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ON THE RESPONSE OF A TWO-LEVEL SYSTEM TO
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Abstract. The purpose of this paper is to study the interaction between a two-level system
(qubit) and two continuous-mode photons. Two scenarios are investigated: Case 1, how a two-level
system changes the pulse shapes of two input photons propagating in a single input channel; and Case
2, how a two-level system responds to two counterpropagating photons, one in each input channel.
The steady-state output field states for both cases are derived analytically in both the time and
frequency domains. Numerical simulations demonstrate rich and interesting two-photon scattering
phenomena induced by a two-level system.
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1. Introduction. Strong coupling of a two-level system to a quantized radiation
field can give rise to rich and interesting physical phenomena. Strong coupling can
be achieved in various physical setups, for example, by putting an atom in a cavity
(cavity quantum electrodynamics (QED)), by embedding a two-level emitter in a
nanophotonic waveguide (waveguide QED), or by coupling a superconducting qubit
to a transmission line resonator (circuit QED). In the strong coupling regime, the pulse
shape of a photon, which specifies the energy distribution of the photon around the
carrier frequency, has a remarkable influence on the interaction between the photon
and the two-level system. For example, a two-level atom, initially in the ground state,
can be fully excited by a single photon of rising exponential pulse shape provided that
the photon’s full width at half maximum (FWHM) γ is equal to the decay rate κ of the
atom [43, 47, 30]. In contrast, if the incident photon is of Gaussian pulse shape with
frequency bandwidth Ω, the maximal excitation probability is 0.8, which is attained at
Ω = 1.46κ; see, e.g., [43, 35], [47, Fig. 1], [16, Fig. 8], [1, Fig. 2]. Recently, an analytical
expression of the output single photon state has been derived in [30]. Assume that
the Gaussian pulse shape ξ(t) of the input photon has the photon peak arrival time
τ = 3 and frequency bandwidth Ω = 1.46κ. Denote the pulse shape of the output

single photon by η(t). Then it can be found that
∫ 4

−∞
(
|ξ(r)|2 − |η(r)|2

)
dr = 0.8.

Interestingly, the excitation probability of the atom achieves its maximum 0.8 also
at time t = 4. For more discussions of the interaction between a single photon
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3446 Z. Y. DONG, G. F. ZHANG, AND N. H. AMINI

and a two-level system in various physical setups, the interested reader may refer to
[39, 47, 33, 15] and references therein.

The dynamics of a two-level system interacting with a two-photon wave packet
are much more complicated. When a two-level system is driven by two photons in a
single input channel, in other words, the photons can only propagate along one direc-
tion, e.g., in a chiral waveguide [39, 40, 12], the scattering matrix (S-matrix) has been
derived explicitly in [12, 50]. In [42], quantum filters for a Markovian quantum system
driven by an arbitrary number of photons in a single channel have been derived. As
demonstration, the atomic excitation of a two-level system driven by a two-photon
state of Gaussian pulse shape has been studied. Numerical simulations show that the
maximal excitation probability is 0.8796 when the frequency bandwidths Ω1 = Ω2 =
2∗1.46κ; see [42, Fig. 1]. In [27], the scattering of two photons on a quantum two-level
emitter embedded in a one-dimensional waveguide is considered, where it is found that
photon transport depends on the excitation of the emitter. Moreover, the authors of
[27] also studied the correlation and entanglement between the two output photons in-
duced by a two-level emitter which is driven by two counterpropagating input photon
pulses. The effect of the pulse shapes of the two counterpropagating input photons on
the induced correlations of the two output photons is studied in [28]; to be specific, the
output two-photon state is derived, based on which the output intensity spectra are in-
vestigated when the input photons are of Gaussian pulse shapes with various spectral
widths. In [37], time and frequency correlations between the two output photons are
investigated. Moreover, the relationship between induced photon-photon correlations
and the atomic excitation efficiency is analyzed. When a two-level system is driven
by two counterpropagating indistinguishable single photons, it is shown in [11] that
the maximal excitation probability is attained at γ = 5κ for rising exponential pulse
shapes, and Ω = 2 ∗ 1.46κ for Gaussian pulse shapes. Recently, the dynamics of two
two-level systems (qubits) driven by two counterpropagating input photons is studied
in [53]. Based on the derived analytic form of the steady-state output field state, the
Hong–Ou–Mandel (HOM) effect can be demonstrated by controlling the detuning fre-
quency between the photons and the two-level systems. For more discussions on the in-
teraction between a two-level system and two photons, interested readers may refer to
[23, 41, 24]. For the dynamics of two-level systems driven by more photons, interested
readers may refer to [55, 34, 1, 54, 49, 42, 7, 8, 5, 6, 20, 10] and the references therein.

To the best of our knowledge, the exact analytic form in the time domain of the
output two-photon state for a two-level system driven by a two-photon input state has
not yet been given in the literature. From a signal and system perspective, it is always
desirable to have such an explicit form, as it is an important ingredient of quantum
control theory and will facilitate cascade system design [14, 44]. Moreover, the quan-
tum state gives us all the information about the quantum system. As demonstration,
three examples are used to show that physically significant and interesting quantities
can be obtained in terms of the steady-state output two-photon states derived in this
paper.

Motivated by the above discussions, in this paper we derive explicit time-domain
expressions of the output field states of a two-level system driven by two input photons.
Two cases are studied. In Case 1, there is one input channel which contains two
photons. The analytic form of the output two-photon state in the time domain is given
in Theorem 3.2. As a by-product, the frequency-domain form is given in Corollary 3.3.
Two examples are presented, which demonstrate that different input pulses give rise
to drastically different output correlations, both in the time and frequency domains.
In Case 2, there are two input channels, each of which having one photon. After
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RESPONSE OF A TWO-LEVEL SYSTEM TO TWO-PHOTON INPUT 3447

deriving the analytic forms of the output two-photon state (Theorem 4.1 for the time
domain and Corollary 4.3 for the frequency domain), the output two-photon time
distribution and joint spectrum are simulated in Example 3. These simulations reveal
the nonlinear photon-photon interaction induced by a two-level system and the HOM
effect in the two-photon scattering case.

Coherent control has been proven very effective for controlling finite-level quan-
tum systems. The Hamiltonian of a finite-level quantum system usually consists of
two parts: a free Hamiltonian and a controlled Hamiltonian. The controlled Hamil-
tonian can be manipulated by an external field (e.g., a laser or a magnetic field) which
serves as a control signal. Coherent control of quantum finite-level systems concerns
how to engineer the controlled Hamiltonian so that the system state can be steered in
a desired manner; see, e.g., [9, 46, 3, 22, 2, 51, 36] and references therein. Essentially
speaking, in all of these works, coherent control makes use of semiclassical signals such
as lasers or magnetic fields. Recently, the dynamics of a finite-level quantum system
driven by one or a few photons have been studied; see the discussions in the first
two paragraphs of this section. Here, we go beyond coherent control by allowing the
signals involved to be a few photons which are genuinely quantum. Due to the infinite
dimensionality of the field, it is difficult to derive the explicit form of the output signal,
namely, the two-photon state of the field after interaction with the two-level system.
In this paper, we show that the transfer function approach can be used to investigate
the dynamics of a two-level system driven by two photons. Indeed, the transfer func-
tions (2.14) and (4.11) and their corresponding impulse response functions (2.13) and
(4.10) are key to the system analysis carried out in this paper, as the steady-state
output states are explicitly expressed in terms of these transfer functions; see The-
orems 3.2, 4.1 and Corollaries 3.3, 4.3. It is well known that the transfer function
approach is an important method for controller design in the classical systems and
control theory; it is thus expected that the transfer functions defined in this paper will
be useful for the study of controlling two-level systems driven by a few photons. For
instance, the transfer function approach has lately been applied to study a coherent
2-qubit feedback network; see [53] for more details.

The rest of this paper is organized as follows. In section 2, some preliminary
results are reviewed, including quantum system and field, two-level system, single-
photon and two-photon states. The explicit form of the output field state for a two-
level system driven by a two-photon input state in a single input channel is discussed
in section 3. The scenario of a two-level system driven by two counterpropagating
photons is studied in section 4. Section 5 concludes this paper.

