Finding Cliques in Social Networks: A New
Distribution-Free Model

Jacob Fox!

Department of Mathematics, Stanford University, Stanford, CA 94305, USA
jacobfox@stanford.edu

Tim Roughgarden?®
Department of Computer Science, Stanford University, Stanford, CA 94305, USA

C. Seshadhri
Department of Computer Science, University of California, Santa Cruz, CA 95064, USA

Fan Wei
Department of Mathematics, Stanford University, Stanford, CA 94305, USA

Nicole Wein?
EECS, Massachusetts Institute of Technology, Cambridge, MA 02139, USA

—— Abstract

We propose a new distribution-free model of social networks. Our definitions are motivated by
one of the most universal signatures of social networks, triadic closure — the property that pairs
of vertices with common neighbors tend to be adjacent. Our most basic definition is that of a
c-closed graph, where for every pair of vertices u, v with at least ¢ common neighbors, u and v are
adjacent. We study the classic problem of enumerating all maximal cliques, an important task in
social network analysis. We prove that this problem is fixed-parameter tractable with respect to
c on c-closed graphs. Our results carry over to weakly c-closed graphs, which only require a vertex
deletion ordering that avoids pairs of non-adjacent vertices with ¢ common neighbors. Numerical
experiments show that well-studied social networks tend to be weakly c-closed for modest values
of c.
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Finding Cliques in Social Networks: A New Distribution-Free Model

1 Introduction

There has been an enormous amount of important work over the past 15 years on models for
capturing the special structure of social networks. This literature is almost entirely driven
by the quest for generative (i.e., probabilistic) models. Well-known examples of such models
include preferential attachment [6], the copying model [38], Kronecker graphs [13, 39], and
the Chung-Lu random graph model [14, 15]. There is little consensus about which generative
model is the “right” one. For example, already in 2006, the survey by Chakrabarti and
Faloutsos [12] compares 23 different probabilistic models of social networks, and multiple
new such models are proposed every year.

Generative models articulate a hypothesis about what “real-world” social networks look
like, how they are created, and how they will evolve in the future. They are directly useful
for generating synthetic data and can also be used as a proxy to study the effect of random
processes on a network [3, 41, 43]. However, the plethora of models presents a quandary for
the design of algorithms for social networks with rigorous guarantees: which of these models
should one tailor an algorithm to? One idea is to seek algorithms that are tailored to none
of them, and to instead assume only determinstic combinatorial conditions that share the
spirit of the prevailing generative models. This is the approach taken in this paper.

There is empirical evidence that many NP-hard optimization problems are often easier to
solve in social networks than in worst-case graphs. For example, lightweight heuristics are
unreasonably effective in practice for finding the maximum clique of a social network [52].
Similar success stories have been repeatedly reported for the problem of recovering dense
subgraphs or communities in social networks [60, 54, 42, 59]. To define our notion of “social-
network-like” graphs, we turn to one of the most agreed upon properties of social networks —
triadic closure, the property that when two members of a social network have a friend in
common, they are likely to be friends themselves.

1.1 Properties of social networks

There is wide consensus that social networks have relatively predictable structure and features,
and accordingly are not well modeled by arbitrary graphs. From a structural viewpoint, the
most well studied and empirically validated statistical properties of social networks include
heavy-tailed degree distributions [6, 11, 23], a high density of triangles [64, 53, 63] and other
dense subgraphs or “communities” [26, 32, 46, 47, 40], low diameter and the small world
property [35, 36, 37, 45], and triadic closure [53, 63, 56].

For the problem of finding cliques in networks, it does not help to assume that the graph
has small diameter (every network can be rendered small-diameter by adding one extra vertex
connected to all other vertices). Similarly, merely assuming a power-law degree distribution
does not seem to make the clique problem easier [24]. On the other hand, as we show, the
clique problem is tractable on graphs with strong triadic closure properties.

