

Edinburgh Research Explorer

Automated calculation of higher order partial differential
equation constrained derivative information

Citation for published version:
Maddison, J, Goldberg, D & Goddard, B 2019, 'Automated calculation of higher order partial differential
equation constrained derivative information', SIAM Journal on Scientific Computing, vol. 41, no. 5, pp.
C417-C445. https://doi.org/10.1137/18m1209465

Digital Object Identifier (DOI):
10.1137/18m1209465

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
SIAM Journal on Scientific Computing

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 17. May. 2024

https://doi.org/10.1137/18m1209465
https://doi.org/10.1137/18m1209465
https://www.research.ed.ac.uk/en/publications/83cc5cff-94b3-4c66-ae25-82a90a1a5995

AUTOMATED CALCULATION OF HIGHER ORDER PARTIAL1

DIFFERENTIAL EQUATION CONSTRAINED DERIVATIVE INFORMATION2

J. R. MADDISON ∗, D. N. GOLDBERG † , AND B. D. GODDARD ‡
3

Abstract. Developments in automated code generation have allowed extremely compact representations of4

numerical models, and also for associated adjoint models to be derived automatically via high level algorithmic5

differentiation. In this article these principles are extended to enable the calculation of higher order derivative6

information. The higher order derivative information is computed through the automated derivation of tangent-7

linear equations, which are then treated as new forward equations, and from which higher order tangent-linear and8

adjoint information can be derived. The principal emphasis is on the calculation of partial differential equation9

constrained Hessian actions, but the approach generalises for derivative information at arbitrary order. The10

derivative calculations are further combined with an advanced data checkpointing strategy. Applications which11

make use of partial differential equation constrained Hessian actions are presented.12

Key word. FEniCS; tangent-linear; adjoint; second order adjoint; code generation13

AMS subject classifications. 49M29, 65M32, 65M60, 68N2014

1. Introduction. In principle a numerical model may be considered a single, possibly15

highly complex, function mapping from inputs to outputs. This function may typically be broken16

down into the composition of a possibly very large number of simpler functions. Source-to-source17

algorithmic differentiation tools,1 in forward mode, differentiate individual lines of source code18

appearing in a forward code, and use this to generate associated tangent-linear models (e.g. [6]).19

A tangent-linear model calculates the derivative of forward model outputs with respect to an20

input by propagating derivative information forwards, from the input, through the tangent-linear21

calculation.22

An adjoint model instead calculates the derivative of a forward model output with respect23

to forward equation residuals by propagating information in a reverse sense, from the output,24

through an adjoint calculation. If a forward variable is computed earlier in the originating25

forward model, an associated adjoint variable is computed later in an associated adjoint calcu-26

lation. Source-to-source algorithmic differentiation tools in reverse mode (e.g. [18, 19, 53, 32])27

must tackle the additional complexity associated with this reversal of causality. An adjoint28

model associated with a non-linear forward model, or an adjoint-based calculation of the linear29

sensitivity of a functional with respect to a control on which the forward depends non-linearly,30

requires forward solution data. Practical implementations of adjoint models associated with31

non-linear forward problems must therefore additionally manage the storage, checkpointing, or32

recalculation of required forward model data (e.g. [28, 48]).33

This article describes the calculation of higher order partial differential equation constrained34

derivative information, through the derivation of higher order tangent-linear equations, and the35

solution of associated adjoint equations. The principal emphasis is on the calculation of second36

derivative information, although the metholodology generalises to arbitrary order.37

For details on higher order algorithmic differentiation see for example chapter 3 of [45]. See38

also, for example, [7] and chapter 13 of [30] for Taylor polynomial based methods for computing39

higher order derivative information.40

∗School of Mathematics and Maxwell Institute for Mathematical Sciences, The University of Edinburgh, Ed-
inburgh, EH9 3FD, United Kingdom (j.r.maddison@ed.ac.uk).
†School of GeoSciences, The University of Edinburgh, EH8 9XP, United Kingdom.
‡School of Mathematics and Maxwell Institute for Mathematical Sciences, The University of Edinburgh, Ed-

inburgh, EH9 3FD, United Kingdom.
1Also commonly referred to in this context as “automatic differentiation” – here, as in [30], the term “algo-

rithmic differentiation” is adopted.

1

mailto:j.r.maddison@ed.ac.uk

1.1. High level algorithmic differentation. In [16] discrete adjoint models are derived41

automatically for finite element models written using the FEniCS system, by raising the level at42

which the forward problem is considered to the level of finite element discretised weak form partial43

differential equations. This is implemented in the dolfin-adjoint library. The methodology used44

to derive higher order partial differential equation constrained derivative information, described45

in this article, is based upon this high level approach.46

The key ingredients of the approach are47

1. the automatic processing of symbolic representations of discretisised partial differential48

equations, so as to construct symbolic representations of associated tangent-linear and49

adjoint information,50

2. the implementation of the symbolic representations as lower level code using automated51

code generation.52

Discrete tangent-linear and adjoint models may then be derived and implemented automatically53

by tackling the problem at the level of discrete equations. In [16] this methodology is applied for54

finite element models written using the FEniCS automated code generation system [40, 1].55

1.2. Escape hatches. A potential shortcoming of the approach described in [16] is that it56

relies heavily upon the ability to construct appropriate symbolic representations of forward equa-57

tions. The dolfin-adjoint library specifically processes discretised weak form partial differential58

equations which are expessed using the Unified Form Language (UFL, [2]). However cases may be59

encountered that lack such a representation – for example elementary linear algebra operations,60

or the evaluation of a continuous function at a point. For cases where calculations cannot easily61

or efficiently be represented as the solution of discretised weak form partial differential equations,62

escape hatches are required to enable one to supply the relevant derivative information manually.63

In the version of the dolfin-adjoint library described in [16] this required manual interaction with64

the lower level libadjoint library [15] underlying dolfin-adjoint. In more recent versions, making65

use of pyadjoint [43], this can be achieved through the definition of custom Block classes.66

1.3. Storage and checkpointing. An associated tangent-linear model depends2 upon67

forward solution data, but shares the causal structure of the forward code. Hence a tangent-linear68

model can be solved alongside its associated forward. By contrast, a key difficulty associated69

with the practical implementation of an adjoint model is that the adjoint model also depends70

upon forward solution data, but has reverse causal structure to the forward code. Hence while71

in a forward calculation it may be possible to discard xn after solving for xn+1, the associated72

adjoint calculation requires these data to be retained, for example in memory or on disk, or else73

regenerated through additional forward calculations. More advanced approaches can strategically74

combine storage with recalculation.75

If a specific number of sub-problems are solved and known prior to the forward calculation76

(e.g. if a known number of timesteps are to be taken) then the approach of [29] (see also [28, 38])77

provides (subject to some assumptions) an optimal strategy for the checkpointing and possible78

recalculation of forward model data. Alternative algorithms can be applied for the case where the79

number of timesteps is determined dynamically at runtime [35, 54, 51], although such approaches80

are not considered here – that is, only “offline” strategies are considered.81

In [16] the high level algorithmic differentiation approach is combined with the approach82

of [29], implemented in the revolve library, to yield an optimal data checkpointing strategy for83

all models which have the required causal structure, and which are written using the FEniCS84

automated code generation system in a way which is compatible with the dolfin-adjoint library.85

2Specific limiting cases – such as a fully linear calculation – may have simpler dependency structures than the
more general cases considered here.

2

1.4. Higher order derivative information. Tangent-linear and adjoint models can com-86

pute first order partial differential equation constrained derivatives. A partial differential equa-87

tion constrained second derivative, contracted3 against a single direction, can be evaluated via88

the solution of89

1. the original forward equations,90

2. a set of tangent-linear equations associated with the forward equations,91

3. a set of first order adjoint equations,92

4. a set of second order adjoint equations [55].93

The complexities associated with the derivation of tangent-linear and adjoint models are now94

compounded. If using algorithmic differentiation, the algorithmic differentiation tool must be95

capable of processing its own output, so as to generate an associated adjoint model from a96

tangent-linear model, or to generate an associated tangent-linear model from an adjoint model.97

Any inefficiencies in the algorithmic differentiation tool are similarly compounded. The data98

storage problem now becomes more complex. Forward and tangent-linear models have forward99

causality, while the adjoint and second order adjoint have reverse causality. The tangent-linear100

and first order adjoint solutions depend upon the forward solution, while the second order adjoint101

solution depends upon the forward, tangent-linear, and first order adjoint solutions.102

While dolfin-adjoint includes functionality for computing second order derivative information103

through the solution of a second order adjoint, these calculations have not yet been combined104

with data checkpointing strategies, and have not been generalised beyond second order.105

The key step taken in this article is to add to the methodology of [16] the ability of the106

high level algorithmic differentiation tool to process its own output, through the generation of107

tangent-linear equations which are treated on an equal footing with their associated forward108

equations. Tangent-linear and adjoint information is derived for the forward equations and, as109

the tangent-linear equations are now treated simply as further equations, higher order tangent-110

linear equations, and adjoint information associated with the tangent-linear equations, can be111

derived. This allows tangent-linear and adjoint information to be derived to arbitrary order, and112

for data checkpointing strategies to be used for higher order adjoint calculations.113

1.5. Feature summary. This article describes the derivation of arbitrary order partial114

differential equation constrained derivative information for finite element models written using115

the FEniCS system. The high level algorithmic differentiation is implemented in the tlm adjoint116

library.117

tlm adjoint is based around an abstract interface for the specification of model equations,118

following several of the key design principles of the libadjoint library, which itself underlies the119

version of the dolfin-adjoint library described in [16].4 As such tlm adjoint shares many of the120

key benefits of dolfin-adjoint, including121

• the ability to re-use the automated code generation system FEniCS itself to generate low-122

level implementations, derived from higher level symbolic representations, of tangent-123

linear and adjoint calculations associated with finite element discretisations of partial124

differential equations,125

• MPI parallelism support, principally inherited from the MPI parallelism support of the126

FEniCS system,127

• the ability for specific tangent-linear and adjoint equations associated with non-linear128

problems to be solved with a single linear solve (see [16], section 6.1),129

• automated management of storage and checkpointing, including use of the binomial130

3Here “contraction” is understood in terms of tensor contractions against the vectors defining the directions.
4Note that more recent versions of dolfin-adjoint no longer make use of libadjoint, and are instead based on

the pyadjoint library [43].

