
Degree conditions for embedding trees

Guido Besomi, Mat́ıas Pavez-Signé∗, and Maya Stein†
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Abstract

We conjecture that every n-vertex graph of minimum degree at
least k

2 and maximum degree at least 2k contains all trees with k edges
as subgraphs. We prove an approximate version of this conjecture for
trees of bounded degree and dense host graphs.

Our result relies on a general embedding tool for embedding trees
into graphs of certain structure. This tool also has implications on the
Erdős–Sós conjecture and the 2

3 -conjecture. We prove an approximate
version of both conjectures for bounded degree trees and dense host
graphs.
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1 Introduction

A central problem in graph theory consists of determining which conditions
a graph G has to satisfy in order to ensure it contains a given subgraph H.
For instance, conditions on the average degree, the median degree or the
minimum degree of G that ensure that H embeds in G have been studied
extensively. Classical examples include Turán’s theorem for containment of a
complete subgraph, or Dirac’s theorem for containment of a Hamilton cycle.
In this paper we will focus on degree conditions that ensure the embedding
of all trees of some given size.
Given k ∈ N, a greedy embedding argument shows that in a graph G with
minimum degree at least k one may embed every tree with k edges. Note that
the bound on the minimum degree is tight, as one easily confirms considering
the example given by the union of several disjoint copies of Kk (the complete
graph on k vertices), which does not contain any tree with k edges. Another
example is given by any (k − 1)-regular graph and the star K1,k.
A classical conjecture of Erdős and Sós from 1963 suggests that it is possible
to replace the minimum degree condition with a bound on the average degree.
The bound is again tight by the examples given above.

Conjecture 1.1 (Erdős and Sós [8]). Let k ∈ N. Every graph with average
degree greater than k − 1 contains every tree with k edges as a subgraph.

The Erdős-Sós conjecture is trivially true for stars, and holds for paths by a
result of Erdős and Gallai [9]. In the early 1990’s Ajtai, Komlós, Simonovits
and Szemerédi announced a solution of the Erdős-Sós Conjecture for large
graphs. Nevertheless, the conjecture has received a lot of attention over the
last two decades, see for instance [6, 11, 13, 20].

It is well known that in every graph of average degree greater than k one
can find a subgraph of minimum degree greater than k

2
and average degree

greater than k, by successively deleting vertices of too low degree. So, one
can assume that the host graph from the Erdős–Sós conjecture has minimum
degree greater than k

2
.

In this direction, Bollobás [5] conjectured in 1978 that any graph on n vertices
and minimum degree at least (1 + o(1))n

2
would contain every spanning tree

with maximum degree bounded by a constant. This conjecture was proved
by Komlós, Sárközy and Szemerédi [14] in 1995, giving one of the earliest
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applications of the Blow-up lemma. Csaba, Levitt, Nagy-György and Sze-
merédi [7] show in 2010 that actually, a minimum degree of at least n

2
+c log n

suffices.
In 2001, Komlós, Sárközy and Szemerédi [15] improved their earlier result
in a different direction, showing that one can actually embed spanning trees
with maximum degree of order O( n

logn
). Let us state their result here.

Theorem 1.2 (Komlós, Sárközy and Szemerédi [15]). For all δ ∈ (0, 1),
there are n0 and c ∈ (0, 1) such that the following is true for all graphs G
and for all trees T with |V (G)| = |V (T )| = n ≥ n0.
If ∆(T ) ≤ c n

logn
and δ(G) ≥ (1 + δ)n

2
, then T is a subgraph of G.

They also show that their bound on the maximum degree is essentially best
possible [15].

A natural question is whether a version of Theorem 1.2 holds for trees that are
not necessarily spanning. That is, one would replace n by k in the minimum
degree condition for G, for some k < n, and hope that G would contain every
tree with k edges (or at least each such tree of bounded degree). Clearly,
this cannot work, because of the example given before Conjecture 1.1, or in
fact, one could consider the union of disjoint copies of K`, for any ` with
(1 + δ)k

2
+ 1 ≤ ` ≤ k.

However, we believe that if in addition to the minimum degree condition, we
require G to have at least one vertex of large degree, then every tree with k
edges should be contained in G. More precisely, we believe that the following
holds.

Conjecture 1.3. Let k ∈ N and let G be a graph of minimum degree at
least k

2
and maximum degree at least 2k. Then every tree with k edges is a

subgraph of G.