2. Preliminary. Notation: |0〉 denotes the vacuum state of a free propagat-
ing field, |g〉 and |e〉 stand for the ground and excited states of a two-level system,
respectively. The symbol † stands for the complex conjugate of a complex number
or the adjoint of a Hilbert space operator. Let σ− = |g〉 〈e|, σ+ = |e〉 〈g| = (σ−)†,
and σz = 2σ+σ− − I, where I is the identity operator. The function δ(t) is the
Dirac delta. i =

√
−1. The commutator between two operators A and B is [A,B] =

AB − BA. Finally, the convolution of two functions f(t) and g(t) is denoted by
f ∗ g(t) =

∫∞
−∞ f(t− r)g(r)dr.

2.1. System and field. In this section, quantum systems and fields are briefly
introduced; more details can be found in, e.g., [31, 13, 4, 45, 48].

The (S,L,H) formalism [14, 44, 52] is very convenient for describing Markovian
quantum systems and networks. Here, S is a unitary scattering operator, the operator
L determines the coupling between the system and its environment (which in this
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paper is a light field), and the self-adjoint operatorH is the initial system Hamiltonian.
The operators S, L, and H are all defined on the system Hilbert space HS in which
system states reside. For clarity of presentation, in this paper we assume that S = I,
namely, an identity operator. The light field has a bosonic annihilation operator b(t)
and a creation operator b†(t); these are operators on a Fock space HF (an infinite-
dimensional Hilbert space). These field operators have the following properties:

(2.1) b(t)|0〉 = 0, [b(t), b(r)] = [b†(t), b†(r)] = 0, [b(t), b†(r)] = δ(t− r) ∀t, r ∈ R.

Define integrated annihilation and creation field operators B(t) ,
∫ t
t0
b(r)dr and

B†(t) ,
∫ t
t0
b†(r)dr, where t0 is the initial time, i.e., the time when the system starts

its interaction with the field.
The dynamics of the joint system (system plus field) can be described by a unitary

operator U(t, t0) on the tensor product Hilbert space HS ⊗HF , which is the solution
to the following quantum stochastic differential equation (QSDE) in Itô form:

(2.2) dU(t, t0) =
{
−(L†L/2 + iH)dt+ LdB†(t)− L†dB(t)

}
U(t, t0), t ≥ t0,

with the initial condition U(t0, t0) = I. In the Heisenberg picture, a system operator
X at time t ≥ t0 is X(t) ≡ jt(X) , U(t, t0)†(X ⊗ I)U(t, t0), which is an operator on
HS ⊗HF and solves the following QSDE:

(2.3) djt(X) = jt(L00(X))dt+ jt(L01(X))dB(t) + jt(L10(X))dB†(t), t ≥ t0,

with the initial condition jt0(X) = X ⊗ I, where the Evans–Parthasarathy superop-
erators are [19, 15, 42]

L00(X) ,
1

2
L†[X,L] +

1

2
[L†, X]L− i[X,H], L01(X) , [L†, X], L10(X) , [X,L].

After interaction, the quantum output field Bout(t) , U(t, t0)†(I ⊗ B(t))U(t, t0) is
generated, which is also an operator on HS ⊗HF and whose dynamics are given by
the following QSDE:

(2.4) dBout(t) = jt(L)dt+ dB(t).

In this paper, instead of integrated quantum processes B(t) and Bout(t), we find it
more convenient to work directly with the quantum processes b(t) and

(2.5) bout(t) , U(t, t0)†b(t)U(t, t0), t ≥ t0.

Moreover, the output field annihilation operator bout(t) enjoys the following property
(see, e.g., [4, sect. 5.2]):

(2.6) bout(t) = U(τ, t0)†b(t)U(τ, t0) ∀τ ≥ t ≥ t0.

Finally, let τ = max{t1, t2} for any t1, t2≥ t0. Then by (2.6), we have [bout(t1), bout(t2)]
= U(τ, t0)† [b(t1), b(t2)]U(τ, t0). However, noticing (2.1), we conclude that

(2.7) [bout(t1), bout(t2)] = 0 ∀t1, t2 ≥ t0.

Equation (2.7) is the so-called self-nondemolition feature of quantum light fields [4].
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RESPONSE OF A TWO-LEVEL SYSTEM TO TWO-PHOTON INPUT 3449

2.2. Two-level system with a single input. In the (S,L,H) formalism in-
troduced above, the two-level system studied in this paper has the system parameters
S = I, L =

√
κσ−, H = ωd

2 σz, where κ > 0 determines the coupling strength be-
tween the system and the field, and ωd ∈ R is the frequency detuning (the difference
between the carrier frequency of the input field and the atomic transition frequency of
the two-level system). With these parameters, by (2.3)–(2.4), we have the following
QSDEs:

σ̇−(t) = −
(κ

2
+ iωd

)
σ−(t) +

√
κσz(t)b(t),(2.8)

bout(t) =
√
κσ−(t) + b(t), t ≥ t0.(2.9)

Next, we study several properties of the system (2.8)–(2.9). Notice that

(2.10) L|g〉 = 0, H|g〉 = −ωd
2
|g〉.

That is, the coupling operator L does not generate photons and the initial system
Hamiltonian H does not excite the two-level system. As a result, when this system is
initialized in the vacuum state |g〉 and is driven by a two-photon state (to be discussed
in section 2.3), at any time instant t the joint system may have either two photons in
the field, or one photon in the field and one excited atomic state. That is, the number
of excitations is a conserved quantity at all times. (Here the word “excitation” stands
for a photon or an excited two-level system.)

It is worth mentioning the quantum causality conditions [49]

[X(t), b(τ)] = [X(t), b†(τ)] = 0, t ≤ τ,(2.11)

[X(t), bout(τ)] = [X(t), b†out(τ)] = 0, t ≥ τ.(2.12)

Equation (2.11) indicates that the system operator X(t) is influenced by the past
input field b(r) (t0 ≤ r < t). On the other hand, (2.12) tells us that the past output
field is not affected by the current and future system state. Finally, because of (2.11),
σz(t)b(t) in (2.8) is equal to b(t)σz(t). Moreover, σz(t)|0g〉 = −|0g〉. Therefore,
postmultiplying both sides of (2.8)–(2.9) by |0g〉 yields a linear dynamical system. In
this sense, we can define the impulse response function

(2.13) gG(t) ,

{
δ(t)− κe−(κ2 +iωd)t, t ≥ 0,

0, t < 0,

and the corresponding transfer function

(2.14) G[s] =
s+ iωd − κ

2

s+ iωd + κ
2

.

Remark 2.1. It turns out that gG(t) and G[s] are very helpful in presenting the
analytic forms of the two-photon output field state of a two-level system driven by a
two-photon input state; see Theorem 3.2 and Corollary 3.3 for details.

2.3. Two-photon states. Compared with Gaussian states, single- and multi-
photon states are highly nonclassical and have found promising applications in quan-
tum computation and quantum signal processing [25, 28, 37, 17, 26, 38]. Given a
function ξ ∈ L2(R,C), define an operator

(2.15) B(ξ) ,
∫ ∞
−∞

ξ†(t)b(t)dt,
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whose adjoint operator is

(2.16) B†(ξ) =

∫ ∞
−∞

ξ(t)b†(t)dt.

A continuous-mode single-photon state can be defined as

(2.17) |1ξ〉 , B†(ξ)|0〉,

where ‖ξ‖ = 1 for normalization. For example, if the pulse shape is ξ(t) = −√γe
γ
2 t

(1− u(t)), where u(t) is the Heaviside function

(2.18) u(t) =

{
1, t > 0,
0, t ≤ 0,

then in the frequency domain we have f [ω] ,
∫∞
−∞ e−iωtξ(t)dt = 1√

2π

√
γ

iω−γ/2 . Clearly,

f [ω] describes a Lorentzian spectrum with FWHM γ. In the calculation of various
few-photon states, the notation

(2.19) |1t〉 , b†(t)|0〉 ∀t ∈ R,

turns out to be very useful. Roughly speaking, 1t means that a photon is generated
by b†(t) from the vacuum. By (2.1), we have 〈1t|1r〉 = δ(t− r). Moreover, by (2.16)
and (2.19), the single-photon state |1ξ〉 can be rewritten as |1ξ〉 =

∫∞
−∞ ξ(t)|1t〉dt.

