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Abstract. The construction of high order entropy stable collocation schemes on quadrilateral
and hexahedral elements has relied on the use of Gauss-Legendre-Lobatto collocation points [1, 2, 3]
and their equivalence with summation-by-parts (SBP) finite difference operators [4]. In this work,
we show how to efficiently generalize the construction of semi-discretely entropy stable schemes on
tensor product elements to Gauss points and generalized SBP operators. Numerical experiments
suggest that the use of Gauss points significantly improves accuracy on curved meshes.

1. Introduction. Time dependent nonlinear conservation laws are ubiquitous in
computational fluid dynamics, for which high order methods are increasingly of inter-
est. Such methods are more accurate per degree of freedom than low order methods,
while also possessing much smaller numerical dispersion and dissipation errors. This
makes high order methods especially well suited to time-dependent simulations. In
this work, we focus specifically on discontinuous Galerkin methods on unstructured
quadrilateral and hexahedral meshes. These methods combine properties of high order
approximations with the geometric flexibility of unstructured meshing.

However, high order methods are notorious for being more prone to instability
compared to low order methods [5]. This instability is addressed through various
stabilization techniques (e.g. artificial viscosity, filtering, slope limiting). However,
these techniques often reduce accuracy to first or second order, and can prevent solvers
from realizing the advantages of high order approximations. Moreover, it is often not
possible to prove that a high order scheme does not blow up even in the presence of
stabilization. This ambiguity can necessitate the re-tuning of stabilization parameters,
as parameters which are both stable and accurate for one problem or discretization
setting may provide either too little or too much numerical dissipation for another.

The instability of high order methods is rooted in the fact that discretizations
of nonlinear conservation laws do not typically satisfy a discrete analogue of the
conservation or dissipation of energy (entropy). For low order methods, the lack of
discrete stability can be offset by the presence of numerical dissipation, which serves
as a stabilization mechanism. Because high order methods possess low numerical
dissipation, the absence of a discrete stability property becomes more noticeable,
manifesting itself through increased sensitivity and instability.

The dissipation of entropy serves as an energetic principle for nonlinear conserva-
tion laws [6], and requires the use of the chain rule in its proof. Discrete instability is
typically tied to the fact that, when discretizing systems of nonlinear PDEs, the chain
rule does not typically hold at the discrete level. The lack of a chain rule was circum-
vented by using a non-standard “flux differencing” formulation [1, 2, 3, 7], which is
key to constructing semi-discretely entropy stable high order schemes on unstructured
quadrilateral and hexahedral meshes. Flux differencing replaces the derivative of the
nonlinear flux with the discrete differentiation of an auxiliary quantity. This auxiliary
quantity is computed through the evaluation of a two-point entropy conservative flux
[8] using pairs of solution values at quadrature points. These entropy stable schemes
were later extended to non-tensor product elements using GLL-like quadrature points
on triangles and tetrahedra [9, 10]. More recently, the construction of efficient en-
tropy stable schemes was extended to more arbitrary choices of basis and quadrature
[11, 12].

While entropy stable collocation schemes have been constructed on Gauss-like
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quadrature points without boundary nodes [13], the inter-element coupling terms for
such schemes introduce an “all-to-all” coupling between degrees of freedom on two
neighboring elements in one dimension (on tensor product elements in higher dimen-
sions, these coupling terms couple together lines of nodes). These coupling terms
require evaluating two-point fluxes between solution states at all collocation nodes
on two neighboring elements, resulting in significantly more communication and com-
putation compared to collocation schemes based on point sets containing boundary
nodes. This work introduces efficient and entropy stable inter-element coupling terms
for Gauss collocation schemes which require only communication of face values be-
tween neighboring elements. The construction of these terms follows the framework
introduced in [11, 12] for triangles and tetrahedra.

The main motivation for exploring tensor product (quadrilateral and hexahedral)
elements is the significant reduction in the number of operations required compared
to high order entropy stable schemes on simplicial meshes [11, 12]. Entropy stability
schemes on simplicial elements require evaluating two-point fluxes between solution
states at all quadrature points on an element. For a degree N approximation, the
number of quadrature points on a simplex scales as O(Nd) in d dimensions, and results
in O(N2d) two-point flux evaluations per element. In contrast, entropy stable schemes
on quadrilateral and hexahedral elements require only the evaluation of two-point
fluxes along lines of nodes due to a tensor product structure, resulting in O(Nd+1)
evaluations in d dimensions.

In Section 2, we briefly review the derivation of continuous entropy inequalities
for systems of nonlinear conservation laws. In Section 3, we describe how to con-
struct entropy stable discretizations of nonlinear conservation laws using different
quadrature points on affine tensor product elements. In Section 4, we describe how to
extend this construction to curvilinear elements, and Section 5 presents numerical re-
sults which confirm the high order accuracy and stability of the proposed method for
smooth, discontinuous, and under-resolved (turbulent) solutions of the compressible
Euler equations in two and three dimensions.

2. A brief review of entropy stability theory. We are interested in methods
for the numerical solution of systems of conservation laws in d dimensions

(1)
∂u

∂t
+

d∑
i=1

∂fi (u)

∂xi
= 0,

where u denotes the conservative variables, fi(u) are nonlinear fluxes, and xi denotes
the ith coordinate. Many physically motivated conservation laws admit a statement of
stability involving a convex scalar entropy S(u). We first define the entropy variables
v(u) to be the gradient of the entropy S(u) with respect to the conservative variables

v
def
=
∂S(u)

∂u
.

For a convex entropy, v(u) defines an invertible mapping from conservative to en-
tropy variables. We denote the inverse of this mapping (from entropy to conservative
variables) by u(v).

At the continuous level, it can be shown (for example, in [6]) that vanishing
viscosity solutions to (1) satisfy the strong form of an entropy inequality

∂S(u)

∂t
+

d∑
i=1

∂Fi(u)

∂xi
≤ 0, Fi(u) = vT

∂fi
∂u

,(2)
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where Fi denotes the ith scalar entropy flux function. Integrating (2) over a domain
Ω and applying the divergence theorem yields an integrated entropy inequality

(3)

∫
Ω

∂S(u)

∂t
+

∫
∂Ω

d∑
i=1

ni
(
vTfi(u)− ψi(u)

)
≤ 0,

where ψi(u) = vTfi(u) − Fi(u) denotes the ith entropy potential, ∂Ω denotes the
boundary of Ω and ni denotes the ith component of the outward normal on ∂Ω.
Roughly speaking, this implies that the time rate of change of entropy is less than or
equal to the flux of entropy through the boundary.

3. Entropy stable Gauss and Gauss-Legendre-Lobatto collocation meth-
ods. The focus of this paper is on entropy stable high order collocation methods which
satisfy a semi-discrete version of the entropy inequality (3). These methods collocate
the solution at some choice of collocation nodes, and are applicable to tensor product
meshes consisting of quadrilateral and hexahedral elements.

Entropy stable collocation methods have largely utilized Gauss-Legendre-Lobatto
(GLL) nodes [1, 2, 3, 7], which contain points on the boundary. The popularity of
GLL nodes can be attributed in part to a connection made in [4], where it was
shown by Gassner that collocation DG discretizations based on GLL nodes could
be recast in terms of summation-by-parts (SBP) operators. This equivalence allowed
Gassner to leverage existing finite difference formulations to produce stable high order
discretizations of the nonlinear Burgers’ equation.

GLL quadratures contain boundary points, which greatly simplifies the construc-
tion of inter-element coupling terms for entropy stable collocation schemes. However,
it is also known that the use of GLL quadrature within DG methods under-integrates
the mass matrix, which can lead to solution “aliasing” and lower accuracy [14]. In
this work, we explore entropy stable collocation schemes based on Gauss quadrature
points instead of GLL points.

This comparison is motivated by the accuracy of each respective quadrature rule.
While (N + 1)-point GLL quadrature rules are exact for polynomial integrands of
degree (2N − 1), (N + 1)-point Gauss quadrature rules are exact for polynomials
of degree (2N + 1). This higher accuracy of Gauss quadrature has been shown to
translate to lower errors and slightly improved rates of convergence in simulations of
wave propagation and fluid flow [15, 16, 17]. However, Gauss points have not been
widely used to construct entropy stable discretizations due to the lack of efficient,
stable, and high order accurate inter-element coupling terms, known as simultaneous
approximation terms (SAT) in the finite difference literature [18, 13, 19]. SATs for
Gauss points are non-compact, in the sense that they introduce all-to-all coupling
between degrees of freedom on neighboring elements in one dimension. This results
in greater communication between elements, as well as a significantly larger number
of two-point flux evaluations and floating point operations.

