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Abstract. In this paper, we develop software for decomposing sparse tensors that is portable
to and performant on a variety of multicore, manycore, and GPU computing architectures. The
result is a single code whose performance matches optimized architecture-specific implementations.
The key to a portable approach is to determine multiple levels of parallelism that can be mapped in
different ways to different architectures, and we explain how to do this for the matricized tensor times
Khatri-Rao product (MTTKRP) which is the key kernel in canonical polyadic tensor decomposition.
Our implementation leverages the Kokkos framework, which enables a single code to achieve high
performance across multiple architectures that differ in how they approach fine-grained parallelism.
We also introduce a new construct for portable thread-local arrays, which we call compile-time
polymorphic arrays. Not only are the specifics of our approaches and implementation interesting for
tuning tensor computations, but they also provide a roadmap for developing other portable high-
performance codes. As a last step in optimizing performance, we modify the MTTKRP algorithm
itself to do a permuted traversal of tensor nonzeros to reduce atomic-write contention. We test the
performance of our implementation on 16- and 68-core Intel CPUs and the K80 and P100 NVIDIA
GPUs, showing that we are competitive with state-of-the-art architecture-specific codes while having
the advantage of being able to run on a variety of architectures.

Key words. tensor decomposition, canonical polyadic (CP), MTTKRP, Kokkos, manycore,
GPU

1. Introduction. Tensors, or multidimensional arrays, are a powerful means of
representing relationships in multiway data [16]. We focus on computing the canonical
polyadic or CANDECOMP/PARAFAC (CP) decomposition [11, 4] for sparse tensors.
CP decompositions have numerous applications in data science, including analysis of
online social networks [10], anomaly detection [9], compression of neural nets [13, 22,
6], and health data analytics [32], among others. The CP decomposition is a low-
rank decomposition and approximates a given tensor by a sum of rank-one tensors.
In this work, our focus is on the main computational kernel in computing the CP
decomposition: the matricized tensor times Khatri-Rao product (MTTKRP). We
describe the mathematical background on tensors and MTTKRP in section 3.

Our goal is to develop CP decomposition software that is portable to and per-
formant on a variety of multicore and manycore computing architectures, such as
multicore CPUs, the manycore Intel Xeon Phi, and NVIDIA GPUs. This means
we desire software that runs on a variety of computing architectures, contains few
architecture-specific optimizations, ports to new architectures with only small code
modifications, and yet achieves performance on par with customized implementations
that have been optimized for each architecture. Relying on a single code implemen-
tation simplifies software development and maintenance while providing some degree
of “future-proofing” as new architectures and programming models are developed.

The key to developing portable code is to identify multiple levels of parallelism
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that can be mapped in different ways to different architectures. For MTTKRP with a
sparse tensor, we observe parallelism across the nonzeros and also across the columns
of the factor matrices. To realize the portable parallelism in practice, we leverage
the Kokkos package [7, 8], which provides threading abstractions that allow a sin-
gle software implementation to be portable to a diversity of shared memory parallel
programming models (such as OpenMP, pThreads, and CUDA) and hardware. For
example, fine-grained parallelism on CPU and Xeon Phi architectures is expressed
through vector arithmetic operations that are usually incorporated through automatic
vectorization of low-level loops by the compiler. Conversely, fine-grained parallelism
on GPUs is expressed through the explicit programming of groups of cooperating
threads. Kokkos provides abstractions that unify these different approaches, mak-
ing a single software implementation leveraging fine-grained parallelism feasible. The
multiple levels of parallelism and use of Kokkos is described in section 4.

One issue with Kokkos is that it does not provide a good way to allocate thread-
private arrays. To address this, we introduce a new portable and performant data
abstraction based on compile-time polymorphic arrays in section 5, and we contrast
this with Kokkos scratch pad arrays. Our method enables better vector parallelism
at the lowest loop level, especially on GPUs, and, we contend, is simpler to use than
what was already available in Kokkos. Using polymorphic arrays for fine-grained
parallelism does not depend on Kokkos and could also be used in other contexts.

To avoid race conditions in thread-parallel writes in MTTKRP, we rely on atomic
write instructions since they are generally scalable for high concurrency architectures.
Nevertheless, these atomic instructions can substantially reduce performance for many
tensors, so a modification to the MTTKRP algorithm is described in section 6 that
reorders operations to reduce contention among threads writing to the same memory
location, with the tradeoff being storage of permutation arrays that doubles the size
of the tensor stored in memory.

Our portable and performant software implementation of the CP alternating least
squares (CP-ALS) method for sparse tensors is available in the open source GenTen
library.1 Section 7 provides performance results for this code with the different ver-
sions of MTTKRP discussed in the paper. We test on multicore CPUs, NVIDIA
GPUs, and the Knights Landing (KNL) version of the Intel Xeon Phi. We also com-
pare our implementation to a state-of-the-art open-source code called SPLATT [28].
These results show that GenTen using the modified MTTKRP algorithm achieves
state-of-the-art performance on a variety of platforms with a single codebase.

To summarize, this work provides three primary contributions. First and fore-
most, this work describes how to achieve performance portability for the MTTKRP
kernel by identifying coarse and fine-grained parallelism and leveraging the Kokkos
package to exploit it. Second, we introduce a novel construct that uses thread-local
compile-time polymorphic arrays for leveraging fine-grained parallelism in MTTKRP.
Third, we present a new permuted variant of MTTKRP that dramatically reduces
costs associated with atomic writes. Taken together, our publicly available GenTen
software library incorporating these contributions represents the first-ever implemen-
tation of CP-ALS in a portable manner, achieving high performance on CPUs, Intel
Xeon Phi, and NVIDIA GPUs with a single implementation.

2. Related work. SPLATT [28] stores each mode of a sparse tensor as a list
of slices, where each slice is stored in a compressed format similar to the compressed

1https://gitlab.com/tensors/genten

https://gitlab.com/tensors/genten
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sparse row/compressed row storage (CSR/CRS) format of sparse matrices. The MT-
TKRP algorithm is parallelized over the rows of the result matrix using a task paral-
lelism scheme implemented through OpenMP. A cache blocking scheme is also intro-
duced to improve MTTKRP performance. Because of the mode-dependent storage
format, this approach requires a different representation for each mode of the tensor
which substantially increases memory costs. More recently, SPLATT incorporated a
compressed sparse fiber (CSF) approach [26] that stores a tensor as a family of trees,
which in principle avoids duplication of the tensor for each mode. However because
a mode must be chosen to form the roots of the trees, the resulting MTTKRP algo-
rithm can have substantially different performance depending on which mode is being
traversed. So in practice multiple CSF representations are computed and stored in
memory to reduce total CP-ALS time. The MTTKRP algorithm incorporates thread
parallelism and employs a tiling mechanism to avoid the use of locks or atomic in-
structions in order to handle thread race conditions. The performance of the CSF
approach in SPLATT has also been recently explored on the KNL version of the Intel
Xeon Phi architecture [27], where several variants of the MTTKRP algorithm were
considered, including a thread privatization approach to handling race conditions.
Conversely, our work considers the coordinate-based format for sparse tensor stor-
age exclusively, which does not require any duplication of the tensor, and the use of
atomic instructions for handling race conditions. Since the use of atomics on some
architectures (such as KNL) can be quite slow, we also propose a modified MTTKRP
algorithm that substantially reduces atomic contention, with a little less than twice
the memory storage. We also consider portability to GPUs in our work.