3

checkpointing approach of [29], with offline multi-stage checkpointing [50].131

tlm adjoint further132

• manages the automated derivation of tangent-linear equations to arbitrary order,133

• manages higher order derivative calculations, through the solution of arbitrary order134

adjoint equations,135

• manages storage and checkpointing associated with solving these arbitrary order adjoint136

equations,137

• implements the method of [8] and its tangent-linear analogue [21] for the solution of138

tangent-linear and adjoint equations, of arbitrary order, associated with fixed-point it-139

eration,140

• provides a simple “escape hatch” interface, enabling custom equations to be specified,141

• implements several automated assembly and solver caching optimisations, similar to142

those described in [42].143

The article proceeds as follows. In section 2 the calculation of higher order partial differential144

equation constrained derivative information is outlined. The automated derivation of higher145

order tangent-linear equations and associated adjoint information using the tlm adjoint library146

is detailed in section 3. Two examples which make use of forward model constrained Hessian147

information are provided in section 4. Limitations of the approach are discussed in section 5.148

The paper concludes in section 6.149

2. Formulation. This section outlines the calculation of higher order forward model con-150

strained derivative information. The formulation is limited to the consideration of forward mod-151

els with specific causal structure, such as is encountered in a timestepping solver for discretised152

time-dependent partial differential equations.153

In the following vectors v ∈ Rd for some positive integer d are considered to be column154

vectors. The derivative of a functional J (v) : Rd → R with respect to v is considered to be a155

row vector with elements156

(2.1)

(
dJ

dv

)
i

=
∂J

∂vi
,157

where vi indicates the ith element of v. The derivative of a vector-valued function F (v) : Rd →158

Rd with respect to v is considered to be a matrix with elements159

(2.2)

(
dF

dv

)
i,j

=
∂Fi

∂vj
,160

where Fi (v) is the ith element of F (v). Sufficient regularity is assumed throughout.161

2.1. Timestepping forward model. Consider a forward variable x ∈ RNx and control162

parameter m ∈ RNm . A residual function F (x,m) : RNx × RNm → RNx defines the forward163

solution as an implicit function of the control parameter, x̂ (m) :M→ RNx , via164

(2.3) F (x̂ (m) ,m) = 0 ∀m ∈M,165

where existence of such an x̂ is assumed, and where M is some appropriate subset of RNm .166

Let the forward variable x be divided into a set of (N + 2) blocks xn ∈ RNx,n for n ∈167

{0, . . . , N + 1}, e.g. for N ≥ 1168

(2.4) x =


x0

x1

...
xN+1

 .169

4

For simplicity a specific causal structure in the forward model is now assumed, by asserting that170

the residual function F can be divided into a series of (N + 2) blocks Fn which have the form171

(for N ≥ 1)172

(2.5) F (x,m) =


F0 (x0,m)

F1 (x0, x1,m)
...

FN+1 (xN , xN+1,m)

 .173

That is Fn depends explicitly only on m, xn, and (for n ≥ 1) xn−1. Each Fn has codomain174

RNx,n . For example in a timestepping model F0 may define the forward model initialisation,175

Fn for n ∈ {1, . . . , N} may define N timesteps, and FN+1 may define the calculation of final176

diagnostics (the “initialisation”, “timestepping”, and “finalisation” stages described in [42]).177

2.2. Functional. Given a functional J (x,m) : RNx × RNm → R, a functional depending178

only upon the control parameter m, Ĵ (m) :M→ R, is defined via179

(2.6) Ĵ (m) = J (x̂ (m) ,m) ∀m ∈ M.180

Given a value of m, we seek to compute the contraction of the Kth derivative of Ĵ against K181

directions ζi ∈ RNm for i ∈ {1, . . . ,K}. This can be defined inductively via182

D1 =
dĴ

dm
ζ1,(2.7a)183

Dk =
dDk−1

dm
ζk for k ∈ {2, . . . ,K} .(2.7b)184

185

Given a value of m, we further seek to compute the contraction of the Kth derivative of Ĵ against186

(K − 1) directions, which is given by187

(2.8) SK =
dDK−1

dm
.188

The formulation to follow is simplified by asserting that J is equal to a single component of189

x, and in particular equal to a single component of xN+1. Specifically it is set equal to the Mth190

component, xN+1,M , of xN+1,191

(2.9) J (x,m) = xN+1,M .192

More complex functionals may be defined by appending additional variables to x, and additional193

residuals to F . For example, if the functional of interest is a sum over timesteps, then x may194

include appropriate partial sums. J is then equal to the final partial sum, defined to be an195

element of xN+1.196

2.3. First order derivative, contracted against zero directions. The first order for-197

ward model constrained derivative of the functional can be computed using a first order adjoint198

model (e.g. [31], equation (2.33)),199

∂FN+1

∂xN+1

T

λ1,N+1 = e1,N+1,(2.10a)200

∂Fn

∂xn

T

λ1,n = −∂Fn+1

∂xn

T

λ1,n+1 ∀n ∈ {0, . . . , N} .(2.10b)201

202

5

Here each λ1,n ∈ RNx,n , and e1,N+1 ∈ RNx,n is a vector with Mth element equal to one and203

all other elements equal to zero. These first order adjoint equations can be solved via block204

backward substitution, consistent with the reverse causal nature of the first order adjoint. The205

first order forward model constrained derivative (contracted against zero directions) is (e.g. [31],206

equation (2.34))207

(2.11) S1 =
dĴ

dm
= −

N+1∑
n=0

λT1,n
∂Fn

∂m
.208

2.4. First order derivative, contracted against one direction. The first order forward209

model constrained derivative of the functional, contracted against a single direction, can be210

computed using a first order tangent-linear model (e.g. [31], equation (2.24)),211

∂F0

∂x0
τ1,0 = −∂F0

∂m
ζ1,(2.12a)212

∂Fn

∂xn
τ1,n = −∂Fn

∂m
ζ1 −

∂Fn−1

∂xn−1
τ1,n−1 ∀n ∈ {1, . . . , N + 1} .(2.12b)213

214

Here each τ1,n ∈ RNx,n . These first order tangent-linear equations can be solved via block215

forward substitution, consistent with the forward causal nature of the first order tangent-linear.216

The forward model constrained derivative, contracted against a single direction ζ1, is (e.g. [31],217

equation (2.21))218

(2.13) D1 =
dĴ

dm
ζ1 = τT1,N+1e1,N+1.219

Since both the forward and the first order tangent-linear share a forward causal structure,220

they can be combined into a single model. Define X1,n ∈ R2Nx,n with block structure221

(2.14) X1,n =

(
xn
τ1,n

)
∀n ∈ {0, . . . , N + 1} ,222

and new residual functions F1,n, depending only upon m, X1,n, and (for n ≥ 1) X1,n−1, with223

block structure224

F1,0 (X1,0,m) =

(
F0 (x0,m)

∂F0

∂x0
τ1,0 + ∂F0

∂m ζ1

)
,(2.15a)225

F1,n (X1,n−1, X1,n,m) =

(
Fn (xn−1, xn,m)

∂Fn

∂xn
τ1,n + ∂Fn

∂m ζ1 + ∂Fn−1

∂xn−1
τ1,n−1

)
∀n ∈ {1, . . . , N + 1} .(2.15b)226

227

The F1,n define the forward and first order tangent-linear solutions as an implicit function of the228

control parameter, X̂1,n (m) :M→ R2Nx,n , via229

F1,0

(
X̂1,0 (m) ,m

)
= 0 ∀m ∈M,(2.16a)230

F1,n

(
X̂1,n−1 (m) , X̂1,n (m) ,m

)
= 0 ∀m ∈M, n ∈ {1, . . . , N + 1} .(2.16b)231

232

The new combined model shares the causal structure of the originating forward model.233

The forward model constrained derivative, contracted against a single direction ζ1, can now234

be expressed235

(2.17) D1 =
dĴ

dm
ζ1 = X̂T

1,N+1e2,N+1,236

6

where e2,N+1 ∈ R2Nx has block structure237

(2.18) e2,N+1 =

(
z1,N+1

e1,N+1

)
,238

where z1,N+1 is a zero vector of length Nx,N+1.239

2.5. Kth order derivative, contracted against K directions. The procedure consid-240

ered in the preceding subsection can be now applied inductively to any order K ≥ 2. Consider,241

for K ≥ 2,242

∂FK−1,0

∂XK−1,0
τK,0 = −∂FK−1,0

∂m
ζK ,(2.19a)243

∂FK−1,n

∂XK−1,n
τK,n = −∂FK−1,n

∂m
ζK −

∂FK−1,n−1

∂XK−1,n−1
τK,n−1 ∀n ∈ {1, . . . , N + 1} .(2.19b)244

245

Here τK,n ∈ R2K−1Nx,n . For K = 2 the FK−1,n and XK−1,n are as defined in the preceding246

subsection, and otherwise they are defined inductively below. These equations can be solved via247

block forward substitution, and hence are of forward causal nature.248

Define XK,n ∈ R2KNx,n , with block structure249

(2.20) XK,n =

(
XK−1,n

τK,n

)
∀n ∈ {0, . . . , N + 1} .250

Define new functions FK,n, depending only upon m, XK,n, and (for n ≥ 1) XK,n−1, with block251

structure252

FK,0 (XK,0,m) =

(
FK−1,0 (XK−1,0,m)

∂FK−1,0

∂XK−1,0
τK,0 +

∂FK−1,0

∂m ζK

)
,(2.21a)253

FK,n (XK,n−1, XK,n,m) =

(
FK−1,n (XK−1,n−1, XK−1,n,m)

∂FK−1,n

∂XK−1,n
τK,n +

∂FK−1,n

∂m ζK +
∂FK−1,n−1

∂XK−1,n−1
τK,n−1

)
254

∀n ∈ {1, . . . , N + 1} .(2.21b)255
256

The FK,n define the solution to the forward and all tangent-linears up to and including order K257

as an implicit function of the control parameter, X̂K,n (m) :M→ R2KNx,n , via258

FK,0

(
X̂K,0 (m) ,m

)
= 0 ∀m ∈M,(2.22a)259

FK,n

(
X̂K,n−1 (m) , X̂K,n (m) ,m

)
= 0 ∀m ∈M, n ∈ {1, . . . , N + 1} .(2.22b)260

261

The new combined model still shares the causal structure of the originating forward model.262

