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Abstract. We propose a novel hp-multilevel Monte Carlo method for the quantification of
uncertainties in the compressible Navier-Stokes equations, using the Discontinuous Galerkin method
as deterministic solver. The multilevel approach exploits hierarchies of uniformly refined meshes
while simultaneously increasing the polynomial degree of the ansatz space. It allows for a very large
range of resolutions in the physical space and thus an efficient decrease of the statistical error. We
prove that the overall complexity of the hp-multilevel Monte Carlo method to compute the mean field
with prescribed accuracy is, in best-case, of quadratic order with respect to the accuracy. We also
propose a novel and simple approach to estimate a lower confidence bound for the optimal number of
samples per level, which helps to prevent overestimating these quantities. The method is in particular
designed for application on queue-based computing systems, where it is desirable to compute a large
number of samples during one iteration, without overestimating the optimal number of samples. Our
theoretical results are verified by numerical experiments for the two-dimensional compressible Navier-
Stokes equations. In particular we consider a cavity flow problem from computational acoustics,
demonstrating that the method is suitable to handle complex engineering problems.
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1. Introduction. Due to the continuous improvement of computer-processing
capacities, the demand for highly accurate numerical simulations which also account
for uncertain input parameters is growing. Uncertainties might arise from limitations
in measuring physical phenomena exactly or from a systematical absence of knowledge
about the underlying physical processes. Uncertainty Quantification (UQ) addresses
this issue and provides mathematical methods to quantify the influence of uncertain
input parameters on the numerical solution itself or on derived quantities of interest.
There exist two major approaches for UQ. On the one hand, non-statistical approaches
like the intrusive and non-intrusive polynomial chaos expansion approximate the un-
derlying random field by a series of polynomials and derive deterministic models for
the stochastic modes. On the other hand, statistical approaches such as Monte Carlo
(MC) type methods sample the random space to obtain statistical information, like
mean, variance or higher order moments of the corresponding random field. Especially
MC type methods are very popular as they are easy to implement and only require
a deterministic black box solver. Moreover, in contrast to non-statistical approaches,
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the MC method does not rely on the regularity of the underlying random field, ren-
dering it a very robust method. However, the convergence of MC methods is dictated
by the law of large numbers, hence relatively slow and therefore computationally
expensive.

To overcome these difficulties Heinrich [15] and later Giles [12] extended the MC
method to the Multilevel Monte Carlo (MLMC) method, where they considered dif-
ferent mesh hierarchies instead of one fixed mesh, to discretize the deterministic equa-
tion of interest. The MLMC method relies on the idea that the global behavior of the
exact expectation can be approximated by the behavior of the expectation of numer-
ical solutions with a low spatial resolution, which can be computed at low cost. The
coarse expectation is then subsequently corrected by computations on finer meshes,
which are computationally more expensive per sample. The number of these simula-
tions at full resolution is significantly reduced compared to the original MC method
resulting in a considerably lower overall computational cost. Since its development the
MLMC method has been very successfully applied to UQ for many different partial
differential equations with uncertainties, as for example in [3, 4, 5, 8, 9, 17, 22, 23].
We refer to [7, 25] for applications of the MLMC method in computational fluid dy-
namics, especially to aerodynamics and meteorology. A generalization of the MLMC
method, named Multiindex Monte Carlo (MIMC) method, has been presented in
[13]. In contrast to the MLMC method, which computes mean and variance using
first-order differences, the MIMC method uses high-order differences which allows for
a faster decay of the corresponding level variances, resulting in significant efficiency
gains compared to the standard MLMC method.

In [23] the authors extended the MLMC method for hyperbolic problems to a Mul-
tiorder Monte Carlo method (MOMC), using an energy-preserving Discontinuous
Galerkin (DG) scheme for the elastic wave equation, which we will dub p-MLMC
for the remainder of this article. The authors considered either mesh refinements (h-
refinement), or increased the DG polynomial degree (p-refinement) to obtain a hierar-
chy of different levels. Furthermore, they proved that the computational complexity
to reach a prescribed accuracy is of quadratic order with respect to the accuracy. How-
ever, a proof for the computational complexity for a hierarchy of hp-refined meshes is
still open. We therefore extend the h- and p-MLMC method to an hp-MLMC method,
where we uniformly refine the physical mesh and at the same time uniformly increase
the DG polynomial degree. As the first new contribution of this work, we extend
the complexity analysis from [8, 23] to arbitrarily hp-refined meshes and show that
the hp-MLMC method is - up to a constant - as efficient as the h-MLMC and the
p-MLMC method. The hp mesh hierarchy enables us to cover a very large range of
resolution levels, which is crucial for the efficiency of the hp-MLMC method. Further-
more, from a numerical point of view, a low polynomial degree (resulting in a more
dissipative numerical scheme) might be favorable in connection with coarse meshes,
where an insufficient resolution can otherwise lead to unphysical oscillations, whereas
a high polynomial degree yields higher accuracy when fine meshes are employed. The
hp-MLMC method becomes an attractive alternative for mesh-based MLMC methods
if uniform mesh hierarchies are not available. This might occur for complex domain
geometries or when using dynamical mesh adaption. In view of the recent rise of
higher-order schemes it seems likely to exploit a mixture method. In contrast to h-
refinement, hp-refinement introduces more degrees of freedom in designing a suitable
mesh hierarchy.
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For complex fluid dynamical problems, e.g. direct numerical simulations of unsteady,
compressible Navier-Stokes equations, it is inevitable to use large-scale computing
systems. These systems are in most cases equipped with a queuing system. When
using the hp-MLMC method on queue-based, large-scale computing systems, due to
long queuing times, it is desirable to compute as many samples as possible per it-
eration. On the other hand, to avoid unnecessary computations and to increase the
efficiency of the hp-MLMC method, one is interested to not overestimate the opti-
mal number of samples per iteration. Therefore, as the second novel contribution,
we show how to construct easily a robust lower confidence bound for the number of
samples per level, which avoids overshooting the optimal number of samples, but still
yields a reasonably large number of additional samples per iteration. To demonstrate
the efficiency of the hp-MLMC method combined with the novel sample estimator we
apply our method to two different compressible flow problems, a benchmark problem
with smooth solution and an open cavity flow problem. The latter is an important
problem in computational acoustics that exhibits physical phenomena with high sen-
sitivity with respect to the problem parameters [20]. Moreover, we provide for both
problems a thorough comparison of the h-, p- and hp-MLMC methods.

This article is structured as follows. In Section 2 we introduce the necessary math-
ematical framework and briefly introduce the DG method. In Section 3 we describe
the hp-MLMC method and prove the stated complexity result. We also discuss the
necessity of confidence intervals for the estimate of the optimal number of samples
when working on queue-based large-scale computing systems. Finally, in Section 4 we
apply our method to two different examples and verify our theoretical results.

2. Notation and Preliminaries.

2.1. A Primer on Probability Theory. We let (Ω,F ,P) be a probability
space, where Ω is the set of all elementary events ω ∈ Ω, F is a σ-algebra on Ω and P
is a probability measure. We further consider a second measurable space (E,B(E)),
where E is a Banach space and B(E) is the corresponding Borel σ-algebra. An E-
valued random field is any mapping X : Ω → E such that {ω ∈ Ω : X(ω) ∈ B} ∈ F
holds for any B ∈ B(E). For r ∈ [1,∞)∪{∞} we consider the Bochner space Lr(Ω;E)
of r-summable E-valued random variables X equipped with the norm

‖X‖Lr(Ω;E) :=

{
(
∫

Ω
‖X(ω)‖rE dP(ω))1/r = E

[
‖X‖rE

]1/r
, 1 ≤ r <∞

ess supω∈Ω ‖X(ω)‖E , r =∞.

The uncertainty is introduced via a random vector ξ(ω) =
(
ξ1(ω), . . . , ξN (ω)

)
: Ω →

Ξ ⊂ RN with independent, absolutely continuous random variables as components.
This means that for each random variable ξi there exists a density function fξi : R→
R+, such that

∫
R fξi(y) dy = 1 and P[ξi ∈ A] =

∫
A
fξi(y) dy for any A ∈ B(R) and

for all i = 1, . . . , N . Moreover, the joint density function fξ of the random vector

ξ = (ξ1, . . . , ξN ) can be written as fξ(y) =
N∏
i=1

fξi(yi) for all y = (y1, . . . , yN )> ∈ Ξ.