Building on the CSF data structure, Li at al. proposed an adaptive tensor mem-
oization algorithm that reduces the number of redundant floating-point operations
that occur during the sequence of MTTKRP calculations required by CP-ALS, with
the trade-off of increased memory usage [18] due to storing semi-sparse intermedi-
ate tensors. An adaptive model tuning framework called AdaTM was also developed
that chooses an optimized memoization algorithm based on the sparse input tensor.
Fine-grained parallelism across multiple modes of the intermediate tensors was pro-
posed but only studied within the context of thread parallelism on multicore CPU
architectures. Portability to KNL and GPU architectures is not considered.

DFacTo [5] stores a sparse tensor as a set of sparse matrices representing un-
foldings of the tensor for each mode, and reorganizes MTTKRP for each mode as
a sequence of sparse matrix-vector products (SpMV). As such DFacTo can rely on
optimized implementations of SpMV, and therefore focuses on distributed memory
parallelism. DFacTo doesn’t consider portability explicitly, but reliance on a SpMV
essentially provides it. However DFacTo’s MTTKRP algorithm has only been devel-
oped for third-order tensors and requires storing a separate unfolding for each tensor
mode. DFacTo stores these in a compressed CSR format which makes the storage rea-
sonably memory efficient, but requires packing all but one of the coordinates for each
nonzero into a single ordinal, which may not fit if the tensor has long mode lengths.
Furthermore, use of CSR-based SpMV for MTTKRP can be inefficient due to the
usual row-based parallelization strategy if there is a wide spread in the number of
nonzeros per tensor slice (resulting in imbalance in the number of nonzero columns in
the unfolded tensor), or if the tensor has short mode lengths (resulting in insufficient
parallelism).

The Cyclops Tensor Framework [29] provides a general framework for implement-
ing dense and sparse tensor operations upon which CP decompositions can be built.
For sparse tensors, the library relies on matricization and a corresponding sparse ma-
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trix primitive, and therefore suffers the same limitations as DFacTo described above.
The library is geared towards distributed memory parallelism.

More recently, Liu et al. proposed an extension of coordinate-based tensor storage
format called F-COO (flagged-coordinate) [20] which is extensible to many types of
tensor operations, and demonstrated MTTKRP and CP decomposition results on
GPUs. Portability to non-GPU architectures is not considered. F-COO modifies
the traditional coordinate-based format (COO) by adding bit arrays that determine
when a mode index changes and are used to implement a thread-parallel MTTKRP
algorithm based on segmented reduction, thereby avoiding atomic instructions. The
authors claim F-COO requires less memory storage than COO (since one index is
replaced by bit arrays), but since MTTKRP operations are required for all modes in
CP-ALS, storage of the bit flag arrays for all modes increases total memory storage
by a small factor. The authors also claim that an MTTKRP algorithm based on
atomics is too slow on the GPU, but as we will show in section 7, the algorithm
performs very well on newer GPU models with fast atomic hardware. The F-COO
approach is conceptually similar to the permutation-based approach we propose in
section 6 which also reduces the costs associated with atomics. Instead of using bit
arrays to implement segmented reduction, we instead change the order of traversal
of nonzeros using permutation arrays to make segmented reduction unnecessary. Our
approach also has the advantage of improving the locality of writes when updating the
resulting factor matrix in MTTKRP, which while not important on GPUs, is quite
important on cache-based architectures such as CPUs and the Xeon Phi. However the
F-COO approach does require somewhat less storage than the permutation approach
we propose.

Finally, Li et al. proposed a variant of the coordinate format called HiCOO [19]
that decomposes a sparse tensor into small sparse blocks, reducing the memory re-
quired to store tensor nonzeros (and hence memory bandwidth to read them). A
thread-parallel MTTKRP algorithm is developed for small thread-count architectures
such as CPUs that groups the small blocks into larger blocks called superblocks with
the collection of superblocks distributed across threads. Race conditions are handled
either by parallelizing between superblocks across the mode that is being written to
when the length of that mode is large, or by using a thread privatization strategy
when the mode length is small. Portability to GPUs is not considered, and it is un-
clear how the algorithm would be parallelized on GPUs with very large numbers of
threads. Likely the best approach would be to forego the two-level blocking strategy
and instead parallelize directly between the small tensor blocks using atomics for han-
dling race conditions (at least for recent GPUs with fast atomics). In this case, many
of the portability ideas introduced in our work could be applied to this approach.

3. CP tensor decomposition and MTTKRP. Except for specific relevant
concepts discussed in detail later, we assume in this section a basic familiarity with
tensors and refer the reader to Kolda and Bader [16] for further details. Let X ∈
RI1×···×Id be a given d-way tensor. We refer to each way or dimension as a mode.
For a given rank R, the goal is to find a low-rank model tensor M that is a good
approximation to X, i.e.,

(1) min
M
‖X−M‖ s.t. M =

R∑
j=1

λj a
(1)
j ◦ a

(2)
j ◦ · · · ◦ a

(d)
j ,
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where λj is a scalar weight, a
(n)
j is a column vector of size In that is assumed to be

normalized to unit-norm in some norm, and ◦ represents the tensor outer product.
For notational convenience, we assemble all the column vectors in mode n into a factor
matrix of size In ×R:

A(n) =
[
a
(n)
1 · · · a

(n)
R

]
.

Hence, the goal is to find the weight vector λ =
[
λ1 · · · λR

]ᵀ
and the d factor

matrices {A(1), . . . ,A(d)} that define the low-rank model tensor M. Following [2], we
refer to M as a Kruskal tensor, or K-tensor for short.

In this work, we compute the CP decomposition using the alternating least
squares (CP-ALS) method [11, 4]. Details are omitted here but can be found in,
e.g., the survey by Kolda and Bader [16]. Our main interest is in the matricized
tensor times Khatri-Rao product (MTTKRP) calculation for a sparse tensor, so we
focus on this kernel for sparse tensors for the remainder of this section.