The Kth order forward model constrained derivative, contracted against K directions ζk ∈263

RNm for k ∈ {1, . . . ,K}, can now be expressed as264

(2.23) DK = X̂T
K,N+1eK+1,N+1,265

where eK+1,N+1 ∈ R2KNx has block structure266

(2.24) eK+1,N+1 =

(
zK,N+1

eK,N+1

)
,267

where zK,N+1 is a zero vector of length 2K−1Nx,N+1.268

If two or more directions ζi are equal then there is some redundancy in the above, with269

identical tangent-linear equations defined. These redundant equations can be removed to define270

a (perhaps significantly) smaller XK,n.271

7

2.6. Kth order derivative, contracted against (K − 1) directions. Consider, for K ≥272

2, the adjoint equations273

∂FK−1,N+1

∂XK−1,N+1

T

λK,N+1 = eK,N+1,(2.25a)274

∂FK−1,n

∂XK−1,n

T

λK,n = −∂FK−1,n+1

∂XK−1,n

T

λK,n+1 ∀n ∈ {0, . . . , N} ,(2.25b)275

276

where each λK,n ∈ R2K−1Nx,n . These combine the solution of adjoint equations of order up to277

and including order K. Since they can be solved via block backward substitution, they are of278

reverse causal nature.279

The Kth order forward model constrained derivative, contracted against (K − 1) directions,280

is281

(2.26) SK = −
N+1∑
n=0

λTK,n

∂FK−1,n

∂m
.282

Note that, for K = 2, the above approach forms adjoint equations associated with the283

forward and first order tangent-linear equations. This contrasts with the generation of tangent-284

linear equations associated with first order adjoint equations, for example as described in [20, 37].285

See chapter 3 of [45] for a relevant discussion.286

3. Implementation. The procedure described in the preceding section requires287

1. the definition of the forward equations,288

2. the derivation of tangent-linear equations associated with forward equations,289

3. the derivation of tangent-linear equations associated with tangent-linear equations,290

4. the derivation of adjoint equations associated with forward equations,291

5. the derivation of adjoint equations associated with tangent-linear equations.292

The implementation is simplified by treating forward and tangent-linear equations on an equal293

footing so that, given a forward equation, associated tangent-linear equations can be derived and294

then treated as new forward equations. Given the ability to derive tangent-linear equations and295

adjoint information associated with forward equations, one can then derive adjoint information296

associated with tangent-linear equations, to arbitrary order.297

Specifically an abstraction of a general equation is considered which defines298

1. how the forward equation can be solved,299

2. how required adjoint information can be computed,300

3. how a new tangent-linear equation can be derived.301

The first two parts of this definition are consistent with the approach used by the libadjoint302

library which underlies the version of dolfin-adjoint described in [16]. The key new ingredient is303

the third, which provides the ability to derive tangent-linear equations, with the tangent-linear304

equations represented using the same abstraction as the forward equations.305

3.1. Representation of forward equations. tlm adjoint is a Python 3 library imple-306

menting the principles of dolfin-adjoint as described in [16], and following some of the design prin-307

ciples of the libadjoint library [15], but extending these with the ability to derive tangent-linear308

equations to arbitrary order. The library was derived out of a custom escape hatch extension to309

dolfin-adjoint which interfaced directly with libadjoint for the specification of custom equations,310

but now functions as a standalone library.311

The key elements required in the definition of equations are specified in the abstract base312

class Equation. The principles are outlined here via a simple example, considering the forward313

8

equation314

(3.1) F (x, y) = x− αy = 0,315

solving for x given y for some α ∈ R, and where x and y are compatible length vectors. This316

can be implemented using tlm adjoint via317

class ScaleSolver(Equation):318

def __init__(self , alpha , y, x):319

Equation.__init__(self , x, [x, y], nl_deps = [], ic_deps = [])320

self.alpha = alpha321

322

def forward_solve(self , x, deps = None):323

if deps is None:324

y = self.dependencies ()[1]325

else:326

y = deps [1]327

function_set_values(x, self.alpha * function_get_values(y))328

329

def adjoint_jacobian_solve(self , nl_deps , b):330

return b331

332

def adjoint_derivative_action(self , nl_deps , dep_index , adj_x):333

return ([1.0, -self.alpha][dep_index], adj_x)334

335

def tangent_linear(self , M, dM, tlm_map):336

x = self.dependencies ()[0]337

y = self.dependencies ()[1]338

if y in M:339

return ScaleSolver(self.alpha , dM[M.index(y)], tlm_map[x])340

elif function_is_static(y):341

return NullSolver(tlm_map[x])342

else:343

return ScaleSolver(self.alpha , tlm_map[y], tlm_map[x])344

3.1.1. Definition of dependencies. The constructor calls the base Equation class con-345

structor, and specifies that this is an equation solving for x, with x and y as dependencies.346

Tangent-linear and adjoint equations depend only upon non-linear dependencies of the forward,347

and these are defined via nl deps – in this linear example there are no non-linear dependencies.348

If the solution of the equation depends upon the initial value of x (for example if it is used as349

an initial guess for an iterative solver) then this can be specified using the ic deps argument –350

this information is required for rerunning of the forward.351

3.1.2. Forward solution. The method forward solve implements a means of solving the352

forward equation, solving for x. If provided, the input deps defines the values of forward equation353

dependencies, and otherwise these values are defined by self.dependencies(). During an354

adjoint calculation forward solve may be called, perhaps multiple times, in order to regenerate355

forward solution data from checkpoint data.356

3.1.3. Adjoint derivative information. The overridden method357

adjoint derivative action computes actions of the adjoint of the derivative of F , with358

dep index specifying the dependency with respect to which the derivative is taken. For ex-359

ample if dep index equals 1 this computes360

(3.2)
∂F

∂y

T

λ,361

where λ is defined by adj x. The values of any non-linear dependencies are provided in nl deps.362

3.1.4. Solution of adjoint equations. The overridden method adjoint jacobian solve363

returns λ where364

(3.3)
∂F

∂x

T

λ = b,365

9

and b is defined by b. Again the values of non-linear dependencies are provided in nl deps.366

3.1.5. Derivation of tangent-linear equations. Tangent-linear information is specified367

by the tangent linear method, which returns a new Equation object suitable for the solution368

of a tangent-linear equation.369

The argument M provided to tangent linear defines the control parameter m, and the370

argument dM defines a direction ζi. The method may return a new Equation object, which in371

this example solves372

(3.4)
∂F

∂x
τx = − ∂F

∂m
ζi,373

for τx if m corresponds to y itself, and374

(3.5)
∂F

∂x
τx = −∂F

∂y
τy,375

for τx if y is distinct from m. The values of associated tangent-linear variables τx and τy are376

stored in the dictionary-like container object tlm map. Note that if y is “static” (see section 3.4)377

and distinct from m, then it is known that τy = 0.378

Crucially, since the result returned by the tangent linear method is itself an Equation379

object, adjoint information, and higher order tangent-linear information, can now be derived.380

3.2. Processing of equations. By default, when the solve method of an Equation object381

is called, the equation is processed by an internal manager. During forward calculations this382

manager keeps a record of the equations solved, derives tangent-linear equations, and manages383

the storage and checkpointing of forward model data (see section 3.5).384

tlm adjoint includes limited functionality for the overriding or interception of FEniCS func-385

tions and methods, and the subsequent automated construction and solution of appropriate386

Equation objects. This automated functionality is less extensive than similar funtionality pro-387

vided by dolfin-adjoint.388

The division of the forward model solution and the forward model residual into logical blocks,389

as described in section 2.1, is indicated by calling the new block() function at the desired point390

in the code – for example this may typically be called at the end of forward timesteps.391

3.3. Finite element discretisations. Finite element discretised partial differential equa-392

tions are represented using the EquationSolver class, which derives from the abstract base393

class Equation, and provides implementations of each of the adjoint derivative action,394

adjoint jacobian solve, and tangent linear methods. Here this is illustrated using a simple395

example, where the forward model consists of the Poisson equation in the unit square domain396

subject to homogeneous Dirichlet boundary conditions.397

3.3.1. Second order adjoint calculation. A complete code which computes a forward398

model constrained Hessian action, integrating with FEnicS 2018.1.0, takes the form399

from fenics import *400

from tlm_adjoint import *401

402

mesh = UnitSquareMesh (10, 10)403

space = FunctionSpace(mesh , "Lagrange", 1)404

test = TestFunction(space)405

trial = TrialFunction(space)406

407

F = Function(space , name = "F", static = True)408

F.interpolate(Expression("sin(pi * x[0]) * sin(pi * x[1])", degree = 1))409

410

zeta = Function(space , name = "zeta", static = True)411

zeta.assign(Constant (1.0))412

10

add_tlm(F, zeta)413

414

Psi = Function(space , name = "Psi")415

eq = EquationSolver(inner(grad(test), grad(trial)) * dx == -inner(test , F) * dx , Psi ,416

DirichletBC(space , 0.0, "on_boundary", static = True , homogeneous = True))417

eq.solve ()418

419

J = Functional ()420

J.assign(inner(Psi , Psi) * dx)421

422

stop_manager ()423

ddJ = compute_gradient(J.tlm(F, zeta), F)424

Prior to the solving of forward equations the automated derivation of tangent-linear equations425

is requested via426

zeta = Function(space , name = "zeta", static = True)427

zeta.assign(Constant (1.0))428

add_tlm(F, zeta)429

which requests the automated derivation and solution of tangent-linear equations associated with430

derivatives with respect to the control parameter represented by F in the direction represented431

by zeta. When forward equations are processed by the internal manager, associated tangent-432

linear equations are derived, solved, and themselves processed by the internal manager. The433

EquationSolver.tangent linear method generates new EquationSolver objects associated434

with finite element discretised tangent-linear equations as required.435

The finite element discretised equation is defined by constructing an EquationSolver, and436

calling its solve method. Internally this calls the forward solve method associated with the437

equation, and further ensures that the equation is processed by the internal equation manager.438