That is, the single-photon state |1ξ〉 is in the form of a continuum superposition of
|1t〉. Consequently, {|1t〉 : t ∈ R} is a complete single-photon basis. Similarly

(2.20)

∫ ∞
−∞

dl |1lg〉 〈1lg|+ |0e〉〈0e|

is an identity operator in the one-excitation case.
In what follows, we introduce two-photon states. Given two functions ξ1, ξ2 ∈

L2(R,C) satisfying ‖ξ1‖ = ‖ξ2‖ = 1, we may define the following two-photon state:

(2.21) |2ξ1,ξ2〉 ,
1√
N2

B†(ξ1)B†(ξ2)|0〉,

where N2 = 1 + |〈ξ1|ξ2〉|2 is the normalization coefficient. If ξ1 ≡ ξ2, then |2ξ1,ξ2〉
is a continuous-mode two-photon Fock state [1, 42]. More generally, an arbitrary
continuous-mode two-photon state is given by∫ ∞

−∞
dp1

∫ ∞
−∞

dp2 f(p1, p2)b†(p1)b†(p2) |0〉 =

∫ ∞
−∞

dp1

∫ ∞
−∞

dp2 f(p1, p2) |1p11p2〉 ,

where f(p1, p2) is an ordinary function of time variables p1 and p2, satisfying the
symmetry property f(p1, p2) = f(p2, p1). It can be easily checked that∫ ∞

−∞
dp′1

∫ ∞
−∞

dp′2

∫ ∞
−∞

dp1

∫ ∞
−∞

dp2f
†(p′1, p

′
2)f(p1, p2)〈1p′11p′2 |1p11p2〉 = 2.

Therefore, { 1√
2
|1p11p2〉 : p1, p2 ∈ R} is a complete orthonormal basis of continuous-

mode two-photon pure states. As a result,

(2.22)
1

2

∫ ∞
−∞

dp1

∫ ∞
−∞

dp2 |1p11p2g〉 〈1p11p2g|+
∫ ∞
−∞

dp |1pe〉 〈1pe|

is an identity operator for the 2-excitation composite system.
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3. One-channel case. In this section, we study the dynamics of a two-level
system which is driven by a two-photon state |2ξ1,ξ2〉. The main results are explicit
expressions of the steady-state output field state in the time and frequency domains.

3.1. The output field state in the time domain. In this subsection, an
analytic form of the output two-photon state is presented in the time domain.

Integrating (2.8) from t0 to t gives

σ−(t) = e−(κ2 +iωd)(t−t0)σ−(t0) +
√
κ

∫ t

t0

dr e−(κ2 +iωd)(t−r)σz(r)b(r),(3.1)

bout(t) =
√
κσ−(t) + b(t).(3.2)

Assume that the two-level system is initialized in the ground state |g〉 and the input
field is in the two-photon state |2ξ1,ξ2〉. Then the initial joint system-field state is

(3.3) |Ψ(t0)〉 = |2ξ1,ξ2g〉 =
1√
N2

B†(ξ1)B†(ξ2) |0g〉 .

By the Schrödinger equation, the joint system-field state at time t ≥ t0 is

(3.4) |Ψ(t)〉 = U(t, t0) |Ψ(t0)〉 .

In this paper, we are interested in the steady-state output field state, i.e., we
assume that the interaction starts in the remote past (t0 = −∞) and terminates in
the far future (t =∞), [39, 40, 12, 41, 33, 32, 50, 21, 49, 30, 29]. In the steady state,
the two-level system is in the ground state |g〉 and the two photons are in the output
field. Thus, the steady-state output field state is obtained by tracing out the system

(3.5) |Ψout〉 = lim
t0→−∞
t→∞

〈g|Ψ(t)〉 = lim
t0→−∞
t→∞

〈g|U(t, t0)|Ψ(t0)〉 .

The aim of this section is to derive analytic expressions of |Ψout〉. Substituting (3.3)
into (3.5) yields

(3.6) |Ψout〉 =
1√
N2

lim
t0→−∞
t→∞

∫ t

t0

dt1ξ1(t1)

∫ t

t0

dt2ξ2(t2) 〈g|U(t, t0)b†(t1)b†(t2) |0g〉 .

As discussed above, the system (2.8)–(2.9) satisfies the conditions (2.10). Hence,
if the system is initialized in the ground state |g〉 and driven by a two-photon state
|2ξ1,ξ2〉, the number of excitations of the joint system is always two for all times.
Consequently, by using the identity operator in (2.22), we have

(3.7)

〈g|U(t, t0)b†(t1)b†(t2) |0g〉

=
1

2

∫ ∞
−∞

dp1

∫ ∞
−∞

dp2 |1p11p2〉 〈1p11p2g|U(t, t0)b†(t1)b†(t2) |0g〉 , t ≥ t0.

Remark 3.1. The term 〈g|U(t, t0)b†(t1)b†(t2)|0g〉 in (3.7) is an (unnormalized)
two-photon field state after tracing out the system. Equation (3.7) expresses this
field state in terms of a coherent superposition of a complete two-photon basis,{

1√
2
|1p11p2〉 : p1, p2 ∈ R

}
,

with weights 1√
2
〈1p11p2g|U(t, t0)b†(t1)b†(t2)|0g〉.
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The substitution of (3.7) into (3.6) produces

|Ψout〉 =
1

2
√
N2

∫ ∞
−∞

dp1

∫ ∞
−∞

dp2 |1p11p2〉

× lim
t0→−∞
t→∞

∫ t

t0

dt1 ξ1(t1)

∫ t

t0

dt2 ξ2(t2) 〈1p11p2g|U(t, t0)b†(t1)b†(t2) |0g〉 .(3.8)

Therefore, in order to get an analytic form of |Ψout〉, we will have to calculate the
term in (3.8). The calculations are given in Appendix A; see Lemma A.1.

The following result presents an analytic form of |Ψout〉 in the time domain.

Theorem 3.2. The steady-state output field state |Ψout〉 is

(3.9) |Ψout〉 =
1

2
√
N2

∫ ∞
−∞

dp1

∫ ∞
−∞

dp2 η(p1, p2)b†(p1)b†(p2) |0〉 ,

where

(3.10) η(p1, p2) = ν1(p1)ν2(p2) + ν1(p2)ν2(p1) + ζ(p1, p2) + ζ(p2, p1)

with

(3.11) νj(t) = gG ∗ ξj(t), j = 1, 2,

and

(3.12)

ζ(p1, p2) = 2κ e−
κ
2 (p1−p2)−iωd(p1+p2)

∫ p1

p2

dτ e2iωdτ

×
[
ξ1(τ)ξ2(τ)− ξ1(τ)ν2(τ) + ν1(τ)ξ2(τ)

2

]
, p1 ≥ p2.

In particular, if ξ1 = ξ2 = ξ (an input two-photon Fock state) and ωd = 0, then
ν1 = ν2 = ν and

ζ(p1, p2) =

{
2κ e−

κ
2 (p1−p2)

∫ p1
p2
dτ ξ(τ) [ξ(τ)− ν(τ)] , p1 ≥ p2,
0, p1 < p2.

The proof of Theorem 3.2 is given in Appendix A.

3.2. The output field state in the frequency domain. In this subsection,
an analytic form of the output two-photon state is presented in the frequency domain.

The Fourier transform of the annihilation operator b(t) is defined as

(3.13) b[ω] =
1√
2π

∫ ∞
−∞

e−iωtb(t)dt, ω ∈ R.

Similarly, the Fourier transform of the function ξ(t) in (2.15) can be defined as

(3.14) ξ[µ] =
1√
2π

∫ ∞
−∞

e−iµtξ(t)dt, µ ∈ R.

It can be easily verified that
∫∞
−∞ ξ(t)b†(t)dt =

∫∞
−∞ ξ[µ]b†[µ]dµ. Fourier transform-

ing |Ψout〉 in (3.9) with respect to the time variables p1 and p2, yields an analytic
expression of |Ψout〉 in the frequency domain, which is given by the following result.