We say a tensor is sparse if the majority of its elements are zero. We can store
such a tensor efficiently by storing only its nonzeros and their indices [1]. Here, we
denote the ith nonzero and its subscripts as xi and (`i1, `i2, . . . , `id) respectively. If
there are P nonzeros, then we store X with a P -vector of real values and a P × d
vector of coordinates. As discussed in section 2, a variety of sparse tensor formats
have been proposed in the literature [2, 28, 5, 20, 19]. Storing the tensor X as list
nonzero indices and values [2] is called coordinate format (COO), and this is what we
use here since it does not favor any particular tensor mode.

For a sparse tensor in COO format, the mode-n MTTKRP computes a matrix V
of size In ×R that is defined elementwise as [2]

(2) v(k, j) = λj

P∑
i=1

`in=k

xi

d∏
m=1
m6=n

a(m)(`im, j) for k = 1, . . . , In and j = 1, . . . , R.

We assume d is small, ranging from 3 to 5 in the examples we show. In order of
magnitude, P ranges from 106–108, In usually ranges from 103–106 but can be as small
as 2, and R usually ranges from 10–100. The MTTKRP is the primary bottleneck of
CP-ALS and the primary focus of our parallelization efforts.

4. Parallelism in MTTKRP. In this section we describe the multi-level paral-
lelism present in MTTKRP and a portable implementation. Our goal is to be able to
efficiently exploit fine-grained parallelism, by which we refer to the Single Instruction
Multiple Data (SIMD) parallelism provided by vector instructions on multicore CPUs
and the manycore Intel Xeon Phi, as well as the Single Instruction Multiple Thread
(SIMT) parallelism provided by the fine-grained threads within a warp on CUDA
(NVIDIA) GPUs. Ideally, we can use a single code that runs on any architecture,
which is referred to as portable. Our portable implementation uses Kokkos [7, 8], a
programming model and C++ library that enables applications and domain libraries
to implement thread scalable algorithms that are efficient and portable across mod-
ern architectures. To discuss the levels of parallelism in a way that is agnostic to
specific architectures, we use terminology mirroring the nested parallelism concepts
introduced in the OpenMP 4.0 specification [23] consisting of a league of teams, where
each team is comprised of a collection of threads, and each thread may execute vector
instructions in parallel. The league is virtual (i.e., not tied to any hardware resource)
and corresponds to the highest level parallel iteration space, while a team within the
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Table 1: Levels of Parallelism

Level CPU Interpretation GPU Interpretation
League Collection of teams Grid (group of thread blocks), cannot

synchronize
Team Collection of hyperthreads on one

or more cores
Thread block (usually 128 to 256 threads),
shares fast memory and can synchronize

Vector Vector instructions on single
thread

Threads within GPU warp (i.e., 32 threads),
execute in SIMD fashion

Table 2: Math-to-code translations

Code per Figure 1 Math per (2)
X.value(i) xi
X.subscript(i,n) `in
M.weights(j) λj
M[m].entry(X.subscripts(i,m),j) a(m)(`im, j)
V.entry(k,j) v(k, j)

league corresponds to a collection of one or more hyperthreads on a CPU/Phi archi-
tecture or a thread block on a GPU architecture, and vector parallelism corresponds
to CPU/Phi vector instructions or threads within a GPU warp. See Table 1 for a
summary.

4.1. Multi-level parallelism for MTTKRP. Our goal is to exploit as much
available parallelism in the MTTKRP calculation as possible. We use a multilevel
parallelism approach, incorporating parallelism over tensor nonzeros, i.e., the i index
in (2), and factor matrix columns, i.e., the j index in (2). For the latter we use vector-
level parallelism, since it provides the best performance when iterating over contiguous
regions in memory to enable packed/coalesced memory accesses,2 which is possible
with the combination of a rowwise layout of the factor matrices and a row-oriented
MTTKRP algorithm that processes (portions of) factor matrix rows simultaneously.
A pseudo-code description of the algorithm is shown in Figure 1. The variables should
generally be the same as in (2), but the less intuitive mappings between the source
code variables and the math are given in Table 2. Several parameters are architecture
dependent, and the values for those under different situations are shown in Table 3.

The factor matrices and subscripts are stored in row-major order, regardless of
the architecture. The highest-level parallelism is indicated in the pseudo-code by
the parallel_league_for loop. Each team within the league processes a mega-
block of nonzeros of total size NZPT. The medium-level parallelism is indicated by
the parallel_team_for loop. Each team member processes a nonzero block of size
NZPTM, which we set to 128 for all experiments. The fine-level parallelism is indicated
by the parallel_vector_for loop. The vector parallelism is over a range of factor
matrix columns, as each nonzero is processed.

The vector-level of parallelism over column indices exploits data locality in the
factor matrices and subscripts. However, this requires allocation of a temporary buffer

2On caching architectures such as CPUs and the Intel Xeon Phi, packed accesses refers to a given
thread accessing consecutive memory locations sequentially and is a prerequisite for transforming a
loop to use vector instructions. Conversely, coalesced accesses on a GPU refers to consecutive threads
accessing consecutive memory locations, which is required to achieve full memory bandwidth.
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// Compute MTTKRP with sparse tensor X, using K-Tensor M, in mode n.
// The result is stored in the factor matrix V.
mttkrp(Sptensor X, Ktensor M, unsigned n, FacMatrix V) {

// Problem parameters
P = X.nnz() // Number of nonzeros
d = M.ndims () // Number of dimensions
R = M.ncomponents () // Number of factor matrix components

// Architecture -specific values
vector_size = ... // Vector size (see Table 3)
FBS = ... // Factor matrix column block size (see Table 3)
team_size = ... // Team size (see Table 3)
NZPTM = 128 // Nonzeros per team member
NZPT = NZPTM * team_size // Nonzeros per team
league_size = (P+NZPT -1)/ NZPT // Number of tensor nonzero blocks (league size)

// Top level of parallelism ...
parallel_league_for(league_rank =0; league_rank <league_size; ++ league_rank) {

tmp = ScatchPad(team_size , FBS) // shared within the team

// Loop over factor matrix column blocks
for (jb=0; jb<R; jb+=FBS) {

nj = (jb+FBS < R) ? FBS : R-jb // number of columns to process

// Second level of parallelism ...
parallel_team_for(team_rank =0; team_rank <team_size; ++ team_rank) {

i_offset = league_rank*NZPT + team_rank*NZPTM // starting nonzero index
ni = (i_offset+NZPTM < P) ? NZPTM : P-i_offset // number of nonzeros

// Loop over tensor nonzeros in block
for (i=i_offset; i<i_offset+ni; ++i) {

x_val = X.value(i) // value for nonzero i
k = X.subscript(i,n) // mode -n index for nonzero i

// Initialize to x-value times lambda -weight
parallel_vector_for(j=0; j<nj; ++j)

tmp(team_rank ,j) = x_val * M.weights(jb+j)