1.2 Our model: c-closed graphs

Motivated by the empirical evidence for triadic closure in social networks, we define the class
of c-closed graphs. Figure 1 shows the triadic closure of the network of email communications
at Enron [1] and other social networks have been shown to behave similarly [8]. In particular,
the more common neighbors two vertices have, the more likely they are to be adjacent to
each other. The definition of c-closed graphs is a coarse version of this property: we assert
that every pair of vertices with ¢ or more common neighbors must be adjacent to each other.
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Figure 1 Triadic closure properties of the Enron email graph (36K nodes and 183K edges). Nodes
of this network are Enron employees, and there is an edge connecting two employees if one sent at
least one email to the other. Given an x value, the y-axis shows the cumulative closure rate: the
fraction of pairs of nodes with at least x common neighbors that are themselves connected by an

edge.

» Definition 1 (c-closed graph). For a positive integer ¢, an undirected graph G = (V, E) is
c-closed if, whenever two distinct vertices u,v € V have at least ¢ common neighbors, (u,v)

is an edge of G.

The parameter ¢ interpolates between a disjoint unions of cliques (when ¢ = 1) and all
graphs (when ¢ = |V| — 1). The class of 2-closed graphs is already non-trivial. These are
exactly the graphs that do not contain K5 o or a diamond (K4 minus an edge) as an induced
subgraph. For example, graphs with girth at least 5, e.g. constant-degree expanders, are
2-closed. For every ¢, membership in the class of c-closed graphs can be checked by squaring
the adjacency matrix in O(n*) time, where w < 2.373 is the matrix multiplication exponent.

While the definition of c-closed captures important aspects of triadic closure, it is fragile
in the sense that a single pair of non-adjacent vertices with many common neighbors prevents
the graph from being c-closed for a low value of ¢. To address this, we define the more
robust notion of weakly c-closed graphs and show that our results carry over to these graphs.
Well-studied social networks with thousands of vertices are typically weakly c-closed for
modest values of ¢ (see the full version [29] for experimental results).

» Definition 2. Given a graph and a value of ¢, a bad pair is a non-adjacent pair of vertices

with at least ¢ common neighbors.

» Definition 3 (Weakly c-closed graph). A graph is weakly c-closed if there exists an ordering
of the vertices {v1,vg,...,v,} such that for all 4, v; is in no bad pairs in the graph induced

by {vi, Vit1,-..,n}

A graph can be c-closed only for large ¢ but weakly c-closed for much smaller ¢. Consider
the graph G that is a clique of size k with one edge (u,v) missing. G is not c-closed for any
¢ < k — 2. The only bad pair in G is (u,v). The vertex ordering that places u and v at
the end demonstrates that G is weakly 1-closed. Also, the properties of being c-closed and

weakly c-closed are hereditary, meaning that they are closed under taking induced subgraphs.

We will use this basic fact often.
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1.3 OQur contributions

One can study a number of computational problems on c-closed (and weakly c-closed) graphs.
We focus on the problem of enumerating all maximal cliques, an important problem in social
network analysis [16, 58, 18, 21, 57]. We study fized-parameter tractability® with respect
to c. There is a rich literature on fixed-parameter tractability for other graph parameters
including treewidth, arboricity, and the size of the output [17].

In a graph G, a clique is a subgraph of G in which there is an edge between every pair of
vertices. A mazimal clique in G is a clique that cannot be made any larger by the addition
of some other vertex in G. In any graph, all maximal cliques can be listed in O(mn) time
per maximal clique [61]. We focus on the following two problems:

1. determining the maximum possible number of maximal cliques in a c¢-closed graph on n
vertices.

2. finding algorithms to enumerate all maximal cliques in c-closed graphs (that run faster
than O(mn) time per maximal clique).

Our main result is that for constant ¢ the number of maximal cliques in a c-closed graph

on n vertices is O(n2=2" °). More specifically, we prove the following bound.

» Theorem 4. Any c-closed graph onn vertices has at most min{3(¢=1/3n2 4(c+4)(°’_1)/2n2_21ﬁ}
maximal cliques.

For example, 3-closed, 4-closed, and 5-closed graphs have O(n®/2), O(n"/*), and O(n'®/®)
maximal cliques respectively.

The proof of the first bound listed in Theorem 4 extends to weakly c-closed graphs, giving
the following result.

» Theorem 5. Any weakly c-closed graph on n vertices has at most 3(¢=1/3n2 mazimal
cliques.

