wy, x M7)? x M,‘? such that

e an, ) — (. V1), + (G5 mh - o, = —(un, T 1) g, (2.32)
for all r,, € V3,

— (wp, V- qn)7, + (W7, qn - n)aT;, — (T1(yn — Up)> wn — Wy) 75,
+ (yhvﬂ : th)'rh - (Z//\fowﬁ ' nwh)@Th - (Uyh,QUh)’Th (23b)
= _(fa wh)Th - <(Tl - /6 . ”)Uh>vh>gga

for all (wy, w)) € Wi, x My,
e Pn i) — (21, V i) + (ZR TR - m)aT, =0, (2-3c)
for all rp, € V3,

— (wn, V- pr) 7, + (Wh, P - M) o7, — (T2(28 — Z) T3, Wh — Wh)aT;,
— (20, B - Vwp) 7, + (21, B - nwp)ar, — (0 + V- B)zp, wp) 7, (2.3d)
= —(Ynh — Yd> Wh)T;»

for all (wp,wy) € Wy, x My,

(yun + pr - m+ 2z — 25), @f).0 = 0, (2.3¢)
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for all {62 eM ,‘? . Here, the positive stabilization functions 7 and 7o are chosen as

1 _
Tilor = 18- nllo,ccor + 58 -1+ ehy!, (2.3f)
1 _
molor = |8 - 0,000 — 55 ‘n+ehp'. (2-3g)
To simplify the presentation later, we define
T + To _
=08 16 nlosor + hr (2.3h)

2.3 A compact formulation

To simplify the notation, for (gn,yn, ¥y},
Dhs Zhs 25y Thy W, WY) € [V, x W, x MP]J3, we denote
Bi(qn, Yn, Yp; Thy wh, W)
= an,m)7 — (Wn, V)7 + (U5, T - Mo,
— (wn, V- qn)7, + (W), @n - m)o, — (T1(Yn — Uh), wn — W),
+ (yn, B - Vwn)7, — (Up, B nwn)or, — (Y, wi)T,, (2.4)
Ba(phs 2hs 23 Ty Why W)
= pnrr)7, — (20, V1) 7 + (25,70 - o,
— (wn, V- )7, + (@h, pr - Mo, — (T2(2n — ), wn — Wp) o,
= (2, B - Vwp) 7, + (21, B - nwp)or, — ((0 +V - B)zn, wh)T,- (2.5)

Then we can rewrite (2.3)) as follows: find (gn, Yn, U3, Phs 2n, 20, un) € [Vi x Wy, x MP)? x M,‘?
such that

Bl(qhayhu/y\z;rluwl)ﬁ;?) = _(f)wl)'rh - <Uh,’7'2w1 + T - n>$€7 (263)
Ba(ph, zn, 2 T2, w2, W3) = —(Yn — Yd, W2)7;,, (2.6b)
(pn - m + T2z — 27), W), o = <’7uh,@2>527 (2.6¢)

for all (rl,wl,wl,rg,wg,wQ,wh) Vi, x W, x M7)* x M,‘?.

The following basic result, which is similar to results in [23,29], is crucial to the proof of the
well-posedness of the discrete optimality system —, and is also a very important part of
the final stage of numerical analysis (see the proof of .

Lemma 1. For all (gy, yn, U3, Th, wh, @3) € [V, x W), x M?]?, we have
Bi(an, Yn, Yi; Thy Wh, W) = Ba(Th, Wh, Whs Gh, Yn, Ui)- (2.7)
Proof. Using the definitions in - and integration by parts give
Bi(gn; yn, Up; Thy wh, Wy) — Ba(Th, wh, Wh; G, Yn, Yp)
—(T1(yn — Y3), wn — Wh)or,
i)

+(72(yn — Yp)s wn — WY)oar,

+(yn, B - Vwn)T, — (Uh, B - nwp)oT, — (0Yn, wh)T,

+(w B Vyn), — (Wh, B-nyn)ar, + (0 + V- B)wn, yn)7;,
—(B - n(yn — Up), wn — Wp)oT,

+<yh7 “nwp)o, — (Yh, B nwn)or, — (Wy, B - nyn)or,

Il
o

)
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where we used (3 - n,y,w7)s7, = 0. This proves our result. O

3 Stability

To perform the stability and error analysis for the convection dominated boundary control problem,
we need to assume some conditions on the velocity vector field 8 and the effective reaction function
- 1

og:=0+5V-0.

(A1) ¢ has a nonnegative lower bound, i.e,

= inf 5 > 0. 3.1
0 2 2 3

(A2) B has no closed curves and

|B(x)| # 0 for all x € Q.

(A3) e< minTeTh{hT}.

We note that we have already assumed (A1) in [Equation (2.1) in [Theorem 1} We repeat the
assumption here to highlight it. Also, since we are interested in the convection dominated case,
(A3) is a reasonable assumption. As shown in |2|, assumption (A2) implies for any integer k£ > 0,
there exists a function ¢ € W*+1:°°(Q) such that for all € Q, we have

B-Vi > 28 >0, (3.2)

where By := ||B|lo,co/L and L is the diameter of 2. We use assumption (A3) in the analysis to
remove the assumption on the meshes. Specifically, in the proofs of [Lemma 11| and [Lemma 15|
we use assumption (A3) and a local inverse inequality to replace a global inverse inequality that
has been used in all previous Dirichlet boundary control works. Therefore, we only assume {7} is
a conforming simplex partition of 2. All previous works on Dirichlet boundary control problems
required a conforming quasi-uniform mesh. In the future, we hope to performed an a posterior:
error analysis for the convection dominated boundary control problem.

Remark 1. If 0g > 0, then assumption (A2) is the minimal known requirement that can be used
to establish stability and error analysis results for numerical methods; see, e.g., [2,[20]. If instead
oo > 0, then we don’t need to assume (A2) and the numerical analysis is less technical. Specifically,

we don’t need to prove below if oy > 0.

3.1 Preliminary material

For any nonnegative integer j, we define the L2-projections 117 and H? as follows: for any T € T,
EcCoT,veL*T), qc L*(E), find %0 € P;(T) and H?q € P;j(E) satisfying

(v, wj)r = (v,w;)r, Yw; € Pi(T), (3.3a)
(%q,rj) = (a.7j)e, Vrj € P;(E). (3.3b)
We also define ﬁ‘z as

=9 H2|E¢ E e 6}?7
sz‘E = 9
0, Ecé&.
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Then ﬁg is an operator mapping L?(&) to Mp.
We first give an approximation property from , Theorem 4.3.8, Proposition 4.1.9], and then
we prove the basic stability and approximation properties for L? projections.