Conjecture 1.3 is essentially tight due to the following example.

Example 1.4. Given ε > 0 and k ∈ N, let Gε,k consist of two copies of the
complete bipartite graph with parts of size (1 − ε)k and (1 − ε)k

2
, and one

vertex that is adjacent to every vertex in the parts of size (1− ε)k. It is easy
to see that Gε,k does not contain the tree Tk consisting of

√
k stars of size

√
k

whose centers are adjacent to the central vertex of Tk, provided that k = k(ε)
is sufficiently large.
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Figure 1: Graph Gε,k and tree Tk from Example 1.4.

(1− ε)k (1− ε)k

(1− ε)k
2

(1− ε)k
2 √

k − 1

An even stronger argument for the tightness of Conjecture 1.3 is given in [3]1.

Observe that Conjecture 1.3 trivially holds for both the star and the double
star. Also, it is easy to see that it holds for paths: If the host graph G has a
2-connected component of size at least k + 1, then by a well-known theorem
of Dirac, this component contains a cycle of length at least k, and thus also
a k-edge path (possibly using one edge that leaves the cycle). Otherwise, we
can embed a vertex from the middle of the path into any cutvertex x of G,
and then greedily embed the remainder of the path into two components of
G− x, using the minimum degree of G.

As more evidence for Conjecture 1.3, we prove an approximate version for
trees of bounded degree and dense host graphs.

Theorem 1.5. For every δ > 0 there is n0 ∈ N such that for all n ≥ n0 the
following holds for every k with n ≥ k ≥ δn.
If G is an n-vertex graph of minimum degree at least (1 + δ)k

2
and maximum

degree at least 2(1 + δ)k, then G contains every k-edge tree T of maximum

degree at most k
1
67 as a subgraph.

Moreover, if we consider trees whose maximum degree is bounded by an
absolute constant, we can improve the bound on the maximum degree of the
host graph given by Theorem 1.5 as follows.

1There we prove that for all ε > 0 there are k ∈ N, a k-edge tree T , and a graph G with
δ(G) ≥ k

2 and ∆(G) ≥ 2(1− ε)k with the property that T 6⊆ G. The underlying example
is very similar to Example 1.4, but we take a little more care when choosing the number
and size of the stars that make up the bulk of the tree Tk.
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Theorem 1.6. For every δ > 0 and ∆ ≥ 2 there is n0 ∈ N such that for all
n ≥ n0 the following holds for every k with n ≥ k ≥ δn.
If G is an n-vertex graph of minimum degree at least (1 + δ)k

2
and maximum

degree at least 2(∆−1
∆

+ δ)k, then G contains every tree T with k edges and
maximum degree at most ∆ as a subgraph.

The bounds on the maximum and minimum degree of G are close to best
possible, which can be seen by considering Example 9.2 in Section 9.1. We
also believe a version of Conjecture 1.3, with the maximum degree bound
adjusted as in Theorem 1.6, should hold for constant degree trees (see Con-
jecture 9.1 in Section 9.1).

This is not the first time a combination of a minimum and maximum degree
condition has been proposed for replacing the average degree condition in the
Erdős–Sós conjecture. In 2016, Havet, Reed, Stein, and Wood put forward
the following conjecture.

Conjecture 1.7 (2
3
-conjecture; Havet, Reed, Stein and Wood [12]). Let k ∈

N and let G be a graph of minimum degree at least b2k
3
c and maximum degree

at least k. Then every tree with k edges is a subgraph of G.

In [12], two variants of this conjecture are shown to be true: First, if the
bound on the maximum degree is replaced with a (large) function of k; sec-
ond, if the bound on the minimum degree is replaced with (1 − γ)k, for a
very small but explicit γ > 0. Moreover, Reed and Stein show in [17, 18]
that Conjecture 1.7 holds for large k, in the case of spanning trees (that is,
if we additionally assume that |V (G)| = |V (T )| = k + 1).

The tools developed for the proof of Theorem 1.5, namely the key embed-
ding result Lemma 7.3, allow us to show an approximate version of the 2

3
-

conjecture for dense host graphs and trees with bounded maximum degree.

Theorem 1.8. For every δ > 0 there is n0 ∈ N such that for each k and for
each n-vertex graph G with n ≥ n0 and n ≥ k ≥ δn the following holds. If G
has minimum degree at least (1 + δ)2k

3
and maximum degree at least (1 + δ)k,

then G contains every k-edge tree of maximum degree at most k
1
49 .