See the full version [29] for experimental results showing that well-studied social networks
are weakly c-closed for modest values of c. Note that Theorem 5 is exponential in the even
smaller value of (¢ —1)/3.

Since in any graph all maximal cliques can be listed in O(mn) time per maximal clique,
Theorem 4 proves that listing all maximal cliques in a c-closed graph is fixed-parameter
tractable (i.e. has running time f(c)n® for constant «). We give an algorithm for listing all
maximal cliques in a c-closed graph that runs faster than applying the O(mn)-per-clique
algorithm as a black box. Our algorithm follows naturally from the proof of Theorem 4 and
gives the following theorem, where p(n, ¢) denotes the time to list all wedges (induced 2-paths)
in a c-closed graph on n vertices. A result of Gasieniec, Kowaluk, and Lingas [31] implies that
p(n,c) = O(n?toWc 4 Bw=a)/(=a)pw 1 n@logn) where w is the matrix multiplication
exponent and o > 0.29.

» Theorem 6. In any c-closed graph, a set of cliques containing all maximal cliques can be
generated in time O(p(n,c) + 30/3712). The exact set of all maximal cligues in any c-closed
graph can be generated in time O(p(n, c) 4+ 3¢/32°cn?).

Non-trivial lower bounds for the number of maximal cliques in a c-closed graph were

3/2

previously known only for extreme values of ¢. A 2-closed graph can have n°/* maximal

4 A problem is said to be fixed-parameter tractable with respect to a parameter k if there is an algorithm
that solves it in time at most f(k)n® where f can be an arbitrary function but « is a constant.
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cliques [22]. The classic Moon-Moser graph (with additional isolated vertices) is (n —2)-closed
and has 3"/3) maximal cliques [44]. This graph consists of the complete multipartite graph
with |n/3| parts of size 3, and possibly additional isolated vertices. By taking a disjoint
union of n/(c+ 2) Moon-Moser graphs on (¢ + 2) vertices, we can construct a c-closed graph
on n vertices with Q(c~13%3n) maximal cliques for all n > ¢. We give improved lower bounds
for intermediate values of c.

» Theorem 7. For any positive integer c, there are c-closed graphs with n vertices and
Q(c=3/22¢/2n3/2) mazimal cliques.

It is an open problem to determine the exact exponent of n (between 3/2 and 2 — 217¢)
in the expression for the maximum number of maximal cliques in a c-closed graph.

1.4 Related work

There are only a few algorithmic results for graph classes motivated by social networks.
Although a number of NP-hard problems remain NP-hard on graphs with a power-law degree
distribution [25], several problems in P have been shown to be easier on such graphs. Brach,
Cygan, Lacki, and Sankowski [10] give faster algorithms for transitive closure, maximum
matching, determinant, PageRank and matrix inverse. Borassi, Crescenzi, and Trevisan [9] as-
sume several axioms satisfied by real-world graphs, one being a power-law degree distribution,
and give faster algorithms for diameter, radius, distance oracles, and computing the most
“central” vertices. Motivated by triadic closure, Gupta, Roughgarden, and Seshadhri [33]
define triangle-dense graphs and prove relevant structural results. Intuitively, they prove
that if a constant fraction of two-hop paths are closed into triangles, then the graph must
contain many dense clusters.

For general graphs, Moon and Moser prove that the maximum possible number of maximal
cliques in a graph on n vertices is 3"/ (realized by a complete n/3-partite graph) [44]. Tomita,
Tanaka, and Takahashi prove that the time to generate all maximal cliques in any n-vertex
graph is also O(3"/3) [58].

The clique problem has been studied on 2-closed graphs (under a different name). Eschen,
Hoang, Spinrad, and Sritharan [22] show that the maximum number of maximal cliques in a
2-closed graph is O(n?’/ 2). They also show a matching lower bound via a projective planes
construction. Suppose n = p? + p + 1 for a positive integer p and consider a finite projective
plane on n points (and hence with n lines, see e.g. [2]). Let G denote the bipartite graph
representing the point-line incidence matrix. The defining properties of finite projective
planes imply that no two vertices have two common neighbors, so the 2-closed condition is
vacuously satisfied. Every vertex of G has degree p -+ 1, so the graph has ©(n3/2) edges, each
a maximal clique.