The functional is intitialised and evaluated via439

J = Functional ()440

J.assign(inner(Psi , Psi) * dx)441

Note that internally tlm adjoint treats this latter assignment as a new equation, which is442

processed by the internal equation manager. Further terms may be added to a functional, for443

example representing the sum of terms over different timesteps in a time-dependent calculation,444

using the Functional.addto method, which is again internally treated as new equations which445

are processed by the internal equation manager.446

After conclusion of the forward calculation higher order derivative information is computed447

via448

ddJ = compute_gradient(J.tlm(F, zeta), F)449

3.3.2. Higher order adjoint calculations. Higher order derivative information can be450

computed via the addition of multiple tangent-linear models. For example451

zeta_1 = Function(space , name = "zeta_1", static = True)452

zeta_1.assign(Constant (1.0))453

zeta_2 = Function(space , name = "zeta_2", static = True)454

zeta_2.interpolate(Expression("x[0]", degree = 1))455

add_tlm(F, zeta_2)456

add_tlm(F, zeta_1)457

After the first add tlm call, tlm adjoint derives and solves tangent-linear equations – in this458

case tangent-linear equations associated with derivatives with respect to the function represented459

by F in the direction represented by zeta 2. After the second add tlm call, tlm adjoint derives460

and solves further tangent-linear equations – tangent-linear equations associated with derivatives461

with respect to the function represented by F in the direction represented by zeta 1. Crucially462

in this second case this is applied to both the forward equations and the tangent-linear equations463

requested through the first add tlm call – that is, second order tangent-linear equations are464

derived.465

11

After conclusion of the forward model a third order adjoint calculation can be performed via466

dddJ = compute_gradient(J.tlm(F, zeta_2).tlm(F, zeta_1), F)467

This principle generalises to arbitrary order.468

The case where zeta 1 and zeta 2 correspond to equal directions (see e.g. [30], chapter 13)469

can be handled by replacing the two add tlm calls with470

add_tlm(F, zeta_1 , max_depth = 2)471

This usage avoids the redundant solution of identical tangent-linear equations.472

3.4. Time loop optimisation. In [42] finite element models for time-dependent problems473

were optimised by exploiting the availability of information about the model time discretisation.474

The EquationSolver class in tlm adjoint can apply a number of such optimisations automat-475

ically. This is facilitated by the appropriate declaration of “static” data, that are known to be476

fixed for the duration of the model (e.g. as for the function represented by F in the preceding477

example). As described in [42] this allows the equation to be defined using the high-level syntax478

provided by the Unified Form Language, while allowing static data to be identified and cached479

automatically and without manual intervention.480

Optimisations applied automatically by explicitly constructed EquationSolver objects in-481

clude the following. For linear equations for which the associated left-hand-side matrix is static,482

the matrix and associated linear solver data are cached. A right-hand-side of a linear equation483

is broken into the sum of static terms, terms which can be represented as the action of a static484

matrix, and remaining non-static terms, with the relevant static data cached. For non-linear485

forward equations no such caching is applied.486

Further optimisations are applied in the calculation of adjoint data. In the solution of adjoint487

equations, if the associated adjoint Jacobian matrix is static, the matrix and associated linear488

solver data are cached. If an adjoint derivative action can be represented as the action of a static489

matrix, then the relevant matrix is cached. For non-static cases steps are taken to reduce costs490

associated with the symbolic manipulation of UFL expressions.491

Since tangent-linear equations derived from EquationSolver objects are themselves492

EquationSolver objects, caching can be applied automatically in the solution of associated493

tangent-linear equations, as well as in the calculation of adjoint information associated with494

these tangent-linear equations, to arbitrary order.495

3.5. Storage and checkpointing. The binomial checkpointing strategy of [29] may be496

applied automatically in adjoint calculations with tlm adjoint. The only required modification497

is the specification of configuration information prior to the solution of forward equations, for498

example499

configure_checkpointing("multistage , {"blocks":100,500

"snaps_on_disk":2,501

"snaps_in_ram":3})502

Here this configures offline multi-stage checkpointing [50], storing up to 2 checkpoints on disk503

and up to 3 checkpoints in memory. The maximum permitted step size when determining the504

placement of a subsequent checkpoint is used (following the maximum permitted path in Fig.505

4 of [29]). Multi-stage checkpointing as described in [50] is implemented through a brute force506

evaluation of costs (with reads and writes given equal weight).507

Data corresponding to the degrees of freedom of discrete functions are stored in a checkpoint.508

All data associated with discrete function spaces are fully stored in memory. By default disk509

checkpoints are stored using the HDF5 library [52] using h5py (https://www.h5py.org/), with510

MPI parallelisation achieved using the MPI functionality supplied with h5py.511

The version of dolfin-adjoint described in [16] also supports checkpointing using the approach512

of [29], and the syntax for the configuration of the checkpointing strategy described here mirrors513

12

the syntax used in the configuration of checkpointing in dolfin-adjoint. However, and crucially,514

since here tangent-linear equations are treated on an equal footing to forward equations, this515

allows tlm adjoint to apply offline multi-stage checkpointing in higher order adjoint calculations.516

Note that it is not assumed that each forward model block consists of precisely the same set517

of equations. As forward equations are processed dynamically at runtime it is not known what518

data consitute a checkpoint at the point in the code execution at which a checkpoint should519

be stored. This is resolved in tlm adjoint by deferring the storage of data associated with a520

checkpoint until all equations depending on data to be stored in the checkpoint have been solved.521

4. Examples.522

4.1. Optimality constrained derivatives. Forward model constrained Hessian informa-523

tion can be applied to compute higher order constrained derivatives. Consider, for example,524

the introduction of a second parameter p ∈ RNp . One can seek to compute the derivative of a525

functional K with respect to p, subject to the constraint that the forward model constrained526

derivative of a (possibly different) second functional J with respect to the control parameter m527

is zero [39, 11]. p may, for example, represent input data used in the optimisation procedure.528

4.1.1. Formulation. The details of the calculation of what is here termed an “optimality529

constrained derivative” are described in [11] (see also [39, 3, 9]). Here the key steps are outlined.530

The forward model residual is now considered a three argument function, F (x,m, p) : RNx×531

RNm × RNp → RNx . The forward model solution is defined as an implicit function of the532

parameters m and p, x̂ :M×P1 → RNx , via533

(4.1) F (x̂ (m, p) ,m, p) = 0 ∀m ∈M, p ∈ P1,534

where existence of such an x̂ is assumed, and where M and P1 are some appropriate subsets of535

RNm and RNp respectively. Given a functional J (x,m, p) : RNx×RNm×RNp → R, this allows the536

definition of a functional depending only upon the parameters m and p, Ĵ (m, p) :M×P1 → R,537

where538

(4.2) Ĵ (m, p) = J (x̂ (m, p) ,m, p) ∀m ∈M, p ∈ P1.539

Consider the case where, given p, a forward model constrained optimisation problem is solved540

so that541

(4.3)
∂Ĵ

∂m
= 0.542

The solution of the optimisation problem allows the implicit definition of the control parameter543

as a function of p, m̃ (p) : P2 →M, via544

(4.4)
∂Ĵ

∂m

∣∣∣∣∣
m̃(p),p

= 0 ∀p ∈ P2,545

where existence of such an m̃ is assumed, and where P2 is some appropriate subset of P1.546

Now given a second functional K (x,m, p), define547

K̂ (m, p) = K (x̂ (m, p) ,m, p) ,(4.5a)548

K̃ (p) = K̂ (m̃ (p) , p) .(4.5b)549
550

Differentiating the latter yields551

(4.6)
dK̃

dp
=
∂K̂

∂m

dm̃

dp
+
∂K̂

∂p
.552

13

Differentiating (4.4) with respect to p and substituting leads to the result553

(4.7)
dK̃

dp

T

= −Hp,mH
−1
m,m

∂K̂

∂m

T

+
∂K̂

∂p

T

,554

with555

Hm,m =
∂

∂m

(
∂Ĵ

∂m

T)
,(4.8a)556

Hp,m =
∂

∂m

(
∂Ĵ

∂p

T)
.(4.8b)557

558

Equation (4.7), for a case where K is independent of p, is as in equation (5) of [11].559

4.1.2. Motivating example. Many continuum models can be derived from microscopic560

dynamics through various coarse-graining techniques. Typically, this involves the use of (possibly561

unconstrained) approximations, the effects of which may be manifested as unknown parameters562

in the resulting models. Such parameters must be determined from (microscopic) numerical or563

physical experiments, which can be very costly. This situation becomes even worse in more564

complicated examples, such as colloidal dynamics modelled by extensions of Dynamical Density565

Functional Theory (see [23]). Here, the parameters are functions of space or time. See, e.g. [22]566

and references therein, where one requires knowledge of a diffusion coefficient that depends on567

the distance from a wall.568

It is clear that there will be some uncertainty in the values of these parameters, irrespective569

of how they are obtained. Two natural questions arise: (i) how sensitive are the results of the570

forward model to changes in these parameters? (ii) in which areas of space/time is it important to571

have accurate values of these parameters? For (i), ideally one would like to be able to show that,572

within the expected uncertainty of the inputs, the output of the model is relatively stable. This is573

especially important when the parameters have intrinsic uncertainty, for example being derived574

from stochastic simulations or interpolation schemes. For (ii), the importance is related to the575

cost of accurately obtaining the parameters. For example, approximations to a space-dependent576

diffusion coefficient could be obtained from expensive microscopic simulations on small regions;577

one would like to know where to focus this effort to maximize accuracy and minimize cost.578

4.1.3. Configuration. Consider a discretisation of the advection-diffusion equation579 ∫
Ω

φ
Tn+1 − Tn

∆t
+

∫
Ω

φ∇⊥ψ · ∇
(
Tn + Tn+1

2

)
580

+

∫
Ω

∇φ · κ∇
(
Tn + Tn+1

2

)
= 0 ∀φ ∈ V0, n ∈ {0, . . . , N − 1} ,(4.9)581

582

where Tn ∈ V is the discrete solution at t = n∆t, with N∆t = τ and N a positive integer. Here583

V =
{
ξ ∈ H1 (Ω;R) : ξ − T1 ∈ V0

}
, where V0 ⊆ H1 (Ω;R) is a finite element discrete function584

space consisting of functions which vanish at x = 0. Ψ is a discrete approximation for a stream585

function. T1 is in a discrete function space, and is defined so that is takes the value TD at x = 0,586

where TD is a discrete approximation for a Dirichlet boundary condition applied on the x = 0587

boundary.588

For the calculations described here the solutions Tn are represented using P1 finite elements589

on a triangle mesh generated using Gmsh 3.0.6 [17] with a requested mesh size of 0.02. TD is590

in a P1 function space on the inflow boundary at x = 0 – that is, TD is a piecewise linear and591