Even before reaching the main steps in our proof of Theorem 1.5, we can use
the first stepping stones of this proof to deduce an approximate version of
the Erdős-Sós conjecture, for bounded degree trees and dense host graphs.
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Theorem 1.9. For every δ > 0 there is n0 ∈ N such that for each k and for
each n-vertex graph G with n ≥ n0 and n ≥ k ≥ δn the following holds. If
d(G) > (1 + δ)k, then G contains every k-edge tree of maximum degree at

most k
1
67 as a subgraph.

An improvement of this result has been obtained by Rozhoň [19], and inde-
pendently in [2, 4].
An outline of the proofs of all our results will be given in Section 2, while the
actual proofs will be postponed to Section 6 (Theorem 1.9) and to Section 8
(Theorems 1.5, 1.6 and 1.8). The proofs all rely on the regularity approach
to embedding trees, and all but Theorem 1.9 rely on a significant amount
of additional work. This includes results on cutting and arranging trees,
as well as a structural embedding result for bounded degree trees, namely
Lemma 7.3.
Our key embedding lemma, Lemma 7.3, is stated in a very general way, and
covers a variety of possible host graphs. For this reason, we believe that
it will be useful for future work on tree embeddings with minimum degree
conditions.

In the Conclusion of this paper (Section 9), we provide some further results,
conjectures and examples in the main direction of this paper.
In Section 9.2 we generalise Conjecture 1.3, contemplating the whole range
of values in [k, 2k] for the maximum degree and in [k

2
, k] for the minimum

degree of the host graph G. In Sections 9.3 and 9.4 we discuss extensions of
Theorem 1.5 and of Conjecture 1.3 to graphs that do not quite satisfy the
degree conditions of the theorem, but instead fulfill a structural condition.
Section 9.1 discusses trees of constant maximum degree.
In Sections 9.5 and 9.6, we discuss supersaturation for our theorems, and
determine the extremal graphs for our results. These extremal graphs turn
out to be the known examples for the Erdős–Sós conjecture for Theorem 1.9,
the known examples for the 2

3
-conjecture plus Example 1.4 for Theorem 1.8,

and graphs as in Example 1.4 for Theorems 1.5 and 1.6.

2 Outline of the proof

The aim of this section is to give the general idea of the structure of the
proof of our results. For the understanding of the paper, it is not necessary
to read the present section (but we hope it will be helpful).
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Before we explain the ideas let us give a very short overview of the structure
of the paper. Our main result, Theorem 1.5, as well as Theorems 1.6 and 1.8
will be shown in Section 8. Their proofs rely on a structural embedding
result, namely Lemma 7.3, which is shown in Section 7. This lemma in turn
relies on results on tree-cutting from Section 4 and on tree embedding results
from Sections 5 and 6. The results from Sections 5 and 6 on their own already
imply Theorem 1.9. In Section 3, we discuss some preliminaries (regularity
and a matching result), which will be needed for Section 5.

Let us now expose the general idea of the proof. As most of our results rely
on our key embedding lemma, Lemma 7.3, let us start by describing this
lemma, which will be stated and proved in Section 7.
Lemma 7.3 provides an embedding of any tree T with maximum degree
bounded by k

1
c , where c is a constant,2 into any host graph G of suitable

minimum degree, as long as G contains one of several favourable scenarios
explicitly described in the statement of Lemma 7.3.
The scenarios contemplated by the lemma cover the situation where, after
applying the regularity lemma3 to G, the corresponding reduced graph has
a large4 component, but also cover a number of situations where there is no
large component. In these latter situations, we will have to use a maximum
degree vertex x of G, as well as a suitable cutvertex z of T , and embed the
components of T − z into components of G− x. Several possible shapes and
sizes of components possibly seen by x are taken into account in Lemma 7.3.
We believe that this generality could make Lemma 7.3 very useful for future
work on tree embeddings with minimum degree conditions.
Once we have Lemma 7.3, the proof of Theorems 1.5, 1.6 and 1.8 will be
fairly easy. We only need to regularise the host graph G, and show we are in
one of the situations as described in Lemma 7.3. This is done in Section 8.
(Theorem 1.9, too, could be deduced from the lemma, but its proof already
follows from the preparatory steps earlier in the paper.)
So let us now sketch the proof of Lemma 7.3. There are two crucial ingredi-
ents for the proof of Lemma 7.3. One of these ingredients is some work that
we accomplish in Section 4.2. In that section, we prove some useful results on