The random vector induces a probability measure P̃(B) := P(ξ−1(B)) for all B ∈ B(Ξ)
on the measurable space (Ξ,B(Ξ)). This measure is called the law of ξ and in the
following we work on the image probability space (Ξ,B(Ξ), P̃).

2.2. The Random Navier-Stokes Equations. As the physical space we con-
sider a bounded domain D ⊂ R2 and we further define the space-time-stochastic
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domain DT,Ξ := (0, T )×D×Ξ. We focus on the random compressible Navier-Stokes
equations given by

(2.1) Ut +∇x · (G(U)−H(U,∇xU)) = 0, ∀ (t, x, y) ∈ DT,Ξ,

where U(t, x, y) denotes the solution vector of the conserved quantities, i.e. we have
U = (ρ, ρv1, ρv2, ρe)

>. G and H denote the advective and viscous fluxes, i.e.

(2.2) Gi(U) =


ρ vi

ρ v1vi + δ1i p
ρ v2vi + δ2i p
ρ evi + p vi

 , Hi(U,∇xU) =


0
τ1i
τ2i

τijvj − qi

 , i = 1, 2.

Here, δij is the Kronecker delta function and the physical quantities ρ, v = (v1, v2)>,
p, and e represent density, the velocity vector, the pressure and the specific total
energy, respectively. With Stokes’ and Fourier’s hypothesis, the viscous stress tensor
τ and the heat flux q reduce to

(2.3) τ = µ(∇v + (∇v)> − 2

3
(∇ · v)I), q = −k∇T .

In (2.3) µ is the dynamic viscosity, k the thermal conductivity and T the local temper-
ature. In order to solve for the unknowns, the system has to be closed by appropriate
equations of state. We choose for the gas constant R, the adiabatic exponent κ and
the specific heat at constant volume cv the perfect gas law assumptions

(2.4) p = ρRT = (κ− 1)ρ(e− 1

2
v · v), e =

1

2
v · v + cvT .

We augment (2.1) with suitable boundary and initial conditions, denoted by

B(U) = g ∀ (x, y) ∈ ∂D × Ξ, U(0, x, y) = U0(x, y) ∀ (x, y) ∈ D × Ξ.

The boundary operator B, the boundary data g and the initial condition U0 will be
specified when we detail the settings for the numerical experiments in Section 4.

Following [21] we call U ∈ L2(Ξ;C1([0, T ];L2(D))) a weak random solution of (2.1),

if it is a weak solution P̃-a.s. y ∈ Ξ and a measurable mapping
(

Ξ,B(Ξ)
)
3 y →

U(·, ·, y) ∈
(
C1([0, T ];L2(D)),B

(
C1([0, T ];L2(D))

))
.

2.3. The Runge–Kutta Discontinuous Galerkin Method. We shortly re-
call the Discontinuous Galerkin (DG) spatial discretization for the initial-boundary
value problem (2.1), see [16] for more details. To partition the spatial domain we

subdivide D into N ∈ N quadrilateral elements Dm, m = 1, . . . , N with D =
N⋃
m=1

Dm

and define the mesh size h := max
m=1,...,N

hm, where hm is the length of Dm. More-

over, we define hmin := min
m=1,...,N

hm. Furthermore, let us introduce the space of

piecewise DG polynomial ansatz and test functions: Vqh := {U : D → R4 | U
∣∣
Dm
∈

Pq(Dm;R4), for 1 ≤ m ≤ N}, where Pq(Dm;R4) is the space of polynomials of degree
q on the element Dm and U

∣∣
Dm

denotes U restricted to Dm. The DG solution Uh is

then sought in Vqh, i.e. Uh(t, ·, y) ∈ Vqh, a.e. (t, y) ∈ (0, T )× Ξ. On each element Dm,
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m = 1, . . . , N we use tensor products of local one-dimensional Lagrange interpolation
polynomials of degree q, i.e.

Uh(t, x, y)
∣∣
Dm

=

q∑
i,j=0

Umi,j(t, y)lmi (x1)lmj (x2).(2.5)

The interpolation nodes are chosen to be the Gauß-Legendre nodes, cf. [16]. We then
consider the (spatial) weak form of (2.1) given by

∂

∂t

∫
D

U(t, ·, y)Φ dx+

∮
∂D

(G(U(t, ·, y))−H(U(t, ·, y),∇xU(t, ·, y)))Φ ds

−
∫
D

(G(U(t, ·, y))−H(U(t, ·, y),∇xU(t, ·, y))) · ∇xΦ dx = 0(2.6)

for a.e. t ∈ (0, T ) and P̃-a.s. y ∈ Ξ and for all test functions Φ. Now, using the same
discrete space Vqh for ansatz and test functions in (2.6), we obtain the semi-discrete
DG scheme for Uh ∈ L2(Ξ;C1([0, T );Vqh)):

∂

∂t

∫
D

Uh(t, ·, y)Φh dx+

∮
∂D

G∗n(U−h (t, ·, y), U+
h (t, ·, y))Φh ds

+

∮
∂D

H∗n(Uh(t, ·, y),∇xUh(t, ·, y))Φh ds−
∫
D

G(Uh(t, ·, y)) · ∇xΦh dx

+

∫
D

H(Uh(t, ·, y),∇xUh(t, ·, y)) · ∇xΦh dx = 0(2.7)

for all Φh ∈ Vqh. Here, G∗n(U−, U+) denotes a numerical flux, which depends on values
at the grid cell interface from neighboring cells. In this paper, we have chosen the
approximate Roe Riemann solver with entropy fix described in [14]. The viscous fluxes
H∗n normal to the cell interfaces are approximated by the procedure described by Bassi
and Rebay in [6]. The DG scheme (2.7) is then advanced in time by a (q+1)-th order
Runge–Kutta method [18] constrained by a CFL type condition of the form

∆t ≤ min
{ hmin
λcmax(2q + 1)

,
( hmin
λvmax(2q + 1)

)2}
.(2.8)

In (2.8) λcmax :=
(
(|v1| + c) + (|v2| + c)

)
is an estimate for the absolute value of the

largest eigenvalue of the convective flux Jacobian with c :=
√
κpρ being the speed of

sound. Moreover, λvmax :=
(

max
(

4
3ρ ,

κ
p

)
µ
Pr

)
is an estimate for the largest eigenvalue

of the diffusion matrix of the viscous flux, Pr =
cpµ
k being the Prandtl number.

With this choice the consistency error of the numerical scheme is formally of order
O(hq+1 + ∆tq+1). We note that we indicate the numerical solution in the remaining
part of this paper by the spatial parameter h only.

3. The hp-Multilevel Monte Carlo Method.

3.1. Description of the hp-MLMC Method. In this section we introduce
the hp-MLMC method, based on the classical MLMC method from [12]. For levels
l = 0, . . . , L, we consider spatial meshes with Nl ∈ N elements and ansatz spaces
of polynomial degree ql ∈ N. We choose the number of elements Nl and the DG
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polynomial degrees ql, such that N0 < · · · < NL and q0 < · · · < qL holds, i.e., we
simultaneously increase the mesh size and the DG polynomial degree. With Vqlhl we
denote the DG polynomial space corresponding to level l = 0, . . . , L . Moreover, by
Ul(t, ·, y) := Uhl(t, ·, y) ∈ Vqlhl (a.e. (t, y) ∈ (0, T ) × Ξ) we denote the DG numerical
solution associated with level l ∈ {0, . . . , L}. Additionally, the deterministic numerical
solution of (2.7) on level l = 0, . . . , L for input parameter yi ∈ Ξ is denoted by
U il := Ul(·, ·, yi) and will be called sample for the remaining part of this paper. Since
we do not enforce a global CFL time-step restriction across different discretization
levels, each sample has to obey the CFL condition (2.8). Thus, coarser levels admit a
bigger time-step than fine levels. We want to emphasize that, in contrast to the MIMC
method from [13] we index mesh-size and polynomial degree by a single parameter.