14

Fig. 4.1. Left: Reference solution for the advection-diffusion model at t = τ = 1. Right: Solution at
t = τ = 1, obtained by finding a critical point of the functional (4.14), subject to the constraint that the forward
model is solved with κ = 10−3.

continuous function defined on the one-dimensional mesh associated with the inflow boundary. κ592

is treated as a possibly spatially varying function in a P0 function space – that is, it is constant593

within elements of the interior triangle mesh, but may have jump discontinuities at element594

boundaries. Ψ is defined to be a P1 function, defined via interpolation at the mesh vertices of595

(4.10) Ψ (x, y) = (1− ey) sin (πx) sin (πy)− y,596

leading to an inflow at x = 0, an outflow at x = 2, and no-normal flow on other boundaries.597

The timestep size is ∆t = 5 × 10−3, and the system is integrated to t = τ = 1. The model598

is implemented using FEniCS 2018.1.0. Linear systems are solved using UMFPACK 5.7.1 [13]599

using PETSc 3.9.2 [5, 12, 4].600

A reference calculation is initially performed with TD defined via interpolation at the inflow601

boundary vertices of602

(4.11) TD (y) = sin (πy) + 0.4 sin (3πy) ,603

and with a spatially constant diffusivity κ = 10−3. This generates a reference state Tref,N at the604

end of the simulation at t = τ = 1, shown on the left of figure 4.1.605

4.1.4. Differentiating with respect to a Dirichlet boundary condition. The inflow606

boundary condition TD is to be treated in the following as a control parameter with respect to607

which derivatives are to be taken. This requires the ability to compute derivative information608

associated with an essential Dirichlet boundary condition. First, equation (4.9) is re-written609 ∫
Ω

φ
T0,n+1 + T1 − Tn

∆t
+

∫
Ω

φ∇⊥ψ · ∇
(
Tn + T0,n+1 + T1

2

)
610

+

∫
Ω

∇φ · κ∇
(
Tn + T0,n+1 + T1

2

)
= 0 ∀φ ∈ V0, n ∈ {0, . . . , N − 1} ,(4.12)611

612

where now each T0,n ∈ V0, and hence satisfies a homogeneous Dirichlet boundary condition at613

x = 0. T1 ∈ V is equal to TD on the boundary at x = 0. The tlm adjoint “escape hatch”614

provided by the ability to define custom equations is utilised, deriving a new InflowBCSolver615

class from the abstract Equation base class, associated with the equation616

(4.13) T1 =

{
TD if x = 0
0 at mesh vertices with x > 0

.617

15

A related approach for differentiating with respect to essential Dirichlet boundary conditions618

is described in sections 2.4.3 and 4.4 of [43].619

4.1.5. Inverse problem. An objective functional is defined620

(4.14) J =

∫
∂Ωoutflow

(TN − Tref,N)
2

+ 10−15

∫
∂Ωinflow

(
dTD
dy

)2

,621

where Tref,N is the value of the reference solution at the end of the calculation, and where the622

integrals are taken over the outflow boundary at x = 2 and the inflow boundary at x = 0623

respectively. A critical point of this functional is obtained by finding a point at which the624

derivative of J with respect to the inflow boundary condition TD vanishes, where the derivative625

is subject to the constraint that the forward model is solved, and where κ = 10−3. That is,626

here p consists of the degrees of freedom associated with κ, m consists of the degrees of freedom627

associated with TD, and we seek the m such that ∂Ĵ/∂m = 0, given that κ = 10−3.628

The resulting optimisation problem is solved using Newton’s method, via construction of the629

full dense Hessian ∂/∂m
(
∂Ĵ/∂mT

)
. For this problem m has length 51 and the optimisation630

converges in a single Newton step, making the construction of the full dense Hessian tractable.631

More advanced applications may require more advanced methods for the calculation of such632

inverse Hessian actions [9]. An inverted state Tinv,N at the end of the simulation at t = τ = 1 is633

thus obtained, shown on the right of figure 4.1.634

For this example the full forward trajectory may be stored in memory. In the evaluation of635

a forward model constrained Hessian action636

(4.15)
∂

∂m

(
∂Ĵ

∂m
ζ

)
,637

the forward and first order adjoint solution are independent of the direction ζ. In this case638

tlm adjoint provides a means of computing forward model constrained Hessian actions without639

re-solving the forward. The first order adjoint solution, and data involved in the derivation of640

tangent-linear and first and second order adjoint equations, are not cached.641

4.1.6. Derivatives. A second functional K is defined to be the L2 norm of the solution at642

t = τ = 1,643

(4.16) K =

∫
Ω

T 2
N .644

The forward model constrained derivative of K with respect to the diffusivity κ, subject to645

the constraint that the forward model is solved with TD defined via interpolation at boundary646

vertices of (4.11) and with κ = 10−3, is shown on the left of figure 4.2. This is a value of the647

forward model constrained derivative ∂K̂/∂p. Note that the L2 norm of the solution at the final648

time is more sensitive to changes in κ near the inflow.649

The optimality constrained derivative of K with respect to the diffusivity, subject to the650

constraint that the optimisation problem is solved, is shown on the right of figure 4.2. This is651

a value of the optimality constrained derivative dK̃/dp. Note that the L2 norm of the inverted652

state at the final time is more sensitive to changes in κ near the outflow, in constrast to the653

forward model constrained derivative ∂K̂/∂p. Note also the significantly increased maximum654

sensitivity magnitude. As previously observed in [39], if one is solving inverse problems, accuracy655

requirements for model parameters may differ significantly from the corresponding accuracy656

requirements of the forward model.657

16

Fig. 4.2. Upper left: Forward model constrained derivative ∂K̂/∂p for the advection-diffusion model, with the
inflow boundary condition defined via interpolation at the inflow boundary vertices of (4.11), with κ = 10−3, and
where p corresponds to the degrees of freedom associated with κ. Upper right: Optimality constrained derivative
dK̃/dp, with κ = 10−3. Lower left/right: The magnitude of the upper figures, with a logarithmic colour scale.
Representer functions for the derivatives, defined as in Appendix B of [42], are shown.

The derivative is verified by considering a Taylor remainder convergence test (see e.g. [16,658

42]), measuring the two error norms659

E1 =
∣∣∣K̃ (p+ εζ)− K̃ (p)

∣∣∣ = O (ε) ,(4.17a)660

E2 =

∣∣∣∣∣K̃ (p+ εζ)− K̃ (p)− εdK̃

dp
δp

∣∣∣∣∣ = O
(
ε2
)
.(4.17b)661

662

Note that each evaluation of K̃ requires the solution of a forward model constrained optimisation663

problem. The elements of ζ are set equal to pseudorandom values in [−1, 1).5 The resulting error664

magnitudes are shown in figure 4.3, demonstrating the second order convergence of the Taylor665

remainder E2.666

4.1.7. Performance. A performance test is conducted using a higher resolution mesh,667

generated with Gmsh 3.0.6 [17] with a requested mesh size of 1/120, leading to a mesh with 38371668

5Pseudorandom values in such intervals are generated using scaling and translation of values generated using
the numpy.random.random function.

17

10−7 10−6

ε

10−3

10−2

10−1

100

T
ay

lo
r

re
m

ai
nd

er
m

ag
ni

tu
de

Fig. 4.3. Taylor remainder convergence test for the optimality constrained derivative. Black crosses / solid
line: First order remainder magnitude E1. Red asterisks / solid line: Second order remainder magnitude E2.
Black dotted line: First order reference. Red dashed line: Second order reference.

mesh vertices and 76020 triangle elements. The system is integrated for N = 480 timesteps of size669

∆t = 1/480 with κ = 1/2400. Tangent-linear calculations compute the derivative of J contracted670

against a direction ζ with elements taking pseudorandom values in [−1, 1), where ζ corresponds671

to the degrees of freedom associated with the considered control parameter, and additionally672

include the solution of the forward equations. First order adjoint calculations compute the673

derivative of J with respect to the control, and additionally include the solution of the forward674

equations. Second order adjoint calculations compute the second derivative of J with respect to675

the control, contracted against the direction ζ, and additionally include the solution of forward,676

tangent-linear, and first order adjoint equations. Timings are recorded using the Python 3677

time.time function, with the mean of three timings taken. Initialisation time, the time taken for678

an additional forward calculation to compute the reference state, and the compilation of low-level679

code, are excluded. Where storage is used data are fully stored in memory with no checkpointing680

or recalculation. The forward only calculations, even with annotation and storage disabled,681

still make use of the tlm adjoint library, for example for the application of the optimisations682

described in section 3.4. The performance test is conducted on a machine with an Intel Core683

i5-6300U processor.684

Performance results are given in table 4.1. The runtimes relative to the forward only cal-685

culation, with no annotation or storage, are considered. A basic estimate of the cost of the686

calculations, based on a basic estimate of the number of equations which must be solved, is a687

relative runtime of 2 for tangent-linear and first order adjoint calculations and 4 for a second688

order adjoint calculation. The calculations with TD as the control parameter have a runtime689

which is comparable to these estimates – for example the second order adjoint calculation has a690

mean relative runtime of 3.948. The tangent-linear calculation with κ as the control parameter691

and with no annotation or storage, has a comparable efficiency to that with TD as the control692

parameter, with a mean relative runtime of 2.196. However the first order adjoint with κ as the693

control parameter is significantly more expensive with a mean relative runtime of 5.703. Note694

that, in the tangent-linear calculations, both κ and the direction used to define derivatives are695

fixed and constant throughout the calculation. Hence all terms appearing in the forward and696

18

Calculation Annotation /
storage enabled?