// Multiply by corresponding factor matrix entries
for (m=0; m<d; ++m)

if (m != n)
parallel_vector_for(j=0; j<nj; ++j)

tmp(team_rank ,j) *= M[m].entry(X.subscript(i,m),jb+j)

// Multiple teams may be contributing to the same entries of the result
parallel_vector_for(j=0; j<nj; ++j)

atomic_add(V.entry(k,jb+j), tmp(team_rank ,j))

} // i
} // team_rank

} // jb
} // league_rank

} // function

Fig. 1: MTTKRP-A. Pseudo-code description of efficient parallel MTTKRP cal-
culation in a C++-like syntax. Several of the algorithmic parameter choices are
architecture dependent; see Table 3. It has three levels of parallelism at the league,
team, and vector levels.

tmp. For efficiency, this buffer needs to be allocated in a fast memory space (such as
CPU/Phi cache or GPU shared memory), which is limited in size. Hence, we work in
blocks of factor matrix columns since we assume it is not possible to store an entire
factor matrix row at one time when R is large. The factor matrix column loop is
blocked by a runtime determined tile size, FBS, where each parallel_vector_for
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Table 3: Choices for architecture-specific parameters in Figure 1

Parameter CPU GPU

FBS min { 2dlog2(R)e, 32 }

vector size 1 min { FBS, 16 }

team size 1 128 / vector size

only processes FBS columns at one time. Except when R is small, FBS = 32 (see
Table 3) ensuring fully coalesced factor matrix accesses on GPUs and ample oppor-
tunity for vectorization on CPU/Phi. Although the tensor coordinates are reread at
each iteration of the factor matrix block loop, the tensor nonzero block size (NZPTM)
is small enough that these values fit in cache across factor matrix block iterations.
Because multiple nonzeros across multiple teams may contribute to the same entry of
V, we use atomic_add to resolve race conditions in writes to V.

4.2. Implementation Using Kokkos. We use Kokkos to implement Figure 1
in manner that achieves high performance and portability. We refer the reader to the
GenTen source code3 to see the full implementation.

Kokkos provides a data structure called View for storing multidimensional arrays
of data with template parameters specifying the type of data, its number of dimen-
sions, the memory space in which data is allocated, and its layout in memory. Using
View, we store the indices of the sparse tensor as a two-dimensional array of ordinals
and the nonzero values as a one-dimensional array of floating-point data. The ordinal
and floating-point types can be chosen while configuring GenTen, and we use size t

and double respectively in all numerical results below. The total size of a tensor X in
memory is then (dso + sf ) ·nnz(X) bytes where so and sf are the sizes in bytes of the
ordinal and floating-point types, respectively, and nnz(X) is the number of nonzeros
in X. We also use View to store each factor matrix as a two-dimensional array, and
we store both tensor coordinates and factor matrices using Kokkos’ rowwise memory
layout to ensure packed/coalesced accesses of this data in the row-oriented MTTKRP
algorithm discussed above.

Kokkos provides functions for the parallel_for commands in Figure 1 that are
specialized for each architecture according to their corresponding parallel program-
ming libraries (e.g., OpenMP or CUDA). In particular, the function corresponding
to the parallel_vector_for command on a CPU/Phi maps to standard for loop
that is intended to be autovectorized by the compiler. Conversely on a GPU, the
loop iterations are mapped to individual threads within a warp according to their
thread index. They each take their code bodies in the form of lambda-expressions,
and accept a policy argument that describes the parallel iteration space. Kokkos pro-
vides mechanisms for allocating and managing the per-team temporary buffer tmp,
which will be allocated in shared memory on a GPU and a fast cache on CPU/Phi.
For atomic_add. Kokkos calls architecture-specific built-in atomic instructions when
possible.4

3https://gitlab.com/tensors/genten
4The availability of those instructions depends upon both the hardware and the floating-point

data type. For example, NVIDIA K80 GPUs have hardware atomic instructions for single-precision
data but not double-precision. If hardware instructions are not available, Kokkos uses a general
implementation through atomic compare-and-swap (CAS), which can be dramatically slower if there

https://gitlab.com/tensors/genten
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5. MTTKRP with compile-time polymorphic arrays. Using Kokkos for
the implementation of Figure 1 is portable and provides good performance on most
architectures. It makes effective use of fine-grained vector parallelism, particularly
when R is a multiple of the vector width of the architecture, and provides high
memory-bandwidth efficiency. Even so, it does have drawbacks compared to opti-
mized implementations for GPU and CPU architectures since it requires allocating
the temporary buffer tmp. On a GPU, the buffer is stored in shared memory, which is
very fast compared to global memory. However the amount of shared memory avail-
able is quite small (typically 48-96 KB and is shared by all active threads on the GPU
processor) requiring the factor matrix tile size (see Table 3) to be small so that enough
thread blocks can be inflight to better hide the latency of global memory accesses.
We would instead prefer to store the temporary values in registers, which are even
faster to access and provide even more storage space (modern GPUs typically provide
256 KB for registers). Such a modification would allow the tile size to be larger and
therefore improve performance. Similarly, on a CPU/Phi architecture, it would be
more convenient to allocate the buffer as a simpler thread-private stack array.

To address these shortcomings, we propose a better-performing and arguably sim-
pler approach to portability, which we refer to as compile-time polymorphic arrays.
We extend Kokkos by introducing the class TinyVec that has different implemen-
tations depending on the architecture, as shown in Figure 2 which mirror the opti-
mizations described above. The current scratch-pad capability of Kokkos creates a
temporary buffer that is visible to all threads within a team; in contrast, we store the
data in a thread-private manner. The wrapper class has several template parameters,
including the execution space (allowing unique implementation for each architecture
through partial template specialization), the length of the array (which therefore must
be a compile-time constant), a flag indicating whether all or just a portion of the array
will be used, and the chosen vector size (which also must be a compile time constant).
This class avoids the use of lambda expressions at the vector level, making it easier
for the compiler to optimize and vectorize those loops.

On a CPU/Phi architecture (see Figure 2a), the array will be allocated as a
thread-private stack array of the given length (the factor matrix block size FBS). For
all but the last iteration of the factor matrix block loop, the size flag indicates the
compile-time full array length will be used. For the last iteration, the flag changes to
indicate a runtime-determined size will be used to handle the remainder term when
R is not evenly divisible by FBS.