It is our goal to compute statistical moments like expected value or higher order
moments of a general Quantity of Interest (QoI) Q(U) of the random weak solution
U of (2.1). Precisely, we are interested to determine

E
[
Q(U(t, x, y))

]
=

∫
Ξ

Q(U(t, x, y))fξ(y) dy(3.1)

for a.e. (t, x) ∈ (0, T )×D. Here Q can be an arbitrary nonlinear function or functional
of U . To ease notation we suppress the dependence of the QoI on (t, x, y) and write
Q(U). We approximate (3.1) with a Monte Carlo estimator. To this end, we let
{U iL}Mi=1 be M ∈ N independent, identically distributed samples. The MC estimator
for (3.1) is then defined by

EMMC

[
Q(U)

]
:=

1

M

M∑
i=1

Q(U iL) ≈ E
[
Q(U)

]
.(3.2)

Next we advance the MC estimator EMMC

[
·
]

to the hp-MLMC estimator ELhp
[
·
]

by
using the linearity of the expectation in combination with a telescoping sum. We then
write (see [12])

E
[
Q(UL)

]
=

L∑
l=0

E
[
Q(Ul)−Q(Ul−1)

]
,(3.3)

where we used the definition Q(U−1) = 0. Now, each term in (3.3) can be estimated by
the MC estimator (3.2). If we let Ml ∈ N denote a level-dependent number of samples
for each level l = 0, . . . , L and assume that the samples {Q(U il )}

Ml
i=1, l = 0, . . . , L, on

different levels are independent from each other, we obtain the hp-MLMC estimator
via

ELhp
[
Q(UL)

]
:=

L∑
l=0

1

Ml

Ml∑
i=1

(Q(U il )−Q(U il−1)) =

L∑
l=0

EMl

MC

[
Q(Ul)−Q(Ul−1)

]
≈

L∑
l=0

E
[
Q(Ul)−Q(Ul−1)

]
= E

[
Q(UL)

]
.

Here, Q(U il ) and Q(U il−1), are computed using the same sample yli ∈ Ξ. The main
idea of the MLMC estimator is that the global behavior of the exact expectation can
be approximated by the behavior of the expectation of numerical solutions with low
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resolution, where each sample can be computed with low cost. Thus, Ml is supposed to
be large for coarse levels. The coarse-level expectation is then successively corrected
by a few computations on finer levels. Each fine-level sample is computationally
expensive and therefore, Ml is supposed to be small on fine levels. Hence, the most
important aspect for the efficiency of the hp-MLMC estimator is the correct choice
of Ml. In the following section we want to derive the best choice for Ml such that
the total work is minimized under the constraint that the spatial and stochastic error
satisfy a certain threshold.

3.2. Optimal Number of Samples. For the following analysis we set the QoI
to be the solution itself at a fixed point t ∈ [0, T ] in time, i.e.

Q(U) = U(t, ·, ·).(3.4)

We note that our analysis can be analogously performed using any other QoI, including
functional ones and suitable norms for Q.

Remark 3.1. We consider the QoI (3.4) because we are mainly interested in statistical
quantities of the solution U itself. However, many other QoIs have a higher regularity
than the solution U , especially if Q is a functional. Therefore, using such a QoI yields a
faster decrease of the variance across different levels, which increases the performance
of the MLMC method compared to MC. In [1, Fig. 10] it has been numerically shown
that for an uncertain Kelvin-Helmholtz problem the level variance of the solution does
not decrease, because upon each mesh refinement additional smaller scale structures
are detected. Thus, the MLMC method provides no computational gains compared
to the MC method when the QoI is the solution itself.

With the help of the following representation of the root mean square error (RMSE)
we derive an optimal number of samples Ml for all l = 0, . . . , L.

RMSE := ‖E
[
U(t, ·, ·)

]
− ELhp

[
UL(t, ·, ·)

]
‖L2(Ξ;L2(D)) ≤ εdet + εstat.(3.5)

εdet := ‖E
[
U(t, ·, ·)

]
− E

[
UL(t, ·, ·)

]
‖L2(D),

εstat := ‖E
[
UL(t, ·, ·)

]
− ELhp

[
UL(t, ·, ·)

]
‖L2(Ξ;L2(D)).

The term εdet in (3.5) is the deterministic approximation error (bias). It accounts
for the insufficient resolution of the deterministic system. The term εstat corresponds
to the statistical (sampling) error. Its occurs due to the finite number of samples
in (3.2). We choose the optimal number of samples Ml to minimize this term. For
notational convenience we suppress the explicit dependence on t ∈ [0, T ]. Using the
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independence of the samples, we rewrite the statistical error in (3.5) (cf. [24]):

ε2stat = E
[
‖E
[
UL
]
− ELhp

[
UL
]
‖2L2(D)

]
= E

[∥∥∥ L∑
l=0

E
[
Ul − Ul−1

]
− EMl

MC

[
Ul − Ul−1

]∥∥∥2

L2(D)

]
=

L∑
l=0

1

M2
l

Ml∑
i=1

E
[
‖E
[
Ul − Ul−1

]
− (U il − U il−1)‖2L2(D)

]
=

L∑
l=0

1

Ml
E
[
‖E
[
Ul − Ul−1

]
− (Ul − Ul−1)‖2L2(D)

]
=:

L∑
l=0

σ2
l

Ml
.(3.6)

Remark 3.2. We use the L2(D)-norm instead of the L1(D)-norm for two reasons.
First, the L1(D)-norm is appropriate for inviscid flow problems in one spatial dimen-
sion, but we are interested in regular solutions of (2.1). Second, using the L2(D)-norm
has the side effect that (3.6) is satisfied as equality (cf. [24, Sec. 5.2]).

From this representation, the optimal number of samples can be obtained by an error-
complexity analysis as in [12, 23, 24]. We introduce the total work

Wtot := Wtot(M0, . . . ,ML) :=

L∑
l=0

Mlwl,(3.7)

where wl is the work needed to create one sample U il − U il−1. Following [12] we
obtain the optimal number of samples on different levels by considering the following
minimization problem.

For a tolerance ε > 0, minimize
M0,...,ML∈N

Wtot under the constraint

L∑
l=0

σ2
l

Ml
≤ 1

4
ε2.(3.8)

The minimization problem can be explicitly solved by (cf. [12, 23])

Ml =

⌈( ε
2

)−2

√
σ2
l

wl

L∑
k=0

√
σ2
kwk

⌉
.(3.9)

In this work we consider an iterative version of the hp-MLMC method, which means
that we initialize the algorithm with a number of warm-up samples and then estimate
each quantity in (3.9) during each iteration of the hp-MLMC method. In order to keep
track of the number of samples that have already been calculated during the iterations
of the algorithm we denote this quantity by Mtotl for each level l ∈ {0, . . . , L}. We
want to emphasize, that Mtotl is not equal to Ml, which is the estimated optimal
number of samples from (3.9).
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The level variances σ2
0 , . . . σ

2
L in (3.6) are not known in general and we therefore

estimate the level variance using the unbiased estimator as in [24]:

σ̂2
l :=

1

Mtotl − 1

Mtotl∑
j=1

∫
D

(( 1

Mtotl

Mtotl∑
i=1

(U il − U il−1)
)
− (U jl − U

j
l−1)

)2

dx.(3.10)

The work required for the simulation of one sample can vary with an uncertain param-
eter (e.g. when uncertain viscosity influences the time-step restriction). Moreover, on
high performance computing systems, random variations in work can occur between
two executions of the same simulation. In order to account for this uncertainty, we
estimate the work wl on level l = 0, . . . , L by the average work per sample U il , denoted
by wil , and define the average work by

ŵl :=
1

Mtotl

Mtotl∑
i=1

wil .(3.11)

As a matter of fact, Ml from (3.9) is also only estimated and we denote the estimator
for Ml by M̂l. We have now all ingredients together to state in Algorithm hp-MLMC
the classical MLMC algorithm proposed by Giles [12]. Based on this algorithm we
want to discuss several important aspects of the hp-MLMC method. First, the com-
plexity of the algorithm will be analyzed in Theorem 3.4. The choice of the maximum
level L will be considered in Remark 3.8. The discussion of the number of warm-up
samples K0, . . . ,KL (line two in the algorithm), resp. the additional samples (lines
six and seven in the algorithm) will be postponed to Section 3.4, where we derive
lower confidence bounds for the optimal number of samples Ml.