Lemma 2. Let m > 1 be an integer. For any 7' € Tp,, v € H™(T) and integer s satisfying
0 < s < m, there exists I,;,—_1v € Py,—1(T) such that

v = Lp—1v|s 7 < Chip™%|v|m 1, (3.4a)
[0 = In—1v[l0,00,7 < Chr|v]1,00,7- (3.4D)

Lemma 3. Let s be a real number. For any nonnegative integer j, let m be a real number satisfying
3<m<j+1andlet ¢ €{0,1}. For all T € T, E € &, it holds

%v|; 7 < Clvljr, Vv € H(T), (3.5a)
o) p < [lolle, Vo € LX(E), (3.5b)

lv = 15v[s 7 < Chy™*|v|m,T, Vve H™(T), 0 < s <m, (3.5¢)
v = TI80r.007 < Chi 01 0o s Vo € Whe(T), (3.5d)
o = T0]s 07 < CR " 0], Yve H™T),0<s+1<m, (3.5¢)
lwllor < Chy'?|wl|r, Yw € W, (3.5¢f)

Proof. |[Equation (3.5a)| follows from [Equation (3.5¢)} [Equation (3.5b)| follows from the definition
of L? projection; [Equation (3.5e)| follows from [Equation (3.5¢)|and the trace inequality; and
m follows from the trace inequality and inverse inequality. The only thing left is to prove
[Equation (3.5¢)| and [Equation (3.5d)}

For [Equation (3.5c)] in view of [Equation (3.4a)] an inverse inequality, and the fact that
1500, < [[v]fo,r, for 1 <m < j 41 we have

v —jvls7 < |v = Ip—1v|s7 + Im—1v — 0[5 1
— |v — Imfl'U|s,T + |H§(Im,1v — v)|57T
<|v = Ip—1v[s + Chp® (|15 (Ip—1v — v)

0,7
S \v — Im—1U|5,T -+ Ch;SHIm_lv — 'UHO’T
< Chy™*[|vllm, -

As for [Equation (3.5d)}, ¢ = 1 is obvious and therefore we set £ = 0. By a standard scaling argument,
the following stability result holds:

ITT50][0,00.7 < Cllvllo,00,7- (3.6)
By an inverse inequality, (3.6)), and (3.4b|) we get
[0 = 1Igvllo,co,r < [[v = Tov]j0,00,7 + [Hov — gvll0,00,7

= |lv = Lov|lo,00,r + [[TI5(Lov — v)][0,00,7
< Cllv — Ipvl|0,00,7
< Chr|v|i 00,1
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In addition, we have the following super-approximation results; a similar result can be found
in [2].

Lemma 4. Let T € Ty, E C OT. Then, for any uj, € P(T) and n € W1°°(T), there holds:

lmun — I (nun)llr < Chr|nlso,rllunllr, (3.7a)
[nun — g (nup) i < Cnleor|lunlT, (3.7b)
lnun — T (qun)lloz < Chyl? [0l oz |lunllz. (3.7c)
Inun, — T (nup) |E < Chr|nl1so.r|un & (3.7d)

Proof. We notice that (3.7¢) follows from (3.7a)), , and the trace inequality. Next, for j €
{0,1}, we have

[nun — TR (up)ljr < [nun — X0G0)un|jr + [(T5n)un — TZ(nup)ljr

= |(n — 1gn)unljr + g (TIG0)up — nup)ljr
< C|(n — 1gn)unljr by (3-54)),
< Cln —1I§n|j,00llun |7 + |11 — TIg0l0,00 | unlj,r

< Chy 1,001

‘uh”Tv by (3.5d)).
This proves (3.7a) and (3.7b]). Similarly, for E C 9T, we have

lun = T2 (nun) | < llpun — (Tgn)unl| e + 1 (TI§n)up — T (un )| 2
= ||(n — Ign)unl| e + IR ((LEn)un — nun) || e

< Cl[(n = 1gn)uslle by (3.5h),
< Clln — gnllo,co,rllunl
< Chrnlicorllunlle by (3.5d).
This proves (3.7d]). O

For the analysis of the low regularity case, we need the following result from [35]:

Lemma 5. If £ > 1 is an integer that is large enough, then there exists an interpolation operator
Ig - Wy, x Mg — HE(Q) NP7, such that for all (wy, @5, vs, 07) € [Wy, x M{]?, for all T € T;, and
for all E € &, we have

(Z5, (wh, W), vr)T = (W, vR)T, (3.8a)
(T (wn, @), 35) & = (@7, 07) (3.8D)
IVZi o, @), < € (IFwnll + 0" wn = @)llos ) (3.8¢)
C ~0 —1/2 ~0
lwn = Zi(wn, @), < Ch ([Vwnliz + g = @) o ) (3.80)

where ,;Chr@ = {wp, € L%(Q) : wi|r € Prye(T), VT € Tp,}.

3.2 Proof of the stability of (2.6

Next, we present the stability of the above HDG method for the convection dominated Dirichlet
boundary control problem. We follow a similar strategy to [2,/20]. We first collect some basic
equalities and inequalities, which are used frequently in our paper.
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Lemma 6. For all (wy,, ;) € W}, x My, we have

1 1
(wh, B - Vwy)7;, = §<ﬁ - MW, Wh) T, — §(V - Bwp, Wh) T, 5 (3.9a)
I 1 5 ~0
5([3 MW, Wh)aT;, — (Wh, B - nwp)aT, = 5(5 -n(wy, — Wy), wy, — W})aT;, 5 (3.9b)
lwnllF;, < CIVwallz, +C Y by llwn — @157 (3.9¢)
TeT,,

The identity (3.9a]) can be obtained by integration by parts and the proof of (3.9b)) follows from
the fact (8- nwy,w;)s7;, = 0. For the last inequality (3.9¢), we refer to [39, page 354] for the proof.
Next, we define some seminorms:

Definition 1. For all (gn,yn,y;) € Vi, x Wy, x M}, define

1Cn, Ty = ellVumllT, + 1772 (o = T N37, + 15" 2yl (3.10a)
(s T = el Vumll, + 1772 (wn = GI37 + 150 + )yl (3.10b)
1Cans yms Ty = &~ llanliF, + 1o T2 5y (3.10¢)
1(ans yn GI* 2= e llanllF, + 11 Cyns BRIy - (3.10d)

It is easy to see that the seminorm ||(-,-)||;; is a norm since Sy > 0, hence [|(-,-,-)|| is also a
norm. To prove the seminorms ||(-, )|y, and ||(-, -, -)||,, are norms, we just need to show ||(-, ) |lyy 4
is a norm.