Control Mean
time (s)

Normalised
time

Forward No – 4.894 1
Forward Yes – 5.337 1.091

Tangent-linear No TD 9.670 1.976
Tangent-linear Yes TD 10.444 2.134

1st order adjoint Yes TD 9.168 1.873
2nd order adjoint Yes TD 19.322 3.948

Tangent-linear No κ 10.747 2.196
Tangent-linear Yes κ 11.404 2.330

1st order adjoint Yes κ 27.908 5.703
2nd order adjoint Yes κ 59.009 12.058

Table 4.1
Performance results for the advection-diffusion model. The normalised time is the mean runtime, divided

by the mean runtime of the forward only calculation.

tangent-linear model with κ as the control parameter (except for the evaluation of the functional)697

are amenable to a form of optimisation as described in section 3.4. By contrast, in a first or-698

der adjoint calculation with κ as the control parameter, terms appear in the adjoint calculation699

(specifically in the calculation of the forward model constrained derivative of the functional –700

equation (2.11)) which are not amenable to these optimisations, and are instead calculated using701

finite element assembly.702

If right-hand-side assembly caching optimisations (described in section 3.4) are disabled then703

the forward only calculation, with annotation and storage disabled, has a mean relative runtime of704

5.148. If right-hand-side assembly caching and left-hand-side Jacobian and linear solver caching705

are disabled then this increases to 39.672.706

4.2. Hessian eigendecomposition. In many inverse problems the forward model does not707

fully constrain the data sought. The forward model constrained Hessian can be used to describe708

the degree to which different components of the unknown parameter space are constrained, and709

an eigendecomposition of the Hessian can be used to provide this information (e.g. [37, 36]).710

An example of such a parameter inversion is that of the subglacial environment of an ice sheet711

– an oft-solved inverse problem in glacial flow modelling, as the subglacial environment exerts712

a strong influence on the flow of an ice sheet yet is not easy to observe. In realistic settings713

the unknown parameter space can be very large – on the order of 106 for models of the entire714

Antarctic continent [36] – and therefore the calculations involved should scale efficiently.715

4.2.1. Experiment and equations solved. The inverse experiment is based on that of716

[25], their section 5.3. Glacial ice evolves over slow time scales as a non-inertial, power-law717

viscous material. Approximations based on low-aspect ratio lead to the following equations for718

19

ice horizontal velocity (u, v)
T

[44, 41],719

∂x

[
(H + h)ν

(
4
∂u

∂x
+ 2

∂v

∂y

)]
+ ∂y

[
(H + h)ν

(
∂v

∂x
+
∂u

∂y

)]
− αu720

= ρg(H + h)

(
∂h

∂x
+ tanθ

)
,(4.18a)721

∂x

[
(H + h)ν

(
∂u

∂y
+
∂v

∂x

)]
+ ∂y

[
(H + h)ν

(
2
∂u

∂x
+ 4

∂v

∂y

)]
− αu722

= ρg(H + h)
∂h

∂y
,(4.18b)723

724

where725

(4.19) ν(u, v) =
B

2

[(
∂u

∂x

)2

+

(
∂v

∂y

)2

+
1

4

(
∂u

∂y
+
∂v

∂x

)2

+ ε

] 1−n
2n

.726

Here H and θ are the reference thickness and surface elevation gradient of the ice sheet, and h727

is the change in height as the ice dynamically evolves. B is a viscosity parameter that in general728

depends on temperature, but is left constant as in [25]. The quantity ε = 10−12 m2 a−2 added729

here is a small positive real constant which avoids potential singularities when the velocity is730

spatially uniform. The equations for ice velocity are coupled to a time evolution equation for the731

thickness h,732

(4.20)
∂h

∂t
+∇ · (u(H + h)) = 0.733

In Experiment 3 of [25] an ice sheet flows through an idealised, periodic domain, which is734

40 km × 40 km. At the initial time, a “slippery spot” appears in the center of the domain,735

imposed by a spatially varying α,736

(4.21) α (x, y) =
[
1000− 750e−(8r/L)2

]
Pa (m a−1)−1,737

where r is the distance from the centre of the domain, and the surface of the ice sheet adjusts738

slowly over a decade. See [25], and Table 1 of [24], for physical parameters.739

The problem is discretised in space using a continuous Galerkin finite element discretisation.740

The domain is partitioned into a “cross” mesh constructed using FEniCS, consisting of a 20×20741

grid of square cells, each divided into 4 isosceles triangles by dividing each cell with corner-to-742

corner diagonals. h is discretised as a P1 function, i.e. it is linear within each triangle and globally743

continuous. u and v are discretised as P2 functions, i.e. are quadratic within each triangle and744

globally continuous. The parameter α is approximated using a P1 function, via interpolation at745

the mesh vertices of (4.21). All function spaces are doubly periodic. The equations are further746

discretised in time using third order Adams-Bashforth, started with a single second order Runge-747

Kutta step, followed by a single second order Adams-Bashforth step, taking 120 timesteps over748

the 10 a (year) integration.749

A functional is defined750

(4.22) J =
∑

n∈{60,72,84,96,108,120}

[
1

σ2
u

(un − uref,n)
2

+
1

σ2
u

(vn − vref,n)
2

+
1

σ2
h

(hn − href,n)
2

]
,751

where (as in [25] Experiment 3) σu = 1 m a−1 and σh = 0.02 m. The values of uref,n, vref,n, and752

href,n are obtained from a reference calculation. The model is initialised with h = 0, and for the753

20

Fig. 4.4. Forward solution for the glacial flow model at t = 10 a. Left: Elevation perturbation. Right:
Velocity magnitude, evaluated at the mesh vertices.

analysis to follow we consider the perfectly optimised state at which all un = uref,n, vn = vref,n,754

and hn = href,n.755

The model is implemented using FEniCS 2018.1.0. The non-linear velocity equation is solved756

using a two-stage fixed-point iteration. In the first stage an approximated form of Newton’s757

method is applied, with an approximate Jacobian defined by not applying the chain rule to dif-758

ferentiate through the viscosity. This is iterated until a very weak tolerance criterion is satisfied,759

or until 100 iterations have been taken. In the second stage Newton’s method is applied, starting760

from the initial guess of the first stage. Linear systems appearing in the solution of the non-linear761

velocity equation, and in the associated adjoint and tangent-linear equations, are solved using762

BoomerAMG [33] using HYPRE 2.14.0 [14] via PETSc 3.9.2 [5, 12, 4]. Other linear systems are763

solved using successive over relaxation preconditioned conjugate gradient using PETSc 3.9.2.764

The results of the forward calculation are shown in figure 4.4. Surface speed has a very765

similar pattern to that of [25] (their Fig. 4(d)), but examination will show that the speed here766

is lower than that of [25] by ∼ 23-25 m a−1. This is due to the fact those authors use a higher767

order approximation to the Stokes equations that includes the effects of vertical shearing [24],768

whereas (4.18) assumes depth-independent flow. The discrepancy can be accounted for by the769

absence of vertical shearing. If α were uniform, then the contribution of vertical shear to surface770

velocity in a doubly-periodic ice sheet with the same parameters as those of our model would771

be ∼23 m/a [10]. Since this effect is modified in the presence of horizontal deformation, this772

“offset” is not spatially uniform.773

4.2.2. Eigendecomposition. A generalised eigendecomposition of the forward model con-774

strained Hessian of J defined by (4.22) is considered, with the Hessian defined through differen-775

tiation with respect to α at the perfectly optimised state at which the forward solution is equal776

to the reference. The eigendecomposition defined by the generalised eigenvalue problem777

(4.23)
d

dm

(
dĴ

dm
vi

)
vi = µiMvi,778

where m corresponds to the degrees of freedom associated with α. M is a symmetric positive779

definite matrix, here set equal to the mass matrix associated with the discrete function space780

for α. With this construction the eigenvectors may be defined so that they are orthonormal in781

the L2 inner product; it also avoids potential issues with variable mesh resolution skewing the782

eigenvalue spectrum. The eigendecomposition is performed using the SLEPc 3.9.1 Krylov-Schur783

21

0 100 200 300 400 500 600 700 800

Order

10−6

10−4

10−2

100

102

E
ig

en
va

lu
e

(P
a−

2
m

2
a−

2
)

Fig. 4.5. Eigenvalues of the forward model constrained Hessian, sorted into order from largest to smallest.
The Hessian is defined via the forward model constrained second derivative of the functional (4.22) with respect
to the basal sliding parameter α, at the reference state.

Fig. 4.6. First two eigenvectors associated with the forward model constrained Hessian, where the Hessian
is defined via the forward model constrained second derivative of the functional (4.22) with respect to the basal
sliding parameter α, at the reference state. The eigenvectors are normalised so that they have an L2 norm of
1 m.

eigensolver using the slepc4py 3.9.0 Python interface [34, 12, 49]. Forward model constrained784

Hessian actions are evaluated using caching of the forward solution as described in section 4.1.5.785

The resulting eigenvalues are shown in figure 4.5, and the leading two eigenvectors are shown786

in figure 4.6. In practice the fact that the eigenvalues decay so sharply can be taken advantage787

of to construct low-rank approximations to the Hessian of the functional which, in combination788

with a priori constraints on the inverted parameters, can be used to find approximate inverses789

of the Hessian [37, 36].790

4.2.3. Performance. The performance of the calculation of derivative information associ-791

ated with the functional (4.22), with a configuration as described above and with α as a control792

parameter, is considered. The tangent-linear perturbation direction is defined using a field with793

coefficients vector with elements taking pseudorandom values in [−1, 1) Pa (m a−1)−1. Other794

22

Calculation Annotation /
storage enabled?