It is possible to realize the improved accuracy of Gauss points while avoiding
non-compact SATs through a staggered grid formulation, where the solution is stored
at Gauss nodes but interpolated to a set of higher degree (N + 2) GLL “flux” points
for computation [14]. Because GLL nodes include boundary points, compact and high
order accurate SAT terms can be constructed for the flux points. After performing
computations on the flux points, the results are interpolated back to Gauss points
and used to evolve the solution forward in time. Figure 1 shows an illustration of
GLL, staggered grid, and Gauss point sets for a 2D quadrilateral element.
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(a) GLL nodes (b) Staggered grid nodes (c) Gauss nodes

Fig. 1: Examples of nodal sets under which efficient entropy stable schemes can be
constructed. This work focuses on the construction of efficient and accurate SAT
terms for Gauss nodal sets.

The following sections will describe how to construct efficient high order entropy
stable schemes using Gauss points. These schemes are based on “decoupled” SBP
operators introduced in [11, 12], which are applicable to general choices of basis and
quadrature. By choosing a tensor product Lagrange polynomial basis and (N + 1)
point Gauss quadrature rules, we recover a Gauss collocation scheme. The high order
accuracy and entropy stability of this scheme are direct results of theorems presented
in [11, 12]. However, we will also present a different proof of entropy stability in one
dimension for completeness.

3.1. Gauss nodes and generalized summation by parts operators. We
assume the solution is collocated at (N + 1) quadrature points xi with associated
quadrature weights wi. We do not make any assumptions on the points, in order
to accommodate both GLL and Gauss nodes using this notation. The collocation
assumption is equivalent to approximating the solution using a degree N Lagrange
basis `j(x) defined over the (N + 1) quadrature points.

Let D denote the nodal differentiation matrix, and let Vf denote the 2× (N + 1)
matrix which interpolates polynomials at Gauss nodes to values at endpoints. These
two matrices are defined entrywise as

Dij =
∂`j
∂x

∣∣∣∣
x=xi

, (Vf )1i = `i(−1), (Vf )2i = `i(1).

We also introduce the diagonal matrix of quadrature weights Wij = δijwi, as well
as the one-dimensional mass matrix M whose entries are L2 inner products of basis
functions. We assume that these inner products are computed using the quadrature
rule (xi, wi) at which the solution is collocated. Under such an assumption, the mass
matrix is diagonal with entries equal to the quadrature weights

Mij =

∫ 1

−1

`i(x)`j(x) ≈
N+1∑
k=1

`i(xk)`j(xk)wk = δijwi = Wij .

Since M = W under a collocation assumption, we utilize W for the remainder of this
work to emphasize that the mass matrix is diagonal and related to the quadrature
weights wi. The treatment of non-diagonal mass matrices is covered in [11, 12].
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It can be shown that the mass and differentiation matrices for Gauss nodes fall
under the class of generalized SBP (GSBP) operators [20].

Lemma 1. Q = WD satisfies the generalized summation by parts property

Q = V T
f BVf −QT , B =

[
−1

1

]
.

The proof is a direct restatement of integration by parts, and can be found in [20, 21,
22, 23]. Lemma 1 holds for both GLL and Gauss nodes, and switching between these
two nodal sets simply results in a redefinition of the matrices D,Vf . For example,
because GLL nodes include boundary points, the interpolation matrix Vf reduces to
a generalized permutation matrix which extracts the nodal values associated with the
left and right endpoints.

3.2. Existing entropy stable SATs for generalized SBP operators. In
this section, we will review the construction of semi-discretely entropy stable dis-
cretizations. Entropy stable discretizations can be constructed by first introducing an
entropy conservative scheme, then adding appropriate interface dissipation to produce
an entropy inequality. The construction of entropy conservative schemes relies on the
existence of an two-point (dyadic) entropy conservative flux [8].

Definition 2. Let fS(uL,uR) be a bivariate function which is symmetric and
consistent with the flux function f(u)

fS(uL,uR) = fS(uR,uL), fS(u,u) = f(u)

The numerical flux fS(uL,uR) is entropy conservative if, for entropy variables vL =
v(uL),vR = v(uR), the Tadmor “shuffle” condition is satisfied

(vL − vR)
T
fS(uL,uR) = (ψL − ψR), ψL = ψ(v(uL)), ψR = ψ(v(uR)).

For illustrative purposes, we will prove a semi-discrete entropy inequality on a one-
dimensional mesh consisting of two elements of degree N . We assume both meshes
are translations of a reference element [−1, 1], such that derivatives with respect to
physical coordinates are identical to derivatives with respect to reference coordinates.
The extension to multiple elements and variable mesh sizes is straightforward.

The construction of entropy conservative schemes relies on appropriate SATs for
Gauss collocation schemes [18, 13, 19]. Let the rows of Vf be denoted by column
vectors tL, tR

Vf =

[
(tL)1 , . . . , (tL)N+1

(tR)1 , . . . , (tR)N+1

]
, (tL)j = `j(−1), (tR)j = `j(1).

The inter-element coupling terms in [18, 13, 19] utilize a decomposition of the surface
matrix V T

f BVf as

(4) V T
f BVf = tRt

T
R − tLt

T
L.

The construction of entropy conservative schemes on multiple elements requires ap-
propriate inter-element coupling terms (SATs) involving tL, tR. We consider a two
element mesh, and show how when coupled with SATs, the resulting discretization
matrices can be interpreted as constructing a global SBP operator.

Let u1
N ,u

2
N denote nodal degrees of freedom of the vector valued solution u(x)

on the first and second element, respectively. To simplify notation, we assume that
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all following operators are defined in terms of Kronecker products [9], such that they
are applied to each component of u1

N ,u
2
N . We first define the matrix

(5) S
def
= Q− 1

2
V T
f BVf .

It is straightforward to show (using Lemma 1) that S is skew-symmetric. We can
now define an SBP operator Dh = W−1

h Qh over two elements

(6) Qh
def
=

[
S 1

2tRt
T
L

− 1
2tLt

T
R S

]
︸ ︷︷ ︸

Sh

+

[
− 1

2tLt
T
L

1
2tRt

T
R

]
︸ ︷︷ ︸

1
2Bh

, Wh
def
=

[
W

W

]
.

It can be shown that Dh is high order accurate such that, if uh is a polynomial of
degree N , it is differentiated exactly. Straightforward computations show that Qh

also satisfies an SBP property Qh + QT
h = Bh.

Ignoring boundary conditions, an entropy conservative scheme for (1) on two
elements can then be given as

d

dt
Whuh + 2 (Qh ◦ FS) 1 = 0, uh =

[
u1
N

u2
N

]
(7)

(FS)ij = fS

(
(uh)i , (uh)j

)
, 1 ≤ i, j ≤ 2(N + 1),

where ◦ denotes the Hadamard product [24]. It should be emphasized that here,
(uh)i, (uh)j denote vectors containing solution components at nodes i, j, and that
(because fS is a vector-valued flux) the term (FS)ij should be interpreted as a diagonal
matrix whose diagonal entries consist of the components of fS ((uh)i, (uh)j).

Multiplying (7) by vTh = v (uh)
T

will yield a semi-discrete version of the conser-
vation of entropy (mimicking (3) with the inequality replaced by an equality)

(8)
d

dt
WhS(uh) + vTh (Bh ◦ FS) 1− 1TBhψ (uh) = 0.

We refer to [13, 10] for the proof of (8).
The drawback of the SATs introduced in this section lies in the nature of the off-

diagonal matrices tRtL and −tLtR. For Gauss nodes, these blocks are dense, which
implies that inter-element coupling terms produce a non-compact stencil. Evaluat-
ing (7) requires computing two-point fluxes fS between all nodes on two neighboring
elements, which significantly increases both the computational work, as well as com-
munication between neighboring elements. This leads to all-to-all coupling between
degrees of freedom in 1D, and to coupling along one-dimensional lines of nodes in
higher dimensions due to the tensor product structure.

The main goal of this work is to circumvent this tighter coupling of degrees of
freedom introduced by the SATs described in this section, which can be done through
the use of “decoupled” SBP operators.