Algorithm hp-MLMC

1: Fix a tolerance ε > 0, the maximum level L ∈ N and set L := {0, . . . , L}
2: Compute Kl (warm-up) samples on level l = 0, . . . , L and set Mtotl := Kl

3: while L 6= ∅ do
4: for l ∈ L do
5: Estimate wl by (3.11), σ2

l by (3.10) and then Ml by (3.9)
6: if Ml > Mtotl then
7: Add (Ml −Mtotl) new samples of U i

l − U i
l−1 and update Mtotl

8: else
9: Set L := L\{l}

10: end if
11: end for
12: end while

13: Compute EL
hp

[
UL

]

3.3. Computational Complexity of the hp-MLMC Method. In what fol-
lows we use the notation q̃l = ql + 1 for l ∈ N.
For the analysis of the computational complexity of Algorithm hp-MLMC in Theo-
rem 3.4 below we impose the following assumptions.

(A1) Asymptotic work: ∃ γ1, c1 > 0 (independent of hl, ql): wl ≤ c1(h−1
l q̃l)

γ1 for
all l ∈ N.
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(A2) Bias reduction: ∃ κ1, c2 > 0 (independent of hl, ql): ‖E
[
U
]
−E

[
Ul
]
‖L2(D) ≤

c2h
κ1q̃l
l for all l ∈ N.

(A3) Variance reduction between two levels: ∃ c3 > 0, (independent of hl, ql):

σ2
l ≤ c3h

κ2q̃l
l for some κ2 > 0 with κ1q̃0 ≥ κ2q̃0/2 and for all l ∈ N.

Remark 3.3. 1. Assumption (A1) provides a bound for the computational work
in terms of the complete number of degrees of freedom on single levels. For
the Runge–Kutta Discontinuous Galerkin method in d = 2 spatial dimensions
we have h−2

l q̃2
l spatial degrees of freedom. This has to be multiplied with the

number of time-steps, which is proportional to h−1
l q̃l, or h−2

l q̃2
l , depending

on the minimum in the CFL condition (2.8). Thus, the total computational
work asymptotically equals O(h−3

l q̃3
l ), resp. O(h−4

l q̃4
l ). Therefore, we expect

the parameter γ1 to satisfy γ1 = 3, or γ1 = 4.

2. In Assumption (A2) it is stated that the bias, i.e., the deterministic ap-
proximation error, converges with the order of the DG method. For smooth
solutions the order of convergence is O(hql+1

l ) = O(hq̃ll ), cf. [26] and the
numerical experiments in [16]. Therefore, we expect κ1 = 1.

3. In Assumption (A3) we require that the variance decays on all levels similar
to the bias term. If we consider regular solutions of a random differential
equation, we expect κ2 = 2, cf. the discussion in [25, p. 25].

In Theorem 3.4 below we present a complexity bound for the hp-MLMC method.
This result generalizes [8, Theorem 1] on h-refined and [23, Theorem 3] on p-refined
meshes to hp-refined mesh hierarchies.
We distinguish between the two different cases κ2q̃0 > γ1 and κ2q̃0 < γ1. For the
second case κ2q̃0 < γ1 we need to define a critical level L∗ ∈ N such that κ2q̃L∗ <
γ1 ≤ κ2q̃L∗+1.

Theorem 3.4 (Complexity of the hp-MLMC method). For β ∈ N, and q0 ≥ 0 let
{ql := q0 + βl}l∈N be a sequence of DG polynomial degrees. Additionally, we consider
a family of meshes with associated mesh size hl = λ−lh0 for some h0 ∈ (0, 1) and
λ ≥ 2. Let Vqlhl be the corresponding DG spaces.
Under the assumptions (A1) - (A3), there exists a constant c > 0, such that for any

tolerance 0 < ε < min
(
1, 2c2h

κ1q̃0
0

)
, there exists a maximum level L = L(ε) ∈ N,

L(ε) ≥ 2, and a number of samples Ml on each level l ∈ {0, . . . , L(ε)}, such that
the root mean square error from (3.5) satisfies RMSE ≤ ε with the computational
complexity

Wtot ≤


cε−2, κ2q̃0 > γ1,

cε
−2− γ1 − κ2q̃0

min{κ1q̃L, κ1q̃L∗} , κ2q̃0 < γ1.

(3.12)

Remark 3.5. 1. The complexity bound for the case κ2q̃0 < γ1 in Theorem 3.4
suggests that there exists a threshold for the asymptotic complexity scaling

like O(ε
−2− γ1−κ2 q̃0

κ1 q̃L∗ ). With other words, increasing the number of levels L
beyond the critical level L∗ does not pay off.

2. Theorem 3.4 does not include the borderline case κ2q̃0 = γ1. Following the
analysis in [8] one can make a saturated choice for all sample numbers Ml

scaling with the maximum level L(ε). Then a slight variation of Case A in the
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proof of Theorem 3.4 leads to the total work estimate Wtot = O
(
ε−2 log(ε)2

)
.

Note that the sample numbers Ml in Theorem 3.4 are chosen for each single
level l independent of L(ε) (see e.g. (3.16)).

Proof of Theorem 3.4. In the proof we determine first a natural number of levels
L = L(ε) ≥ 2 such that the bias term εdet in (3.5) is bounded by ε/2. Based on this
number L we define the sample number Ml for each level l ∈ {0, . . . , L}, and verify
that εstat ≤ ε/2 and the complexity estimate (3.12) hold.
Using Assumption (A2) on the bias term and the definition of hl and ql yields

εdet = ‖E
[
U
]
− E

[
UL
]
‖
L2(D)

≤ c2hκ1q̃l
l = c2(λ−lh0)κ1(q̃0+βl).(3.13)

To ensure that the latter term is bounded by ε/2 for l = 0, . . . , L it suffices to determine
L such that P (L) ≤ 0 holds with

P (l) := log(2c2ε
−1) + κ1(q̃0 + βl)

(
log(h0)− l log(λ)

)
.(3.14)

The quadratic polynom P is bounded from above and monotone decreasing on [0,∞).

Since ε ≤ 2c2h
κ1q̃0
0 holds we have P (0) > 0. Thus, P vanishes for some L̄ > 0, and we

choose the number of levels to be

L = L(ε) = max{
⌈
L̄
⌉
, 2}.(3.15)

We proceed considering the two different cases in (3.12).

Case A: κ2q̃0 > γ1

We recall the definition of S from Lemma 3.6 and set S0 := h
−γ1/2
0 S(h

κ2/2
0 , dγ1/2e, q̃0).

Then we choose the number of samples on levels l = 0, . . . , L to be

Ml :=
⌈
4ε−2c3S0h

(γ1+κ2q̃l)/2
l q̃

−γ1/2
l

⌉
.(3.16)

Using (3.16) and Assumption (A3) we obtain for the statistical error

ε2stat =

L∑
l=0

σ2
l

Ml
≤ 1

4
ε2S−1

0

L∑
l=0

h
(κ2q̃l−γ1)/2
l q̃

γ1/2
l ,

which implies by κ2q̃l − γ1 > κ2q̃0 − γ1 > 0, Lemma 3.6 and the definition of S0 the
desired estimate

(3.17) ε2stat ≤
1

4
ε2S−1

0

∞∑
l=0

h
(κ2q̃l−γ1)/2
0 q̃

γ1/2
l ≤ 1

4
ε2.

Next we derive a bound for the total work Wtot, see (3.7). Using Assumption (A1)
and the ceiling definition of Ml we obtain

Wtot ≤ c1
L∑
l=0

Mlh
−γ1
l q̃γ1l ≤ c1

(
4ε−2S0c3

L∑
l=0

h
(κ2q̃l−γ1)/2
l q̃

γ1/2
l +

L∑
l=0

h−γ1l q̃γ1l

)
=: c1

(
Wtot,1 + Wtot,2

)
.(3.18)

The term Wtot,1 can be shown to be of order ε−2 by the same arguments as before.
It remains to consider Wtot,2. We have obviously

Wtot,2 ≤ h−γ1L q̃γ1L (1 + L) ≤ h−γ1L q̃γ1+1
L ,(3.19)



12

with the last inequality following from 1 + L ≤ q̃0 + βL = q̃L. From (3.31) in
Lemma 3.7, which we have moved to the end of this proof, we deduce

h−γ1L ≤ (2c2δ
−1ε−1)γ1/κ1q̃0 .(3.20)

On the other hand, using the order bound in (3.31) from Lemma 3.7 and taking the
logarithm yields

q̃L ≤
log(2c2δ

−1ε−1)

log(h−κ1
0 )

=
log(2c2δ

−1)

log(h−κ1
0 )

+
log(ε−1)

log(h−κ1
0 )

=: ĉ1 + ĉ2 log(ε−1).