Conversely on a GPU architecture (see Figure 2b), the array data is divided up
among all of the threads in a warp (determined by the vector size). For example, if
the array length is 128 and the vector size is 32, each thread holds four entries of the
array. This data could be stored in a stack array as well, which will be converted to
registers by the compiler when the full array length is used. When a dynamically sized
portion of the array is used, the compiler instead stores this data in “local” memory
which has the same high latency for accesses as global memory. To remedy this, we
directly store the data in registers by providing partial specializations of the class
based on the number of array elements per thread, and currently specializations are
provided for 1-4 elements per thread. The specialization uses typical class template
specialization techniques in conjunction with Substitution Failure Is Not An Error
(SFINAE) [30] using std::enable_if for the Enabled template parameter to make
the specialization available only when Length/VectorSize == 4. We refer the reader

is high contention among threads.
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template <typename Space , unsigned Length , unsigned Size , unsigned VectorSize ,
typename Enabled = void >

struct TinyVec {
integral_nonzero_constant <unsigned ,Size > sz;
alignas (64) double v[ Length ];

TinyVec(const unsigned size , const double x) : sz(size) {
for (unsigned i=0; i<sz.value; ++i) v[i] = x;

}

void store_plus(double* x) const {
for (unsigned i=0; i<sz.value; ++i) x[i] += v[i];

}

TinyVec& operator +=( const TinyVec& x) {
for (unsigned i=0; i<sz.value; ++i) v[i] += x.v[i];
return *this;

}

void atomic_store_plus(volatile double* x) const;
TinyVec& operator =(const double x);
TinyVec& operator *=( const double x);
TinyVec& operator *=( const double* x);

};

(a) Non-GPU architectures.

template <unsigned Length , unsigned Size , unsigned VectorSize >
struct TinyVec < Kokkos ::Cuda ,Length ,Size ,VectorSize ,

typename std::enable_if <Length/VectorSize == 4>::type > {
integral_nonzero_constant <unsigned_type ,Size/VectorSize > sz;
double v0, v1, v2 , v3;

__device__ inline TinyVec(const unsigned size , const double x)
: sz( (size+VectorSize -1- threadIdx.x) / VectorSize ) {
v0 = v1 = v2 = v3 = x;

}

__device__ inline void store_plus(double* x) const {
if (sz.value > 0) x[ threadIdx.x] += v0;
if (sz.value > 1) x[ VectorSize + threadIdx.x] += v1;
if (sz.value > 2) x[2* VectorSize + threadIdx.x] += v2;
if (sz.value > 3) x[3* VectorSize + threadIdx.x] += v3;

}

__device__ inline TinyVec& operator +=( const TinyVec& x) {
v0 += x.v0; v1 += x.v1; v2 += x.v2; v3 += x.v3;
return *this;

}

__device__ inline void atomic_store_plus(volatile double* x) const;
__device__ inline TinyVec& operator =(const double x);
__device__ inline TinyVec& operator *=( const double x);
__device__ inline TinyVec& operator *=( const double* x);

};

(b) GPU/CUDA architecture when Length/VectorSize == 4.

Fig. 2: Example implementation of thread-local compile-time polymorphic ar-
ray wrapper class (TinyVec) for two architectures. The implementations of sev-
eral functions, which are similar to the implementations shown, are suppressed
for brevity. The portion of the array used within the class is stored within
integral_nonzero_constant<unsigned,Size>::value which will be Size when
Size != 0, and its constructor argument otherwise.
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to the source code for complete details.

In all cases, the array wrapper provides overloaded operators for arithmetic on the
array entries, where the implementation of each operator maps the operation across
the entries of the array. On a CPU/Phi architecture, these can be well-optimized
and vectorized by the compiler since they are simple, lowest-level loops, and when
the full array is used, have a compile-time known trip count. On a GPU architecture,
the operation is merely applied to each register variable. Thus, each vector-parallel
loop over factor matrix entries that would have been implemented through a lambda-
expression is replaced by a single overloaded operator call implemented by the array
wrapper. This makes the code simpler and more understandable. Furthermore, since
shared memory is no longer used to store the temporary buffer, a larger factor matrix
tile size can be used, increasing performance. The resulting MTTKRP algorithm is
displayed in Figure 3.

Conceptually our array wrapper is similar to SIMD data types studied by oth-
ers [17, 14, 31, 15, 24], which have been used to achieve some form of outer-loop
vectorization by blocking the outer loop based on the architecture’s vector width
and moving the vector loop to an innermost loop encapsulated by overloaded op-
erators iterating over a statically-sized array. Furthermore, these implementations
have focused exclusively on vector CPU/Phi architectures with compile-time fixed
array lengths. The contribution here is primarily the idea of using this technique
for applying fine-grained parallelism across innermost loops, for GPU and CPU/Phi
architectures. This requires a polymorphic API for reading and writing data to mem-
ory as well as the ability to support run-time choice of the array length for tail loops.
We overcome performance issues peculiar to GPU architectures by storing the array
entries in registers.

To achieve good performance for a wide range ofR values, GenTen must determine
choices of the factor matrix block size and vector size. Our logic for doing so tries to
balance large factor matrix tile sizes (which reduce rereads of the tensor) with small
remainders for the factor matrix loop (since the remainder portion is inherently less
efficient). The result of our logic is displayed in Table 4, which shows the factor matrix
block and vector sizes for ranges of R values (the vector size is only relevant for the
GPU architecture; it is always one on a non-GPU architecture). On the GPU, these
choices result in at most four factor matrix columns processed by each thread within
a warp. Notice that because of the greater amount of memory available for registers
as opposed to shared memory, a much larger factor matrix block size is possible,
compared to the scratch-pad based approach in Figure 1.

6. Permutation approach for MTTKRP. Depending on how the nonzeros
are ordered in the tensor, many threads may be trying to update partial contributions
to the result factor matrix simultaneously, creating high contention for the architec-
ture’s atomic hardware. This is particularly pronounced when there is no atomic-add
instruction, such as double on NVIDIA Kepler architectures (e.g., K20, K40, K80),
where Kokkos resorts to atomic compare-and-swap.

One approach for overcoming this challenge is to use a compressed storage format
akin to the matrix compressed row storage (CRS) format, as is done in SPLATT [28].
For a given mode n, the tensor is stored as a list of slices for each element of that mode.
The MTTKRP algorithm is parallelized over these slices where each thread operates
on a distinct row of the resulting factor matrix, so no atomic update is necessary.
The downside of this approach for CP-ALS is that a separate copy of the tensor is
required for each mode, since CP-ALS requires MTTKRP calculations for all modes.
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parallel_league_for(league_rank =0; league_rank <league_size; ++ league_rank) {

// No shared team scratchpad!

for (jb=0; jb <R; jb+=FBS) {
nj = jb+FBS < R ? FBS : R-jb

parallel_team_for(team_rank =0; team_rank <team_size; ++ team_rank) {
i_offset = league_rank*NZPT + team_rank*NZPTM
ni = i_offset + NZPTM < P ? NZPTM : P-i_offset

for (i=i_offset; i<i_offset+ni; ++i) {
x_val = X.value(i)
k = X.subscript(i,n)

// Allocate special thread -local buffer
tmp = TinyVec(nj ,x_val) // Vector op
tmp *= &M.weights(jb) // Vector op

for (m=0; m<d; ++m)
if (m != n)

tmp *= &M[m].entry(X.subscript(i,m),jb) // Vector op

tmp.atomic_store_add (&V.entry(k,jb)) // Vector op

} //i
} // team_rank

} // jb
} // league_rank

Fig. 3: MTTKRP-B. Modification of MTTKRP-A (Figure 1) using TinyVec poly-
morphic arrays (all code not shown is unchanged). In this case, we use different
choices for the architecture-dependent parameters vector_size and FBS as shown
in Table 4. The template parameters for TinyVec have been suppressed, including
the logic for how the template parameters are determined to handle the remainder
term. The vector operations span the range jb to jn+nj-1 in the objects being
accessed/written.