3.3. Decoupled SBP operators. Decoupled SBP operators were first intro-
duced in [11] and used to construct entropy stable schemes on simplicial elements.
These operators (and simplifications under a collocation assumption) are presented
in a more general setting in [11, 12] and in Appendix A. In this section, decoupled
SBP operators are introduced in one dimension for GLL and Gauss nodal sets.
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Decoupled SBP operators build upon the GSBP matrices W ,Q, interpolation
matrix Vf , and boundary matrix B introduced in Section 3.1. The decoupled SBP
operator QN is defined as the block matrix

(9) QN
def
=

[
Q− 1

2V
T
f BVf

1
2V

T
f B

− 1
2BVf

1
2B

]
.

Lemma 1 and straightforward computations show that QN also satisfies the following
SBP property

Lemma 3. Let QN be defined through (9). Then,

QN + QT
N =

[
0

B

]
.

We note that the matrix QN acts not only on volume nodes, but on both volume
and surface nodes. Thus, it is not immediately clear how to apply this operator to
GSBP discretizations of nonlinear conservation laws. It is straightforward to evaluate
the nonlinear flux at volume nodes since the solution is collocated at these points;
however, evaluating the nonlinear flux at surface nodes is less straightforward. More-
over, QN does not directly define a difference operator, and must be combined with
another operation to produce an approximation to the derivative. We will discuss
how to apply QN in two steps. First, we will show how to approximate the derivative
of an arbitrary function using QN given function values at both volume and surface
nodes. Then, we will describe how to apply this approximation to compute derivatives
of nonlinear flux functions given collocated solution values at volume nodes.

Let f(x), g(x) denote two functions, and let f , g denote the values of f, g at
interior nodal points. We also define vectors fN , gN denoting the values of f, g at
both interior and boundary points

(10) fN =


f (x1)

...
f (xN+1)
f(−1)
f(1)

 =

[
f
ff

]
, gN =


g (x1)

...
g (xN+1)
g(−1)
g(1)

 =

[
g
gf

]
.

Then, a polynomial approximation to f ∂g∂x can be computed using QN . Let u denote

the nodal values of the polynomial u(x) ≈ f ∂g∂x . These coefficients are computed via

(11) Wu =

[
I
Vf

]T
diag (fN )QNgN .

The approximation (11) can be rewritten in “strong” form as follows

u = W−1

[
I
Vf

]T
diag (fN )QNgN

= diag (f)Dg +
1

2
diag (f)W−1V T

f B (gf − Vfg)

+
1

2
W−1V T

f Bdiag (ff ) (gf − Vfg) ,

where we have used the fact that diagonal matrices commute to simplify expressions.
The decoupled SBP operator QN can thus be interpreted as adding boundary cor-
rections to the GSBP operator D in a skew-symmetric fashion. More specifically, the
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Fig. 2: Approximations of derivatives of a Gaussian e−4x2

using the generalized SBP
operator D and the decoupled SBP operator QN via (11). In Figure 2a, the colored
circles and squares denote values at Gauss points for a degree N = 5 approximation.
Figure 2b shows the convergence of L2 errors as N increases.

expression (11) corresponds to a quadrature approximation of the following variational
approximation of the derivative [11]: find u ∈ PN ([−1, 1]) such that,∫ 1

−1

u(x)v(x) =

∫ 1

−1

INf
∂INg

∂x
v+ (g − INg)

(fv + IN (fv))

2

∣∣∣∣1
−1

, ∀v ∈ PN ([−1, 1]),

where IN denotes the degree N polynomial approximation at the (N + 1) Gauss
points.

The approximation (11) can also be applied to Gauss collocation schemes for
nonlinear conservation laws. Let u ∈ PN be represented by the vector u of values at
Gauss points, and let f(x), g(x) denote two nonlinear functions. The operator QN

can be used to approximate the quantity f(u)∂g(u)
∂x using (11) if f , g are defined as

fN =


f (u1)

...
f (uN+1)
f
(
tTLu

)
f
(
tTRu

)

 =

[
f(u)
f(uf )

]
, gN =


g (u1)

...
g (uN+1)
g
(
tTLu

)
g
(
tTRu

)

 =

[
g(u)
g(uf )

]
, uf = Vfu.

It was shown in [11] that u is a high order accurate approximation to the quantity
f ∂g∂x . Both the generalized SBP operator D and the expression in (11) involving the
decoupled SBP operator recover exact derivatives of high order polynomials. How-
ever, when applied to non-polynomial functions, the decoupled SBP operator QN

improves accuracy near the boundaries. Figure 2 illustrates this by using both oper-
ators to approximate the derivative of a Gaussian e−4x2

on [−1, 1]. The decoupled
SBP operator results in an improved approximation at all orders of approximation.

3.4. An entropy stable Gauss collocation scheme based on decoupled
SBP operators. We can now construct an entropy conservative Gauss collocation
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scheme with compact SATs using decoupled SBP operators. As in Section 3.2, we
will construct a Gauss collocation scheme and provide a proof of semi-discrete entropy
conservation for a two-element mesh.

We first note that B can be trivially decomposed into the sum of two outer
products as in (4)

(12) B =

[
−1 0
0 1

]
= eRe

T
R − eLe

T
L, eL =

[
1
0

]
, eR =

[
0
1

]
.

The vectors eL, eR are related to tL, tR through the interpolation matrix Vf . Because
tL, tR are rows of Vf , tL1 = tR1 = 1. This can be used to show, for example, that

(13) BVf1 =
(
eRe

T
R − eLe

T
L

)
1 = eR − eL.

We can define a decoupled SBP matrix Qh over two elements as follows

Qh
def
=


S 1

2V
T
f B

− 1
2BVf − 1

2eLe
T
L

1
2eRe

T
L

S 1
2V

T
f B

− 1
2eLe

T
R − 1

2BVf
1
2eRe

T
R

 ,(14)

where we have abused notation and redefined Qh. We can also show that Qh1 = 0.
Using (13), we have that

Qh1 =


(
S + 1

2V
T
f B

)
1

− 1
2BVf1 + 1

2 (eR − eL)(
S + 1

2V
T
f B

)
1

− 1
2BVf1 + 1

2 (eR − eL)

 =


(
Q− 1

2V
T
f BVf + 1

2V
T
f BVf

)
1

1
2B (−1 + 1)(

Q− 1
2V

T
f BVf + 1

2V
T
f BVf

)
1

1
2B (−1 + 1)

 = 0.(15)

Here, we have used the definition of B in (12), the fact that Vf1 = 1 and Q1 = 0
[20], and the definition of S in (5). This property (15) will be used in the proof of
entropy conservation.

It can be helpful to split up Qh into two matrices

Qh = Sh +
1

2
Bh, Sh

def
=


S 1

2V
T
f B

− 1
2BVf

1
2eRe

T
L

S 1
2V

T
f B

− 1
2eLe

T
R − 1

2BVf



Bh
def
=

 −eLeTL

eRe
T
R

 .
The matrix Sh is skew-symmetric, while the matrix Bh functions as a boundary op-
erator which extracts boundary values over the two-element domain (i.e. Bh extracts
a left boundary value from element 1 and a right boundary value from element 2).
Note that here, Bh is diagonal, unlike the boundary operator defined in Section 3.2.
It should also be noted that the two-element decoupled SBP operator Qh in (14) is
related to the GSBP operator in (6) through a block interpolation matrix

Ih
def
=


I
Vf

I
Vf

 , IThQhIh =

[
S 1

2tRt
T
L

− 1
2tLt

T
R S

]
+

[
− 1

2tLt
T
L

1
2tRt

T
R

]
.
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We will now utilize the two-element operators described in this section to con-
struct an entropy stable Gauss collocation scheme on two elements. This scheme will
differ from that of Section 3.2 in that neighboring elements will only be coupled to-
gether through face values. Let u1

N ,u
2
N denote the values of the conservative variables

at Gauss points on elements 1 and 2, respectively, and let uh denote their concate-
nation as defined in (7). Let v(uiN ) denote the evaluation of entropy variables at
Gauss points on element i, and define the “entropy-projected conservative variables”
ũ1
f , ũ

2
f by evaluating the conservative variables in terms of the interpolated values of

the entropy variables at element boundaries

ũif
def
= u(vif ), vif

def
= Vfv(uiN ), i = 1, 2.

We now introduce uh =
[
u1
N u2

N

]T
as the concatenated vector of solution values at

Gauss points, and define vh, ṽ, and ũ as follows:

vh
def
= v (uh) = v

([
u1
N

u2
N

])
, ṽ

def
= Ihvh, ũ

def
= u (ṽ) =


u1
N

ũ1
f

u2
N

ũ2
f

 .
The term vh corresponds to the vector of entropy variables at uh, while ṽ corresponds
to the concatenated vector of Gauss point values and interpolated boundary values
vif of the entropy variables. The term ũ denotes the evaluation of the conservative
variables in terms of ṽ.