D
ow

nl
oa

de
d 

09
/2

3/
21

 to
 1

58
.1

32
.1

61
.5

2 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

RESPONSE OF A TWO-LEVEL SYSTEM TO TWO-PHOTON INPUT 3453

Corollary 3.3. The steady-state output field state |Ψout〉 in the frequency do-
main is

(3.15) |Ψout〉 =
1

2
√
N2

∫ ∞
−∞

dω1

∫ ∞
−∞

dω2 η[ω1, ω2]b†[ω1]b†[ω2]|0〉,

where

(3.16)

η[ω1, ω2] = G[iω1]G[iω2] (ξ1[ω2]ξ2[ω1] + ξ1[ω1]ξ2[ω2])

+
1

πκ

∫ ∞
−∞

dµ1 ξ1[µ1]ξ2[ω1 + ω2 − µ1]g(ω1, ω2, µ1, ω1 + ω2 − µ1)

and

(3.17) g(ω1, ω2, µ1, µ2) = (G[iω1]− 1)(G[iω2]− 1)(G[iµ1] +G[iµ2]− 2)

with G[s] given in (2.14). In particular, if ξ1 = ξ2 = ξ (an input two-photon Fock
state) and ωd = 0, then

(3.18)

η[ω1, ω2] = 2G[iω1]G[iω2]ξ[ω1]ξ[ω2]

+
1

πκ

∫ ∞
−∞

dµ1 ξ[µ1]ξ[ω1 + ω2 − µ1]g(ω1, ω2, µ1, ω1 + ω2 − µ1).

3.3. Numerical examples. In this section, two examples are used to illustrate
Theorem 3.2 (for the time domain) and Corollary 3.3 (for the frequency domain).
In Example 1, the input photons are assumed to have Gaussian pulse shapes. In
Example 2, the input photons are assumed to have rising exponential pulse shapes.
Simulations show that different input pulse shapes have a remarkable influence on the
probability distributions and joint spectra of output photons.

Example 1. In this example, we first study the input and output two-photon
probability distributions in the time domain. Simulation results are given in Figure 1.

In Figure 1, we consider that the two-photon input Fock state has a Gaussian
pulse shape, i.e., the two-photon wave packets are given by

(3.19) ξ1(t) = ξ2(t) =

(
Ω2

2π

) 1
4

exp

(
−Ω2

4
t2
)
,

where Ω is the photon frequency bandwidth. For the scenario of a two-level system
driven by a single-photon Gaussian state, it is clear that the output single-photon state
is no longer of Gaussian pulse shape. Moreover, the excitation probability is attained
at the maximum value 0.8 when the photon bandwidth is chosen to be Ω = 1.46κ;
see [16, 42] for more details.

Here, for the two-photon scenario considered in Figure 1, the input two-photon
bandwidths are chosen to be (a) Ω = 1.46κ, (c) Ω = 2.92κ, and (e) Ω = 4.38κ,
respectively. The corresponding output two-photon probability distributions are given
by (b), (d), and (f). By comparing these subfigures, it can be observed that the output
two photons have non-Gaussian pulse shapes and their probability distributions in
the time domain are more spread out than their input counterparts. Moreover, if
the photon bandwidth is set to be Ω = 2.92κ, the output two-photon probability
distribution consists of two peaks, each of which is similar to the input probability
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Fig. 1. (Color online) The input two-photon probability distributions 1
2
|ξ(p1)ξ(p2)|2 and output

two-photon probability distributions 1
8
|η(p1, p2)|2 for different bandwidths Ω of the input Gaussian

pulses. (a), (c), and (e) are the input two-photon probability distributions with Ω = 1.46κ, Ω = 2.92κ,
and Ω = 4.38κ, respectively. (b), (d), and (f) are the corresponding output two-photon probability
distributions.

distribution. Interestingly, it has been shown in [42] that Ω = 2.92κ is exactly the
optimal ratio for the atomic excitation by two input Gaussian photons.

Next, we study the input and output two-photon joint spectra; see Figure 2.
By comparing Figures 2(a), (c), (e) and Figures 2(b), (d), (f) we see that in the
frequency domain the output photons are more concentrated at the origin than their
input counterparts. Moreover, comparing Figures 1 and 2 we see that the scaling
Ω = 2.92κ gives rise to more interesting phenomena in the time domain than in the
frequency domain. Therefore, the output two-photon state can be understood much
better when it is viewed from both the time and frequency domains.

Example 2. Let the input two-photon state be |2ξ,ξ〉, where ξ(t) = −√γe
γ
2 t

(1− u(t)) with u(t) being the Heaviside function in (2.18). Also, we fix γ = 0.1.

By means of Theorem 3.2, the input and output two-photon probability distribu-
tions are plotted in Figure 3. Interestingly, when the coupling κ = γ = 0.1, the output
two-photon probability distribution is almost symmetric with that of the input; cf.
Figures 3(a) and (b). When κ = 0.5 in Figure 3(c), the output two photons can be
distributed in all regions. However, when the coupling is relatively large (κ = 10 in
contrast to γ = 0.1), the output two photons are mainly distributed in the region
p1, p2 ≤ 0 as shown in Figure 3(d).

In what follows, we discuss the correlation between the two output photons in
the frequency domain. Based on Corollary 3.3, the output two-photon joint spectra
1
8 |η[ω1, ω2]|2 are plotted in Figure 4. It can be observed that the output two-photon
joint spectra are almost the same as that of the input (Figure 4(a)) when the coupling
strength κ is relatively small (κ = 0.1 in Figure 4(b)) or large (κ = 2 in Figure 4(e)
and κ = 10 in Figure 4(f)). However, when the coupling strength κ = 0.5, the two
output photons can be strongly anticorrelated in nearly the whole region except that
they are correlated at the origin; see the three parts in Figure 4(c); this has also
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Fig. 2. (Color online) The input two-photon joint spectra 1
2
|ξ[ω1]ξ[ω2]|2 and output two-photon

joint spectra 1
8
|η[ω1, ω2)|2 for different bandwidths Ω. (a), (c), and (e) are the input two-photon

joint spectra with Ω = 1.46κ, Ω = 2.92κ, and Ω = 4.38κ, respectively. (b), (d), and (f) are the
corresponding output two-photon joint spectra.

Fig. 3. (Color online) The input (a) and output two-photon probability distributions for differ-
ent couplings: (b) κ = 0.1; (c) κ = 0.5; and (d) κ = 10.

been observed in cavity optomechanical systems [24]. Moreover, when the detuning is
nonzero, for example, ωd = 0.1, the anticorrelation between the two output photons
becomes weak and the maximum value is attained at the origin; see Figure 4(d).
Interestingly, in contrast to the joint spectra for Gaussian pulse shapes in Figure 2,
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Fig. 4. (Color online) The input and output two-photon joint spectra. The input two-photon
joint spectrum is plotted in (a). The output two-photon joint spectra with different couplings are
given in (b) κ = 0.1; (c) κ = 0.5; (e) κ = 2; and (f) κ = 10. (d) corresponds to the nonzero detuning
case (ωd = 0.1, κ = 0.5). There is a red point at the origin in (b), (e), and (f), where the maximal
value of 1

8
|η[ω1, ω2]|2 is attained. In contrast, there are two maximal values in (c), which are along

the line ω1 + ω2 = 0, thus indicating photon-photon anticorrelation.

anticorrelation is observed in this case of Lorentzian pulse shape (see Figure 4(c)).
Such a difference means that different pulse shapes give rise to drastically different
frequency entanglement.

Remark 3.4. As shown in Figure 4(c), the two output photons can be strongly
anticorrelated, which means that there exists a sufficient interaction between the
two input photons and the two-level system (or between the photons through the
system) when the relative size of the interaction time 1/κ and the photon lifetime 1/γ
are comparable. On the other hand, when the interaction time is sufficiently small
compared to the photon lifetime (Figure 4(f)), the photon-photon interaction is very
weak. Finally, when the interaction time is relatively large, the photons cannot “live”
long enough to be absorbed by the two-level system; see Figure 4(b).

4. Two-channel case. In this section, we consider the two-level system with
two input channels, each containing one photon. The analytic form of the steady-state
output field state is presented, in both the time and frequency domains.

The system could be depicted as in Figure 5. In this scheme, the first output
channel bout,1 can be regarded as the right-going direction, the second output channel
bout,2 indicates the left-going direction. The photon i is coupled to the two-level
system with the coupling strength κi (i = 1, 2). Clearly, the input field state is a

product state B†1(ξ1)B†2(ξ2)|0〉.