The clique problem has also been studied on other special classes of graphs such as
graphs embeddable on a surface [19] and graphs of bounded degeneracy [20]. Degeneracy
is a measure of everywhere sparsity. More formally, the degeneracy of a graph G is the
smallest value d such that every nonempty subgraph of G contains a vertex of degree at
most d. Eppstein et al. show that the maximum number of maximal cliques in a graph of
degeneracy d is O(n3%/3). The degeneracy of a graph, however, can be much larger than its
c-closure. For example, the degeneracy of a graph is at least the size of a maximum clique,
while even in 1-closed graphs, the size of the maximum clique can be arbitrarily large.

Clique counting is a classical problem in extremal combinatorics. One fundamental
question is to count the minimum number of cliques in graphs with fixed number of edges
i.e. to show that graphs with few cliques must have few edges. This simple question turns
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out to be a complex problem, and is settled for K3 by Razborov [50] by flag algebra, K4 by
Nikiforov [48] by a combination of combinatorics and analytical arguments, and all K; by
Reiher [51] by generalizing the argument of flag algebra to all sizes of cliques.

There has also been a long line of work in combinatorics on counting (not necessarily
maximal) cliques in graphs with certain excluded subgraphs, subdivisions, or minors. Most
recently, Fox and Wei give an asymptotically tight bound on the maximum number of cliques
in graphs with forbidden minors [28], and an upper bound on the maximum number of
cliques in graphs with forbidden subdivisions or immersions [27].

Many problems in combinatorics can be phrased as counting the number of cliques or
independent sets in a (hyper)graph. For example, the problems of finding the volume of the
metric polytope and counting the number of n-vertex H-free graphs (for any fixed subgraph
H) can be translated into clique counting problems. The recently developed “container
method” [5, 55] is a powerful tool to bound the number of cliques in (hyper)graphs and can
be used to tackle a great range of problems.

1.5 Organization

In Section 2 we prove the first bound listed in Theorem 4, state Theorem 5, and introduce
the proof of Theorem 6. In Section 3 we prove the second bound listed in Theorem 4 (which
has improved dependence on n). In Section 4 we prove Theorem 7.

See the full version [29] for the proof of Theorem 6.

1.6 Notation

All graphs G(V, E) are simple, undirected and unweighted. For any v € V, let N(v) denote
the neighborhood of v. When the current graph is ambiguous, Ng(v) will denote the
neighborhood of v in G. For any S C V, let G[S] denote the subgraph of G induced by S.

2 Initial Bound and Algorithm

2.1 Bound on number of maximal cliques

In this section, we prove the following bound on the number of maximal cliques in a c-closed
graph and show that this bound carries over to weakly c-closed graphs. Let F(n,c) denote
the maximum possible number of maximal cliques in a c-closed graph on n vertices. The
following theorem uses a natural peeling process and obtain an initial upper bound on the
number of maximal cliques. A more involved analysis, Theorem 11 which gives a tighter
upper bound, is delayed to later.

» Theorem 8 (restatement of part of Theorem 4). For all positive integers c,n, we have
F(n,c) < 3(c=1/3p2,

Proof. Let G be a c-closed graph on n vertices and let v € V(G) be an arbitrary vertex.
Every maximal clique K C G is of one of the following types:

1. The clique K does not contain vertex v; and K is maximal in G \ {v}.

2. The clique K contains vertex v; and K \ {v} is maximal in G \ {v}.

3. The clique K contains vertex v; and K \ {v} is not maximal in G \ {v}.

Bounding the number of maximal cliques of type 1 and 2 is straightforward because every
such clique can be obtained by starting with a clique maximal in G \ {v} and extending it
to include vertex v if possible. Therefore, the number of maximal cliques of types 1 and 2
combined is at most F(n — 1, ¢).
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Figure 2 A maximal clique K of type 3: K contains vertex v and K \ {v} is not maximal in
G \ {v}. Property C asserts that there exists a vertex u ¢ N(v) whose neighborhood contains
K \ {v}. Since G is c-closed, |N(u) N N(v)| < c.