Finally, we define FS as the matrix of evaluations of the two-point flux fS at
combinations of values of ũ

(FS)ij
def
= fS (ũi, ũj) , 1 ≤ i, j ≤ 2(N + 3).

Note that, due to the consistency of fS , the diagonal of FS reduces to flux evaluations

(16) (FS)ii = fS (ũi, ũi) = f (ũi) .

We can now construct a semi-discretely entropy conservative formulation based on
decoupled SBP operators:

Theorem 4. Let Qh be defined by (14), and let uh denote the two-element solu-
tion of the following formulation:

Wh
d

dt
uh + 2ITh (Qh ◦ FS) 1 = 0.(17)

Then, uh satisfies a semi-discrete conservation of entropy

1TWh
dS(uh)

dt
+ 1TB

(
vTf f(ũf )− ψ (ũf )

)
= 0

vf
def
=

[
tTLv

(
u1
N

)
tTRv

(
u2
N

)] , ũf
def
= u(vf ).

Proof. The proof results from testing with vTh . Since v(u) = ∂S(u)
∂u and Wh is

diagonal, the time term yields

vTh
d

dt
Whuh = 1T

d

dt
Whdiag (vh)uh = 1T

d

dt
WhS(uh).

10



The spatial term can be manipulated as follows

2vTh I
T
h (Qh ◦ FS) 1 = 2 (Ihvh)

T

(
(Sh ◦ FS) 1 +

1

2
(Bh ◦ FS) 1

)
= ṽT (Bh ◦ FS) 1 + ṽT (Sh ◦ FS) 1− 1T (Sh ◦ FS) ṽ,

where we have used the skew-symmetry of Sh in the last step. The boundary term
reduces to

ṽT (Bh ◦ FS) 1 = 1TBhṽ
Tf (ũ) = 1TBṽTf f (ũf ) ,

where we have used (16) and the fact that Bh is diagonal. Here, ṽTf (ũ), ṽTf f (ũf )
denote vectors whose entries are the vector inner products of components of ṽ and
f (ũ) at volume and face points, respectively.

The volume terms can be manipulated using the definition of FS and the Tadmor
shuffle condition in Definition 2

ṽT (Sh ◦ FS) 1− 1T (Sh ◦ FS) ṽ =
∑
ij

(Sh)ij (ṽi − ṽj)
T
fS (ũi, ũj)

=
∑
ij

(Sh)ij (ψ (ũi)− ψ (ũj))

= ψ (ũ)
T
Sh1− 1TShψ (ũ) = 2

(
ψ (ũ)

T
Sh1

)
,

where we have again used the skew-symmetry of Sh in the last step. Substituting
Sh = Qh − 1

2Bh and using (15) yields

2
(
ψ (ũ)

T
Sh1

)
= ψ (ũ)

T
(2Qh −Bh) 1

= −ψ (ũ)
T
Bh1 = −1TBhψ (ũ) = −1TBψ (ũf ) ,

where we have used the symmetry of Bh in the second to last step.
Remark. The proof of Theorem 4 follows directly from choosing either GLL or

Gauss quadratures in Theorem 4 of [11]. The proof is reproduced here for clarity,
as the two-element case illuminates the skew-symmetric nature and structure of the
inter-element coupling more explicitly.

Extending the two-element case to multiple elements can be done by defining anal-
ogous “global” differentiation matrices. Suppose that there are now three elements.
Then, the matrices Sh,Bh can be defined as

Sh
def
=



S 1
2V

T
f B

− 1
2BVf

1
2eRe

T
L

S 1
2V

T
f B

− 1
2eLe

T
R − 1

2BVf
1
2eRe

T
L

S 1
2V

T
f B

− 1
2eLe

T
R − 1

2BVf



Bh
def
=


−eLeTL

0

eRe
T
R

 , Ih =


I
Vf

I
Vf

I
Vf

 .

11



These global operators again satisfy Qh1 = 0 and the SBP property Qh +QT
h = Bh,

where Qh = Sh + 1
2Bh. Moreover, Qh can be used to produce high order accurate

approximations of derivatives, and can be used to construct entropy conservative
schemes as in Theorem 4. The extension to a general number of elements is done in
a similar fashion.

It is possible to convert the semi-discrete entropy equality in Theorem 4 to a
semi-discrete entropy inequality by adding appropriate interface dissipation terms,
such as Lax-Friedrichs or matrix dissipation [25]. We note that these terms must be
computed in terms of ũf in order to ensure a discrete dissipation of entropy [9, 11].
Boundary conditions can also be incorporated into the formulation (17) in a weak
fashion. Let uL,uR denote the values of the solution at the left and right domain
boundaries of a 1D domain. Using the SBP property, we can modify (17) to

Wh
duh
dt

+ 2ITh (Sh ◦ FS) 1 + IThBh


0

f(uL)
...
0

f(uR)

 = 0,

where we have used the fact that Bh is diagonal and the consistency of fS (imply-
ing that the diagonal of FS reduces to the evaluation of the flux f(u)) to simplify
the boundary term (Bh ◦ FS) 1. Boundary conditions are incorporated by replacing
f(uL),f(uR) with numerical fluxes f∗L,f

∗
R as follows:

(18) Wh
duh
dt

+ 2ITh (Sh ◦ FS) 1 + IThBh


0
f∗L
...
0
f∗R

 = 0.

If the boundary numerical flux satisfies the entropy stability conditions

ψL − vTLf
∗
L ≤ 0, ψR − vTRf

∗
R ≤ 0

then the resulting scheme satisfies a global entropy inequality [9].
Assuming that the ODE system (17) exactly integrated in time and that entropy

dissipative numerical fluxes and boundary conditions are used, the solution will satisfy
a discrete entropy inequality (3). In practice, the system (17) is solved using an ODE
time-stepper. For an explicit time-stepper, then all that is necessary is to invert the
diagonal matrix Wh and evaluate the spatial terms in (18).

We note that the conservation or dissipation of entropy is guaranteed up to time-
stepper accuracy. In practice, we observe that entropy is dissipated for all problems
considered, despite the fact that the proof does not hold at the fully discrete level.
A fully discrete entropy inequality can be guaranteed using implicit or space-time
discretizations [26, 27].

4. Extension to higher dimensions and non-affine meshes. The formula-
tion in Theorem 4 can be naturally extended to Cartesian meshes in higher dimensions
through a tensor product construction. We first consider the construction of higher
dimensional differentiation matrices on a two-dimensional reference element Ω̂, as-
suming a two dimensional tensor product grid of quadrature nodes (the construction

12



of decoupled SBP operators in three dimensions is straightforward and similar to the
two-dimensional case). We then construct physical differentiation matrices on mapped
elements Ωk, through which we construct an entropy conservative scheme.

Let D1D,W1D denote the 1D differentiation and mass matrices, respectively, on
the reference interval [−1, 1]. Let W denote the 2D reference mass matrix, and let
Di denote the differentiation matrices with respect to the ith reference coordinate.
These matrices can be expressed in terms of Kronecker products

D1 def
= D1D ⊗ IN+1, D2 def

= IN+1 ⊗D1D, W
def
= W1D ⊗W1D,

where IN+1 denotes the (N + 1)× (N + 1) identity matrix.
We also construct higher dimensional face interpolation matrices. Let Vf,1D de-

note the one-dimensional interpolation matrix, and let B1D denote the boundary
matrix defined in Lemma 1. For an appropriate ordering of face quadrature points,
the two-dimensional face interpolation matrix Vf and reference boundary matrices
B1,B2 can be expressed as the concatenation of Kronecker product matrices

Vf
def
=

[
Vf,1D ⊗ I2

I2 ⊗ Vf,1D

]
, B1 def

=

[
B1D ⊗ I2

0

]
, B2 def

=

[
0

I2 ⊗B1D

]
.

In three dimensions, the face interpolation matrix would be expressed as the con-
catenation of three Kronecker products involving Vf,1D. The higher dimensional dif-
ferentiation and interpolation matrices Di,Vf can now be used to construct higher
dimensional decoupled SBP operators. Let Qi

N denote the decoupled SBP operator
for the ith coordinate on the reference element, where Qi

N is defined as

Qi
N

def
=

[
Qi − 1

2V
T
f BiVf

1
2V

T
f Bi

− 1
2B

iVf
1
2B

i

]
, Qi def

= WDi.