[

Lemma 7. ||(-,)lly,, is a norm for the space Wy, x M.

Proof. Tt is obvious that we only need to show that ||(yx,¥})l},, = 0 implies ¥} |r = yn = 0. This
is true because yy, is piecewise constant on Tj, and y, = yj, on &; therefore, y, = ¥ are constants.
Since yp|r = 0, we have y;, =7}, = 0. O

Lemma 8. (Stability in weak norm) For all (gp,yn,7}) € Vi x Wy, x My, the following stability
results hold:

0. N
Bl(Qh, Yhs Yps Th, Wh, ’UJZ)

sup — > C|(qn, YY)l » (3.11a)
(Phywp, W) EV), x Wi, x MP H(Th,wmwh)Hw
Ba(qn, yn, U5 Thy wh, 05,
sup (G 0 570 00 B8) 5 g, g, ) (3.11D)
(Phywp, W) EV), x Wi, x MP H(Th,wmwh)Hw

Proof. We only prove the first inequality; the second can be obtained by the same argument. First,
let (7p,, wn, W)) = (qn, —Yyn, —y;,) in the definition of By in (2.4) to get

Bl(‘]h,yh»@\z;(lh,—yha _37;)1)
= lanlls + (r1(yn — T5).yn — T5)oTs
— (Yn, BVYn)7 + W5, B - nyn)oT, + (0Yn, yn)T;,

= lanlly, + 71y — T)s v — Ti)om,

1 1
(B - nyn, yn)ot, + Un, B - nyn)or, + (0 + SV B)yn, yn)T,, by (3.9a)),

)
= anl% + (ri(yn — T7) vn — Ti)om
1 1
= 58 1(yn = Yi)syn — Yn)om, + (0 + 5V - B)yn, yn)7, by (3.9b),
_ 2 _
= M lanll7, + V7w = T, + 16" unll7 by B1).  (3.12)
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Next, let (7p, wp, w5) = (€Vyp,0,0) to get

Bi(an, yn, U5 €Vyn, 0,0)
= (an, Vyn)1, — €Wn, V - Vuyn)7, + @1, Vyn - n)oT,
=&Vl + @5 — yn: Vyn - n)or, + (an Vyr)7,

> <[ Vynlly, — 20255 = nllome IVl — gl Vol
e —
> SIVunl, — Collr 2@ — v) 3, + = lanl), (3.13)

where C is a fixed positive constant. The definitions of ||(-, -, )| in (3.10d)) and ||(-,-,-)]|,, in (3.10c))
imply

1(eVyn, 0,0)[ = 1(eVyn, 0,0)[l, < Cll(qn, yn, i)l - (3.14)

Finally, we take (rp,wp, w}) = (% + Co)(qn, —yn, —¥;) + (€Vys,0,0) to obtain

~0. ~0
Bl(qh7 Ynh, Yps Th, Wh, wh)

1
z5 (> yn T3 |12, by (3.12) and (3.13),
= Cll(an, yns Uil (s wn, W)l by (3.14). (3.15)
This completes our proof. O

For later use, by (3.14)), for any (qn,yn,y;,) € Vi x Wi, x My, we have

[(rns wn, Wy) | < Cll(qn, yns Yl + [1(€VYR, 0, 0) [ < C'll(gn, yn, yi) |l - (3.16)

Remark 2. The existence of a unique solution to the HDG discretization of the optimality
system now follows similarly to [29]; we omit the details. Also, to obtain the L? error estimates
for the state yp, is not sufficient since the effective reaction term /2 can equal zero at
some points; therefore, it is possible for the term ||c/2yy| 7, in the definition of I (an, yn, U7)ll,, to
equal zero for some yj,. Therefore, we need a refined analysis technique to derive a strong stability
result that contains the norm ||y ||7;, -

Theorem 2. (Stability in strong norm) If assumptions (A1) and (A2) hold, then there exists hy,
independent of €, such that the following stability results hold: for all (gn, yn,y;) € Vi x Wi, x My
with h < hyg,

0. N
Bl(qfw YnsYp> Th, Wh, w;)L)

e — > C |l (gn, yn, ) (3.17a)
(T, Wk, W )EVE X Wi X MY H(r]“wh’wh)H
Ba(qn, yn, U3 T, wh, W5,
sup L. 0 i T R > O qnm B (3.17b)
(Th, Wk, W )EVE X Wiy X MY H(Th7wh7wh)H

Proof. We only prove (3.17a)), and we split the proofs into two steps.
Step 1: Let ¢ € W1°(Q) satisfy (3.2). We take

(’I"h,wh,ﬁ)\Z) = (rl,wl, I/U\l) = (0, —efwyh, —efw/y\,';) (318)

10
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in the definition of B; in (2.4) to obtain

Bl(‘]hayhﬂ//\z; 1, W1, ﬁ}l)

=Yy, V-an) 7 — eV, an-n)or] + (T1(yn — T3), e ¥

yn — e T)om,

+ [~ (yn, B- V(e YY) 7, + @5 B e Yyn)or] + (oyn. e Yyn)T,
=51+ 5+ 53+ S4.
Next, we estimate {S;}_; term by term. First,
—(V(e ™ yn), an) T, — (e V(T — yn), an - Mo,
—(ynVe ™ + e Vuyn, an) 7, — (e VT — yn), qn - o,
< 0(61/ lynll7, + €2 IVunllm + 17 72@5 — yn)llom)e ™ 2 lanll 7
< CEV2|Vynllg, + 17 2@5 — yi)llor e 2 llanllT, by (3.9¢),
< C N Wns i)l e 2| anll7, by (3.104)),
< C|[(an, yn, T2, by (3.10c]).