Table 4: GPU Vector and factor block sizes for different numbers of components (R)
for the polymorphic array MTTKRP algorithm.

Range for R 1 2 3 4 5–7 8 9–16 17–24 25–47 48 49–95 96 97–
vector size 1 2 2 4 4 8 8 8 8 16 16 32 32
FBS 1 2 4 4 8 8 16 24 32 48 64 96 128

In this work we introduce a new way of reducing atomic contention that is inspired
by GPU implementations of the sparse matrix-vector product with sparse matrices
stored in the coordinate (COO) format [3]. In this algorithm, the sparse matrix-
vector product is parallelized over the matrix nonzeros. However, instead of having
each thread write its contribution using an atomic instruction, the matrix nonzeros
are sorted with increasing row index. Each thread iterates over a contiguous set of
matrix nonzeros, and writes only occur when the row index changes. When a write is
necessary, all the threads within a team perform a thread-parallel segmented reduction
based on the row index, combining the contributions across multiple threads without
atomics. Depending on how the algorithm is implemented, no atomic instructions
may be necessary at all.
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This approach cannot be directly applied to the tensor case because we want to
avoid requiring d copies of the tensor, each with a different sorting. Instead we com-
pute a permutation array for each mode that sorts the tensor nonzeros in increasing
index along that mode. For mode n MTTKRP, we iterate over the tensor nonzeros
in that permuted order as opposed to the order they are stored in memory. For a
given tensor with P nonzeros and d modes, storing the tensor in memory requires
S = (sr + dso)P bytes where sr and si are the sizes of the floating-point and ordinal
types, respectively. This approach requires storing d additional permutation arrays
of length P resulting in a total storage size of (sr + 2dso)P < 2S bytes, and there-
fore a little less than double the amount of memory is required to store the tensor.
The downside of this approach is the tensor nonzeros are no longer streamed from
memory and are accessed in a more random fashion. However, each tensor nonzero
corresponds to O(d · F ) floating-point operations where F is the factor matrix tile
size, allowing for significant reuse of those values.

This idea requires only small modifications of the MTTKRP kernel implementa-
tion so that each tensor nonzero index is extracted from the permutation array. The
same logic is used for determining the vector and factor matrix tile sizes as shown in
Table 4. Each thread within a team iterates over a given block size of tensor nonze-
ros and writes its contribution to the resulting factor matrix only when the mode-n
coordinate changes. This must be an atomic-write if the mode-n index is equal to
the first or last index of the block (since another thread may be writing to the same
row); otherwise, it is a regular (non-atomic) write. Determining when and what kind
of write should happen results in most of the changes to the kernel implementation,
as shown in Figure 4. We could reduce contributions across threads within a team
as is typically done in the sparse matrix-vector product algorithm to reduce the fre-
quency of atomic writes even further; however this requires synchronization within
each team, which appears to offset any potentially improved performance induced by
the inter-team reduction.

There is a small preprocessing cost associated with this method to compute the
permutation array for each tensor mode. GenTen can compute the permutation ar-
ray using parallel sorting routines provided by Kokkos, as well as Thrust5 for GPU
architectures and the Intel Parallel Stable Sort6 for OpenMP-based architectures.

7. Numerical results. We investigate the performance of the different proposed
portable parallel implementations of CP-ALS. Our results are generated with the pub-
licly available GenTen library on four different architectures (both CPU and GPU).
The specific architectures and compilers are listed in Table 5, with the architecture-
and compiler-specific optimization flags specified by Kokkos.

7.1. Artificial data and scalability studies. We first consider running the
full CP-ALS method on a synthetic three-dimensional tensor of size 30, 000×40, 000×
50, 000 with 10 million nonzeros placed randomly throughout the tensor. For each
architecture, Figure 5 displays the total run time for 10 iterations of CP-ALS with
R = 128 factor components using MTTKRP-B (Figure 3). Figure 5a displays the
total run-time for all four architectures at full machine capacity. First, MTTKRP
takes most of the CP-ALS computation time, regardless of architecture. Second,
the Pascal P100 GPU is substantially faster than the other three. As compared to

5http://docs.nvidia.com/cuda/thrust/index.html
6https://software.intel.com/en-us/articles/a-parallel-stable-sort-using-c11-for-tbb-cilk-plus-a

nd-openmp

http://docs.nvidia.com/cuda/thrust/index.html
https://software.intel.com/en-us/articles/a-parallel-stable-sort-using-c11-for-tbb-cilk-plus-and-openmp
https://software.intel.com/en-us/articles/a-parallel-stable-sort-using-c11-for-tbb-cilk-plus-and-openmp
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parallel_team_for(team_rank =0; team_rank <team_size; ++ team_rank) {
i_offset = league_rank*NZPT + team_rank*NZPTM
ni = i_offset + nzptm < P ? nzptm : P-i_offset
val = TinyVec(nj ,0.0) // accumulation buffer for a row , initialize to zero
row_prev , first_row = -1 // used to track when to store

// Loop over tensor nonzeros in block , in order wrt mode n
for (i=i_offset; i<i_offset+ni; ++i) {

p = X.getPerm(i,n) // index of i-th nonzero in permuted ordering
x_val = X.value(p) // value for nonzero p
row = X.subscript(p,n) // mode -n index for nonzero p

// Is this the first row in a block?
if (i == i_offset) {

first_row = row
row_prev = row

}

// Detect change in row index
if (row != row_prev) {

// Sum the result into the appropriate entries in V
if (row_prev == first_row) // First row needs atomic operation

val.atomic_store_plus (&V.entry(row_prev ,jb))
else // Row owned entirely by this process , no atomic operation

val.store_plus (&V.entry(row_prev ,jb))

//Reset for next row
val = 0
row_prev = row

}

tmp = TinyVec(nj , x_val)
tmp *= &M.weights(jb)

for (unsigned m=0; m<d; ++m)
if (m != n)

tmp *= &(M[m]. entry(X.subscript(p,m),jb))

// Accumulate sum across nonzeros until row index changes
val += tmp

// Last row needs atomic operation
if (i == offset+ni -1)

val.atomic_store_plus (&V.entry(row ,jb)) // Vector operation

} // i
} // team_rank

Fig. 4: MTTKRP-C. Modification of MTTKRP-B (Figure 3) to use permuted in-
dexing and avoid most atomic operations (all code not shown is unchanged).

single Haswell core, we see about a 20-fold speedup on Haswell and KNL, a 38-fold
speedup on the K80, and a 147-fold speedup on the P100. For the Haswell and KNL
architectures, Figure 5b varies the number of threads up to the maximum number
used (64 and 256 respectively), and plots the total run-time in seconds against the
fraction of the total number of threads used.7 These plots demonstrate good thread
scalability on the Haswell and KNL architectures. For the GPU architectures, it is
not possible to vary the number of threads.