4.1. The output field state in the time domain. In this subsection, an
analytic form of the output two-photon state is presented in the time domain.
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Fig. 5. (Color online) Two counterpropagating pulsed photons coupled to a two-level system
initialized in the ground state.

Assume there is no detuning (namely, ωd = 0), the system model is

σ̇− = −κ1 + κ2
2

σ− +
√
κ1σz(t)b1(t) +

√
κ2σz(t)b2(t),

bout,1(t) =
√
κ1σ−(t) + b1(t),

bout,2(t) =
√
κ2σ−(t) + b2(t), t ≥ t0.

(4.1)

The initial joint system-field state is

(4.2) |Ψ(t0)〉 = B†1(ξ1)B†2(ξ2) |0g〉 ,

where ‖ξ1‖ = ‖ξ2‖ = 1. At time t ≥ t0, the joint system-field state is

(4.3) |Ψ(t)〉 = U(t, t0)B†1(ξ1)B†2(ξ2) |0g〉 .

In analogy with the single-channel case in section 3.1, the steady-state output field
state is

(4.4) |Ψout〉 = lim
t0→−∞
t→∞

〈g|Ψ(t)〉 = lim
t0→−∞
t→∞

〈g|U(t, t0)B†1(ξ1)B†2(ξ2) |0g〉 .

Inserting the two-photon basis{
1

2

∫
dp1

∫
dp2 |11p111p2〉 〈11p111p2 | ,

∫
dp1

∫
dp2 |11p112p2〉 〈11p112p2 | ,

1

2

∫
dp1

∫
dp2 |12p112p2〉 〈12p112p2 |

}
into (4.4), the steady-state output field state becomes

(4.5)

|Ψout〉 =
1

2

∫
dp1

∫
dp2 |11p111p2〉 lim

t0→−∞
t→∞

∫ t

t0

dt1

∫ t

t0

dt2 ξ1(t1)ξ2(t2)

×
2∑

i,j=1

〈0g| bout,i(p1)bout,j(p2)b†1(t1)b†2(t2) |0g〉 .

Thus, in order to derive the analytic form of the steady-state output field state, we
need to calculate the following quantities:

〈0g| bout,1(p1)bout,1(p2)b†1(t1)b†2(t2) |0g〉 ,(4.6)

〈0g| bout,1(p1)bout,2(p2)b†1(t1)b†2(t2) |0g〉 ,(4.7)

〈0g| bout,2(p1)bout,2(p2)b†1(t1)b†2(t2) |0g〉 ,(4.8)

〈0g| bout,2(p1)bout,1(p2)b†1(t1)b†2(t2) |0g〉 .(4.9)
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The calculations of the above quantities are given in Appendix B, based on which
we can derive the main result of this section, Theorem 4.1. The following notations
are used in Theorem 4.1 and Corollary 4.3.

• Similar to (2.13) in section 2.2, an impulse response function can be defined
as
(4.10)

gG(t) ≡ [gGij (t)] ,

 δ(t)I2 −
[ √

κ1√
κ2

]
e−

κ1+κ2
2 t

[ √
κ1

√
κ2
]
, t ≥ 0,

0, t < 0.

• The corresponding transfer function is

(4.11) G[s] ≡ [Gmn[s]] =
1

s+ κ1+κ2

2

[
s− κ1−κ2

2 −√κ1κ2
−√κ1κ2 s+ κ1−κ2

2

]
.

• We define

(4.12)
2

j
,

{
2, j = 1,
1, j = 2.

Theorem 4.1. The steady-state output field state |Ψout〉 in the time domain is

(4.13) |Ψout〉 =
1

2

2∑
i,j=1

∫ ∞
−∞

dp1

∫ ∞
−∞

dp2 [ηij(p1, p2) + ηij(p2, p1)] b†i (p1)b†j(p2)|0〉,

where
(4.14)

ηij(p1, p2) =



[gGii ∗ ξi(p1)]× [gG 2
i
j
∗ ξ 2

i
(p2)] + [gGij ∗ ξi(p2)]× [gG 2

i
i
∗ ξ 2

i
(p1)]

− 2

∫ p2

−∞
dr {ξ1(r) [gG12

∗ ξ2(r)] + ξ2(r) [gG12
∗ ξ1(r)]}

×
∫ r

−∞
dτ1 e

−κ1+κ2
2 (p2−τ1)

×
[
κjgGij ∗ δ(p1 − τ1) +

√
κ1κ2gG

i 2
j

∗ δ(p1 − τ1)
]
, p1 ≥ p2,

0, p1 < p2,

for i, j = 1, 2. In particular, if κ1 = κ2 = κ, ξ1 = ξ2 = ξ, in other words, the
two-level system is equally coupled to two indistinguishable input photons, we have
η11(p1, p2) = η22(p1, p2), η12(p1, p2) = η21(p1, p2), where
(4.15)
η11(p1, p2) = [gG11

∗ ξ(p1)]× [gG12
∗ ξ(p2)] + [gG11

∗ ξ(p2)]× [gG12
∗ ξ(p1)] + χ(p1, p2),

(4.16)
η12(p1, p2) = [gG11

∗ ξ(p1)]× [gG11
∗ ξ(p2)] + [gG12

∗ ξ(p2)]× [gG12
∗ ξ(p1)] + χ(p1, p2)

with

(4.17) χ(p1, p2) =

4κ e−κ(p1+p2)
∫ p2

−∞
dr e2κrξ(r) [gG12

∗ ξ(r)] , p1 ≥ p2,

0, p1 < p2.
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In this case, the resulting steady-state output field state is

(4.18)

|Ψout〉 =
1

2

∫ ∞
−∞

dp1

∫ ∞
−∞

dp2 [η11(p1, p2) + η11(p2, p1)] b†1(p1)b†1(p2)|0〉

+

∫ ∞
−∞

dp1

∫ ∞
−∞

dp2 [η12(p1, p2) + η12(p2, p1)] b†1(p1)b†2(p2)|0〉

+
1

2

∫ ∞
−∞

dp1

∫ ∞
−∞

dp2 [η11(p1, p2) + η11(p2, p1)] b†2(p1)b†2(p2)|0〉.

Remark 4.2. The first two terms in (4.14)–(4.16) represent the single-photon scat-
tering processes in the two-photon scattering scheme, the third term is the temporal
correlation between the output photons induced by the two-level system [28, 37],
which are called the background fluorescence in [40].

4.2. The output field state in the frequency domain. Similarly, as in the
one-channel case discussed before, by applying the Fourier transform to the time
variables p1, p2 in (4.13), the steady-state output field state in the frequency domain
can be obtained.

Corollary 4.3. The steady-state output field state |Ψout〉 is

(4.19)

|Ψout〉 =
1

2

∫ ∞
−∞

dω1

∫ ∞
−∞

dω2 T11[ω1, ω2]b†1[ω1]b†1[ω2]|0〉

+

∫ ∞
−∞

dω1

∫ ∞
−∞

dω2 T12[ω1, ω2]b†1[ω1]b†2[ω2]|0〉

+
1

2

∫ ∞
−∞

dω1

∫ ∞
−∞

dω2 T22[ω1, ω2]b†2[ω1]b†2[ω2]|0〉,

where

T11[ω1, ω2]

= G11[iω1]G12[iω2]ξ1[ω1]ξ2[ω2] +G11[iω2]G12[iω1]ξ1[ω2]ξ2[ω1]

+

√
κ1κ2
πκ21

∫ ∞
−∞

dµ1 ξ1[µ1]ξ2[ω1 + ω2 − µ1]g(ω1, ω2, µ1, ω1 + ω2 − µ1),

(4.20)

T12[ω1, ω2]

= G11[iω1]G22[iω2]ξ1[ω1]ξ2[ω2] +G12[iω1]G12[iω2]ξ1[ω2]ξ2[ω1]

+
κ2
πκ21

∫ ∞
−∞

dµ1 ξ1[µ1]ξ2[ω1 + ω2 − µ1]g(ω1, ω2, µ1, ω1 + ω2 − µ1),

(4.21)

T22[ω1, ω2]

= G12[iω1]G22[iω2]ξ1[ω1]ξ2[ω2] +G12[iω2]G22[iω1]ξ1[ω2]ξ2[ω1]

+
κ2
√
κ1κ2

πκ31

∫ ∞
−∞

dµ1 ξ1[µ1]ξ2[ω1 + ω2 − µ1]g(ω1, ω2, µ1, ω1 + ω2 − µ1),

(4.22)

and

(4.23) g(ω1, ω2, µ1, µ2) = (G11[iω1]− 1)(G11[iω2]− 1)(G11[iµ1] +G11[iµ2]− 2)

with Gmn[s] given by (4.11).