2This is a different constant in the situation where the minimum degree is bounded by
(1 + δ)k

2 , as in Theorem 1.5, than in the situation where we have minimum degree at least
(1 + δ) 2

3k, as in Theorem 1.8.
3For an introduction to regularity, see Section 3.2.
4That is, large enough to accommodate T .
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cutting trees, the most important ones being Lemma 4.4 and Proposition 4.8.
These two auxiliary results allow us to cut a tree at some convenient cutver-
tex z and then group the components of T − z into two or three groups (as
necessary), so that the union of the components from these groups form sets
of convenient sizes. Moreover, we show that it is possible to 2-colour T − z
in way that the resulting colour classes are not too unbalanced. This will be
very important when, in the context of Lemma 7.3, we wish to embed several
components of T − z into a single bipartite component of the reduced graph
of G− x.
The other crucial ingredient for the proof of Lemma 7.3 is the preparatory
work accomplished in Sections 5 and 6. There we show how to embed a tree
into a host graph, that, after an application of the regularity lemma yields a
reduced graph with a large connected component. For this, we cut the tree
into tiny subtrees and few connecting vertices (a now standard procedure
that is explained in the short Section 4.1), and then embed these trees into
suitable edges of the reduced graph. The only remaining problem is how to
make the connections between the tiny trees.
For these connections, we use paths in the reduced graph. For this argument
to work, we have to bound the maximum degree of the tree we wish to embed
in terms of the diameter of the reduced graph of G. (Another argument will
allow us to relax the bound later, see below.) Also, we have to distinguish
two cases, namely whether the large component of the reduced graph is
bipartite or not. The reason for this is that we need to fill the edges we
embed our tiny tree into in a balanced way. The two cases will be treated
in Propositions 5.1 and 5.8, respectively. In the remainder of Section 5, we
deduce some corollaries from these propositions, which will come in handy
later, when in the proof of Lemma 7.3, we need to embed parts of the tree
into parts of the host graphs that correspond to different components of its
reduced graph.
In Section 6, we unify and improve the results from Section 5. Namely, in
Proposition 6.3 we provide an embedding result for trees into large connected
components of the reduced graph of G, where the bound on the maximum
degree of the tree no longer depends on the diameter of the reduced graph of
the host graph, but instead is k

1
c , where c is an absolute constant. The idea

for the proof of this result is that we first try to follow the embedding scheme
from the previous section, but only using paths of bounded length for the
connections. Should this fail, then the only possible reason is that we could
not reach suitable free space at a bounded distance from the cluster C we
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were currently embedding into. In this case, we abort our mission, and are
able to prove that it is possible to embed the tree into a ball of appropriate
radius centered at C.
Also in Section 6, we show our approximate version of the Erdős-Sós conjec-
ture for bounded degree trees, Theorem 1.9. It easily follows from the results
obtained in Sections 5 and 6.

3 Preliminaries

3.1 Notation

Given ` ∈ N, we write [`] = {1, . . . , `}. Also, we will write a� b to indicate
that given b, we choose a significantly smaller. The explicit value for such a
can be calculated from the proofs.
We write |H| = |V (H)| for the number of vertices and e(H) = |E(H)|
for the number of edges of a graph H, and δ(H), d(H) and ∆(H) are the
minimum, average and maximum degree of H. As usual, degH(x) is the
degree of vertex x ∈ V (H), and we write NH(x) for its neighbourhood in H,
NH(x, S) = NH(x) ∩ S for its neighbourhood in S ⊆ V (H) and degH(x, S)
for the respective degree. For disjoint sets X, Y ⊆ V (H), we write EH(X, Y )
for the set of edges xy ∈ E(H) with x ∈ X and y ∈ Y and set eH(X, Y ) :=
|EH(X, Y )|. In all of the above, we omit the subscript H if it is clear from
the context. Given U ⊆ V (H) we write H[U ] for the graph induced in H by
the vertices in U , and we say a vertex x sees U if it sends an edge to U .

3.2 The regularity lemma

In the present section, we discuss the notion of regularity and a few basic
facts. Readers familiar with this topic are invited to skip the section.
Let H = (A,B) be a bipartite graph with density d(A,B) := e(A,B)

|A||B| . For a

fixed ε > 0, the pair (A,B) is said to be ε-regular if for any X ⊆ A and
Y ⊆ B, with |X| > ε|A| and |Y | > ε|B|, we have that

|d(X, Y )− d(A,B)| < ε.