Second, to estimate the term Sz, let ¢ = ™% in ([3.9a) to obtain

—(yn, B~ V(e Yyn)) 7 = %(V - Be Yy, yn) T, + %(yhae_wyhﬁ V)T,

1 _
- 7<yh713'n€ ¥

5 Yh)oT;, -

Hence,
Sy = —(yn,B- V(e Yyn))7 + (U, B e Vyn)or,
1 _ 1 _
= i(v - Be Vyn, yn)T, + §(yh7€ YynB - V)1,

1 _ _
— —(yn, B ne Vyn)or, + (5, B me Vyn)or,

2
= %(V - Be” Y yn, yn) i + %(e_wﬂ -Vyn, yn) 7,
— A8 e — 5. vn — Thor, by (E31).
%(V Be Yyn, yn) 7, + (Boe Yy, yn)T, by (3.2),
— 508 ne i — ), v — o

Therefore, by the definition of 7 in (2.3h]), there exist a positive constant Cy such that
le™"2(Bo +0)2unlF, + e 272 (yn — ) 137,
Coll(Bo + &) yn |5

\Y]

S+ S35+ 5y

\Y

This implies that there exist positive constants C; and Cy such that

Bi(gn, yn, G5 1, w1, @1) > C1[(Bo + ) 2ynli% — Co ll(an. yn. 512 - (3.19)

11
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Moreover, we have

(e wn, @0)l” = [0, ¢ Pyn, —eV53)| by (B19),
= | V(e Yy %, + 172~ (yn — T3,
+11(Bo +0) eV ynl, by (3-10d),
< Cl(an, yn, T by (3:99), (3.20)

where we used V(e %yp,) =y, Ve ¥ +e d’Vyh in
Step 2: Let R} =1 —II} and Rg =1- Hk, Where JI is the identity operator. We take

(Ph, wh, @) = (72, w2, D) = (0, RY(e Yyn), R (e7T)) (3.21)

in the definition of B; and use the orthogonality properties of IIf, and ﬁg, integration by parts, and
7L =794+ (3 -n to get

Bi(an, yn, Yp; T2, w2, W2)
—(R(e™"yn), V - qh)n + (R ‘w“’) qn - Mo,
—(m1(yn — Up), Ri(e” yn) — Rk( Yp))ot,
+ (Yn, B~ VR}(e™ wyh)) 7, = (U B - nRY(e™Vyn))ar, (3.22)
— (oyn, Ri(e Pyn))T,

The definitions of II7 and ﬁg in (3.3) imply

(Re(e™Yyn), V- aqn)7, =0, and (R(e "T7).qn n)or, = 0.
Next, integration by parts gives

(yn, B - VR (e Py, ))n
= (B nyn, B (e Yyn))or, — (BVyn, Ri(e " yn)) 7 — (V- Byn, R (e Yyn)) T,
= (B-n(yn — T), Ro(e yn))or, + (B - gy, RY(e Vyn))or,
— (B Vyn, B2 (e Yyn)) 7, — (V 'ﬁymRZ(e*w Yn)) T,
= (B-n(yn — T5). R Yyn) — RU(e YT or + (B nlyn — T7), RL(e YT)om
+ (8- ngp, RY(e Yyn))or, — (B - Vyn, RY(e Y yn)) 7, — (V - Byn, RY(e™Yyn)) 75, -

Using 1 = 72 + B - n along with (3.22)) and the above equalities give

Bi(an, yn, Yp; T2, w2, W2)
= —(ra2(yn — T), Bi(e Vyn) — RY(e™T)) o,
+ (yn — U5 B RV T)om — (B Vyn, Ry(e Vyn))T,
— (6 + V- B)yn, Bee Yun)T,
— T + Ty + Ts + . (3.23)

12
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Before we estimate {T;}%_;, we first define RY =1 — TI{ and estimate the following term:

(RS (e™un) — RY(e™ 7o) 137,
<> (IR w3 + IR0 137 )

TeT
<C > (hrllynlF + hzllyn — T3ll57) by 379 — B.74d),
TET

< CR?|lyn = U537, + Chllynll7,

Therefore,
T3] < CR? |72 (yn — G137, + Chll(Bo + &)yl 7.

Next, by the definition of Rf, we have

Ty +Ts+ Ty = (B Vyn, Ry(e ™ un)) 7 + (un — U5, B nRU(e VT
— (0 + V- B)yn, RY(e V)T,

= (R§(B) - Vyn, R3(e yn)) 75, + (yn — T3, B - nRI(e G0 om,
(

+ (0 + V- B)yn, Ry (e Vyn)).

Hence,
1/2
To+ T3+ To < C | Y h3|Vunllz | Rllysllz by (8.7a),
TeT),
1/2 1/2
+C D lyn —T0ll3r > Wi lunllar by (3.7d),
TETy, TeT,
+ Ch([1Bll1,00 + 15 ]l0.00) lyn 17, by (3.74),

< Chl|(Bo + &) Punll T, + 172 (yn — T2 37,
From ([3.23)), (3.25)) and (|3.26]), we get
Bl(qhnyh?g//\z; T2, w?vﬁ)\g) Z *C3hH(BO + 5-)1/23/}1”% - 04 ”(qhvyha Z//\Z)Hi,
Using (3.24]), we have
(2, wa, @)1 = | (0, B e ), B 50)|

= | VR (e yn)lIT, + H(Bo +0) eVl
+ T2 (R (e ) = BT 3,

< C|(gn yn. )17 by (3.99).

By (3.16)), there exists a (rg, wo, w§) € Vi, x Wi, x My such that

Bl(Qh,yha%§T0aw0,@8) Z ”(Qh,?/ha@\z)”i},
(7o, wo, W5) || < C | (@ns yn Uil -

13
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Take h small enough so that we have Csh < (/2. Set C, = C1 4+ Cy + Cy and
(’I‘h, W, @2) = C*(’r’o, wo, 1/1)\8) + (7‘1, w1, 1/13(1)) + (T'Q, w3y, 1/13(2)) (330)

By (3:19), (3:27) and (8:29), we get
By(@h, s U5 mh i @) > C (@, yns GNP = C ll(@n, ya T - (s wn, @F))

which implies (3.17a)). O

4 FError analysis

Next, we perform a convergence analysis for the convection dominated Dirichlet boundary control
problem.

4.1 Assumptions and main result

Throughout, we assume 2 is a bounded convex polyhedral domain. Therefore, in the 2D case the
largest interior angle w satisfies 7/3 < w < 7. Moreover, we assume the velocity vector field 8 and
o satisfy

_ 1
Bel[C)LV-BeL®N),o+ 5V B=20,VV-Be [L2(Q))% 0 e L®(Q) NHY(Q).  (4.1)
We assume the solution has the following regularity properties:
yeH™Y(Q), 2€H™(Q), qe[H(Q) pelH™Q), (4.2a)
ry>1, r,>2, rg>0, 1rp>1 (4.2b)

In the 2D case, guarantees this condition is satisfied.

It is worthwhile to mention that if g has a well-defined boundary trace in L*(T'), i.e., 74 > 1/2,
then we refer to this as the high regularity case for the boundary control problem; otherwise, if
rq € [0,1/2], then we say this is the low regularity case. In 2D, by if yg € H" (Q) for
some t* € (1/2,1), and 7/3 < w < 27/3, then we are guaranteed to be in the high regularity case.
However, if one of the above assumptions concerning y4 or w is not satisfied, then q is no longer
guaranteed to have a well-defined boundary trace.