In Figure 6, on the same data tensor, we compare MTTKRP-A (Figure 1),
MTTKRP-B (Figure 3) and MTTKRP-C (Figure 4) in terms of total MTTKRP

7On both architectures these results were generated with OMP PROC BIND=close and
OMP PLACES=threads OpenMP thread-binding environment variables set.
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Table 5: Computational parallel architectures used for experimental results. While
the KNL architecture supports up to 272 threads, at most 256 threads (64 cores)
were used for our experiments. The KNL was placed in cache mode, where the high-
bandwidth memory (HBM) is used as a last-level cache for main memory.

Architecture Thread
Type Name Description Parallelism Compiler

CPU Haswell Intel Xeon E5-2698v3 CPU, 2.3 GHz, 2 sockets,
16 cores/socket, 2 threads/core, max 32 threads

OpenMP Intel 17.0

CPU KNL Intel Xeon Phi 7250, 68 cores, 4 threads/core,
HBM in cache mode, use max 256 threads

OpenMP Intel 18.2

GPU K80 NVIDIA Kepler K80 GPU CUDA NVCC 9.2

GPU P100 NVIDIA Pascal P100 GPU CUDA NVCC 9.2

HSW KNL K80 P100
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Fig. 5: Total run times on different architectures for ten iterations of CP-ALS using
MTTKRP-B on a tensor of size 30K× 40K× 50K with 10M nonzeros and R = 128.

time over 10 iterations of CP-ALS. We see that the use of the polymorphic arrays
(MTTKRP-B) has little effect on performance for Haswell and KNL in comparison
to the base MTTKRP-A, but substantially improves performance on the K80 GPU.
Furthermore, we see the permutation-based approach (MTTKRP-C) is faster on all
architectures, substantially so on the Haswell, KNL and K80 architectures, but with
not much difference on the P100. Clearly, atomic-write throughput is a bottleneck in
MTTKRP performance, so MTTKRP-C is an improvement. We see little difference
for the P100 because it has very fast double-precision atomic throughput. These tim-
ings do not include the additional setup cost associated with the permuted algorithm
to compute the d permutation arrays, which is investigated later in Table 6c.

To understand how our performance compares to what we might expect, we do
some simple analysis. If we assume all tensor and factor components values are
read from main memory with no caching and no thread contention for atomic-writes,
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Fig. 6: Comparison of total run times for all three MTTKRP algorithms, on different
architectures, for for ten iterations of CP-ALS on a tensor of size 30K × 40K × 50K
with 10M nonzeros and R = 128 .

then MTTKRP is a bandwidth-limited computation driven by the peak bandwidth of
each architecture. To determine the peak bandwidth, we used the STREAM bench-
mark [21] with the results shown in Figure 7a. We estimate the bandwidth for MT-
TKRP as

(3) (dR+ 3)sr + dso)P/t

where sr is the size (in bytes) of the floating-point type, so is the size of the ordinal
type, P is the number of tensor nonzeros, and t is the total time of the MTTKRP
operation. The measured bandwidth for all three versions of MTTKRP on all four
architectures for R ∈ [8, 256] with a stride of 8 is shown in Figure 7 as a percentage
of the peak bandwidth in Figure 7a. For all four architectures, the bandwidth effi-
ciency of MTTKRP-C is better since the cost of the atomic writes is substantially
reduced, making the estimate a better model of the actual MTTKRP calculation. The
measured bandwidth can be greater than 100% because of cached reads of the factor
matrix entries (even on the GPU architectures, some of the data reads are automati-
cally cached in the L2 and constant caches). For KNL, the bandwidth efficiency only
approaches 100% for very large R and is indicative of the general difficulty of achiev-
ing full memory bandwidth on this architecture. For the GPU architectures, we also
see the efficiency can be quite sensitive to R, providing the best performance when
R is a multiple of 32, which is due to the methodology for computing the vector and
factor matrix tile sizes in Table 4. Finally we see the use of TinyVec in MTTKRP-B
substantially improves performance as compared to MTTKRP-A for the GPU archi-
tectures by allowing for larger factor matrix block sizes. No improvement is seen on
HSW and KNL, primarily because the original algorithm is clearly limited by atomic
contention rather than memory throughput.

7.2. Real-world data and comparisons to SPLATT. We study the MT-
TKRP performance on several tensors available from the Formidable Repository of
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Architecture Bandwidth (GB/s)

HSW 96
KNL 294
K80 177
P100 544

(a) Measured peak bandwidth for each
architecture, as determined by STREAM.
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Fig. 7: MTTKRP memory bandwidth as a percentage of peak bandwidth. The
tensor is of size 30K × 40K × 50K with 10M nonzeros and we vary the number of
factor components R (x-axis). The computation used 64-bit floating point and ordinal
values.

Open Sparse Tensor and Tools (FROSTT) [25]. We selected tensors to be as large
as possible, so long as they still fit within the limited memory available on the K80
GPU (12 GB). A summary of the tensors and their sizes is given in Table 6a.

We compare two versions of our method (MTTKRP-B and MTTKRP-C) to
the state of the art, SPLATT’s CSF-based algorithms [26]. We use two versions
of SPLATT: mutexes (SPLATT-M) and tiling without mutexes (SPLATT-T), both
with the default of two CSF modes. SPLATT does not have a GPU implementation,
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Table 6: Results on real-world tensor data sets.

(a) Real-world tensor data sets from FROSTT.

Name Order Dimensions Nonzeros

LBNL 5 1.6K× 4.2K× 1.6K× 4.2K× 868K 1.7M
Uber 4 183× 24× 1.1K× 1.7K 13M
Enron 4 6.0K× 5.7K× 244K× 1.2K 54M
VAST 5 165K× 11K× 2× 100× 89 26M
NELL2 3 12K× 9.1K× 29K 77M

Delicious 4 532K× 17M× 2.5M× 1.4K 140M

(b) Total MTTKRP time (in seconds) for ten iterations with R=16 for each
data tensor, architecture, and method. Due to the increased storage re-
quirements of the permuted approach, global memory was exhausted for

MTTKRP-B for the Delicious tensor on the K80 and P100 architectures.