Type 3 cliques are maximal in N(v), but not in G\ {v}. We will prove that the number of
maximal cliques of type 3 is at most 3(¢=1)/3n, crucially using the c-closed property. Figure 2
shows a maximal clique K of type 3.

We claim that each type 3 maximal clique K satisfies the following three properties.

A) K\ {v} is a clique in the neighborhood of v, and

B) K\ {v} is not in the neighborhood of any other vertex in N (v).

C) There exists a vertex u ¢ N(v) whose neighborhood contains K \ {v}.

Property A is clear since K is a clique containing v. Property B is true because if we can
extend K \ {v} to include some vertex w € N(v), then K can also be extended to include w
which contradicts the fact that K is maximal. To see property C, note that since K \ {v} is
not a maximal clique in G \ {v} we can extend the clique K \ {v} to include some vertex in
G\ {v}. By property B, we can extend K \ {v} to include some vertex u not in N (v).

Let u be as in property C. Then K \ {v} must be a maximal clique in G[N(v) N N (u)]
because otherwise we could extend K \ {v} to some other vertex in N(v) N N(u), which
contradicts property B.

Thus, the number of type 3 maximal cliques is at most

> F(IN(u) N N(v)];¢)- (1)

u€G\(N (v)u{v})

Since G is c-closed, |N(u) N N(v)| < ¢ for all vertices u & N(v). Then since any k-vertex
graph has at most 3%/% maximal cliques [44],

F(IN(u) N N(v)],e) <3173,

Thus, the number of type 3 maximal cliques in G is at most 3(¢=1/3p,
Counting all three types of maximal cliques, we have the following recursive inequality:

F(n,c) < F(n—1,¢) + 3 D/3p,

By induction on n with the base case F'(1,c¢) = 1, this gives
F(n,c) < 3D/3 <n + 1> < 3(e=/3p2, <
i —_ 2 —

Note that v was chosen arbitrarily and the proof is valid as long as “|N(u) "N (v)| < ¢ for
all vertices u € N(v)”. Thus, in each recursive level, we only require the existence of a vertex
v in no bad pairs. Equivalently, it suffices to have an ordering of the vertices {v1, va,...,vn}
such that for all 4, v; is in no bad pairs in the graph induced by {v;, viy1,...,v,}. This is
exactly the definition of a weakly c-closed graph. Thus, we get the following theorem.
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» Theorem 9 (Restatement of Theorem 5). For any positive integers c,n, there are at most
3(c=1/3n2 mazimal cliques in an n-vertex weakly c-closed graph.

2.2 Algorithm to generate all maximal cliques

Recall that p(n, ¢) denotes the time to list all wedges (induced 2-paths) in a c-closed graph
on n vertices. A result of Gasieniec, Kowaluk, and Lingas [31] implies that p(n,c) =
O(n2+0(1)c + B-w=a)/(—a)pw | pwlog n) where w is the matrix multiplication exponent
and a > 0.29.

» Theorem 10 (restatement of Theorem 6). A superset of the mazimal cliques in any c-closed
graph can be generated in time O(p(n,c) + 30/3n2). The exact set of all mazimal cliques in
any c-closed graph can be generated in time O(p(n,c) + 3¢/32%n?).

The algorithm follows naturally from the proof of Theorem 8 with two additional ingredi-
ents:

A preprocessing step to enumerate all wedges in the graph speeds up the later process of
finding the intersection of the neighborhoods of two vertices (i.e. N(u) N N(v) from the
proof of Theorem ).

An algorithm of Tomita, Tanaka, and Takahashi [58] generates all maximal cliques in any
n-vertex graph in time O(3"/%). We apply this to the recursive calls on the small induced
subgraphs G[N (u) N N (v)], which have less than ¢ vertices, that arise in handling the
type 3 cliques in the proof of Theorem 8.

We defer the full algorithm description and runtime analysis to the full version [29].

3 Improved Bound

Recall that F(n,c) is the maximum number of maximal cliques in a c-closed graph on n
vertices.