For the diffusion dominated boundary control problem, we gave a rigorous error analysis of a
different HDG method for the high regularity case in [29,30] and for the low regularity case in |23].
In this work, we are interested in the convection dominated case. However, existing numerical
analysis works for convection dominated diffusion PDEs only consider the high regularity case; see,
e.g. [2,20]. To the best of our knowledge, there is no existing error analysis work on convection
dominated PDEs with low regularity solutions.

We now state our main convergence result.

Theorem 3. Let s, = min{r,,k + 1}, s, = min{r,, k + 1}, (u,y, 2) and (un, yn,
zp) be the solutions of ([1.3) and (£2.3), respectively. If assumptions (A1)-(A3) hold, then there
exists hg, independent of ¢, such that for all h < hy we have

lu = unllep < € (B2 ylls, + B2 20ls, + 8(s,)e" /R Ayl )

Iy = wnllz; < € (B2 )yl +ho=1 22, + 8(s,) 2hl| Ayl )
e = 2ullm < C (B2l + 1572 2l + (520 Ayl )

)

where 6(t) = 1 if £ < 3/2, otherwise d(¢) = 0.

14



An HDG Method for Dirichlet Boundary Control of Convection Dominated Diffusion PDE

Remark 3. If s, < 3/2, then we have ||Ay||7, in the error estimates. This term is finite by

Mheorem 1l

Specializing to the 2D case gives the following result:

Corollary 1. Suppose d =2, f =0, yg € H" (Q) for some t* € [0,1) and assumptions (A1)-(A3)
hold. Let 7/3 < w < 7 be the largest interior angle of T', and let r > 0 satisfy

1 3 1
r<rq:=_—-+t"€[1/2,3/2), and 7 <rq ::min{,ﬂ—}€(1/2,3/2].
2 27w 2
If kK =1, then there exists hg, independent of &, such that for all A < hy we have
r)e'?h Ayll7,),

[ = unllco < CA"(lyll gr+1r2() + 12l grrssz ) + 6(r)e
Iy — sl < O (llessragay + elessrsgay + )Rl Mgl
o + 6] Ayl

1z = znllg, < CR (1Yl gr+1r20) + 12l o2

Furthermore, if £ = 0, then there exists hq, independent of &, such that for all h < hy we have
o — unllep < CHY*(lyll sy + 120y + 50 >Rl AY 7).
ly = ynll, < CRY2 (Yl oy + 12l 0y + 6(r)e Rl Ayll7,),
12 = zall7;, < CR2 Iyl ) + 121 a1y + 5(r)e' R Ayll7).

Similar to [29,30], the convergence rates are optimal for the control when k£ = 1 and suboptimal
when k = 0. However, if y; € L?*(Q), then u € HY?(T') only and the convergence rate for the
control is optimal when k£ = 0.

4.2 Proof of [Theorem 3

We introduce an auxiliary problem with the approximate control u; in the HDG discretized opti-
mality system replaced by a projection of the exact optimal control, and split the proof into
seven steps.

We first bound the error between the solution of the optimality system — and
(qn(w), yn(w), 72 (w), pr(u), zn(u), 22(u)) € [Vi x Wy, x M?)? satisfying the auxiliary problem

Bi(qn(w), yn (w), Gn(w); r1,wi, @F) = —(fywi) 7, — (HGu, mowy + ‘n>5;’37 (4.3a)
Ba(pr(w), zn(u), Zp(u); re, we, 05) = —(yn(u) — ya, w2)7;, (4.3b)

for all (71, w1, W], T, wo, Wg) € [V, x Wi, x MP)2.

4.2.1 Step 1: errors between the auxiliary problem (4.3) and the continuous problem
(2-2)

Lemma 9. Let (q,y,p, z,u) be the solution of (2.2)). Then for all (r1,w;, W¢, re,
wg,ﬂ}\g) S [Vh x Wy, X Mg]Z, we have

By (Mg, 1y, 1y; 71, wy, @)
= (), — (W mywn + - mhgp + Fy(ag,sn, 89), (1.4

Bo(TI0p, 1192, T10 25 79, wa, @3) = —(y — Ya, w2 )7, + Ea(p, 23 w2, 03), (4.4D)

15
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where

Ei(q,y;wi,0}) = (Iy —y,B - Vwi)g, — (oI} — Dy, w1)7,
+(w] — w1, (TI3q — q) - n)or,
+(y — IRy, B - n(wy — ©9))ar,
—(m(MRy — My), w1 — @F) o7,
Ey(p, zwe, w5) = —(jz— 2,8 Vws)y, — (c(Ily —=1)(z + V- B),w2)7;
(W3 — wa, (TI}p — p) - n)or;,
—(z =10z, B - n(wy — @3))or,
—(ra(II} 2 — T} 2), wy — @3) o7,

Proof. We only give a proof of (4.4al). By the definition of B; in (2.4), one gets

+

B1(TI7q, Iy, TIly; 71, w1, @9)
= {(MRq,r1)7, — (y, V- 71)7, + ([y, 71 - m)o,
— (w1, V - T2q)7, + (@, T12q - n)or, — (m1(y — 110y), w1 — @) a7,
+ (Iy, B - V)7, — (y, B nw)ap, — (o117y, w7,
By the orthogonality properties of IT?, II7, ﬁ‘z, and the fact y = v on 5}? , we have

By(I}q, Iy, Iy vy, wy, @)
=c Ya.r)7 — (4 V)7 + (.1 n)ar, — (Mu,r1 - m)ep
+ (Y, q)7, + (0% — w1, TI}q - n)ay, — (n(MRy — TI{y), wy — @F)ar,
+ (Ry — y, B+ V)7, — Iy — y, 8- nwi)or, — (o(Ify — y), w)7,
+ (y, 8- Vwi)7, — (4, B nwi)az, — (oy, w1)7, + (Mg, B - nwi)go-

By integration by parts, and the fact (@, q - n)g7, =0, we arrive at

B1(T}q, T}y, Ty; 71, wi, @)
= g )7 + (Vy.r)7 — (Mu,ry - n)go — (w1, V- q)7,
+ (@9 —wi, (I3q — q) - m)or, — (n(IlYy — Iy), w1 — @F)ar,
- <71H2“7w1>5,§? + (Y — . 8- V)7, + {y — My, B nwi)ar,

— (V- (By), wi)7, + (B nIlfu, wi)ep — (oy,wr)7, — (0 (I} = Dy, wi)7,.