Let the domain now be decomposed into non-overlapping elements Ωk, such that
Ωk is the image of Ω̂ under a degree N polynomial mapping Φk. We define geometric

terms Gkij = Jk
∂x̂j
∂xi

as scaled derivatives of reference coordinates x̂ with respect to

physical coordinates x. We also introduce the scaled normals niJ
k
f , which can be

computed on quadrilateral and tensor product elements via

niJ
k
f = ±

d∑
j=1

Gkij = ±
d∑
j=1

Jk
∂x̂j
∂xi

,

where the sign of niJ
k
f is negative for a “left” face and positive for a “right” face.

These geometric terms introduce scalings Jk, Jkf , where Jk is the determinant of the

Jacobian of Φk and Jkf denotes the determinant of the Jacobian of the mapping from

a physical face to a reference face. The quantities Gkij , niJ
k
f can now be used to define

matrices over each physical element Ωk

Wk
def
= Wdiag

(
Jk
)
, Bi

k
def
= Bidiag

(
nki
)
,

Qi
k

def
=

1

2

d∑
j=1

(
diag

(
Gk
ij

)
Qi
N + Qi

Ndiag
(
Gk
ij

))
,(19)

where we have discretized the curved differentiation matrix in split form [28, 29].
Here, Jk denotes the vector of values of Jk at volume quadrature points, Gk

ij denotes
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the vector of values of Gkij at volume and face quadrature points, and nki denotes the

ith scaled outward normal niJ
k
f at face quadrature points.

A 2D Gauss collocation scheme can now be given in terms of Wk,Q
i
k,B

i
k. Let

ukN denote the vector of solution values on Ωk, and define the quantities(
F i
S

)
mn

def
= f iS (ũm, ũn) , 1 ≤ m,n ≤ (N + 1)2 + 4(N + 1)

ũ
def
=

[
ukN
ũkf

]
, ũkf

def
= u

(
vkf
)
, vkf

def
= Vfv

(
ukN
)
,

where (N + 1)2 + 4(N + 1) is the total number of volume and face points. We then
have the following theorem on the semi-discrete conservation of entropy:

Theorem 5. Assume that Qk1 = 0, and that Ωk are mapped curvilinear ele-
ments. Let ukN satisfy the local formulation on Ωk

(20) Wk
dukN
dt

+

d∑
i=1

(
2
(
Qi
k ◦ F i

S

)
1 + V T

f Bi
k

(
f iS

(
ũ+
f , ũ

k
f

)
− f i (ũf )

))
= 0,

where ũ+ denotes boundary values of the entropy-projected conservative variables on
neighboring elements. Then, ukN satisfies the discrete conservation of entropy

∑
k

(
1TWk

dS
(
ukN
)

dt
+

d∑
i=1

1TBi
k

((
vkf
)T

f i(ũkf )− ψ
(
ũkf
)))

= 0.

The proof is a special case of the proof of Theorem 1 in [12], with the quadrature
rule taken to be a tensor product rule with (N + 1) Gauss (or GLL) points in each
coordinate direction.

Remark. The operator Qi
k in (19) can be applied without needing to explicitly

store geometric terms Gkij at face quadrature points. By using the structure of the

boundary matrix Bi, expressions involving geometric terms on faces can be replaced
by expressions involving components of scaled outward normals niJ

k
f on Ωk.

4.1. Discrete geometric conservation law. We note that Theorem 5 relies on
the assumption that Qk1 = 0. This condition is equivalent to ensuring that the scaled
geometric terms Gk

ij satisfy a discrete geometric conservation law (GCL) [2, 7, 10, 12].
For two-dimensional degree N (isoparametric) mappings, the GCL is automatically
satisfied. However, in three dimensions, the GCL is not guaranteed to be satisfied at
the discrete level, due to the fact that geometric terms for isoparametric mappings
are polynomials of degree higher than N .

It is possible to ensure the satisfaction of a discrete GCL by using a sub-parametric
polynomial geometric mapping. Let Ngeo denote the degree of a polynomial geometric
mapping. In three dimensions, the exact geometric terms for a degree Ngeo polynomial
mapping are polynomials of degree 2Ngeo [30, 16, 10]. If 2Ngeo ≤ N , or if Ngeo ≤

⌊
N
2

⌋
,

then the discrete GCL is automatically satisfied.1

ForNgeo ≥
⌊
N
2

⌋
, modifications to the computation of geometric terms are required

to ensure that the GCL is satisfied at the discrete level. For general SBP operators, the
discrete GCL can be enforced through the solution of a local least squares problem [10].

1We note that this condition is specific to three-dimensional hexahedral elements, and does not
necessarily hold for other element types. For example, the discrete GCL is satisfied if 2Ngeo−2 ≤ N
for isoparametric tetrahedral elements [12].
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We take an alternative approach and construct geometric terms using the approach
of Kopriva [30]. This construction takes advantage of the fact that GLL and Gauss
collocation methods correspond to polynomial discretizations. Kopriva’s construction
is based on rewriting the geometric terms as the reference curl of an interpolated
auxiliary quantity

(21)

Gk
1j

Gk
2j

Gk
3j

 =


(
−∇̂ × IN

(
z∇̂y

))
j(

∇̂ × IN
(
z∇̂x

))
j(

∇̂ × IN
(
x∇̂y

))
j

 , j = 1, 2, 3.

Here, IN denotes the polynomial interpolation operator using GLL nodes. By interpo-
lating the auxiliary quantity in (21) using polynomial interpolation prior to applying
the curl, the geometric terms are approximated by degree N polynomials which satisfy
the discrete GCL by construction. These GCL-satisfying geometric terms can then
be used to compute normal vectors. For a watertight mesh, the constructed normal
vectors are guaranteed to be continuous across faces [12].

To summarize, extending higher dimensional entropy stable Gauss collocation
schemes to curved meshes requires the following steps:

1. Construct polynomial approximations of the geometric terms using equation
(21) and interpolation at GLL nodes [30].

2. Evaluate approximate geometric terms at volume and surface points, and
compute normal vectors in terms of the approximate geometric terms.

3. Compute physical derivatives using the split form (19).
Apart from evaluating the GCL-satisfying geometric terms at separate volume and
surface points, entropy stable Gauss collocation schemes are extended to curved
meshes in the same manner as GLL and staggered-grid collocation schemes [2, 14, 12].

5. Numerical results. In this section, we present numerical examples for the
compressible Euler equations, which are given in d dimensions as follows:

∂ρ

∂t
+

d∑
j=1

∂ (ρuj)

∂xj
= 0,

∂ρui
∂t

+

d∑
j=1

∂ (ρuiuj + pδij)

∂xj
= 0, i = 1, . . . , d

∂E

∂t
+

d∑
j=1

∂ (uj(E + p))

∂xj
= 0.

Here, ρ is density, ui denotes the ith component of velocity, and E is the total energy.
The pressure p and specific internal energy ρe are given by

p = (γ − 1)

E − 1

2
ρ

 d∑
j=1

u2
j

 , ρe = E − 1

2
ρ

 d∑
j=1

u2
j

 .

There exists an infinite family of suitable convex entropies for the compressible
Euler equations [31]. However, there is only a single unique entropy which appro-
priately treats the viscous heat conduction term in the compressible Navier-Stokes
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equations [32]. This entropy S(u) is given by

S(u) = − ρs

γ − 1
,

where s = log
(
p
ργ

)
is the physical specific entropy, and the dimension d = 1, 2, 3.

The entropy variables in d dimensions are given by

v1 =
ρe(γ + 1− s)− E

ρe
,

v1+i =
ρui
ρe

, i = 1, . . . , d,

vd+2 = − ρ

ρe
,

while the conservation variables in terms of the entropy variables are given by

ρ = −(ρe)vd+2,

ρui = (ρe)v1+i, i = 1, . . . , d

E = (ρe)

(
1−

∑d
j=1 v

2
1+j

2vd+2

)
,

where the quantities ρe and s in terms of the entropy variables are

ρe =

(
(γ − 1)

(−vd+2)
γ

)1/(γ−1)

e
−s
γ−1 , s = γ − v1 +

∑d
j=1 v

2
1+j

2vd+2
.

Let f denote some piecewise polynomial function, and let f+ denote the exterior
value of f across an element face. We define the average and logarithmic averages as
follows:

{{f}} =
f+ + f

2
, {{f}}log

=
f+ − f

log (f+)− log (f)
.