Thus, q̃L grows at most logarithmically in ε−1. Therefore we find a constant ĉ3 > 0
which is independent of ε and L such that the algebraic estimate

q̃L ≤ ĉ3ε−
2− γ1

κ1 q̃0
γ1+1(3.21)

holds. Note that in Case A the term 2κ1q̃0 − γ1 is positive due to Assumption (A3).
Now, using (3.20) and (3.21) in (3.19) yields for some c > 0 independent of ε the
bound

Wtot ≤ cε−
γ1
κ1 q̃0 ε−2+

γ1
κ1 q̃0 = cε−2.(3.22)

Thus, Case A is proven.

Case B: κ2q̃0 < γ1

Recall the definition of L∗ ∈ N to be such that κ2q̃L∗ < γ1 ≤ κ2q̃L∗+1. Let us assume
first that we have L∗ < L with L from (3.15).
We choose then the number of samples Ml for l = 0, . . . , L∗ according to

Ml :=
⌈
8ε−2c3h

(γ1+κ2q̃l)/2
l h

−(γ1−κ2q̃0)/2
L∗

(
1− λ−(γ1−κ2q̃0)/2)

)−1
⌉
,(3.23)

and for l = L∗ + 1, . . . , L by

Ml :=
⌈
8ε−2c3S∗h

(γ1+κ2q̃l)/2
l q̃

−γ1/2
l

⌉
.(3.24)

Here we used S∗ = S(h
κ2/2
0 , dγ1/2e, q̃L∗+1). Let us consider a splitting for the statis-

tical error given by

ε2stat =

L∑
l=0

σ2
l

Ml
=

L∗∑
l=0

σ2
l

Ml
+

L∑
l=L∗+1

σ2
l

Ml
=: ε2stat,1 + ε2stat,2.(3.25)

Using the definition (3.23) of Ml for l ∈ {0, . . . , L∗} we have for the first term

ε2stat,1 ≤
1

8
ε2h

(γ1−κ2q̃0)/2
L∗ (1− λ−(γ1−κ2q̃0)/2))

L∗∑
l=0

h
(κ2q̃l−γ1)/2
l

≤ 1

8
ε2h

(γ1−κ2q̃0)/2
L∗ (1− λ−(γ1−κ2q̃0)/2))

L∗∑
l=0

h
(κ2q̃0−γ1)/2
l .
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For the last inequality we used the fact that h
(κ2q̃l−γ1)/2
l < h

(κ2q̃0−γ1)/2
l holds as long

as 0 > κ2q̃l − γ1 > κ2q̃0 − γ1. Next we use hl = λL
∗−lhL∗ to get by γ1 − κ2q̃0 > 0 in

Case B and λ ≥ 2 the estimate

ε2stat,1 ≤
1

8
ε2h

(γ1−κ2q̃0)/2
L∗ (1− λ−(γ1−κ2q̃0)/2))

L∗∑
l=0

(λL
∗−lhL∗)−(γ1−κ2q̃0)/2

=
1

8
ε2(1− λ−(γ1−κ2q̃0)/2))

∞∑
l=0

(
λ−(γ1−κ2q̃0)/2

)l
≤ 1

8
ε2.

Since Ml is defined for l ≥ L∗ (see (3.24)) almost as in Case A (see (3.16)) (with a
level shift expressed in S∗) we can apply the same arguments as in Case A to show
ε2stat,2 ≤ ε2/8. Thus the splitting (3.25) leads to the desired result ε2stat ≤ ε2/4 for the
complete statistical error.

Similarly to the previous splitting (3.25) we rewrite the total work as

Wtot =

L∑
l=0

Mlwl =

L∗∑
l=0

Mlwl +

L∑
l=L∗+1

Mlwl =: Wtot,1 + Wtot,2.(3.26)

The definition of Ml in (3.23) implies

Wtot,1 ≤ c1
L∗∑
l=0

(
8ε−2c3h

(γ1+κ2q̃l)/2
l h

−(γ1−κ2q̃0)/2
L∗

(
1− λ−(γ1−κ2q̃0)/2)

)−1

+ 1
)
h−γ1l q̃γ1l

=: c1(Wtot,11 + Wtot,12).

Starting with Wtot,11 we use the definitions of hl, ql and estimate

Wtot,11 ≤ 8c3ε
−2h

−(γ1−κ2q̃0)/2
L∗

(
1− λ−(γ1−κ2q̃0)/2)

)−1 L∗∑
l=0

(λlhL∗)−(γ1−κ2q̃0)/2q̃γ1l

< 8c3ε
−2h

−(γ1−κ2q̃0)
L∗

(
1− λ−(γ1−κ2q̃0)/2)

)−1 ∞∑
l=0

(λ−(γ1−κ2q̃0)/2)l(q̃0 + βl)γ1 .

Being in Case B and the condition λ ≥ 2 ensures the existence of the infinite sum
such that we are led for some c > 0 by (3.32) in Lemma 3.7 to

Wtot,11 ≤ cε
−2− γ1−κ2 q̃0

κ1 q̃L∗ .(3.27)

Advancing to the total work contribution Wtot,12 we estimate

Wtot,12 =

L∗∑
l=0

h−γ1l q̃γ1l ≤ h
−γ1
L∗ q̃γ1L∗(1 + L∗) ≤ h−γ1L∗ q̃γ1+1

L∗ .

By the same arguments employed to derive (3.21) in Case A, but using (3.32) from
Lemma 3.7 instead, we find a constant ĉ4 > 0 such that

q̃L∗ ≤ ĉ4ε
−2+

κ2 q̃0
κ1 q̃L∗

γ1+1(3.28)
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holds. In this case we need κ1q̃L∗ > κ2q̃0/2, which follows from Assumption (A3)
because κ1q̃L∗ > κ1q̃0 ≥ κ2q̃0/2. Altogether we end up with

Wtot,12 ≤ h−γ1L∗ q̃γ1+1
L∗ ≤ cε−2− γ1−κ2 q̃0

κ1 q̃L∗ ,

which yields with (3.27) the desired bound for Wtot,1 in (3.26).
For the second term Wtot,2 in (3.26) we use an index shift and apply the same argu-
ments which we have used for Case A with κ2q̃0 > γ1. We then obtain

Wtot,2 ≤ cε−2 ≤ cε−2− γ1−κ2 q̃0
κ1 q̃L∗ ,

which concludes the proof of the theorem for Case B and L∗ < L.
It remains to consider L ≤ L∗. Then one defines Ml for l = 1, . . . , L like in (3.23)
and gets for the statistical error and for the total work only the first sums in (3.25),
(3.26), respectively. Exactly the same estimates imply the results for the statistical
error and lead to

Wtot ≤ cε−2− γ1−κ2 q̃0
κ1 q̃L ,

which concludes the proof.

Two auxiliary lemmas have been used in the proof of Theorem 3.4. The first result
refers to the convergence of some series and is taken from [23].

Lemma 3.6. [23, Lemma 5.1] For integers p, q ≥ 1, there are numbers d1, . . . , dp ∈ R
such that we have for r ∈ (0, 1)

∞∑
l=0

r(q+βl)(q + βl)p = S(r, p, q)(3.29)

with

(3.30) S(r, p, q) =

p∑
k=1

dkr
kf (k)(r), f(r) =

rq

1− rβ
.

The second lemma establishes estimates on ε exploiting the exact definition of L.

Lemma 3.7. Let the assumptions from Theorem 3.4 be valid. Let L ∈ N, L ≥ 2, be
given as in (3.15). Then, there exists a constant δ > 0 independent of ε, such that
the following inequality holds.