Then by the facts e g = —Vy and V- q+ V - (By) + oy = f, we have
By (T17.q, TRy, Ty; 1, wy, @)
~(fywi)7, — (Mu, 2wy + 71 - 1) gp
+ IRy —y, 8- Vwi)7, — (o(IIf — Dy, w1)7,
+ (W] wl, (Hkq q) - n)or, — (n(MRy — I{y), w1 — @F)ar,
+{y - n(wy — 7))o,

where we used (y — I19 0y, B - nw?)sr, = 0in (4.7).
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By (4.4) and (4.3) we have the following error equations.

Lemma 10. Let (q7 Y, Pz, U) and (qh(u)v yh(u)a Z//\Z(U),ph(u), zh(u)a /Z\Z(U)) € [Vh
X W X M,‘l’]2 be the solutions of (2.2]) and (4.3)), respectively. Then for all (71, w;, w9, r2,
wa, W) € [Vi, x Wy, x MF)?, we have

Bi(T12q — qp(w), Ty — yu(u), Ty — G (w); 71, wr, @9) = Er1(q,y; wi, @F), (4.8a)
Bo(IIYp — pp (), Mz — 23, (w), Iz — 25 (w); mo, wa, ©9) = —(y — yn(u), w2)7,
+ Ea(p, z;we, W5), (4.8b)

where F; and E5 are defined in

Lemma 11. Let (q,y,p,2) be the solution of (2.2). Then for all (w1, ws, W, Wg) € W), x MPJ%,
we have

Bya,yiwn, @) <C (72 glls, +0(s,)e 20l Mgl ) Nwn, @)l s (49)
[Ba(p, w00, @5)| < C b=z || (w2 @)y (4.10)

Proof. Since the proof for (4.10) is similar to the proof of (4.9)), we only prove (4.9). To simplify

notation, we write F; from [Lemma 9| as El(q,y;vh,ﬁz) = Zi:l R;. For the term Ry, since ((I —
I12)y, II§B - Vwy)7;, =0, we get

|Ba| = |((I = 1I})y, (B — TIgB) - V)T, |

1/2
< Ch*[Blicolylls, | D WElIVwrll7
TeT,
< CR*|ylls, [[will7, by (3.51),
< Chlyl[s, I(w, @T) |y by (3.10D).

For the term Rj, by a direct estimate, we get

1/2
[Ro| < Cllo |62 (T = 1)y |73l wn |7,

s 1/2
<Ch yIIUH L llls, 1 Gwr, @)y by (3.101),

<Ch8y(ﬁl/2 a6/ Myls, | (wr, @) |y
< Ch*vlylls, Il (w1, @)y -

For the term Rg3, we need a refined analysis since this term relates to the boundary trace of the
gradient of y. Below, we use ¢ = —eVy and € < minper, {hr}.
If s, > 3/2, we have

|R3| = e[(n - (Vy — I} Vy), w1 — @7)s7,|
1/2

< Chv eyl | D ehytlwr — @137
TeTh

< Chv 2y, [l (wr, @)Ly -

17
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If s, < 3/2, use (n - Vy,w{)s7, = 0 and integration by parts to obtain
[R3| = el(n-Vy,wi)or, — (n-;Vy,wi — @7)or,|
= E|(Ay7w1)771 + ( ovya V’wl)']’h - <TL ' HOV?J; w1 — ﬁ]\?>67-h‘
We use integration by parts again, and also and ) to get
[Rs| = el(Ay,wi)y, — (V- I;Vy, wl)Th + <n : HkVy7w1>8Th|
= el(Ay,w)7, — (V- IGVy, In(wy, ©7)) 7, + (0 - VY, In(wy, ©7))a7; |
= el(Ay,w)7, + (I} Vy, VIh(wlﬁ‘f))Thl-
Therefore, by the triangle inequality, integration by parts, and we have
|Rs| < el(Ay, Zn(wy, 7)) 7, + (HZVy,Ih(wlawl))Th\ +€!(Ay7’w1 _Ih(wlawl))Th|
= &|(Vy = I} Vy, VI (w1, 7)) 7| + el (Ay, w1 — Zp (w1, ©7)) 73|
< Ce (0 ylls, + Bl Ayl | (wr, @)y
< C(hPlylls, + 2R Ayll7,) [[(wr, @) gy -
For the terms R4 and Rj, use the Cauchy-Schwarz inequality and (3.2)) to get

|R4| = (B n(y — MJy), w1 — 0o, |

1/2
< OBl llyls, | D 18-l (wn — @7)l13r
TeTh

< Ch 2y, [l (wr, @9) gy

|Rs| = [(n (I, — 1)y, w1 — @F)ar; |
< Ol (85 *hM2 4 €V2) s, 1w, @)l
< Ch 2y, [l (wr, @9) gy -

From all the estimates above we get our final result. O

Lemma 12. Let (q,y,p, z) and (gn(u), yn(u), J5(w), pr(u), 2n(w), 25 (u)) € [Vi, x Wi, x M7]? be the
solutions of (2.2)) and (4.3)), respectively. If assumptions (A1) and (A2) hold, then there exists
ho > 0, independent of ¢, such that for all h < hg we have the error estimates

ly = vn (@l < € (B 2lylls, + o(s,)e /2] Ayl )

Iz = 2wl < € (B 2llls, +h5 722, + 0(s,)e 2 hll Ayl )

)
Ip— Pz, < €M (B9 gl + %2 2], + 6(s)e ] Al )
Proof. By [Theorem 2| (4.8a) and (4.9) we get

1(T10q — g (u), TI0y — yp(u), Iy — 5 (w))||

<c s Bi(IL)q — qp(w), 0y — yp(u), Iy — 55 (u); 71, wi, @F)
(w1, @9)E VR X W) X M (| (r1, wr, w7) ||
C El(q’ya vhai)\].;)

sup =5
(Tl,wl,@?)GVhXWhXM;; ||(Ir1’ Wi, wl) H

< (n 2yl + (s, 2Rl Ayl )

<

18
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Therefore,

ly — yn (w7,
<Ily = W3yll7, + 1Ry — yn(w)| 7
<|ly — Myll7, + CI(M%q — gn(u), My — yp(w), Dy — Gh(w))||
< C (R 2lyll,, + 0(s,)e" 2R Ayl ) (4.11)

By [Theorem 2| (4.8b)), (4.10) and estimate (4.11) we get

(X070 — pa(u), 1172 — 25 (w), 1172 — 25 (w)) |

<C sup Bo(TI¢p — p(u), 02 — 25 (u), 112 — 22 (u); 72, wo, W9)
C (ro,wa,@8)EV, X Wy, X M ([ (ra, w2, w3)||
<C sup EQ(p)Z;w%@g)*(y*yh(u)vw2)
C (ro,wa,@8)EV, X Wi, X M [ (72, we, w3)||