D
ow

nl
oa

de
d 

09
/2

3/
21

 to
 1

58
.1

32
.1

61
.5

2 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

3460 Z. Y. DONG, G. F. ZHANG, AND N. H. AMINI

Fig. 6. (Color online) The time distributions |η12(p1, p2) + η12(p2, p1)|2 of the two output
photons scattering in different directions. The first row corresponds to the probabilities of the two
photons being scattered into different channels. For comparison, the second row shows the linear
single-photon scattering processes with the nonlinear term χ(p1, p2) in (4.16) being removed.

Remark 4.4. If κ1 = κ2 = κ, then the steady-state output field state |Ψout〉 in
(4.19) has the same form of the postscattering state in [28, eq. (28)]. Moreover,
the four-wave mixing processes, i.e., the terms containing g(ω1, ω2, µ1, ω1 + ω2 − µ1)
in (4.20)–(4.22), are related to the nonlinear frequency entanglement of two-photon
scattering. The output photons with frequencies ω1 and ω2 can be generated by any
pair of incident photons with frequencies µ1, µ2 satisfying ω1 + ω2 = µ1 + µ2. That
is, the sum of the energies of the two input photons is conserved. In addition, the
functions Tij [ω1, ω2] (i, j = 1, 2) should be symmetric, i.e., Tij [ω1, ω2] = Tij [ω2, ω1].
However, this is hard to see from the forms given above, due to their complex form.
Nevertheless, the numerical simulations presented in the next section clearly reveal
the symmetry required.

4.3. Numerical example.

Example 3. In the aid of the two analytic forms of the two-photon output field
state derived above, we are able to compute various physical quantities. As demon-
stration, in this example we compute the probabilities of finding the two photons
in different directions. These probabilities are visualized in both the time and fre-
quency domains. The pulse shapes of the two input photons are given, respectively,
by ξi(t) = −√γie

γi
2 t(1 − u(t)) (i = 1, 2), where u(t) is the Heaviside function de-

fined in (2.18). For simplicity, we assume that the input two photons have the same
pulse shapes, i.e., γ1 = γ2 = γ, and are equally coupled to the two-level system,
κ1 = κ2 = κ.

First, we focus on the time distribution of the two output photons scattering
in different directions, for which |η12(p1, p2) + η12(p2, p1)|2 in (4.16) is plotted in
Figure 6. As the two-level system can only absorb a single photon each time or
spontaneously emit a single photon, the time distributions vanish for p1, p2 > 0, i.e.,
η12(p1, p2) + η12(p2, p1) ≡ 0 for p1, p2 > 0 as can be seen in the first row of Figure 6.
Actually, this can be verified by Theorem 4.1 directly. When γ � κ, the two photons
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Fig. 7. (Color online) γ = 0.1, κ = 0.01.

do not live long enough for sufficient interaction with the two-level system, thus the
time distribution is barely modified by the two-level system, as shown in Figure 6(a).
This is consistent with the case discussed in [37, Fig. 7]. When the bandwidth γ is
comparable to coupling κ, the presence of two valleys (|η12(p1, p2) +η12(p2, p1)|2 ≈ 0)
in the region p1, p2 ≤ 0 in Figure 6(b) demonstrates the signature of the nonlinearity
induced by the two-level system; in other words, it is impossible to observe the two
photons in different output channels. Such nonlinearity cannot be found in the linear
single-photon scattering processes. When γ � κ, the lifetime of the two-level system
is too short or, in other words, the energies of two input photons are too spread out
for efficient excitation; the two-level system acts as a fully reflecting mirror, and the
strongest nonlinearity can be attained in the two valleys close to the diagonal p1 = p2
as shown in Figure 6(c); this is also consistent with [37, Fig. 7].

In the following, we fix γ = 0.1 and study the output two-photon joint spectra
for different couplings κ. In Figure 7, the input two-photon joint spectrum is shown
in Figure 7(a), the joint spectra for the two output photons in either the first or the
second channel are given in Figure 7(b), the joint spectra for each channel containing
one output photons are provided in Figure 7(c), and Figure 7(d) shows the difference of
the joint spectra between Figures 7(b) and (c). The same settings hold in Figures 8–9.
We have the following observations.

(i) In Figure 7, when the coupling strength is very small (κ = 0.01) compared
with γ, it can be seen that the values of two-photon spectra are rather small in
most regions away from the origin; see Figure 7(b). On the other hand, when
each channel contains exactly one output photon, the two photons become
correlated; see Figure 7(c). In Figure 7(d), the two output photons exhibit
the HOM bunching effect [18] only in the frequency region (ω1, ω2) ≈ (0, 0),
and they are mostly in the different channels in the other frequency regions.
Similar observations can be found in [28, Fig. 5].

(ii) In Figure 8, κ = γ = 0.1. In this case, if the two output photons are in the
same channel (Figure 8(b)), they are strongly anticorrelated. This demon-
strates the four-wave mixing nonlinear effect; see Remark 4.4. In contrast,
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Fig. 8. (Color online) γ = 0.1, κ = 0.1.

Fig. 9. (Color online) γ = 0.1, κ = 0.5.

if each channel contains exactly one output photon (Figure 8(c)), the two
output photons are strongly correlated. This scenario is consistent with [28,
Fig. 5] and [37, Fig. 6]. Finally, as can be seen in Figure 8(d), along the line
ω1 + ω2 = 0 the HOM bunching effect is prominent.

(iii) In Figure 9, we choose κ = 0.5. As pointed out by [37, Fig. 6], the two-level
system was found to be linear and shape preserving when κ � γ. Thus in
this case, the two output photons are mainly reflected (Figure 9(d)) and the
joint spectra are similar to that of the input; cf. Figures 9(a) and (c). On the
other hand, if one of them is indeed transmitted, the two output photons are
strongly anticorrelated (Figure 9(b)), which is similar to the (11, 22) case in
[28, Fig. 5]. This is also consistent with the result of two-photon transport in
a Kerr nonlinear cavity [23].
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5. Conclusion. In this paper, the response of a two-level system to two-photon
inputs has been investigated. The output two-photon states have been explicitly
derived in both the time and frequency domains when the two photons are either in
the same channel or counterpropagating along different directions. For both cases,
simulation results have demonstrated rich and interesting properties of the output
two-photon states. Future research includes the applications of the theoretical results
in the field of quantum communication and quantum computing.

Appendix A. Proof of Theorem 3.2. In this appendix, we first prove
Lemma A.1 which presents a form of the output two-photon pulse shape; after that,
we simplify it to get the final expression as given in Theorem 3.2.

Lemma A.1. The steady-state output field state |Ψout〉 in (3.5) can be calculated
as

(A.1) |Ψout〉 =
1

2
√
N2

∫ ∞
−∞

dp1

∫ ∞
−∞

dp2 η(p1, p2)b†(p1)b†(p2) |0〉 ,

where

(A.2)

η(p1, p2)

, ξ1(p2)ξ2(p1) + ξ1(p1)ξ2(p2)

− κ
∫ p1

−∞
dτ e−(κ2 +iωd)(p1−τ)[ξ1(p2)ξ2(τ) + ξ2(p2)ξ1(τ)]

− κ
∫ p2

−∞
dτ e−(κ2 +iωd)(p2−τ)[ξ1(p1)ξ2(τ) + ξ2(p1)ξ1(τ)]

+ κ2
∫ p2

−∞
dτ

∫ p1

−∞
dr e−(κ2 +iωd)(p1+p2−τ−r)[ξ1(r)ξ2(τ) + ξ2(r)ξ1(τ)]

+ κ2
[ ∫ p1

−∞
dτ e−(κ2 +iωd)(p1−τ)

∫ τ

−∞
dτ1 δ(τ1 − p2)

+

∫ p2

−∞
dτ e−(κ2 +iωd)(p2−τ)

∫ τ

−∞
dτ1 δ(τ1 − p1)

]
× e−(κ2−iωd)(τ−τ1)

∫ τ

−∞
dτ2 e

−(κ2 +iωd)(τ−τ2)[ξ1(τ2)ξ2(τ) + ξ2(τ2)ξ1(τ)]

− κ3
∫ p1

−∞
dr

∫ p2

−∞
dτ e−(κ2 +iωd)(p1+p2−τ−r)

×
{∫ r

−∞
dτ1 e

−(κ2−iωd)(r−τ1)δ(τ1 − τ)

∫ r

−∞
dτ2

× e−(κ2 +iωd)(r−τ2)[ξ2(r)ξ1(τ2) + ξ1(r)ξ2(τ2)]

+

∫ τ

−∞
dτ1 e

−(κ2−iωd)(τ−τ1)δ(τ1 − r)
∫ τ

−∞
dτ2

× e−(κ2 +iωd)(τ−τ2)[ξ2(τ)ξ1(τ2) + ξ1(τ)ξ2(τ2)]

}
.