ε

2
δ ≤ c2 min

{
hκ1q̃0
L , hκ1q̃L

0

}
(3.31)

Moreover, for L∗ ∈ N satisfying L∗ < L, we have the estimate

ε

2
≤ c2 min

{
hκ1q̃0
L∗ , hκ1q̃L∗

0

}
.(3.32)

Proof. A straightforward calculation yields

hκ1q̃L
L = (λ−1hL−1)κ1(q̃L−1+β)

= h
κ1q̃L−1

L−1 hκ1β
L−1λ

−κ1qL

= h
κ1q̃L−1

L−1 λ−(L−1)κ1βhκ1β
0 λ−κ1q̃0λ−κ1βL

= h
κ1q̃L−1

L−1 λκ1(β−q̃0)hκ1β
0 λ−2Lκ1β

= h
κ1q̃L−1

L−1 δλ−2Lκ1β ,
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where we have set δ := λκ1(β−q̃0)hκ1β
0 . Let L̄ ∈ (0,∞) be the zero of P as defined in

(3.14). For L̄ ≥ 1 we deduce from L ≥ L̄ ≥ L− 1 ≥ 1 that

ε

2
δλ−2Lκ1β ≤ c2hκ1q̃L−1

L−1 δλ−2Lκ1β = c2h
κ1q̃L
L .(3.33)

After rearranging (3.33) we obtain

ε

2
δ ≤ c2λ2κ1βhκ1q̃L

L = c2λ
2κ1βLλ−Lκ1q̃Lhκ1q̃L

0(3.34)

= c2λ
2κ1βLλ−Lκ1q̃0λ−κ1βL

2

hκ1q̃L
0

= c2λ
κ1β(2L−L2)λ−Lκ1q̃0hκ1q̃0

0 hκ1βL
0 .

Because of L ≥ 2 it holds that (2L−L2) ≤ 0 and thus λκ1β(2L−L2) ≤ 1. Furthermore,

hκ1βL
0 ≤ 1 and λ−Lκ1q̃0 ≤ 1 which yields altogether (3.31).

If L̄ ∈ (0, 1) holds it follows from (3.15) that L = 2 and we calculate

hκ1q̃2
2 = λ−2κ1q̃2h

κ1(q̃0+2β)
0 = δhκ1q̃0

0 ,

where we have defined δ := λ−2κ1q̃2h2κ1β
0 . Finally, (3.31) follows from the fact that

c2h
κ1q̃0
0 ≥ ε

2 . The estimate (3.32) for L∗ < L follows from

c2h
κ1q̃L∗
L∗ ≥ c2hκ1q̃L−1

L−1 ≥ ε

2
.

Remark 3.8 (Choice of the maximum level). The number of levels L in Algorithm hp-
MLMC can be computed a priori using (3.15). It is also possible to compute L on
the fly. To this end we consider, similarly as in [12, 23],

‖E
[
U
]
− E

[
UL
]
‖L2(D) =

∥∥∥ ∞∑
l=L+1

(E
[
Ul
]
− E

[
Ul−1

]
)
∥∥∥
L2(D)

≤ ‖E
[
UL
]
− E

[
UL−1

]
‖L2(D)

∞∑
l=L+1

‖E
[
Ul
]
− E

[
Ul−1

]
‖L2(D)

‖E
[
UL
]
− E

[
UL−1

]
‖L2(D)

≤ ‖E
[
UL
]
− E

[
UL−1

]
‖L2(D)

∞∑
l=1

(λ−κ1q̃0hκ1β
0 )l

= ‖E
[
UL
]
− E

[
UL−1

]
‖L2(D)

λ−κ1q̃0hκ1β
0

1− (λ−κ1q̃0hκ1β
0 )

,

where we have used Assumption (A2). Therefore, the condition for adding new levels
becomes

max
j∈{0,1,2}

(λ−κ1q̃0hκ1β
0 )(j+1)

1− (λ−κ1q̃0hκ1β
0 )

‖E
[
UL−j

]
− E

[
UL−j−1

]
‖L2(D) ≤

1

2
ε.(3.35)

This criterion ensures that the deterministic error approximated by an extrapolation
from the three finest meshes is within the desired range, cf. [23].



16

3.4. Confidence Intervals for the Number of Additional Samples. In
this section we discuss the computation of the optimal number of samples Ml based
on confidence intervals, having in mind the use of queue-based HPC systems. In
most modern large-scale computing systems, access to compute nodes is based on job
schedulers. For the execution of a job, a certain number of nodes can be requested
for a specified time slot. The job is executed after some queuing time, which can be
much longer than the actual job execution time. In the context of hp-MLMC, it is
advisable to submit a new job to the queue for each iteration of Algorithm hp-MLMC,
since otherwise idle times of the compute nodes are very difficult to avoid. As each
iteration requires its own queuing time, it is our aim to compute as many new samples
as possible during one iteration of Algorithm hp-MLMC. On the other hand, we want
to avoid computing more samples than optimal, as this would decrease the efficiency
of the hp-MLMC method and from an economical point of view wasted computing
time is expensive. In that sense, one is facing two competing issues, namely either to
reduce queuing time by computing as many samples as possible per iteration or to
reduce the number of unnecessarily computed samples, i.e. saving computing time. A
straightforward approach to satisfy the first issue is to rely on the standard estimator
M̂l. However, this approach contradicts the second aim of saving computing time.
Let us recall that the quantities wl and σl in (3.6) and (3.7) are not known exactly
but are estimated by ŵl, σ̂l. In most cases the number of samples in the warm-up
phase and after the first iteration of the hp-MLMC algorithm is too small to obtain
a reliable estimate M̂l of the optimal number of samples Ml. This wrong estimate
may then lead to an severe overestimation of Ml (see for example Figure 3 (a)) and
thus spoils the goal of avoiding the computation of unnecessary samples and saving
computing time. In order to satisfy the second goal of saving computing time, we
want to properly account for the fact that Ml is only estimated by constructing a
confidence interval for Ml.

More specifically, we want to construct a one-sided confidence interval IMl
= [Ml,∞),

such that P(Ml ∈ IMl
) ≥ 1 − α. To obtain the desired confidence interval we

construct corresponding one-sided confidence intervals for σl, wl denoted by Iσl =
[σl,∞), Iwl = [wl,∞), Iwl = (−∞, wl], respectively. As we do not have any infor-
mation about the underlying distributions of σl and wl we construct the confidence
interval based on asymptotic confidence intervals and hence our approach is heuris-
tic because the Central Limit Theorem implies that the number of samples needs to
be sufficiently large to ensure that the estimators are asymptotically normally dis-
tributed. This seems to be a contradiction to the fact that we choose a small number
of samples for the warm-up phase. However, we show in estimate (3.39) that our
construction of the confidence interval is very conservative and yields a robust lower
estimate on the optimal number of samples, although the number of warm-up samples
scales like O(1). Indeed, we never overestimated the optimal number of samples in
our computations, justifying our approach.

For the construction of the confidence interval for σl we use the method described
in [2, Formula (6)], which employs an adjustment to the degrees of freedom of the
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χ2-distribution. More precisely, we let

r̂l :=
2Mtotl

γ̂el +
( 2Mtotl

Mtotl
−1

) ,
γ̂el =

Mtotl(Mtotl + 1)

(Mtotl − 1)(Mtotl − 2)(Mtotl − 3)

µ̂4
l

σ̂4
l

− 3(Mtotl − 1)2

(Mtotl − 2)(Mtotl − 3)
,

where µ̂4
l := ‖

Mtotl∑
i=1

(
(U il − U il−1) − 1

Mtotl

Mtotl∑
j=1

(U jl − U jl−1)
)4

‖L2(D). For the lower

confidence interval Iσl = [σl,∞) we therefore define

σl :=

√
r̂lσ̂2

l

χ2
1−α2 ,r̂l

,(3.36)

where for some α ∈ (0, 1), χ2
1−α2 ,r̂l

is the (1− α
2 )-quantile of the χ2-distribution for r̂l

degrees of freedom. If the random samples are normally distributed, it follows that
γ̂el = 0 and thus r̂l = Mtotl−1, i.e. we obtain the standard confidence interval for the
variance of a normal distribution (cf. [2]). For wl we compute the confidence interval
using the standard asymptotic confidence interval for the mean, i.e.

wl := ŵl − z1−α2
σ̂wl√
Mtotl

, wl := ŵl + z1−α2
σ̂wl√
Mtotl

,(3.37)

where z1−α2 is the (1− α
2 )-quantile of the normal distribution and σ̂2

wl
is the unbiased

estimator for the variance of wl. We then define

Ml =
1

ε2
σl√
wl

(
L∑
k=0

σk
√
wk

)
(3.38)

and the confidence interval IMl
:= [Ml,∞). Moreover, for l = 0, . . . , L we define the

events

Xl := {Ml ∈ IMl
},Σε,l,lower :=

{ 1

ε2
σl ∈ I 1

ε2
σl

}
,Σl,lower := {σl ∈ Iσl},

Wl,lower := {
√
wl ∈ I√wl},Wl,upper := {

√
wl ∈ I√wl}.