» Theorem 11 (restatement of part of Theorem 4). For all positive integers ¢,n, we have
F(n,c) < glet4)(e—1) /222" "¢

The structure of the proof is similar to that of Theorem 8. We get an improved bound by a
separate analysis depending on whether G has a vertex of “high” degree. This idea appears
in the result of Eschen et al. [22], who prove the result for the ¢ = 2 case.

We will require the following simple lemma.

» Lemma 12. For any v, G[N(v)] is a (c — 1)-closed graph.

Proof. Consider pair z,y € N(v) with ¢ — 1 common neighbors in G[N(v)]. Since vertex
v ¢ N(v) is also a common neighbor of z and y,  and y have ¢ common neighbors in G.
Thus, (z,y) is an edge. <

Proof of Theorem 11. Let G = (V,E) be a c-closed graph on n vertices with F(n,c)
maximal cliques. Let A(G) be the maximum degree of G.
Case 1: A(G) < n'/2

By Lemma 12 for all v € V(G), G[N(v)] is (¢—1)-closed. Then, since the number of maximal
cliques containing v is exactly the number of maximal cliques in G[N(v)], we have

F(n,c) < nF(A(G),c—1).
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Case 2: A(G) > n'/2.

Let v € V be a vertex of degree A(G). We will count the maximal cliques containing at least
one vertex in N(v) U {v}, delete N(v) U {v}, and recurse.

Since the number of maximal cliques containing v is exactly the number of maximal
cliques in G[N(v)], v is in at most F(A(G), ¢ — 1) maximal cliques. It remains to bound the
number the maximal cliques that contain some vertex in N(v) but not v itself. Such a clique

must contain some vertex in u € V' \ (N(v) U {v}) (otherwise, it would not be maximal).

Let K be the set of such cliques. We will bound |K| by grouping the maximal cliques K
in K based on which vertices of N(v) are in K. For nonempty S C N(v), let N(S) denote
MNuecs NV(u). Also, let Na(v) denote the set of vertices of distance exactly 2 from v. Let us
bound the number of cliques K € K such that K N N(v) = S. The other vertices in K must
be in N(S) N Na(v). By Lemma 12, GIN(S) N N2(v)] is a (¢ — 1)-closed graph. The number
of cliques K € K such that K N N(v) = S is at most F([N(S) N Na(v)],c — 1). Summing
over all subsets S C N(v), we have

KI< > F(N(S)NNa(v)],e—1). (2)

SCN(v)

For all u € Nj(v), since u and v are not adjacent, |N(u) N N(v)| < ¢ (because G is
c-closed). Each vertex in Na(v) can be in N(S) for only 2¢~! sets S C N(v), implying

Y IN(S)NN2(v)] < [Np(0)[2°7F < min{(A(G))%, n}2e". (3)
SCN (v)

We want to determine for all S the value of |[N(S) N Na(v)| that maximizes the upper bound
for |K| in Inequality (2) subject to the constraint in Inequality (3). Later, we prove our
bound on F (from the theorem statement) by induction on n and ¢. In fact, we show that
F(n,c) is bounded by

Fy (n, C) = 4(c+4)(c—1)/2n2_21,c,

the desired upper bound for F(n,c) that we are trying to prove by induction. Since
Fy(n,c) is convex in n, by the inductive hypothesis we can apply Jenson’s inequality on
Inequality (2). Jenson’s inequality implies that the upper bound on |K| is maximized by
setting |[N(S) N Na(v)| to be as large as possible (note that it cannot exceed A(G)) for
as many S as possible until the bound in Inequality (3) is met and setting the rest to
be 0. By Inequality (3), the number of non-zero terms |N(S) N No(v)| we sum over is at

most A(G) ! min{(A(G))?,n}2¢7! < min{A(G), A?G)}chl. Thus, we have the following

continuation of Inequality (2).
KI< S0 FUN(S)NNaw)l.e - 1) < minfA(G), 57z} R(AG) = 1), ()
SCN(v)

Recall |K| is the number of maximal cliques that contain some vertex in N(v) but not v
itself, so we combine Inequality (4) with the observation (from the beginning of case 2) that
v is in at most F(A(G),c — 1) maximal cliques to conclude that the number of maximal
cliques containing at least one vertex in N(v) U {v} is at most