The average and logarithmic average are assumed to act component-wise on vector-
valued functions. We evaluate the logarithmic average using the numerically stable
algorithm of [33]. Explicit expressions for entropy conservative numerical fluxes in
two dimensions are given by Chandrashekar [34]

f1
1,S(uL,uR) = {{ρ}}log {{u1}} , f1

2,S(uL,uR) = {{ρ}}log {{u2}} ,
f2

1,S(uL,uR) = f1
1,S {{u1}}+ pavg, f2

2,S(uL,uR) = f1
2,S {{u1}} ,

f3
1,S(uL,uR) = f2

2,S , f3
2,S(uL,uR) = f1

2,S {{u2}}+ pavg,

f4
1,S(uL,uR) = (Eavg + pavg) {{u1}} , f4

2,S(uL,uR) = (Eavg + pavg) {{u2}} ,

where we have introduced the auxiliary quantities

β =
ρ

2p
, pavg =

{{ρ}}
2 {{β}}

, Eavg =
{{ρ}}log

2 {{β}}log
(γ − 1)

+
u2

avg

2
,(22)

u2
avg = 2({{u1}}2 + {{u1}}2)−

({
{u2

1}
}

+
{
{u2

2}
})
.
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Expressions for entropy conservative numerical fluxes for the three-dimensional com-
pressible Euler equations can also be explicitly written as

f1,S =


{{ρ}}log {{u1}}

{{ρ}}log {{u1}}2 + pavg

{{ρ}}log {{u1}} {{u2}}
{{ρ}}log {{u1}} {{u3}}
(Eavg + pavg) {{u1}}

 , f2,S =


{{ρ}}log {{u2}}

{{ρ}}log {{u1}} {{u2}}
{{ρ}}log {{u2}}2 + pavg

{{ρ}}log {{u2}} {{u3}}
(Eavg + pavg) {{u2}}

 ,

f3,S =


{{ρ}}log {{u3}}

{{ρ}}log {{u1}} {{u3}}
{{ρ}}log {{u2}} {{u3}}
{{ρ}}log {{u3}}2 + pavg

(Eavg + pavg) {{u3}}

 ,

where the auxiliary quantities are defined as

β =
ρ

2p
, pavg =

{{ρ}}
2 {{β}}

, Eavg =
{{ρ}}log

2(γ − 1) {{β}}log
+

1

2
{{ρ}}log

u2
avg,

u2
avg = 2({{u1}}2 + {{u2}}2 + {{u3}}2)−

({
{u2

1}
}

+
{
{u2

2}
}

+
{
{u2

3}
})
.

In all problems, we use an explicit low storage RK-45 time-stepper [35] and esti-
mate the timestep size dt using J, Jkf , and degree-dependent L2 trace constants CN

dt = CCFL
h

aCN
, h =

1

‖J−1‖L∞
∥∥∥Jkf ∥∥∥

L∞

,

where a is an estimate of the maximum wave speed, h estimates the mesh size, and
CCFL is some user-defined CFL constant. For isotropic elements, the ratio of Jk to Jkf
scales as the mesh size h, while CN captures the dependence of the maximum stable
timestep on the polynomial degree N . For hexahedral elements, CN varies depending
on the choice of quadrature. It was shown in [17] that

CN =

{
dN(N+1)

2 for GLL nodes

d (N+1)(N+2)
2 for Gauss nodes

.

Thus, based on this rough estimate of the maximum stable timestep, GLL collocation
schemes should be able to take a timestep which is roughly (1+2/N) times larger than
the maximum stable timestep for Gauss collocation schemes. We do not account for
this discrepancy in this work, and instead set the timestep for both GLL and Gauss
collocation schemes based on the more conservative Gauss collocation estimate of dt.

Numerical results in 1D are similar to those presented in [11]. Thus, we focus
on two and three dimensional problems and comparisons of entropy stable GLL and
Gauss collocation schemes.

5.1. 2D isentropic vortex problem. We begin by examining high order con-
vergence of the proposed methods in two dimensions using the isentropic vortex prob-
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(a) Lightly warped mesh (b) Moderately warped mesh

(c) Heavily warped mesh

Fig. 3: Lightly, moderately, and heavily warped meshes for N = 4,K = 16.

lem [36, 13]. The analytical solution is

ρ(x, t) =

(
1−

1
2 (γ − 1)(βe1−r(x,t)2)2

8γπ2

) 1
γ−1

, p = ργ ,(23)

u1(x, t) = 1− β

2π
e1−r(x,t)2(y − y0), u2(x, t) =

β

2π
e1−r(x,t)2(x− x0 − t),

where u1, u2 are the x and y velocity and r(x, t) =
√

(x− x0 − t)2 + (y − y0)2. Here,
we take x0 = 5, y0 = 0 and β = 5.

We solve on a periodic rectangular domain [0, 20] × [−5, 5] until final time T =
5, and compute errors over all all solution fields. For a degree N approximation,
we approximate the L2 error using an (N + 2) point Gauss quadrature rule. We
also examine the influence of element curvature for both GLL and Gauss collocation
schemes by examining L2 errors on a sequence of moderately and heavily warped
curvilinear meshes (see Figure 3). These warpings are constructed by modifying
nodal positions according to the following mapping

x̃ = x+ Lxα cos

(
π

Lx

(
x− Lx

2

))
cos

(
3π

Ly
y

)
,

ỹ = y + Lyα sin

(
4π

Lx

(
x̃− Lx

2

))
cos

(
π

Ly
y

)
,

where Lx = 20, Ly = 10 denote the lengths of the domain in the x and y directions,
respectively. The lightly warped mesh corresponds to α = 1/64, the moderately
warped mesh corresponds to α = 1/16, and the heavily warped mesh corresponds to
α = 1/8. All results are computed using CCFL = 1/2 and Lax-Friedrichs interface
dissipation.
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Fig. 4: L2 errors for the 2D isentropic vortex at time T = 5 for degree N = 2, . . . , 7
GLL and Gauss collocation schemes.

Figure 4 shows the L2 errors for affine, moderately warped, and heavily warped
meshes. For affine meshes, Gauss collocation results in a lower errors than GLL
collocation at all orders. However, the difference between both schemes decreases as
N increases. This is not too surprising: on a Cartesian domain, the discrete L2 inner
product resulting from GLL quadrature converges to exact L2 inner product over
the space of polynomials as N increases [37]. However, GLL and Gauss collocation
differ more significantly on curved meshes. For both moderately and heavily warped
meshes, the errors for a degree N Gauss collocation scheme are nearly identical to
errors for a higher order GLL collocation scheme of degree (N + 1). These results are
in line with numerical experiments in [14], which show that GLL collocation schemes
lose one order of convergence in the L2 norm on unstructured non-uniform meshes.
Both results show that increasing quadrature accuracy significantly reduces the effect
of polynomial aliasing due to curved meshes and spatially varying geometric terms.

We note that L2 approximation estimates on curved meshes [38, 39] assume that
the mesh size is small enough to be in the asymptotic regime (such that asymptotic
error estimates hold). On curved meshes, this requires that the mesh is sufficiently
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fine to resolve both the solution and geometric mapping. The results in Figure 4 sug-
gest that, compared to Gauss collocation schemes, under-integrated GLL collocation
schemes require a finer mesh resolution to reach the asymptotic regime.

5.2. 3D isentropic vortex problem. As in two dimensions, we test the ac-
curacy of the proposed scheme using an isentropic vortex solution adapted to three
dimensions. The solution is the extruded 2D vortex propagating in the y direction,
with an analytic expression given in [40]

ρ(x, t) =

(
1− (γ − 1)

2
Π2

) 1
γ−1

ui(x, t) = Πri,

E(x, t) =
p0

γ − 1

(
1− γ − 1

2
Π2

) γ
γ−1

+
ρ

2

d∑
i=1

u2
i .

where (u1, u2, u3)T is the three-dimensional velocity vector and

Π = Πmaxe
1−

∑d
i=1 r

2
i

2 ,

r1

r2

r3

 =

−(x2 − c2 − t)
x1 − c1

0

 .