Proof. First, by (2.6) and 〈0g|U(t, t0) = 〈0g|, for t ≥ max{p1, p2} ≥ t0 (this can
always be guaranteed because we are interested in the steady-state case t0 → −∞
and t→∞), we have

(A.3) 〈1p11p2g|U(t, t0)b†(t1)b†(t2) |0g〉 = 〈0g| bout(p1)bout(p2)b†(t1)b†(t2) |0g〉 .
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Second, by substituting (A.3) into (3.8), we get

(A.4)
|Ψout〉 =

1

2
√
N2

∫ ∞
−∞

dp1

∫ ∞
−∞

dp2 |1p11p2〉 lim
t0→−∞
t→∞

∫ t

t0

dt1ξ1(t1)

∫ t

t0

dt2ξ2(t2)

× 〈0g| bout(p1)bout(p2)b†(t1)b†(t2) |0g〉 .

Finally, by (3.2) we have
(A.5)〈

0g|bout(p1)bout(p2)b†(t1)b†(t2)|0g
〉

=
√
κ
〈
0g|σ−(p1)bout(p2)b†(t1)b†(t2)|0g

〉
+
〈
0g|b(p1)bout(p2)b†(t1)b†(t2)|0g

〉
.

Substituting (A.5) into (A.4) yields the steady-state output field state |Ψout〉,

(A.6) |Ψout〉 =
1

2
√
N2

∫ ∞
−∞

dp1

∫ ∞
−∞

dp2 Γ(p1, p2) |1p11p2〉 ,

where
(A.7)

Γ(p1, p2) = lim
t0→−∞
t→∞

∫ t

t0

dt1 ξ1(t1)

∫ t

t0

dt2 ξ2(t2)

×
[√

κ
〈
0g|σ−(p1)bout(p2)b†(t1)b†(t2)|0g

〉
+
〈
0g|b(p1)bout(p2)b†(t1)b†(t2)|0g

〉 ]
.

Thus, to derive the steady-state output field state |Ψout〉, we have to calculate the two
terms on the right-hand side of (A.7), namely,

〈
0g|σ−(p1)bout(p2)b†(t1)b†(t2)|0g

〉
and〈

0g|b(p1)bout(p2)b†(t1)b†(t2)|0g
〉
. Due to page limit, these calculations are omitted,

and the final expressions are given below:
(A.8)〈

0g|σ−(p1)bout(p2)b†(t1)b†(t2)|0g
〉

= −
√
κ

∫ p1

t0

dr e−(κ2 +iωd)(p1−r) [δ(p2 − t1)δ(r − t2) + δ(r − t1)δ(p2 − t2)]

+ κ3/2
∫ p1

t0

dr

∫ p2

t0

dn e−(κ2 +iωd)(p1+p2−r−n)[δ(r − t1)δ(n− t2) + δ(n− t1)δ(r − t2)]

− 2κ5/2
∫ p1

t0

dr

∫ p2

t0

dn e−(κ2 +iωd)(p1+p2−r−n)
∫ n

t0

dτ1 e
−(κ2−iωd)(n−τ1)δ(τ1 − r)

×
∫ n

t0

dτ2 e
−(κ2 +iωd)(n−τ2)[δ(τ2 − t1)δ(n− t2) + δ(n− t1)δ(τ2 − t2)]

and

(A.9)

〈
0g|b(p1)bout(p2)b†(t1)b†(t2)|0g

〉
= δ(p2 − t1)δ(p1 − t2) + δ(p1 − t1)δ(p2 − t2)

− κ
∫ p2

t0

dre−(κ2 +iωd)(p2−r)[δ(p1 − t1)δ(r − t2) + δ(r − t1)δ(p1 − t2)]

+ 2κ2
∫ p2

t0

dre−(κ2 +iωd)(p2−r)
∫ r

t0

dτ1 e
−(κ2−iωd)(r−τ1)δ(τ1 − p1)

×
∫ r

t0

dτ2 e
−(κ2 +iωd)(r−τ2)[δ(τ2 − t1)δ(r − t2) + δ(r − t1)δ(τ2 − t2)].
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Inserting (A.8)–(A.9) into (A.7) yields

(A.10)

Γ(p1, p2)

= ξ1(p1)ξ2(p2) + ξ1(p2)ξ2(p1)

− κ
∫ p2

−∞
dτ e−(κ2 +iωd)(p2−τ)[ξ1(p1)ξ2(τ) + ξ2(p1)ξ1(τ)]

− κ
∫ p1

−∞
dτ e−(κ2 +iωd)(p1−τ)[ξ1(p2)ξ2(τ) + ξ2(p2)ξ1(τ)]

+ κ2
∫ p1

−∞
dτ

∫ p2

−∞
dr e−(κ2 +iωd)(p1+p2−τ−r)[ξ1(r)ξ2(τ) + ξ2(r)ξ1(τ)]

+ 2κ2
∫ p2

−∞
dτ e−(κ2 +iωd)(p2−τ)

∫ τ

−∞
dτ1 e

−(κ2−iωd)(τ−τ1)

× δ(τ1 − p1)

∫ τ

−∞
dτ2 e

−(κ2 +iωd)(τ−τ2)[ξ1(τ2)ξ2(τ) + ξ2(τ2)ξ1(τ)]

− 2κ3
∫ p1

−∞
dτ

∫ p2

−∞
dr e−(κ2 +iωd)(p1+p2−τ−r)

×
∫ r

−∞
dτ1 e

−(κ2−iωd)(r−τ1)δ(τ1 − τ)

∫ r

−∞
dτ2

× e−(κ2 +iωd)(r−τ2)[ξ2(r)ξ1(τ2) + ξ1(r)ξ2(τ2)].

It is hard to see that Γ(p1, p2) in (A.10) is symmetric in the sense that Γ(p1, p2) =
Γ(p2, p1). In the following, we present a function which is symmetric. By (2.7) we
have〈

0g|bout(p1)bout(p2)b†(t1)b†(t2)|0g
〉

=
1

2

〈
0g|bout(p1)bout(p2)b†(t1)b†(t2)|0g

〉
+

1

2

〈
0g|bout(p2)bout(p1)b†(t1)b†(t2)|0g

〉
.

Hence, we may rewrite (A.4) as

(A.11)
|Ψout〉 =

1

2
√
N2

∫ ∞
−∞

dp1

∫ ∞
−∞

dp2 |1p11p2〉 lim
t0→−∞
t→∞

∫ t

t0

dt1ξ1(t1)

∫ t

t0

dt2ξ2(t2)

× 〈0g| bout(p2)bout(p1)b†(t1)b†(t2) |0g〉 .

Similar to the derivations for (A.6) given above, (A.11) can be simplified as

(A.12) |Ψout〉 =
1

2
√
N2

∫ ∞
−∞

dp1

∫ ∞
−∞

dp2 Γ(p2, p1) |1p11p2〉 .

Consequently,

(A.13) |Ψout〉 =
1

2
√
N2

∫ ∞
−∞

dp1

∫ ∞
−∞

dp2 η(p1, p2) |1p11p2〉 ,

where

(A.14) η(p1, p2) =
Γ(p1, p2) + Γ(p2, p1)

2
.