Control Mean
time (s)

Normalised
time

Forward No – 64.416 1
Forward Yes – 64.577 1.002

Tangent-linear No α 81.082 1.259
Tangent-linear Yes α 81.708 1.268

1st order adjoint Yes α 80.172 1.245
2nd order adjoint Yes α 117.153 1.819

Table 4.2
Performance results for the glacial flow model. The normalised time is the mean runtime, divided by the

mean runtime of the forward only calculation.

relevant details of the performance test are as described in section 4.1.7. In these calculations795

the value for α is perturbed, with pseudorandom values in [−10, 10) Pa (m a−1)−1 added to the796

reference value in (4.21).797

Performance results are given in table 4.2. The runtimes relative to the forward only cal-798

culation, with no annotation or storage, are considered. Note the particular efficiency of the799

tangent-linear and first order adjoint calculations. Even the second order adjoint calculation,800

including the solution of the forward and tangent-linear with annotation and storage enabled,801

and the solution of associated first order adjoint equations, has a relative runtime of 1.819. The802

efficiency here is due to the replacement of multiple linear solves in the solution of the non-803

linear forward problem for the velocity, with a single linear solve in associated tangent-linear and804

adjoint equations – an analogous performance benefit to that described in [16].805

To test the use the binomial checkpointing strategy described in [29], a further test with a806

higher resolution “cross” mesh constructed using FEniCS from a 40 × 40 grid of square cells,807

and with 600 timesteps over the 10 a interval, is performed. The functional (4.22) is modified808

so that mismatch terms are added for timesteps 300, 360, 420, 480, 540, and 600. A maximum809

of 14 disk checkpoints are permitted, which is the smallest number of permitted checkpoints810

associated with a maximal rerun of 3 (i.e. so that no timestep is run more than 4 times in total).811

All checkpoints are stored using HDF5. Other details are as in the previous test. The forward812

calculation (with no annotation and storage) has a mean runtime of 865.298 s. The second813

order adjoint calculation has a mean runtime of 5268.791 s, which is 6.089 times the forward814

calculation runtime. Note that for this checkpointing configuration, including the initial forward815

calculation and all required forward rerunning, a total of 2264 forward timesteps are taken (see816

[29], equation (3)).817

5. Limitations and future work.818

5.1. Symbolic differentiation and scaling. The high level algorithmic differentiation819

considered in this article requires the ability to differentiate symbolic representations of expres-820

sions. It is known that differentiation at a symbolic level can be prone to poor scaling as the821

number of derivatives is increased [27, 30].822

Excessive growth in the number of terms appearing in higher derivatives can be mitigated823

by breaking apart the forward problem into simpler constituent equations. Such a simplification824

forms a key ingredient in the use of algorithmic differentiation [30]. This may necessitate the825

conversion of a symbolic expression for a non-linear forward equation into a fixed-point problem,826

consisting of the successive solution of problems with a simpler form. tlm adjoint includes827

an Equation, in the FixedPointSolver class, which can be used to define and solve fixed-828

point problems. The methodology of [8] (see also [26]) and its tangent-linear analogue [21]829

23

are used to solve tangent-linear or adjoint equations to arbitrary order. This facilitates the830

manual construction of forward problems involving simpler symbolic expressions, although such831

constructions are not currently automated.832

5.2. Re-use of lower order adjoint solutions. The calculation of a Kth order forward833

model constrained derivative, contracted against (K − 1) directions, involves the solution of ad-834

joint equations of order up to and including order K. The solutions to lower order adjoint835

equations can be re-used for additional calculations. For example the calculation of a forward836

model constrained Hessian action involves the solution of both the first and second order ad-837

joint equations, and the first of these (together with the forward solution) allows the forward838

model constrained derivative of the functional to be computed at a relatively low additional cost,839

alongside the calculation of a forward model constrained Hessian action. Moreover the first order840

adjoint solution is independent of the Hessian action direction, meaning that if multiple actions841

are desired, the first order adjoint equations need only be solved once [20]. At present such an842

optimised approach is not implemented in tlm adjoint.843

5.3. Limitations of the automated code generation system. Since tlm adjoint in-844

tegrates with and makes use of the FEniCS system, its applications may inherit limitations of845

the FEniCS system itself. For example it may be impossible or inefficient to implement a limiter846

scheme using the Unified Form Language. This is addressed to a degree by the simple “escape847

hatch” interface provided by tlm adjoint, which enables the definition of custom equations and848

the specification of custom defined derivative information. In principle it may be possible to849

integrate tlm adjoint with a source-to-source algorithmic differentiation tool to facilitate the850

definition of such custom equations – such an extension is left for future work.851

The primary focus has been on the use of tlm adjoint with the FEniCS system. However852

key functionality provided by tlm adjoint is independent of the precise backend used. Basic853

tests using a Firedrake backend [47], and a NumPy backend [46], have already been performed854

using tlm adjoint.855

5.4. Dependency graph optimisations. tlm adjoint performs some very limited opti-856

misations based upon the dependency graph of tangent-linear of adjoint equations – for example857

avoiding solving adjoint equations whose solutions are known to be zero, as they have no direct858

or indirect dependency upon the functional. However more advanced optimisations are possi-859

ble. For example adjoint equations whose solutions do not subsequently contribute to a forward860

model constrained derivative need not be solved. When applying checkpointing and rerunning,861

forward equations whose solutions are not (directly or indirectly) dependencies of the adjoint862

model also need not be solved. Such optimisations are not currently applied by tlm adjoint.863

6. Conclusions. This article has described the calculation of partial differential equation864

constrained derivative information through the automated derivation of tangent-linear equations,865

and through the automated derivation of associated adjoint information, to arbitrary order. This866

is achieved by extending the high level approach of [16] to include the automated derivation of867

tangent-linear equations, with these new tangent-linear equations treated on an equal footing868

to the original forward equations. This allows adjoint information associated with tangent-869

linear equations to be derived, using the same machinary as is used for the originating forward870

equations. Further, this allows a higher order tangent-linear equation to be derived from a871

lower order tangent-linear equation, and for adjoint information associated with the higher order872

tangent linear equations to be derived.873

The approach is implemented in the tlm adjoint library. The library integrates with the874

FEniCS automated code generation system [40, 1] for the calculation of higher order derivative875

information associated with finite element models. The library exposes simple escape hatches876

24

to allow the definition of custom forward equations, and in particular to allow the definition of877

custom equations which cannot conveniently be represented symbolically. Binomial offline multi-878

stage checkpointing [29, 50] may be used in adjoint calculations. tlm adjoint further provides879

the ability to solve appropriate tangent-linear and adjoint fixed-point problems, associated with880

a given forward fixed-point problem.881

The principal focus of this article has been on the calculation of partial differential equation882

constrained Hessian information. In variational inverse problems this Hessian provides informa-883

tion on the conditioning of the inverse problem (e.g. [55]), can be used to compute derivatives884

of functionals constrained such that the inversion problem is solved (here termed an “optimality885

constrained derivative”), and can be used to compute error estimates for inversion products. The886

latter has potential applications in uncertaintly quantification for variational data assimilation.887

Acknowledgements. tlm adjoint is based upon the principles implemented in dolfin-888

adjoint and libadjoint. tlm adjoint was developed out of a custom extension to dolfin-adjoint,889

which enabled the use of more general equations with dolfin-adjoint, and this is reflected in many890

of the design choices in the the library, particularly in the design of the Equation class. The ear-891

lier custom extension used code derived from dolfin-adjoint, including in the implementation of892

an earlier version of the EquationSolver.adjoint derivative action method. tlm adjoint893

is available under a free and open source license at https://github.com/jrmaddison/tlm adjoint.894

JRM acknowledges funding from the U.K. Natural Environment Research Council895

(NE/L005166/1) during which early development work leading to tlm adjoint was conducted.896

JRM acknowledges funding from the U.K. Engineering and Physical Sciences Research Council897

(EP/R021600/1). DNG acknowledges funding from the U.K. Natural Environment Research898

Council (NE/M003590/1). BDG acknowledges funding from EPSRC (EP/L025159/1) during899

which work on the parametrization of PDE models was performed. We thank the three anony-900

mous reviewers for their comments on the manuscript.901

REFERENCES902

[1] M. S. Alnæs, J. Blechta, J. Hake, A. Johansson, B. Kehlet, A. Logg, C. Richardson, J. Ring, M. E.903

Rognes, and G. N. Wells, The FEniCS project version 1.5, Archive of Numerical Software, 3 (2015),904

pp. 9–23.905

[2] M. S. Alnæs, A. Logg, K. B. Ølgaard, M. E. Rognes, and G. N. Wells, Unified Form Language: A906

domain-specific language for weak formulations of partial differential equations, ACM Transactions on907

Mathematical Software, 40 (2014), pp. 9:1–9:37.908

[3] N. L. Baker and R. Daley, Observation and background adjoint sensitivity in the adaptive observation-909

targeting problem, Quarterly Journal of the Royal Meteorological Society, 126 (2000), pp. 1431–1454.910

[4] S. Balay, S. Abhyankar, M. Adams, J. Brown, P. Brune, K. Buschelman, L. Dalcin, V. Eijkhout,911

W. Gropp, D. Karpeyev, D. Kaushik, M. Knepley, D. May, L. Curfman McInnes, R. Mills,912

T. Munson, K. Rupp, P. Sanan, B. Smith, S. Zampini, H. Zhang, and H. Zhang, PETSc Users913

Manual, Tech. Report ANL-95/11 Rev 3.9, Argonne National Laboratory, 2018.914

[5] S. Balay, W. D. Gropp, L. C. McInnes, and B. F. Smith, Efficient management of parallelism in object-915

oriented numerical software libraries, in Modern Software Tools for Scientific Computing, E. Arge,916

A. M. Bruaset, and H. P. Langtangen, eds., Birkhäuser, Boston, MA, 1997, pp. 163–202.917

[6] C. Bischof, A. Carle, G. Corliss, A. Griewank, and P. Hovland, ADIFOR – Generating derivative918

codes from Fortran programs, Scientific Programming, 1 (1992), pp. 1–29.919

[7] I. Charpentier and J. Utke, Fast higher-order derivative tensors with Rapsodia, Optimization Methods920

& Software, 24 (2009), pp. 1–14.921

[8] B. Christianson, Reverse accumulation and attractive fixed points, Optimization Methods and Software, 3922

(1994), pp. 311–326.923

[9] A. Cioaca, A. Sandu, and E. de Sturler, Efficient methods for computing observation impact in 4D-Var924

data assimilation, Computational Geosciences, 17 (2013), pp. 975–990.925

[10] K. Cuffey and W. S. B. Paterson, The Physics of Glaciers, Butterworth Heinemann, Oxford, 4th ed.,926

2010.927

[11] D. N. Daescu, On the sensitivity equations of four-dimensional variational (4D-Var) data assimilation,928

25

Monthly Weather Review, 136 (2008), pp. 3050–3065.929

[12] L. D. Dalcin, R. R. Paz, P. A. Kler, and A. Cosimo, Parallel distributed computing using Python,930

Advances in Water Resources, 34 (2011), pp. 1124–1139.931

[13] T. A. Davis, Algorithm 832: UMFPACK V4.3 – an unsymmetric-pattern multifrontal method, ACM Trans-932

actions on Mathematical Software, 30 (2004), pp. 196–199.933

[14] R. D. Falgout and U. M. Yang, hypre: A library of high performance preconditioners, in Computational934

Science – ICCS 2002: International Conference Amsterdam, The Netherlands, April 2002 Proceedings,935

Part III, P. M. A. Sloot, C. J. K. Tan, J. J. Dongarra, and A. G. Hoekstra, eds., vol. 2331 of Lecture936

Notes in Computer Science, Springer-Verlag Berlin Heidelberg, 2002, pp. 632–641.937