It then follows that Yl ⊆ Xl, with Yl :=
L⋂
k=0

(
Σk,lower∩Wk,lower∩Wl,upper∩Σε,l,lower

)
,

for all l = 0, . . . , L. Using elementary probability estimates and De Morgan’s rule we
estimate

P(Xl) ≥ P(Yl) =1− P(Y cl )

≥1−
L∑
k=0

(
(P(Σck,lower) + P(W c

k,lower) + P(W c
l,upper) + P(Σcε,l,lower)

)
.(3.39)

We construct the confidence intervals Iσk = [σk,∞), I√wk = [
√
wk,∞) and I√wl =

(−∞,√wl] such that

P(Σε,l,lower) = P(Σk,lower) = P(Wk,lower) = P(Wl,upper) = 1− α

4L
.
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This choice yields P(Xl) ≥ 1 − α, for all l = 0, . . . , L. Whereas the lower confidence
bound Ml helps in saving computing time, it increases the number of queuing oper-
ations. Therefore, in order to balance the two competing issues of either reducing
queuing time or saving computing time we introduce the parameter ζ ∈ [0, 1] and let

M̃l := ζMl + (1− ζ)M̂l.(3.40)

By setting ζ = 0 we pursue the aim of reducing queuing time and by setting ζ = 1
we try to save computing time. Choosing ζ ∈ (0, 1) corresponds to finding a strategy
in between. We choose ζ adaptively for each iteration of Algorithm hp-MLMC and
for each level l = 0, . . . , L. Hence, for each level l = 0, . . . , L, ζ = ζ iterl

l has its
own iteration counter iterl. We choose the following strategy which tries to realize a
trade-off between reducing queuing time and saving computing time:

ζ iterl
l =


1, for iterl = 1,

0.5, for iterl = 2,

0, for iterl > 2.

(3.41)

Algorithm hp-MLMC

1: Fix a tolerance ε > 0, set L = 2 and set L := {0, . . . , L}
2: Compute Kl (warm-up) samples on l = 0, . . . , L, set Mtotl := Kl and iterl = 1
3: while L 6= ∅ do
4: for l ∈ L do
5: Estimate ŵl by (3.11), σ̂2

l by (3.10) and then M̂l by (3.9)
6: Estimate wl, wl by (3.37), σ2

l by (3.36) and then Ml by (3.38)

7: if Mtotl < M̂l then
8: Set ζ

iterl
l according to (3.41) and compute M̃l by (3.40)

9: Add
⌈
M̃l −Mtotl

⌉
new samples of U i

l − U i
l−1

10: Set Mtotl := Mtotl +
⌈
M̃l −Mtotl

⌉
11: Set iterl := iterl + 1
12: else
13: Set iterl := iterl + 1
14: Skip level l
15: end if
16: end for
17: if the statistical tolerance (3.8) is satisfied then
18: if the bias term satisfies (3.35) then
19: Set L := ∅
20: else
21: Set L := L∪{L+ 1}
22: Compute KL+1 (warm-up) samples and set MtotL+1 := KL+1

23: Set iterL+1 = 1
24: Set L := L+ 1
25: end if
26: end if
27: end while

28: Compute EL
hp

[
UL

]
In the first iteration we rely on the lower confidence bound Ml from (3.38) to avoid

overestimating Ml. In the second iteration we start to approach M̂l but still consider
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Ml as a safe-guard for overestimating Ml. After the second iteration, where Mtotl is

sufficiently large, we trust the estimate M̂l. It might happen that during the first two
iterations we have Ml ≤Mtotl < M̂l. In that case we set ζ iterl

l = 0.

The modified hp-MLMC method which adds new levels adaptively based on the bias
estimate (3.35), is summarized in Algorithm hp-MLMC. For the number of warm-up
samples Kl we typically choose ten to one hundred samples on the coarse levels and
three samples on the fine levels. When we add a new level we set the number of
warm-up samples also equal to three.

4. Numerical Experiments. We present numerical results for the hp-MLMC
method as introduced in Algorithm hp-MLMC. In Section 4.1, we apply the h-, p-,
hp-MLMC method to a smooth benchmark problem to verify Theorem 3.4. In Sec-
tion 4.2, we apply the h-, p- and hp-MLMC method to an open cavity flow problem,
an important flow problem from computational acoustics. We give a detailed compar-
ison of all methods and verify that for both problems, h-, p- and hp-MLMC yield an
optimal asymptotic work. This shows that all three methods under consideration are
applicable for UQ of complex engineering problems in computational fluid dynamics.
The computations for the second numerical experiment were performed on Cray XC40
at the High-Performance Computing Center Stuttgart. The numerical solver relies on
the Discontinuous Galerkin Spectral Element solver FLEXI [16]. The time-stepping
uses a Runge–Kutta method of order four.

4.1. Smooth Benchmark Solution. In this numerical example we verify The-
orem 3.4 by means of a smooth manufactured solution, given by

ρ(t, x1, x2, y)
(ρv1)(t, x1, x2, y)
(ρv2)(t, x1, x2, y)
E(t, x1, x2, y))

 =


2 +A sin(4π((x1 + x2)− ft))
2 +A sin(4π((x1 + x2)− ft))
2 +A sin(4π((x1 + x2)− ft))(
2 +A sin(4π((x1 + x2)− ft))

)2
 .(4.1)

The benchmark solution (4.1) is obtained by introducing an additional source term
in (2.1). We choose the amplitude and frequency of (4.1) to be uncertain, i.e. we
let A ∼ U(0.1, 0.9) and f ∼ N (1, 0.052). The spatial domain is D = (−1, 1)2 and
we consider periodic boundary conditions. The setup of the mesh hierarchies for h-
MLMC, p-MLMC and hp-MLMC can be found in Table 1. The final computational
time for this example is T = 1 and the QoI is the momentum in x1-direction at final
time T , i.e. Q(U) = (ρv1)(T, ·, ·, ·). For the confidence intervals from Section 3.4 we
set α to be 0.025.

In Figure 1 (a) we plot the estimated bias, i.e. the quantity ‖E
[
Ul
]
− E

[
Ul−1

]
‖L2(D)

from Remark 3.8, where the quantities E
[
Ul
]

and E
[
Ul−1

]
have been estimated by

the standard MC estimator (3.2). In Figure 1 (b) we plot the bias term vs. hq̃ll in a
log-log plot. This allows us to estimate κ1 from Assumption (A2) using a linear fit
over all data points. For h-MLMC, where we consider a DG polynomial degree of five,
we estimate κ1 ≈ 0.86 and this is in accordance with the expected value of one, cf.
Remark 3.3 2. On the other hand, the values of κ1 for p- and hp-MLMC are clearly
smaller than one. Figure 1 (c) shows the estimated level variances σ̂2

l and its 95%
confidence interval. To verify the assumptions of Theorem 3.4 we estimate κ2 from
Assumption (A3) in Figure 1 (d) by linearly fitting the last three data points. For h-
MLMC we estimate κ2 ≈ 1.71. According to Remark 3.3 3. we expect κ2 ≈ 2. Again,
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level

h-MLMC p-MLMC hp-MLMC

Nl ql Nl ql Nl ql

0 16 5 256 3 16 3
1 64 5 256 4 64 4
2 256 5 256 5 256 5
3 1024 5 256 6 1024 6

Table 1
Level setup for h-, p- and hp-MLMC. Example 4.1.

p- and hp-MLMC yield distinctively smaller values than two. However, all three
methods satisfy 2κ1 ≥ κ2 from Assumption (A2). Next, we check Assumption (A1)
for all three methods under consideration, where we estimate the average work using
the sample mean from (3.11). Since we expect γ1 = 3 and because DOFl:=(h−1

l q̃l)
2,

the average work should scale as ŵl = O(DOF
3/2
l ) (cf. Remark 3.3 1). This can be

observed in Figure 2 (d). Combining the estimate of κ2 from Figure 1 (d) and the
fact that γ1 ≈ 3, we compute that h-, p- and hp-MLMC satisfy κ2q̃0 > γ1 (see the
parameters of the coarsest level given in Table 1). Therefore, according to Theorem 3.4
all three methods should yield an optimal asymptotic work of O(ε−2), which can be
observed in Figure 1 (e). It appears that for this example h-MLMC is more efficient
than p- and hp-MLMC. This is probably due to the very good variance reduction
across all levels and a similar average work compared to hp-MLMC.