Arch. Method LBNL Uber Enron VAST NELL2 Delicious

HSW MTTKRP-B 16.6 8.3 45.7 284.0 42.8 57.4
MTTKRP-C 0.4 0.3 5.7 6.3 7.0 22.7
SPLATT-M 0.8 0.2 1.1 26.1 1.3 23.4
SPLATT-T 0.5 1.6 10.4 3.8 1.4 71.2

KNL MTTKRP-B 41.2 9.2 108.0 1910.0 82.4 79.1
MTTKRP-C 0.4 0.2 2.8 16.1 3.2 12.9
SPLATT-M 2.0 1.2 2.6 150.5 9.0 47.7
SPLATT-T 1.0 5.1 41.3 6.5 15.6 219.1

K80 MTTKRP-B 72.4 5.6 218.0 2010.0 55.2 30.3
MTTKRP-C 0.5 0.5 9.4 7.4 11.6 –

P100 MTTKRP-B 0.4 0.2 2.0 4.1 1.6 4.0
MTTKRP-C 0.1 0.1 1.7 1.5 1.8 –

(c) Sorting cost for the permutation-based MTTKRP approach scaled
by the average (permuted) CP-ALS iteration time with R=16.

Architecture LBNL Uber Enron VAST NELL2 Delicious

HSW 0.6 4.3 9.2 5.3 6.2 4.0
KNL 1.0 5.5 8.6 1.3 7.6 4.9
K80 1.1 3.0 3.3 3.3 2.6 –
P100 0.5 1.3 4.2 3.6 4.6 –

so we only include it for the two OpenMP-based architectures (Haswell and KNL).
Table 6b shows the results based on the total MTTKRP time for 10 CP-ALS itera-
tions with R = 16 factor components. The timing results shown here are aggregated
over all modes of the tensor, even though significant variation in performance is often
observed for different modes of a given tensor. While performance of the COO-based
MTTKRP is relatively insensitive to the length of each mode (since it parallelizes over
nonzeros and not factor matrix rows), it is quite sensitive to the ordering of nonzero
coordinates in each mode (since this affects the amount of atomic contention). How-
ever the permutation-based approach by design attempts to mitigate this.

If we compare just MTTKRP-B and MTTKRP-C, then MTTKRP-C (the per-



SPARSE TENSOR DECOMPOSITION ON EMERGING ARCHITECTURES 19

muted approach) is up to two orders of magnitude faster. The greater differences for
real-world data tensors is due to higher atomic contention. This is most severe on the
K80 architecture due to its lack of double-precision atomic instructions; conversely,
it is least severe on the P100 architecture because of its support for double-precision
atomic instructions. Unfortunately, the cost of storing the permutations exhausted
the global memory on the K80 and P100 for the largest tensor (with 140M nonzeros).

If we compare to SPLATT on HSW, our permuted approach is faster in two cases
and never more then six times slower. On KNL, our approach is more than three
times faster for the largest tensor, and never worse than three times slower. Overall,
we claim that the performance of our code is comparable to that of SPLATT (i.e.,
same order of magnitude) while having the advantage of being portable.

The permutation has preprocessing cost, just as SPLATT has a preprocessing
cost for its CSF data structures. We show the cost of the sorting time required for
the MTTKRP-C, scaled by the average CP-ALS iteration time using MTTKRP-C,
for each tensor and architecture in Table 6c. As described above, we use Thrust for
the sorting on the GPU architectures and the OpenMP-based Intel Parallel Stable
Sort on Haswell and KNL. The sorting time is less than the cost of ten CP-ALS
iterations, which is relatively small and usually worthwhile given the improvement on
architectures that are sensitive to atomic writes (i.e., HSW, KNL, K80).

8. Conclusions. In this paper we describe a portable and performant implemen-
tation of MTTKRP for sparse tensors on emerging computer architectures, including
multicore CPUs, manycore Intel Xeon Phis, and NVIDIA GPUs. For a sparse tensor
stored in coordinate format, we showed how to arrange the loops to achieve fine-
grained parallelism, in Figure 1. The portable implementation is primarily facilitated
by the Kokkos library, which provides data structures and abstractions that enable
performance on multiple architectures. One of the complications of our implemen-
tation is that each thread requires its own temporary storage. Such an allocation is
limited in Kokkos, so we introduced TinyVec, an extension of the Kokkos framework
for polymorphic data arrays that stores the temporary data in registers and whose
length is parameterized by an architecture-dependent compile-time constant. The
resulting algorithm is shown in Figure 3. To avoid atomic operations, we do some
preprocessing so that we can loop through the coordinates of each mode in increasing
order through the use of permutation arrays. This doubles the storage for the indices,
but the increase in performance for the version shown in Figure 4 can be considerable.
Our implementation of CP-ALS using our improvements to MTTKRP is available in
the open-source software package GenTen.

We studied the performance of GenTen on a variety of contemporary architectures
and demonstrated that GenTen’s MTTKRP is efficient on all of these architectures
by comparing to the expected computational bandwidth. We also compared the
performance of GenTen’s MTTKRP to SPLATT on CPU and KNL platforms using
several realistic data tensors from FROSTT, demonstrating comparable or better
performance for the permutation-based MTTKRP algorithm.

Future work with GenTen will involve the incorporation of distributed memory
parallelism to enable analysis of larger tensors, as well as generalization of the algo-
rithms to be applicable to more general categories of data tensors (such as count and
binary data) using the generalized CP method introduced in [12]. We will also in-
vestigate approaches for performing the necessary tensor sorting operations required
by the permutation-based MTTKRP algorithm while the tensor is being read from
disk to eliminate this extra cost (by, e.g., having one thread read the data from disk
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and have one or more threads sort it). Following some of the ideas in SPLATT [27],
performance on KNL architectures can be improved by placing the factor matrices in
high-bandwidth (HBM) memory (and putting the KNL in so-called flat mode) and
most other data in main memory. (This optimization does not appear to be present
in the public version of SPLATT used in our results). Results in [27] suggest this
could improve performance by as much as a factor of two. We are also exploring
other approaches to addressing atomic contention within MTTKRP, such as the use
of thread-private copies of the resulting factor matrix that are later reduced across
threads (similar to the approach presented in [27]). Preliminary work in this direction
suggests it can be beneficial to the coordinate-based MTTKRP algorithm, as long as
the number of rows of the factor matrix or the number of threads is not too large.
Ultimately, we are likely to converge to a hybrid approach that combines atomic and
reduction approaches.
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