[15] P. E. Farrell and S. W. Funke, libadjoint manual, Applied Modelling & Computation Group, Department938

of Earth Science and Engineering, Royal School of Mines, Imperial College London, London, SW7 2AZ,939

UK, version 1.6 ed., 2018.940

[16] P. E. Farrell, D. A. Ham, S. W. Funke, and M. E. Rognes, Automated derivation of the adjoint of high-941

level transient finite element programs, SIAM Journal on Scientific Computing, 35 (2013), pp. C369–942

C393.943

[17] C. Geuzaine and J.-F. Remacle, Gmsh: A 3-D finite element mesh generator with built-in pre- and post-944

processing facilities, International Journal for Numerical Methods in Engineering, 79 (2009), pp. 1309–945

1331.946

[18] R. Giering and T. Kaminski, Recipes for adjoint code construction, ACM Transactions on Mathematical947

Software, 24 (1998), pp. 437–474.948

[19] R. Giering and T. Kaminski, Applying TAF to generate efficient derivative code of Fortran 77-95 programs,949

Proceedings in Applied Mathematics and Mechanics, 2 (2003), pp. 54–57.950

[20] R. Giering, T. Kaminski, and T. Slawig, Generating efficient derivative code with TAF: Adjoint and951

tangent linear Euler flow around an airfoil, Future Generation Computer Systems, 21 (2005), pp. 1345–952

1355.953

[21] J. G. Gilbert, Automatic differentiation and iterative processes, Optimization Methods and Software, 1954

(1992), pp. 13–21.955

[22] B. D. Goddard, A. Nold, and S. Kalliadasis, Dynamical density functional theory with hydrodynamic956

interactions in confined geometries, The Journal of Chemical Physics, 145 (2016), p. 214106.957

[23] B. D. Goddard, A. Nold, N. Savva, P. Yatsyshin, and S. Kalliadasis, Unification of dynamic density958

functional theory for colloidal fluids to include inertia and hydrodynamic interactions: derivation and959

numerical experiments, Journal of Physics: Condensed Matter, 25 (2013), p. 035101.960

[24] D. N. Goldberg, A variationally derived, depth-integrated approximation to a higher-order glaciologial961

flow model, Journal of Glaciology, 57 (2011), pp. 157–170.962

[25] D. N. Goldberg and P. Heimbach, Parameter and state estimation with a time-dependent adjoint marine963

ice sheet model, The Crysosphere, 7 (2013), pp. 1659–1678.964

[26] D. N. Goldberg, S. H. K. Narayanan, L. Hascoet, and J. Utke, An optimized treatment for algorithmic965

differentiation of an important glaciological fixed-point problem, Geoscientific Model Development, 9966

(2016), pp. 1891–1904.967

[27] A. Griewank, On automatic differentiation, in Mathematical Programming: Recent Developments and968

Applications, M. Iri and K. Tanabe, eds., Kluwer Academic Publishers, 1989, pp. 83–108.969

[28] A. Griewank, Achieving logarithmic growth of temporal and spatial complexity in reverse automatic dif-970

ferentiation, Optimization Methods and Software, 1 (1992), pp. 35–54.971

[29] A. Griewank and A. Walther, Algorithm 799: Revolve: An implementation of checkpointing for the972

reverse or adjoint mode of computational differentiation, ACM Transactions on Mathematical Software,973

26 (2000), pp. 19–45.974

[30] A. Griewank and A. Walther, Evaluating derivatives: Principles and techniques of algorithmic differen-975

tiation, SIAM, second ed., 2008.976

[31] M. D. Gunzburger, Perspectives in flow control and optimization, Advances in design and control, SIAM,977

2003.978

[32] L. Hascoet and V. Pascual, The Tapenade automatic differentiation tool: Principles, model, and speci-979

fication, ACM Transactions on Mathematical Software, 39 (2013), pp. 20:1–20:43.980

[33] V. E. Henson and U. M. Yang, BoomerAMG: A parallel algebraic multigrid solver and preconditioner,981

Applied Numerical Mathematics, 41 (2002), pp. 155–177.982

[34] V. Hernandez, J. E. Roman, and V. Vidal, SLEPc: A scalable and flexible toolkit for the solution of983

eigenvalue problems, ACM Transactions on Mathematical Software, 31 (2005), pp. 351–362.984

[35] V. Heuveline and A. Walther, Online checkpointing for parallel adjoint computation in PDEs: Appli-985

cation to goal-oriented adaptivity and flow control, in Euro-Par 2006 Parallel Processing: 12th Inter-986

national Euro-Par Conference Dresden, Germany, August/September 2006 Proceedings, W. E. Nagel,987

W. V. Walter, and W. Lehner, eds., vol. 4128 of Lecture Notes in Computer Science, Springer-Verlag988

Berlin Heidelberg, 2006, pp. 689–699.989

[36] T. Isaac, N. Petra, G. Stadler, and O. Ghattas, Scalable and efficient algorithms for the propagation990

26

of uncertainty from data through inference to prediction for large-scale problems, with application to991

flow of the Antarctic ice sheet, Journal of Computational Physics, 296 (2015), pp. 348–368.992

[37] A. G. Kalmikov and P. Heimbach, A Hessian-based method for uncertainty quantification in global ocean993

state estimation, SIAM Journal on Scientific Computing, 36 (2014), pp. S267–S295.994

[38] N. Kukreja, J. Hückelheim, M. Lange, M. Louboutin, A. Walther, S. W. Funke, and G. Gor-995

man, High-level python abstractions for optimal checkpointing in inversion problems, (2018).996

https://arxiv.org/abs/1802.02474.997

[39] F.-X. Le Dimet, H.-E. Ngodock, and B. Luong, Sensitivity analysis in variational data assimilation,998

Journal of the Meteorological Society of Japan, 75 (1997), pp. 245–255.999

[40] Automated solution of differential equations by the finite element method: The FEniCS book, vol. 84 of1000

Lecture Notes in Computational Science and Engineering, Springer-Verlag Berlin Heidelberg, 2012.1001

[41] D. R. MacAyeal, Large-scale ice flow over a viscous basal sediment: Theory and application to ice stream1002

B, Antarctica, Journal of Geophysical Research: Solid Earth, 94 (1989), pp. 4071–4087.1003

[42] J. R. Maddison and P. E. Farrell, Rapid development and adjoining of transient finite element models,1004

Computer Methods in Applied Mechanics and Engineering, 276 (2014), pp. 95–121.1005

[43] S. K. Mitusch, An algorithmic differentiation tool for FEniCS, master’s thesis, University of Oslo, 2018.1006

[44] L. W. Morland, Unconfined ice-shelf flow, in Dynamics of the West Antarctic Ice Sheet, C. J. V. der Veen1007

and J. Oerlemans, eds., Reidel Publ Co, 1987, pp. 99–116.1008

[45] U. Naumann, The art of differentiating computer programs: An introduction to algorithmic differentiation,1009

SIAM, 2012.1010

[46] T. E. Oliphant, Python for scientific computing, Computing in Science & Engineering, 9 (2007), pp. 10–20.1011

[47] F. Rathgeber, D. A. Ham, L. Mitchell, M. Lange, F. Luporini, A. T. T. Mcrae, G.-T. Bercea,1012

G. R. Markall, and P. H. J. Kelly, Firedrake: Automating the finite element method by composing1013

abstractions, ACM Transactions on Mathematical Software, 43 (2016), pp. 24:1–24:27.1014

[48] J. M. Restrepo, G. K. Leaf, and A. Griewank, Circumventing storage limitations in variational data1015

assimilation studies, SIAM Journal on Scientific Computing, 19 (1998), pp. 1586–1605.1016

[49] J. E. Roman, C. Campos, E. Romero, and A. Tomás, SLEPc Users Manual, Tech. Report DSIC-II/24/02,1017

Departamento de Sistemas Informáticos y Computación, Universitat Politècnica de València, 2018.1018

[50] P. Stumm and A. Walther, MultiStage approaches for optimal offline checkpointing, SIAM Journal on1019

Scientific Computing, 31 (2009), pp. 1946–1967.1020

[51] P. Stumm and A. Walther, New algorithms for optimal online checkpointing, SIAM Journal on Scientific1021

Computing, 32 (2010), pp. 836–854.1022

[52] The HDF Group, Heirarchical Data Format, version 5, 1997-NNNN. http://www.hdfgroup.org/HDF5/.1023

[53] J. Utke, U. Naumann, M. Fagan, N. Tallent, M. Strout, P. Heimbach, C. Hill, and C. Wunsch, Ope-1024

nAD/F: A modular open-source tool for automatic differentiation of Fortran codes, ACM Transactions1025

on Mathematical Software, 34 (2008), pp. 18:1–18:36.1026

[54] Q. Wang, P. Moin, and G. Iaccarino, Minimal repetition dynamic checkpointing algorithm for unsteady1027

adjoint calculation, SIAM Journal on Scientific Computing, 31 (2009), pp. 2549–2567.1028

[55] Z. Wang, I. M. Navon, F. X. Le Dimet, and X. Zou, The second order adjoint analysis: Theory and1029

applications, Meteorology and Atmospheric Physics, 50 (1992), pp. 3–20.1030

27

	Introduction
	High level algorithmic differentation
	Escape hatches
	Storage and checkpointing
	Higher order derivative information
	Feature summary

	Formulation
	Timestepping forward model
	Functional
	First order derivative, contracted against zero directions
	First order derivative, contracted against one direction
	Kth order derivative, contracted against K directions
	Kth order derivative, contracted against (K - 1) directions

	Implementation
	Representation of forward equations
	Definition of dependencies
	Forward solution
	Adjoint derivative information
	Solution of adjoint equations
	Derivation of tangent-linear equations

	Processing of equations
	Finite element discretisations
	Second order adjoint calculation
	Higher order adjoint calculations

	Time loop optimisation
	Storage and checkpointing

	Examples
	Optimality constrained derivatives
	Formulation
	Motivating example
	Configuration
	Differentiating with respect to a Dirichlet boundary condition
	Inverse problem
	Derivatives
	Performance

	Hessian eigendecomposition
	Experiment and equations solved
	Eigendecomposition
	Performance

	Limitations and future work
	Symbolic differentiation and scaling
	Re-use of lower order adjoint solutions
	Limitations of the automated code generation system
	Dependency graph optimisations

	Conclusions
	References