Moreover, an ε-regular pair (A,B) is called (ε, η)-regular if d(A,B) > η.
Given an ε-regular pair (A,B), we say that X ⊆ A is ε-significant if |X| >
ε|A|, and similar for subsets of B. A vertex x ∈ A is called ε-typical to
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a significant set Y ⊆ B if deg(x, Y ) > (d(A,B) − ε)|Y |. We simply write
regular, significant or typical if ε is clear from the context.
It it well known that regular pairs behave, in many ways, like random bipar-
tite graphs with the same edge density. The next well known fact (see for
instance [16]) states that in a regular pair almost every vertex is typical to
any given significant set, and also that regularity is inherited by subpairs.

Fact 3.1. Let (A,B) be an ε-regular pair with density η. Then the following
holds:

1. For any ε-significant Y ⊆ B, all but at most ε|A| vertices from A are
ε-typical to Y .

2. Let δ ∈ (0, 1). For any subsets X ⊆ A and Y ⊆ B, with |X| ≥ δ|A|
and |Y | ≥ δ|B|, the pair (X, Y ) is 2ε

δ
-regular with density between η−ε

and η + ε.

The regularity lemma of Szemerédi [21] states that, for any given ε > 0,
the vertex set of any large enough graph can be partitioned into a bounded
number of sets, also called clusters, such that the graph induced by almost
any pair of these clusters is ε-regular. We will make use of the well known
degree form of the regularity lemma (see for instance [16]). Call a vertex
partition V (G) = V1 ∪ . . . ∪ V` an (ε, η)-regular partition if

1. |V1| = |V2| = . . . = |V`|;

2. Vi is independent for all i ∈ [`]; and

3. for all 1 ≤ i < j ≤ `, the pair (Vi, Vj) is ε-regular with density either
d(Vi, Vj) > η or d(Vi, Vj) = 0.

Lemma 3.2 (Szemerédi’s regularity lemma - Degree form). For all ε > 0
and m0 ∈ N there are N0,M0 such that the following holds for all η ∈ [0, 1]
and n ≥ N0. Any n-vertex graph G has a subgraph G′, with |G| − |G′| ≤ εn
and degG′(x) ≥ degG(x) − (η + ε)n for all x ∈ V (G′), such that G′ admits
an (ε, η)-regular partition V (G′) = V1 ∪ . . . ∪ V`, with m0 ≤ ` ≤M0.

The (ε, η)-reduced graph R, with respect to the (ε, η)-regular partition given
by Lemma 3.2, is the graph with vertex set {Vi : i ∈ [`]}, called clusters, in
which ViVj is an edge if and only if d(Vi, Vj) > η. We will sometimes refer
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to the (ε, η)-reduced graph R without explicitly referring to the associated
(ε, η)-regular partition of the graph.
It turns out that R inherits many properties of G′, such as the edge density or
the minimum degree (scaled to the order of R). Indeed, it is easy to calculate
the following.

Fact 3.3. Let 0 < 2ε ≤ η ≤ α
2

. If G is a n-vertex graph with δ(G) ≥ αn,
and R is an (ε, η)-reduced graph of G, then δ(R) ≥ (α− 2η)|R|.

We close this subsection with a lemma that illustrates why regularity is useful
for embedding trees. It states that a tree will always fit into a regular pair,
if the tree is small enough.

Lemma 3.4. Let 0 < β ≤ ε ≤ 1
25

. Let (A,B) be a (ε, 5
√
ε)-regular pair

with |A| = |B| = m, and let X ⊆ A, Y ⊆ B,Z ⊆ A ∪ B be such that
min{|X \ Z|, |Y \ Z|} >

√
εm.

Then any tree T on at most βm vertices can be embedded into (X ∪ Y ) \ Z.
Moreover, for each v ∈ V (T ) there are at least 2εm vertices from (X∪Y )\Z
that can be chosen as the image of v.

Proof. We construct the embedding φ : V (T ) → X ∪ Y levelwise, starting
with the root, which is embedded into a typical vertex of (X ∪ Y ) \ Z. At
each step i we ensure that all vertices of level i are embedded into vertices of
X \ Z (or Y \ Z) that are typical with respect to the unoccupied vertices of
Y \Z (or X \Z). This is possible, because at each step i, and for each vertex
v of level i, the degree of a typical vertex into the unoccupied vertices on the
other side is at least 4εm, and there are at most εm non typical vertices and
at most |T | ≤ βm already occupied vertices.