Fo(A(G), e — 1)(1 + min{A(G), A?G) }2¢°1) < Fy(A(G), e — 1) min{A(G), ﬁ}f
Then, recursing on G \ (N (v) U {v}), we have:
F(n,c) < Fo(A(G), e — 1) min{A(G), ﬁ}zc + F(n — A(G), ).
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Combining the low and high degree bounds on F(n,c), we get the following recurrence.
F(n,1) = F(l,¢) =
nF(A(G),c—1) A(G) <nl'/?
F(n,c) <
FO( (G),c— ) 2°+F(n—A(G),c) A(G) > nl/?
The remainder of the proof shows inductively that the recurrence implies the desired bound

F(n,c) < Fy(n,c) < n?~2 “2(t9)(=1)/2 The desired bound holds in the two base cases.
For the inductive case, we need to show that

nA(G)2722_62(c+3)(c72)/2 A(G) < nl/2
—2'"%9(c c— —227¢5(c c— c
n2=2 “gletd(e-1)/2 > A(G)2=2 " 2(e+3)( 2)/2A?G)2
+(n— A(G))?2 20 DED2 0 A(G) > nl/2,

In the A(G) < n'/? case, the expression is maximized when A(G) = n'/2. Thus,
nA<G)2—22*C2(c+3)(c—3)/2 < n1+%(2—22*“)2(c+3)(c—2)/2 < n2—21*62(c+4)(c—1)/2
as desired.

For the A(G) > n'/? case, the second term of the expression can be written as
(n(1 — 2Ey))2=2"""g(c+)(e=1/2 We use the following claim.

» Claim 13. (1—x)k§1—12—kf0rany0<x§1/2 and 1 <k<2

Proof. Forany y € (0,1), (1-y) <e Yande ¥ <1-—y/2. Thus, (1—z)* < e 2% < 1—ak/2.
<

Applying the claim with z = % and k = 2 — 217¢ it suffices to show that

1—c
n2721_c2(c+4)(c71)/2 > A(G)2722_62(c+3)(cf2)/2 n 2c+n2721—c <1 . A(G)(2-2 )) oletd)(e=1)/2

A(G) 2n

or equivalently that

2)/2_ " _gc_ 2-2 A(G)(2 -2
A(G) 2n

Simplifying the left-hand side of the above inequality and using the fact that ¢ > 1:

A(G)27227C2(c+3)(c7 2(c+4)(cfl)/2 <0.

A l1—c
222275 (c+3)(c—2)/2 T oc  2-217¢ (G)(2-2"79 (c+4)(c—1)/2
A(G) 2 ( )2 n — )2

= TLA(G)I*QQ_CQ(CQ+676)/2 _ ﬂlin_cA(G)( . 275)2(02+3574)/2

< ( (@)

— 2(c2+c—6)/2(nA(G)1 22-c n1—21’“A(G)
< 2(02+676)/2(nA(G 1-227¢ nlizl_CA(G)
_ 2((:2+c76)/2n1721 CA(G)PQQ C(HQI*C _ A(G)QQ*C) <0.

The last inequality holds because A > n'/2. <
Like the proof of the initial bound (Theorem 8), the proof of the improved bound

(Theorem 11) also suggests an algorithm for generating the set of maximal cliques involving

the preprocessing step of listing the set of all wedges in the graph. However, this algorithm

is not asymptotically faster than the algorithm from Theorem 10 since its dependence on n
still includes p(n, ¢) and we omit it.
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4 Lower bound

» Theorem 14 (restatement of Theorem 7). For any positive integer ¢, we can construct
graphs which are c-closed and with Q(c_3/220/2n3/2) mazimal cliques.

Construction

We suppose that c is even and n is a multiple of ¢. We can do this with only an absolute
constant factor loss in the bound, which is allowable. We start with a graph H on v = 2n/c
vertices with girth 5 and the maximum possible number of edges, which is Q(v3/2) [30].
We construct our c-closed graph G on n vertices from H in the following way. For each
vertex © € V(H), we replace it with a vertex set U, with ¢/2 vertices. Therefore, there are
|[V(H)|-¢/2 = n vertices in G. The adjacency relation of G is as follows.
Add all edges within each U, so that U, is a clique for all x € V(H).
For any edge (z,y) of H, we place edges between the vertex sets U, and U, such that
the bipartite graph between U, and U, consists of a complete bipartite graph minus a
perfect matching.
For any distinct and nonadjacent x,y € V(H), there are no edges between U, and U,,.