< C (B 722l + B 2yl + 8(sy)e 2Rl Ayl ) - (4.12)

Therefore, the triangle inequality gives

Iz = zn(u)ll7,
< |z = Mzl + (1172 — 2z (w7,

< Il = 1Zll7; + (B + 00) ™| (TEp — (), 1152 — 23(w), iz — Z7(w))|
< C (B2 2l + B 2y, + 8(s,)e 2R AY 7, )

Next, we use the triangle inequality, p = —eVz, and ¢ < minge7;, {hr} to get

P — pr(u) 7 < llp — IEp|7, + (|TIZp — pa(w) |7,
< |lp — TLp||7;, + Y2||(Tp — p(u), 1%z — 25, (w), 102 — 25 (u))
< Ce'/? (hsfl/ZIIZIIsZ + RS2yl + 5(Sy)€1/2hIIAyHTh) :

O

4.2.2 Step 2: errors between the auxiliary problem (4.3) and the discrete problem

(2.6)
By (2.6) and (4.3]) we have the following error equations.

Lemma 13. Let (g, yn, U}, Phs 2h, 25, ) € [V x Wp, % M,ﬂ2 X M,? and (gp(u),

yn(w), U5 (w), pr(u), zn(w), 20 (u)) € [V, x W), x M7]? be the solutions of (2.6) and (4.3)), respectively.
Then for all (71, wy, W7, ra, we, W9) € [Vi, x Wi, x MP)%, we have

Bi(gn — qn(w), yn — yn(w), yp, — yp(u); i, wy, 07) =
—(up, — M, 7wy + 7 - n)S’a, (4.13a)
Ba(pn — pr(u), zn — zn(u), 2, — zp(u); r2, wo, w3) = —(yn — yn(u), wa)7;,. (4.13b)
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Lemma 14. Let (qn, yn, U}, Ph, 2h:25) € [V x Wy X ]\Jﬁ]2 and (qp(u), yp(u),
U2 (u), pr(u), zn(u), 22(u)) € [Vi x Wi, x M?)? be the solutions of (2.6)) and (4.3), respectively. Then
we have

9
lyn = yn(w) |7, + ¥llun — Iullg

= (up, — M, T (p - ) — pp(u) - — (20 (u) — 27 (w))gp-

PT’OOf. Take (’Pl, w1, 1/13(1)) = (ph — ph(u), Zh — zh(u), /Z\Z — /Z’\Z(u)) and (T‘g, w9, 7:[75) = (qh — qh(u), Yh —

yn(w),¥5 — y5(u)) in (4.13a)) and (4.13b)), respectively, and use to get

— lyn =y (w17,

= Ba(pn — pn(u), zn — 2n(w), 2 — Z5(w); qn — qn(w), yn — yn(w), Y, — Y (u))
- Bl(Qh - qh(u)a Yn — yh(u)J//\o - :/y\i‘;(u);ph - ph(u)a Zh — Zh(u)v/z\]g - EZ(U))

h
= —(up — Mu, (p, — pr(w)) - n + 1o(zp — zn(u)))eo-

Therefore, (2.3¢), (2.2) and 2z}, =z} (u) = 0 on 8,? give

0
lyn — yn ()17, + Yllun — Hk“”ig
= (up — H‘gu,ph ‘n+ Tz + ’yuh>5}?
— (un = TM{u, Py (u) - 10+ Tozn (1) + Y0 g0

= (up, — M, TR (p - ) — pp(w) - — 7a(zn(u) — 27 (u))gp-

Lemma 15. Let (qn, yn, 55 Phs 2 35) € [Vix Wi x MPJ2 and (g (1), yn (), 55 (0), pa (), (), 35(w)) €
Vi, x Wj, x M?]? be the solutions of (2.6 and (4.3)), respectively. If assumptions (A1)-(A3) hold,
h
then there exists hg, independent of € such that for all A < hg, we have the estimates
hu—wnllgp < € (B2 yls, + = o, +8(s,) Rl Ayl )
lon = (@)l < © (W5 2yl + %12 2l + 6(s,)e 2Rl Ayl )
C

(h =2l + B 212 + (s, )e 2Rl Ayl )

IN

l2n = 20 (u)ll 7,
Proof. By the Cauchy-Schwarz inequality, and Young’s inequality one gets

lyn = yn ()7, + 7 lup — T o
< Ol (p - 1) — pu(u) - nllgo + Clima(zn(u) — 2 (u) | gp-

By the triangle inequality, p = —eVz, an inverse inequality and the estimates in we

20



An HDG Method for Dirichlet Boundary Control of Convection Dominated Diffusion PDE

have
1T (p - m) — pu(u) - mle
< [T(p-n) ~ TI(p - m) g0 + TP - 1) — i) - ey

<O e+ 30 by gD — pi(u)lr
TETH,OT N EZ#D

— —1/2
<Ceh P+ > by (I = pllr + llp — pa(w)r)
TeT,, 0T NEPHD

<CR Pzl 472 > lp—pu(w)lir
TET;,0T E2H40

< Oh= 72zl + 72 p = palw)| 7,
< C (W 2lyls, + %72z . + 8(s,)e 2Rl Ayl )
By the triangle inequality, z = 0 on I, and the estimate we have
I7aen () = 25l
< Cll(zn(w) — 2R () — 11z + T122) g9 + C (12 — T102) |
< O||(Mgp — pi(w), T}z — 2 (u), Tz = 2 (w)|| + Ch*= 2|2,
< C (B 2y, + b2 2l + 8(sy)e 2R Ayl ) -
This implies
lyn = yn (@) 175, + llu, — Mullgp
< O (W2 yls, + 722l + 3(s,)" 2Rl Ayl )
By the triangle inequality and the fact y = u on 5,‘? , we get
lu—unllgp < ly = Myllep + [TZu — unllea
< C (B 2yl + o2zl + 8(s,)e 2Rl Ayl )
By and , one has

| (Pn(u) — Phy 2n(w) — 20, 2 (w) — Z7) ||
82(ph(u) — Ph, Zh(u) - Zha/z\g(u) - /Z\Z7 7’27w2»@g)

<C sup =
(12,w2,D9) € Vi, x Wi, x M [[(r2, w2, W3)|

<C sup (yn — yh(u)fgz)n
(T‘Q,wg,l’ﬁg)EVhXWhXMﬁ H(r23w27w2)||

< Cllyn — yn (w7,
< C (B 2yl + =2zl + 8(s,)e 2Rl Ayl ) -

Therefore,

len(w) = zallz, < C=2 (W02l 4+ B2 2, + 6(s,) 2R Ayl )
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h/\/2 2~ 1 272 23 24 277
ly — ynllpq 6.0299E-02 1.3188E-02 2.1788E-03 4.8975E-04 1.1863E-04
order - 2.1929 2.5976 2.1534 2.0456
Iz = znllq 1.0572E-01 2.6724E-02 6.2451E-03 1.5091E-03 3.7092E-04
order - 1.9841 2.0973 2.0491 2.0245
Ju—upllyp 2.5537E-01 5.6029E-02 1.2108E-02 2.8176E-03 6.7424E-04
order - 2.1883 2.2102 2.1034 2.0631

Table 1: Smooth test with & = 1 and € = 10~": Errors for the control u, state y and the adjoint
state z.