3.3 A matching lemma

We finish the preliminaries with a lemma that will allow us to find a large
connected matching in the reduced graph.

Lemma 3.5. Let H be any graph. Then there exists an independent set I,
a matching M , and a set of vertex disjoint triangles Γ so that V (H) =
I ∪ V (M) ∪ V (Γ). Moreover, there is a partition V (M) = V1 ∪ V2 of V (M)
such that every edge of M has one vertex in V1 and one vertex in V2, and
N(x) ⊆M1 for all x ∈ I.
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Proof. Let us choose a matching M and a family Γ of disjoint triangles, that
are disjoint from M , maximising |V (M)|+ |V (Γ)|. Then the set I consisting
of all vertices not covered by M ∪ Γ is independent.
Consider a vertex x ∈ I. Note that because of our choice of M and Γ, we
know that x is not adjacent to any vertex from any triangle from Γ. Also,
note that for any edge uv in M , vertex x sees at most one of u, v. Finally, if x
sees u, then no other vertex from I can see v. This proves the statement.

4 Cutting trees

This section contains some preliminary results on cutting trees. In the first
subsection we show how to find a constant number of vertices, such that after
taking these out, the remaining components are tiny. In fact, they will be
so small that we can use Lemma 3.4 in order to embed them into a regular
pair.
In the second subsection, we find a cutvertex z and a colouring of the re-
maining components, so that the colour classes of each component are rather
balanced (we are able to guarantee a ratio of roughly 1

3
–2

3
at worst). This is

very useful when we are in the situation where the reduced graph has no big
component. Then, we can embed the cutvertex z into a maximum degree
vertex of G, and embed the components of T − z into the components of the
reduced graph. Since we balanced them, and because of the minimum degree
of G, they will fit and the embedding can be completed.

Let us go through some notation for trees. Given any rooted tree T , we
define a partial order � on V (T ) by saying that x � y (x is below y) if and
only if x lies on the unique path from y to r(T ), where r(T ) denotes the
root of T . If in addition, xy ∈ E(T ), we say y is a child of x, and x is the
parent of y. The tree T (x) induced by x is the subtree of T induced by the
set V (T (x)) = {v : v � x}. For i ≥ 0, the ith level of T , denoted by Li,
consists of all vertices at distance i from r(T ).

4.1 Cutting T into small trees

As we showed in Section 3.2, it is simple to embed sufficiently small trees
into regular pairs, and furthermore, one may continue embedding small trees
until the pair become almost full. For this reason, it is useful to cut down
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the tree T one would like to embed into a regularised host graph G into very
small subtrees, connected by few vertices.
The next proposition shows that one can decompose any tree into a family of
small subtrees. Versions of this proposition have already appeared in earlier
literature on tree embeddings, for instance in [1].

Proposition 4.1. Let β ∈ (0, 1), and let T be a rooted tree on t+ 1 vertices.
Then there exists a set S ⊆ V (T ) and a family P of disjoint rooted trees such
that

(i) r(T ) ∈ S;

(ii) P consists of the components of T −S, and each P ∈ P is rooted at the
vertex closest to the root of T ;

(iii) |P | ≤ βt for each P ∈ P; and

(iv) |S| < 1
β

+ 2.

The vertices from S will be called seeds, and the components from P will be
called the pieces of the decomposition.

Proof. We iteratively construct the set S, starting with T 0 := T and S0 := ∅.
In step i+ 1, let si+1 be the maximal vertex of T i such that

|T i(si+1)| > βt.

Note that by the maximality of si+1 the trees in T i(si+1) − si+1 each cover
at most βt vertices. Obtain Si+1 by adding si+1 to Si and set T i+1 = T i −
T i(si+1). If at some step j there is no vertex sj+1 with |T j(sj+1)| > βt, then
|T j| ≤ βt, and we end the process. We set S := Sj ∪ {r(T )} and let P be
the set of connected components of T − S.
Properties (i)–(iii) clearly hold. For (iv) observe that |T i+1| < |T i| − βt.
Hence,

0 ≤ |Tm| < |T 0| − j · βt,

which in turn implies that |S| = j + 1 ≤ |T |
βt

+ 1 < 1
β

+ 2.
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4.2 Finding a good cutvertex

The objective of this subsection is to show several useful lemmas on cutting
trees at one vertex. The first and easiest two lemmas allow us to find a
cutvertex z in a given tree T in a way that we have some control on the size
of the components of T − z (Lemma 4.2), and moreover, allow us to group
these components having some control over the total sizes of the groups
(Lemma 4.4). The most laborious result of this section, Proposition 4.8,
states that in any tree T , we can find a cutvertex and properly 2-colour the
remaining components so that in total the colour classes remain somewhat
balanced.
Our first lemma is folklore, but for completeness, we include its proof.