Theorem 14 follows from the next two claims.
» Claim 15. The graph G constructed is c-closed.

Proof. It suffices to check that for any two non-adjacent vertices in G, they have at most
¢ — 1 common neighbors. By the construction, there are only two types of non-adjacent
vertices:

Case 1: The non-adjacent pair u,v € V(G) are such that u € U,,v € U, and z,y € V(H)
are disitinct and non-adjacent in H.

In this case, there are no edges between U,, U,, and the common neighbors of u, v are
such that there is a vertex z € V(H) such that (z, z), (y, 2) are both edges in H. Since H

has girth 5, there is at most one such z € H given z,y, as otherwise H would contain a Cj.

Vertex u € V(G) is adjacent to exactly |U,| — 1 = (¢/2) — 1 vertices in U, so u,v can have
at most (¢/2) — 1 common neighbors.

Case 2: The non-adjacent pair u,v € V(G) is such that u € Uy,v € U, and z,y € V(H)
are adjacent in H.

In this case, u and v are adjacent to all other vertices in U, U Uy, so they have ¢ — 2
common neighbors in U, U U,. Suppose for contradiction that u,v have some other common
neighbor w and w € U, for some z # x,y. This implies that (w, z), (w,y) are both edges in
H. However, (z,y) is already an edge in H by the assumption of this case. This implies that
H contains a triangle, which contradicts the fact that H has girth 5.

Combining both cases, we know that G is c-closed. |

» Claim 16. There are Q(c=3/22°/2n3/2) mazimal cliques in G.

Proof. For any edge (x,y) of H, picking one endpoint of each non-edge in U, U U, gives
a maximal clique. Thus for each edge (z,y) of H, there are exactly 2/U+l = 2¢/2 maximal
cliques.

There are Q(|V(H)|>/?) = Q((2n/c)?/?) edges in H. As each of the maximal cliques
obtained are distinct, we obtain Q(2¢/2 - (2n/c)?/?) = Q(¢=3/22¢/2n3/?) maximal cliques. <«
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5 Open problems and future directions

Direct improvement of our results

Determine the exact dependence on n for the maximum possible number of of maximal
cliques in a c-closed graph. We have proven (up to constant dependence on ¢) that this

1—c
3/2 and n2-2 ",

number is between n
Find a faster algorithm for listing the set of all wedges (induced 2-paths) in a c-closed

graph (this would improve the runtime of Algorithm from Theorem 10).

Further exploration of c-closed graphs

Study the densest k-subgraph problem, a generalization of the clique problem, on c-closed
graphs. The input to the problem is a graph G and a parameter k, and the goal is
to to find the subgraph of G on k vertices with the most edges. Unlike the clique
problem, densest k-subgraph is NP-hard even for 2-closed graphs (more specifically, for
graphs of girth 6) [49]. For general graphs, the best-known approximation algorithm
has approximation ratio roughly O(n'/%) [7] and under certain average-case hardness
assumptions (concerning the planted clique problem), constant-factor approximation
algorithms do not exist [4].

Determine which other NP-hard problems are fixed-parameter tractable with respect to c.
Determine which problems in P have faster algorithms on c-closed graphs.

Other model-free definitions of social networks

Explore other graph classes motivated by the well-established signatures of social networks
(described in the introduction): heavy-tailed degree distributions, high triangle density,
dense “communities”, low diameter and the small world property, and triadic closure.
Determine other model-free definitions of social networks, for example, those motivated
by 4-vertex subgraph frequencies. Ugander et al. [62] and subsequently Seshadhri [34]
computed 4-vertex subgraph counts in a variety of social networks and the frequencies
observed are far different than what one would expect from a random graph. In particular,
social networks tend to have far fewer induced 4-cycles than random graphs.
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