It is easy to see that η(p1, p2) in (A.14) is exactly that in (A.2). The proof of Lemma
A.1 is completed.
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Remark A.2. From (A.2), one can see that the output pulse shape contains 16
terms. Interestingly, in the study of quantum filtering of a two-level system driven by
the two-photon state |2ξ1,ξ2〉, a system of 16 ordinary differential equations are needed
to represent the two-photon filter or the master equation [42, Cor. 3.2]. That is,
there is consistency between output two-photon field state and two-photon quantum
filtering.

The expression of the steady-state output field state in (A.2) has 16 terms, which
looks rather complicated. In what follows, we further simplify η(p1, p2) to get its form
as given in (3.10), thus completing the proof of Theorem 3.2.

First, it can be readily shown that
(A.15)

ξ1(p2)ξ2(p1) + ξ1(p1)ξ2(p2)− κ
∫ p1

−∞
dτe−(κ2 +iωd)(p1−τ)[ξ2(τ)ξ1(p2) + ξ1(τ)ξ2(p2)]

= gG ∗ ξ1(p1)× ξ2(p2) + gG ∗ ξ2(p1)× ξ1(p2).

Second,

(A.16)

− κ
∫ p2

−∞
dτe−(κ2 +iωd)(p2−τ)[ξ1(p1)ξ2(τ) + ξ2(p1)ξ1(τ)]

+ κ2
∫ p2

−∞
dτ

∫ p1

−∞
dre−(κ2 +iωd)(p1+p2−τ−r)[ξ1(r)ξ2(τ) + ξ2(r)ξ1(τ)]

= −κ gG ∗ ξ1(p1)×
∫ p2

−∞
dτe−(κ2 +iωd)(p2−τ)ξ2(τ)

− κ gG ∗ ξ2(p1)×
∫ p2

−∞
dτe−(κ2 +iωd)(p2−τ)ξ1(τ),

where (A.15) is used in the last step. By adding (A.15) and (A.16), the first 8 terms
of η(p1, p2) becomes

(A.17) gG ∗ ξ1(p1)× gG ∗ ξ2(p2) + gG ∗ ξ2(p1)× gG ∗ ξ1(p2).

Third, notice that the remaining 8 terms of η(p1, p2) (ignoring the common coef-
ficient κ2) can be simplified to
(A.18)∫ p1

−∞
dτe−(κ2 +iωd)(p1−τ)

∫ τ

−∞
dτ1e

−(κ2−iωd)(τ−τ1)gG ∗ δ(p2 − τ1)

×
[
ξ1(τ)

∫ τ

−∞
dτ2e

−(κ2 +iωd)(τ−τ2)ξ2(τ2) +ξ2(τ)

∫ τ

−∞
dτ2e

−(κ2 +iωd)(τ−τ2)ξ1(τ2)

]
+

∫ p2

−∞
dτe−(κ2 +iωd)(p2−τ)

∫ τ

−∞
dτ1e

−(κ2−iωd)(τ−τ1)gG ∗ δ(p1 − τ1)

×
[
ξ1(τ)

∫ τ

−∞
dτ2e

−(κ2 +iωd)(τ−τ2)ξ2(τ2) +ξ2(τ)

∫ τ

−∞
dτ2e

−(κ2 +iωd)(τ−τ2)ξ1(τ2)

]
,

where the fact

(A.19) δ(p2 − τ1)− κ
∫ p2

−∞
ds e−(κ2 +iωd)(p2−s)δ(τ1 − s) = gG ∗ δ(p2 − τ1)
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is used in the derivation. Moreover, the first term in (A.18) can be simplified to
(A.20)

κ2
∫ p1

−∞
dτe−(κ2 +iωd)(p1−τ)

∫ τ

−∞
dτ1e

−(κ2−iωd)(τ−τ1)gG ∗ δ(p2 − τ1)

×
[
ξ1(τ)

∫ τ

−∞
dτ2e

−(κ2 +iωd)(τ−τ2)ξ2(τ2) +ξ2(τ)

∫ τ

−∞
dτ2e

−(κ2 +iωd)(τ−τ2)ξ1(τ2)

]
=

{
2κ e−

κ
2 (p1−p2)−iωd(p1+p2)

∫ p1
p2
dτ e2iωdτ

[
ξ1(τ)ξ2(τ)− ξ1(τ)ν2(τ)+ν1(τ)ξ2(τ)

2

]
, p1 ≥ p2,

0, p1 < p2.

The second term in (A.18) can be treated in a similar way. Finally, by (A.17), (A.18),
and (A.20), we get η(p1, p2) as given in (3.10). The proof of Theorem 3.2 is com-
pleted.

Appendix B. The derivation of (4.6)–(4.9). By (4.1), we have

(B.1) 〈0g|σ−(r)b†k(q) |0g〉 = −
√
κk [δ1k + δ2k]

∫ r

t0

dτ e−
κ1+κ2

2 (r−τ)δ(τ − q).

By (B.1), we can show that

(B.2)

〈0g| bj(l)σz(r)b†k(t) |0g〉

= 2
√
κjκk

∫ r

t0

dτ1 e
−κ1+κ2

2 (r−τ1)δ(τ1 − l)
∫ r

t0

dτ2 e
−κ1+κ2

2 (r−τ2)δ(τ2 − t)

− δjkδ(l − t), j, k = 1, 2.

Then, we can conclude the following result:

〈0g| b1(l)σz(r)b1(r)b†1(t1)b†2(t2) |0g〉

= 2
√
κ1κ2δ(r − t1)

∫ r

t0

dτ1 e
−κ1+κ2

2 (r−τ1)δ(τ1 − l)
∫ r

t0

dτ2 e
−κ1+κ2

2 (r−τ2)δ(τ2 − t2),

〈0g| b2(l)σz(r)b2(r)b†1(t1)b†2(t2) |0g〉

= 2
√
κ1κ2δ(r − t2)

∫ r

t0

dτ1 e
−κ1+κ2

2 (r−τ1)δ(τ1 − l)
∫ r

t0

dτ2 e
−κ1+κ2

2 (r−τ2)δ(τ2 − t1),

〈0g| b1(l)σz(r)b2(r)b†1(t1)b†2(t2) |0g〉

= 2
√
κ1κ1δ(r − t2)

∫ r

t0

dτ1 e
−κ1+κ2

2 (r−τ1)δ(τ1 − l)
∫ r

t0

dτ2 e
−κ1+κ2

2 (r−τ2)δ(τ2 − t1)

− δ(l − t1)δ(r − t2),

〈0g| b2(l)σz(r)b1(r)b†1(t1)b†2(t2) |0g〉

= 2
√
κ2κ2δ(r − t1)

∫ r

t0

dτ1 e
−κ1+κ2

2 (r−τ1)δ(τ1 − l)
∫ r

t0

dτ2 e
−κ1+κ2

2 (r−τ2)δ(τ2 − t2)

− δ(l − t2)δ(r − t1).
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Consequently, we have the following expressions of the quantities in (4.6)–(4.9):
(B.3)

〈0g|bout,i(p1)bout,j(p2)b†1(t1)b†2(t2)|0g〉

= κj

∫ p2

−∞
dr e−

κ1+κ2
2 (p2−r)〈0g|gGii ∗ bi(p1)σz(r)bj(r)b

†
1(t1)b†2(t2)|0g〉

+
√
κ1κ2

∫ p2

−∞
dr e−

κ1+κ2
2 (p2−r)〈0g|gGii ∗ bi(p1)σz(r)b 2

j
(r)b†1(t1)b†2(t2)|0g〉

− κj
√
κ1κ2

∫ p2

−∞
dr e−

κ1+κ2
2 (p2−r)

∫ p1

−∞
dτ e−

κ1+κ2
2 (p1−τ)

× 〈0g|b 2
i
(τ)σz(r)bj(r)b

†
1(t1)b†2(t2)|0g〉

− κ1κ2
∫ p2

−∞
dr e−

κ1+κ2
2 (p2−r)

∫ p1

−∞
dτ e−

κ1+κ2
2 (p1−τ)

× 〈0g|b 2
i
(τ)σz(r)b 2

j
(r)b†1(t1)b†2(t2)|0g〉

−
√
κiκ 2

j
δ(p2 − tj)

∫ p1

−∞
dτ e−

κ1+κ2
2 (p1−τ)δ(τ − t 2

j
)

+ (1− δij)δ(p2 − tj)δ(p1 − ti), i, j = 1, 2.

Substituting (B.3) into (4.5) gives (4.13).
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