Lemma 4.2. Let T be a tree on t + 1 vertices, and let x be a leaf of T .
Then T has a vertex z such that every component of T − z has at most b t

2
c

vertices, except the one containing x, which has at most d t
2
e vertices.

Proof. Let z be a maximal vertex (with respect to the order induced by x)
such that |T (z)| > b t

2
c. Then every component of T − z has at most b t

2
c

vertices: This is obvious (from the definition of z) for the components not
containing x, while the component that contains x only has |T | − |T (z)| ≤
t+ 1− (b t

2
c+ 1) = d t

2
e vertices.

Definition 4.3. Call a vertex z as in Lemma 4.2 a t
2
-separator.

We now prove an auxiliary lemma on partitioning sequences of integers. This
lemma will be used in the proofs of both Lemma 4.6 and Proposition 4.8,
and also in the proofs of Theorems 1.5 and 1.6.

Lemma 4.4. Let m, t ∈ N+ and let (ai)
m
i=1 be a sequence of positive integers

such that 0 < ai ≤ d t2e, for each i ∈ [m], and
∑m

i=1 ai ≤ t. Then

(i) there is a partition {I1, I2, I3} of [m] such that
∑

i∈I3 ai ≤
∑

i∈I2 ai ≤∑
i∈I1 ai ≤ d

t
2
e ; and

(ii) there is a partition {J1, J2} of [m] such that
∑

i∈J2 ai ≤
∑

i∈J1 ai ≤
2
3
t.

Proof. We first pick a set I1 ⊆ [m] with
∑

i∈I1 ai ≤ d
t
2
e that maximizes

the sum. From [m] \ I1 we extract a second set I2 with
∑

i∈I2 ai ≤ d
t
2
e

that maximizes the sum. The choice of I1 and I2 ensures that for I3 :=
[m]\ (I1 ∪ I2) it also holds that

∑
i∈I3 ai ≤ d

t
2
e, and that

∑
i∈I3 ai ≤

∑
i∈I2 ai.
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Therefore, the sets I1, I2, I3 fulfill the conditions in (i). (Notice that I3, and
possibly also I2, may be empty.)
For (ii) we proceed as follows. If I3 = ∅ we just set J1 := I1 and J2 := I2,
which clearly satisfies (ii). If I3 6= ∅ we define J1 as one of the sets I2 ∪ I3

and I1, and J2 as the other set, in a way that
∑

i∈J2 ai ≤
∑

i∈J1 ai. Observe
that the second part of (i) implies that

∑
i∈I2∪I3 ai ≤

2
3
t. So again, (ii) is

satisfied.

Remark 4.5. Observe that the set I3 from Lemma 4.4 (i) has at most one
element, because otherwise, due to the maximality of I1 and I2, there would
exist j, k ∈ I3 such that aj +

∑
i∈I1 ai > d

t
2
e and ak +

∑
i∈I2 ai > d

t
2
e, a

contradiction to the fact that
∑m

i=1 ai ≤ t.

Lemma 4.4 tells us that after using Lemma 4.2 to cut a tree T at a vertex z,
we can group the components of T − z in a way that the total size of each
group is conveniently bounded. We would now like to say something about
the balancedness of the resulting forest, and for this we resort to the concept
of vertex colouring.
For a proper 2-colouring c : V (G)→ {0, 1} of a graph G with colours 0 and
1, we define c0 := {v ∈ V (G) : c(v) = 0} and c1 := {v ∈ V (G) : c(v) = 1}.
For better readability, throughout all proofs, we will stick to the convention
that |c0| ≥ |c1| (but this will be restated in each proof).

Lemma 4.6. Every tree T on t + 1 vertices has a vertex z such that T − z
admits a proper 2-colouring c : V (T − z) → {0, 1} with |c0| ≤ 3t−1

4
and

|c1| ≤ t
2
.