We take c1 = c2 = 7.5, p0 = 1/γ, and Πmax = 0.4, and solve on the domain
[0, 15] × [0, 20] × [0, 5] until final time T = 5. We decompose the domain into uni-
form hexahedral elements with edge length h. As in the 2D case, we also examine
the effect of curvilinear mesh warping. We construct a curved warping of the initial
Cartesian mesh by mapping nodes on each hexahedron to warped nodal positions
(x̃, ỹ, z̃) through the transformation

ỹ = y +
1

8
Ly cos

(
3π

(x− 7.5)

15

)
cos

(
π

(y − 10)

20

)
cos

(
π

(z − 2.5)

5

)
x̃ = x+

1

8
Lx cos

(
π

(x− 7.5)

15

)
sin

(
4π

(ỹ − 10)

20

)
cos

(
π

(z − 2.5)

5

)
z̃ = z +

1

8
Lz cos

(
π

(x̃− 7.5)

15

)
cos

(
2π

(ỹ − 10)

20

)
cos

(
π

(z − 2.5)

5

)
.

where Lx = 15, Ly = 20, Lz = 5. On curved meshes, the geometric terms are con-
structed using the approach of Kopriva described in Section 4. A CCFL = .75 is used
for all experiments.

Figure 5 shows the L2 errors for degrees N = 2, . . . , 5.2 As in the 2D case, Gauss
collocation schemes produce smaller errors than GLL collocation. The difference
between the two schemes on affine meshes is slightly more pronounced than in 2D,
while the difference between the two schemes on curved meshes is less significant than
observed in 2D experiments. We expect that this difference is due to the specific
curved mapping. The warped 2D mesh used in Figure 4 was generated to mimic a
severe “vorticular” warping. The 3D mapping is less severely warped, due to different
domain dimensions and difficulties ensuring invertibility of the map from the reference
to physical element.

2For the N = 2 GLL collocation scheme on the coarsest 3D mesh, the error is not shown because
the solution diverged.
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Fig. 5: L2 errors for the 3D isentropic vortex for N = 2, . . . , 5 on sequences of Carte-
sian and curved meshes.

We also compared L2 errors for both isoparametric and sub-parametric geometric
mappings. In both cases, the discrete GCL is satisfied. For sub-parametric mappings,
we chose the degree of approximation of geometry Ngeo =

⌊
N
2

⌋
+ 1, such that the

geometric terms are computed exactly and the GCL is satisfied by default. This
test is intended to address the fact that the GCL-preserving interpolation of Kopriva
introduces a small approximation error, as the geometric terms are no longer exact.
For these sub-parametric mappings, the gap between GLL and Gauss collocation
widens slightly at N = 2. However, the results for sub-parametric mappings are
nearly identical to the results in the isoparametric case for higher polynomial degrees.

5.3. Shock-vortex interaction. The next problem considered is the shock-
vortex interaction described in [36]. The domain is taken to be [0, 2] × [0, 1], and
is triangulated with uniform quadrilateral elements. Wall boundary conditions are
imposed on the top and bottom boundaries, and inflow boundary conditions are typ-
ically imposed on the left and right boundaries. We modify the problem setup such
that periodic boundary conditions are imposed at the left and right boundaries. Wall
boundary conditions are imposed using a mirror state for the normal velocity, which
was shown to be entropy stable in [41, 9].

The initial condition is taken to be the superposition of a stationary shock and a
vortex propagating towards the right. The stationary Mach Ms = 1.1 shock is posi-
tioned at x = .5 normal to the x axis, with left state (ρL, uL, vL, pL) =

(
1,
√
γ, 0, 1

)
,

where uL, vL denote x, y components of the left-state velocity. The right state is a
scaling of the left state computed using the Rankine-Hugoniot conditions, such that
the ratio of upstream and downstream states is

ρL
ρR

=
uL
uR

=
2 + (γ − 1)M2

s

(γ + 1)M2
s

,
pL
pR

= 1 +
2γ

γ + 1

(
M2
s − 1

)
, vR = 0.

The isentropic vortex is centered at (xc, yc) = (.25, .5) and given in terms of velocity
fluctuations δu and δv, which are functions of the tangential velocity vθ

δu = vθ sin(θ), δv = −vθ cos(θ), vθ = ετeα(1−τ2),
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(a) Entropy conservative flux, T = .3 (b) Entropy conservative flux, T = .7

(c) Lax-Friedrichs flux, T = .3 (d) Lax-Friedrichs flux, T = .7

(e) Matrix dissipation flux, T = .3 (f) Matrix dissipation flux, T = .7

Fig. 6: Shock vortex solution at time T = .7 using entropy stable Gauss collocation
schemes with N = 4, h = 1/100.

where r =
√

(x− xc)2 + (y − yc)2 is the radius from the vortex center, τ = r/rc, and

θ = tan−1
(
y−yc
x−xc

)
. We follow [36] and take ε = .3, α = .204, and rc = .05. The vortex

temperature is computed as a fluctuation δT of the upstream state TL = pL/ρL

δT = − (γ − 1)ε2e2α(1−τ2)

4αγ
.

The vortex density and pressure are computed using an isentropic assumption. To
summarize, the initial condition for the shock-vortex interaction problem is

ρ = ρs

(
Tvor

TL

) 1
γ−1

, u1 = us + δu, u2 = vs + δv, p = ps

(
Tvor

TL

) 1
γ−1

,

where (ρs, us, vs, ps) denote the discontinuous stationary shock solution given by the
left and right states (ρL, uL, vL, pL) , (ρR, uR, vR, pR).

We compare three different entropy stable Gauss collocation schemes. All three
utilize the entropy conservative flux of Chandrashekar [34]. For the first scheme,
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we do not introduce any additional interface dissipation, which produces an entropy
conservative scheme. The second scheme introduces an entropy-dissipative interface
term using Lax-Friedrichs penalization, while the third scheme utilizes the matrix dis-
sipation flux introduced in [25]. This flux adds a dissipation of the form RDRT Jvkf K,
where Jvkf K denotes the jump in the entropy variables. In two dimensions, the matrices
R,D are

R =


1 1 0 1

{{u1}} − ānx {{u1}} ny {{u1}}+ ānx
{{u2}} − āny {{u2}} −nx {{u2}}+ āny
h− āūn 1

2u
2
avg ūnny − {{u2}}nx h+ āūn


D = diag

(
|ūn − a| {{ρ}}

log

2γ , |ūn| {{ρ}}
log(γ−1)
γ , |ūn| pavg, |ūn + a| {{ρ}}

log

2γ

)
,

where ā, ūn are defined in 2D as

ūn = {{u1}}nx + {{u2}}ny, ā =

√
γpavg

{{ρ}}log
, h =

γ

2(γ − 1) {{β}}log
+

1

2
ū,

and pavg, u
2
avg are defined as in (22).

Figure 6 shows density solutions for N = 4 and h = 1/100 Gauss collocation
schemes using a non-dissipative entropy conservative flux, a dissipative Lax-Friedrichs
flux, and a matrix dissipation flux. In all cases, the vortex passes through the shock
stably without the use of additional slope limiting, filtering, or artificial viscosity.
However, the entropy conservative scheme produces a large number of spurious oscil-
lations in the solution. These are reduced away from the shock under Lax-Friedrichs
dissipation, though oscillations still persist around a large neighborhood of the discon-
tinuity. The Gibbs-type oscillations are most localized under the matrix dissipation
flux.

We note that this experiment also verifies that entropy stable decoupled SBP
schemes (including the over-integrated case [11]) are compatible with entropy stable
wall boundary conditions. As far as the authors know, the stable and high order ac-
curate imposition of such boundary conditions for existing GSBP couplings described
in [13] and Section 3.2 remains an open problem.

5.4. Inviscid Taylor-Green vortex. We conclude by investigating the behav-
ior of entropy stable Gauss collocation schemes for the inviscid Taylor–Green vortex
[42, 3, 10]. This problem is posed on the periodic box [−π, π]3, with initial conditions

ρ = 1, p =
100

γ
+

1

16
(cos(2x1) + cos(2x2)) (2 + cos(2x3)) ,

u1 = sin(x1) cos(x2) cos(x3), u2 = − cos(x1) sin(x2) cos(x3), u3 = 0.

The Taylor–Green vortex is used to study the transition and decay of turbulence. In
the absence of viscosity, the Taylor–Green vortex develops successively smaller scales
as time increases. As a result, the solution is guaranteed to contain under-resolved
features after a sufficiently large time. We study the evolution of kinetic energy κ(t)

κ(t) =
1

|Ω|

∫
Ω

ρ

(
d∑
i=1

u2
i

)
dx,
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Fig. 7: Kinetic energy dissipation rate for entropy stable GLL and Gauss collocation
schemes with N = 7 and h = π/8.

as well as the kinetic energy dissipation rate −∂κ∂t , which is approximated by differ-
encing κ(t). For both GLL and Gauss collocation schemes, integrals in the kinetic
energy formulaare evaluated using an (N + 1)-point Gauss quadrature rule.