5 Numerical Experiments

In this section, we report numerical experiments to illustrate our theoretical results. For all ex-
periments, we take Q = [0,1] x [0,1] C R?, v = 1, and the stabilization functions are chosen as in

(2:30-(23¢).

5.1 Smooth test
In our first test, the state, dual state, and convection coefficient are chosen as
y = —em(sin(mzy) + sin(nze)), z = sin(mz;) sin(7rxs),
B = —[x?sin(x9), cos(z)e™?],

and the source term f and the desired state y4 are generated using the optimality system (|1.3])
with the above data. We show the numerical results for £k = 1 and ¢ = 1077 in

5.2 Non-smooth test

Next, we choose the data as
ya=2(1—2)y(l—y), [=0, and B=—[o?sin(zs),cos(z1)e”].

We tested 5 cases with different values for € and we do not have exact solutions for these problems;
we solved the problems numerically for a triangulation with approximately 1.5 million elements
and compared these reference solutions against other solutions computed on meshes with larger
h. The numerical results are shown in the computed convergence rates are erratic and
do not follow a clear pattern. The same phenomenon has been observed in another work on a
convection dominated Dirichlet boundary control problem [4]. Also, we plot the state, dual state
and boundary control in to[pl Furthermore, many works on convection dominated PDEs
observe well-behaved convergence if they remove a small portion of the domain containing the layer;
see 28| Section 6] for a convection dominated distributed optimal control problem and [20, Table
4 in Section 5.4] for a convection dominated PDEs. We did not to compute the rates by removing

the layer since the layer is always on the boundary; see to

6 Conclusion

In [23/[29], we studied an HDG method for a diffuison dominated convection diffusion Dirichlet
boundary control problem. We obtained optimal convergence rates for the control under a high
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. h ly = wnll7, Iz = znll7, [lu — unl|.0

V2 Error Rate Error Rate Error Rate

21 | 4.8530E-04 1.0783E-03 2.0808E-03
272 | 1.6439E-04 | 1.56 | 5.3340E-04 | 1.01 | 7.2793E-04 | 1.51
1/10 273 | 5.5062E-05 | 1.58 | 2.0652E-04 | 1.37 | 2.6827E-04 | 1.44
2=4 | 1.5885E-05 | 1.79 | 6.4955E-05 | 1.67 | 9.1834E-05 | 1.54
275 | 4.1123E-06 | 1.95 | 1.7687E-05 | 1.88 | 2.7451E-05 | 1.74

2-1 | 1.3406E-03 2.2114E-03 4.1984E-03
272 | 4.9404E-04 | 1.44 | 1.3080E-03 | 0.75 | 1.8165E-03 | 1.21
1/50 273 | 2.4238E-04 | 1.02 | 7.3661E-04 | 0.83 | 8.9345E-04 | 1.02
274 | 1.1777E-04 | 1.04 | 3.5878E-04 | 1.04 | 5.2980E-04 | 0.75
275 | 4.1387E-05 | 1.50 | 1.4389E-04 | 1.32 | 2.6837E-04 | 0.98

2-1 1 1.6216E-03 2.5742E-03 4.7465E-03
272 | 6.6643E-04 | 1.28 | 1.5857E-03 | 0.70 | 2.1124E-03 | 1.17
1/100 273 | 2.8129E-04 | 1.24 | 9.2685E-04 | 0.77 | 1.0435E-03 | 1.02
2=4 | 1.7254E-04 | 0.71 | 5.2512E-04 | 0.82 | 7.3691E-04 | 0.50
275 | 8.5868E-05 | 1.00 | 2.5477E-04 | 1.04 | 5.0212E-04 | 0.53

2T | 1.8500E-03 2.9440E-03 5.3059E-03
272 | 8.3498E-04 | 1.14 | 2.0237E-03 | 0.54 | 2.4554E-03 | 1.11
1/1000 273 | 3.9689E-04 | 1.07 | 1.3617E-03 | 0.57 | 1.0865E-03 | 1.17
2=4 | 2.7140E-04 | 0.55 | 9.1122E-04 | 0.58 | 5.2906E-04 | 1.03
275 | 1.5180E-04 | 0.84 | 5.8115E-04 | 0.65 | 4.5760E-04 | 0.21

2-1 [ 1.9431E-03 3.0087E-03 5.3675E-03
272 | 8.4727E-04 | 1.20 | 2.0778E-03 | 0.53 | 2.5082E-03 | 1.10
1/10000 273 | 3.9498E-04 | 1.10 | 1.4261E-03 | 0.54 | 1.1393E-03 | 1.14
2741 2.3736E-04 | 0.73 | 9.9958E-04 | 0.51 | 5.6195E-04 | 1.01
275 | 1.5931E-04 | 0.58 | 6.9841E-04 | 0.52 | 3.2155E-04 | 0.81

Table 2: Non-smooth test with different € and k& = 1: Errors for the control u, state y and the

adjoint state z.

0.009

0.001

Figure 1:
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Left is the state yp and right is the control uy for e = 1/10.
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Figure 4: Left is the state y; and right is the control uy for e = 1/1000.
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Figure 5: Left is the state y;, and right is the control uy, for e = 1,/10000.

regularity assumption in and a low regularity assumption in . In this work, we considered
a different HDG method with a lower computational cost for a convection dominated convection
diffusion boundary control problem under high and low regularity conditions and again proved op-
timal convergence rates for the control. All existing numerical analysis work on Dirichlet boundary
control problems have assumed the mesh is quasi-uniform; however, we do not need to have this
assumption here.

To the best of our knowledge, this work is the only existing numerical analysis exploration of
this convection dominated diffusion Dirichlet control problem.
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