Finally, we check whether the prescribed tolerance ε is reached by all three methods.
To this end we evaluate the statistical error εstat by (3.10) and compute the determin-
istic approximation error εdet using the exact solution (4.1). Both terms εdet and εstat

are then summed up as in (3.5) and plotted in Figure 1 (f). The computed number
of samples on each level for different tolerances is shown in Figure 2. As expected, we
only need a few computations on the fine levels, the majority of the computations is
performed on coarse levels.

Figure 3 illustrates the advantage of computing the lower confidence bound Ml from

(3.38). In this figure we plot the values of Ml from (3.38), of M̃l from (3.40) and of

M̂l from (3.9), for each level l = 0, . . . , 3, for the first three iterations of Algorithm hp-
MLMC. For this example we use hp-MLMC. In Figure 3 (a) we observe that relying
on the estimate of M̂0 would have led to an overestimate of the optimal number of
samples by more than 8000 samples. The same holds for level two (Figure 3 (b))
where we would have overestimated the optimal number of samples by more than
400. On the other hand, our proposed strategy ensures that we reach the standard
estimator M̂l in (at most) three iterations. This shows in particular the advantage
of our approach because we avoid computing unnecessary samples, hence we save
computing time, while trying to keep the number of queuing operations low.

4.2. Open Cavity. In this numerical example we investigate the influence of
uncertain input parameters on the aeroacoustic feedback of cavity flows as in [20]. The
prediction of aeroacoustic noise is an important branch of research for example in the
automotive industry. However, due to the large bandwidth of spatial and temporal
scales, a high-order numerical scheme with low dissipation and dispersion error is
necessary to preserve important small scale information and hence it poses a very
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Fig. 1. Estimated bias, variance, tolerance and asymptotic runtime. For σ̂2
l we also plot the

95% confidence interval. Example 4.1.

challenging numerical problem for UQ. We consider the flow over a two-dimensional
open cavity, cf. Figure 4, using h-, p- and hp-MLMC.

For this flow problem we consider two uncertain parameters. The first uncertain pa-
rameter is the initial condition for pressure, i.e. we let p0 ∼ N (1.8, 0.012) be normally

distributed. With this choice the Mach number Ma = v1
c , with c =

√
κpρ being the

speed of sound, becomes uncertain. The initial condition in primitive variables then
reads as (

ρ0, v0
1 , v

0
2 , p

0
)

=
(

1, 1, 0, p0(y)
)
.

As a second uncertain parameter, we let the boundary layer thickness in front of the
cavity, δ99 ∼ U(0.28, 0.48), be uniformly distributed. For the boundary conditions at
the inlet we employ Dirichlet boundary conditions in combination with the precom-
puted Blasius boundary layer profile. All wall boundaries are modeled as isothermal
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Fig. 2. Computed number of samples and average work on each level. Example 4.1.

no-slip walls where the temperature T is computed from the ideal gas law p = ρRT ,
where the gas constant for air satisfies R = 287.058. At the end of the cavity we
consider a pressure outflow boundary condition, where the pressure is specified by the
initial pressure. Above the cavity we also consider a pressure outflow boundary con-
dition and we augment the boundary with a sponge zone (cf. Figure 4) to avoid that
artificial reflections reenter the computational domain. Detailed information about
the sponge zone can be found in [20]. For our QoI we record the pressure fluctuations
p(t, x, y) on top of the cavity at x̄ = (x1, x2) = (1.57, 0) over time and then perform
the discrete-time Fourier transform (DTFT) to obtain the sound pressure spectrum

at x̄, i.e. Q(U) = DTFT
(
p(·, x̄, y)

)
. The corresponding L2-norm is then taken in fre-

quency space. The mesh hierarchies for h-, p- and hp-MLMC can be found in Table 2.
For the confidence intervals from Section 3.4 we set α to be 0.025.

Considering the bias error we can see that in Figure 5 (a) for p-MLMC the bias
estimate ‖E

[
Q(Ul)

]
− E

[
Q(Ul−1)

]
‖L2 for p-MLMC is smaller than 2.5e−5. As all

three methods share the same finest level, we can assume that the bias error from
(3.5) is satisfied for all three methods under consideration. Figure 5 (b) shows the
estimated level variance σ̂2

l across different levels. All three methods yield a very
good variance reduction, especially p-MLMC has already a very small variance on
level two. However, the computation of samples on the coarse grids is extremely
costly for p-MLMC. Taking a closer look at the variance on level zero, we see that
hp-MLMC achieves the same variance as p-MLMC but with much less DOFs. This
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Fig. 3. Estimated Ml, M̂l and chosen number of samples M̃l from (3.40) for different levels
for the hp-MLMC method. The tolerance in this example is ε = 5e−4. The number of warm-up
samples was (100, 10, 3) (Example 4.1).

level
h-MLMC p-MLMC hp-MLMC

Nl ql Nl ql Nl ql

0 279 7 1987 4 279 4
1 423 7 1987 5 423 5
2 957 7 1987 6 957 6
3 1987 7 1987 7 1987 7

Table 2
Level setup for h-, p and hp-MLMC (Example 4.2).
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Fig. 4. Left: Schematic sketch of the open cavity setup with a laminar inflow boundary layer.
All geometric parameters are adopted from [20] and are non-dimensionalized by the cavity depth.
Right: Computational mesh on the finest level. (Example 4.2).
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yields the computational advantage of h- and hp-MLMC compared to p-MLMC (see
Figure 5 (c)) for this open cavity problem. The asymptotic work is still optimal for
all three methods, which can be seen in Figure 5 (c). Finally, in Figure 6 we plot
the number of computed samples for different tolerances and the average work that
is needed to compute one sample on the corresponding level. Again, for all three
methods most of the computations are performed on the coarse levels as they have a
low computational cost. In contrast to the benchmark problem the average work does

not scale as O(DOF
3/2
l ) but more like O(DOF2

l ), indicating that γ1 ≈ 4. The main
reason for this behavior is that the uncertain Mach number influences the time-step
size because the speed of sound enters the eigenvalues of the Jacobian of the advective
fluxes, hence a bigger pressure leads to a smaller time-step size.

Summarizing the numerical experiments in Sections 4.1 and 4.2 we have seen that h-,
p- and hp-MLMC yield an optimal asymptotic runtime and can be used for efficient
UQ of the compressible Navier–Stokes equations. However, we also observed that the
hp-MLMC method does not outperform the h-MLMC method, as long as the latter
can be applied. Therefore, in order to increase the efficiency of the hp-MLMC method
future work should aim at fully hp-adaptive algorithms as for example in [10, 11, 19].
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Fig. 6. Computed number of samples and average work on each level (Example 4.2).

5. Conclusions. In this article we have proposed the hp-MLMC method, a
Discontinuous Galerkin based Multilevel Monte Carlo method, where different levels
consist of a hierarchy of uniformly refined spatial meshes in combination with a hier-
archy of uniformly increasing DG polynomial degrees. We generalized the complexity
results from [8, 23] to arbitrarily hp-refined meshes. To account for the uncertainty
of the optimal number of samples on each level, we introduced a confidence interval,
leading to a robust lower confidence bound for these quantities. Our theoretical results
are confirmed by numerical experiments for the two-dimensional compressible Navier-
Stokes equations, including an extensive comparison between h-, p- and hp-MLMC
methods. Finally, we applied our method to a challenging engineering problem from
computational acoustics, demonstrating its capability to perform UQ for complex flow
problems. In order to improve the efficiency of the hp-MLMC method it should be
advanced to an hp-adaptive method.
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