Figure 7 shows the evolution of the kinetic energy dissipation rate from t ∈ [0, 20]
for Gauss and GLL collocation schemes on affine and curved meshes. The curved
meshes used here are constructed by modifying nodal positions through the mapping

x̃ = x +
1

2
sin(x) sin(y) sin(z).

All cases utilize N = 7 and h = π/8 (corresponding to 8 elements per side), as well
as a CFL of .25. Lax-Friedrichs dissipation is used for all simulations. For both affine
and curved meshes, the presented Gauss collocation schemes remain stable in the
presence of highly under-resolved solution features. Kinetic energy dissipation rates
for both GLL and Gauss collocation are qualitatively similar and are consistent with
existing results in the literature for the inviscid Taylor-Green vortex [3, 12].

6. A theoretical cost comparison. While the numerical experiments pre-
sented in previous sections demonstrate several advantages of Gauss collocation meth-
ods over GLL collocation schemes, these do not account for additional costs associated
with Gauss collocation schemes. While a detailed time-to-solution comparison is out-
side of the scope of this work, we can compare computational costs associated with
Gauss, staggered-grid, and GLL collocation schemes.

The main computational costs associated with entropy stable schemes are vol-
ume operations, which include evaluations of two-point fluxes and applications of
one-dimensional differentiation and interpolation matrices. We do not count inter-
element communication or flux computations, as these are typically less expensive
than volume operations (especially for higher polynomial degrees). The total num-
ber of flux computations for each scheme can also be reduced using the symmetry of
fS ; however, this does not affect relative differences in the number of two-point flux
evaluations between GLL, Gauss, and staggered grid schemes. However, exploiting
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Fig. 8: Comparison of GLL, staggered grid, and Gauss collocation schemes in terms
of number of two-point flux evaluations and operations associated with matrix com-
putations in three dimensions.

symmetry in the Gauss scheme is slightly more straightforward (compared to GLL
and staggered grid schemes) due to the block structure of the decoupled SBP operator.

In 3D, a degree N GLL collocation scheme contains (N + 1)3 nodes. Two-point
fluxes are computed between states at one node and states at (N + 1) additional
nodes, resulting in a total of 3(N + 1)4 two-point flux evaluations. For a staggered
grid scheme, two-point fluxes are computed on a degree (N + 1) GLL grid consisting
of (N + 2)3 nodes, resulting in 3(N + 2)4 evaluations.

Gauss collocation schemes compute two-point fluxes on a grid of Gauss nodes,
resulting in 3(N + 1)4 flux evaluations in 3D. One must also evaluate two-point fluxes
between face nodes and volume nodes, and vice versa. As a result, Gauss schemes
evaluate two-point fluxes twice between each face node and the line of (N+1) volume
nodes normal to that face, resulting in an extra 12(N + 1)3 flux evaluations in 3D.

We also consider costs associated with applying operator matrices. GLL and
Gauss collocation schemes require applying a one-dimensional differentiation matrix
to each line of nodes, resulting in O

(
3(N + 1)4

)
operations in 3D. Staggered-grid

schemes require O
(
3(N + 2)4

)
operations (corresponding to differentiation in each

coordinate on a degree (N+1) GLL grid) as well as O
(
6(N + 2)(N + 1)3

)
operations

required for interpolation to and from a (N + 1) point Gauss grid to a (N + 2) point
GLL grid in three dimensions. Gauss collocation schemes require only interpolation
to and from points on 6 faces, resulting in an additional O

(
12(N + 1)3

)
operations

per dimension per element.
Figure 8 shows the estimated number of two-point flux evaluations and matrix

operations for GLL, staggered grid, and Gauss collocation schemes in three dimen-
sions. We observe that a straightforward implementation of Gauss collocation does
not significantly reduce the number of flux evaluations compared to staggered grid
schemes, though Gauss collocation schemes result in a significantly smaller number
of operations from matrix computations.
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We note that the number of two-point flux evaluations and matrix operations
will impact runtime differently depending on the implementation and computational
architecture. For example, while flux evaluations typically dominate runtimes for
serial CPU implementations at all orders of approximation, they do not contribute
significantly to runtimes at polynomial degrees N = 1, . . . , 8 for implementations on
Graphics Processing Units (GPUs) [43].

7. Conclusion. This work shows how to construct efficient entropy stable high
order Gauss collocation DG schemes on quadrilateral and hexahedral meshes. Key
to the construction of efficient methods are decoupled SBP operators, which deliver
entropy stability and high order accuracy while maintaining compact inter-element
coupling terms. These operators are also compatible with existing entropy stable
methods for applying interface dissipation [25] or imposing boundary conditions. Nu-
merical experiments demonstrate both the stability and high order accuracy of the
proposed Gauss collocation schemes on both affine and curvilinear meshes. We note
that, while the numerical experiments presented here consider only mapped Cartesian
domains, the method is also applicable to complex geometries, and future work will
focus on studying the performance of such methods on curvilinear quadrilateral and
hexahedral unstructured meshes.

We note that results for Gauss collocation are similar to those attained by en-
tropy stable staggered-grid schemes [14], and require a similar number of two-point
flux evaluations. However, Gauss collocation schemes result in a lower number float-
ing point operations from matrix computations compared to staggered-grid methods.
Finally, while a rigorous computational comparison between GLL and Gauss colloca-
tion schemes remains to be done, Gauss collocation schemes show significant improve-
ments in accuracy compared to GLL collocation schemes on non-Cartesian meshes. In
particular, for sufficiently warped curvilinear mappings, degree N Gauss collocation
schemes achieve an accuracy comparable to degree (N + 1) GLL collocation schemes
in two and three dimensions.

8. Acknowledgments. Jesse Chan is supported by NSF DMS-1719818 and
DMS-1712639. The authors thank Florian Hindenlang and Jeremy Kozdon for helpful
discussions and suggestions.

Appendix A. Decoupled SBP operators for general choices of quadra-
ture and basis.

For general choices of quadrature and basis, decoupled projection operators in-
volve a volume quadrature interpolation matrix Vq, a face quadrature interpolation

matrix Vf , and a quadrature-based L2 projection matrix Pq. Let {φj}Npj=1 denote

a set of Np basis functions, and let {xi,wi}
Nq
i=1 denote a set of Nq volume quadra-

ture points and weights in d dimensions. We also introduce the set of Nf
q surface

quadrature points and weights
{
xfi ,w

f
i

}Nfq
i=1

. Then, Vq,Vf are given as

(Vq)ij = φj(xi), 1 ≤ i ≤ Nq, 1 ≤ j ≤ Np,

(Vf )ij = φj

(
xfi

)
, 1 ≤ i ≤ Nf

q , 1 ≤ j ≤ Np.

These matrices can be used to define the quadrature-based L2 projection matrix Pq.
Let W ,Wf denote the diagonal matrix of volume and surface quadrature weights,
respectively. Then,

M = V T
q WVq, Pq = M−1V T

q W .
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Let Di now denote a modal differentiation matrix with respect to the ith coordinate,
which maps coefficients in the basis φj to coefficients of the ith derivative. By compos-
ing this matrix with interpolation and projection matrices, one can define differencing
operators Di

q = VqD
iPq which map values at quadrature points to values of approx-

imate derivatives at quadrature points. Moreover, Qi = WDi
q satisfies a generalized

SBP property involving the face interpolation and projection matrices Vf ,Pq [11].
The decoupled SBP operator Qi

N is then given as

(24) Qi
N =

[
Qi − 1

2 (VfPq)
T
Wfdiag (ni)VfPq

1
2 (VfPq)

T
Wfdiag (ni)

− 1
2Wfdiag (ni)VfPq

1
2Wfdiag (ni)

]
.

A straightforward computation shows that Qi
N satisfies an SBP property [11]. It is

worth noting that the form of Qi
N does not depend on the choice of basis. So long as

the approximation space spanned by the basis φj does not change, the domain and
range of Qi

N depend solely on the choice of volume and surface quadrature points.
A collocation scheme assumes that the number of quadrature points is identical to

the number of basis functions. If the solution is represented using degree N Lagrange
polynomials at quadrature points, the matrices Vq,Pq simplify to

(Vq)ij = δij , M = W , Pq = M−1V T
q W = I.

Plugging these simplifications into (24) and restricting to one spatial dimension re-
covers the decoupled SBP operator (9).
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