Proof. We apply Lemma 4.2 to obtain a cutvertex z and a forest T − z
with components {Ti}mi=1 such that |Ti| ≤ d t2e, for every i. We will now use
Lemma 4.4 in order to group the components of T − z. Setting ai := |Ti|,
the lemma yields three sets I1, I2 and I3 such that the forests Fj :=

⋃
i∈Ij Ti,

with j = 1, 2, 3, cover at most d t
2
e vertices each. Also, the forest F1 covers

at least t
3

vertices.
For j = 1, 2, 3 consider any proper 2-colouring cj of the forest Fj, with colour
classes cj0 and cj1, such that F1 and F2 each meet both colours. (This is pos-
sible unless |F1| and/or |F2| is 1, and in that case we are done anyway.) For
each j, we assume that |cj0| ≥ |c

j
1|.

We split the remainder of the proof into two cases.
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Case 1: |c1
0| ≥

3|F1|−1
4

.

In this case, define the colouring c by setting c0 := c1
0 ∪ c2

1 ∪ c3
1 and c1 :=

V (T − z) \ c0 = c1
1 ∪ c2

0 ∪ c3
0. Then,

|c0| = |c1
0|+ |c2

1|+ |c3
1| ≤ |F1| − 1 +

|F2|
2

+
|F3|

2

=
|F1|

2
− 1 +

|T − z|
2

≤ t+ 1

4
− 1 +

t

2

≤ 3t− 1

4
.

Moreover,

|c1| ≤ t− |c1
0| − |c2

1| ≤ t− 3|F1| − 1

4
− 1 ≤ t− t− 1

4
− 1 ≤ 3t− 1

4

where the penultimate inequality comes from the fact that |F1| ≥ t
3
. Hence,

max{|c0|, |c1|} ≤ 3t−1
4

; renaming the colour classes if necessary we get the
desired result.

Case 2: |c1
0| <

3|F1|−1
4

.

In this case, define the colouring c by setting c0 := c1
0 ∪ c2

1 ∪ c3
0 and c1 :=

V (T − z) \ c0 = c1
1 ∪ c2

0 ∪ c3
1. Then,

|c0| <
3|F1| − 1

4
+
|F2|

2
+ |F3|

=
|T − z|

2
+
|F1|+ 2|F3| − 1

4

≤ t

2
+
|F1|+ |F2|+ |F3| − 1

4

=
3t− 1

4
,

and

|c1| ≤
|F1|

2
+ |F2| − 1 +

|F3|
2

=
t

2
+
|F2|

2
− 1 ≤ 3t− 1

4
.

Again we obtain max{|c0|, |c1|} ≤ 3t−1
4

, and swap colour classes if necessary.
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Let us remark that the bound 3t−1
4

given by Lemma 4.6 for the imbalance of
the colouring is best possible, if we insist that the cutvertex is as given by
Lemma 4.2. This is illustrated by the following example.
For t divisible by four, consider the tree obtained by identifying the central
vertex of a star of order t

2
with an endvertex of a path of order t

2
+ 2. The t

2
-

separator z provided by Lemma 4.2 leaves exactly two components: a path
of order t

2
and a star of order t

2
. One of the colour classes of this forest

necessarily contains 3t
4
− 1 vertices.

However, it is possible to cut the tree at a different cutvertex so that the
resulting forest admits a significantly more balanced colouring than the one
given by Lemma 4.6. This is the purpose of Proposition 4.8 below. Before
we state the proposition, let us introduce some useful notation.

Definition 4.7. Given a graph G and a proper 2-colouring of its vertex set
c : V (G)→ {0, 1} we define the imbalance of c as

σ(c) := |c0| − |c1|.

For a tree T we will use σ(T ) to denote the imbalance of its unique 2-
colouring.

Proposition 4.8. Let T be a tree on t + 1 vertices. Then there exists z ∈
V (T ) and a proper 2-colouring c : V (T − z)→ {0, 1} of T − z with |c1| ≤ |c0|
such that |c0| ≤ 2t

3
and |c1| ≤ t

2
.

Proof. We may assume that t > 3. Assume the proposition does not hold,
that is, for every z ∈ V (T ) and every proper 2-colouring of T −z, the heavier
colour class of T − z contains more than 2t

3
vertices.

Let z0 ∈ V (T ) and c : V (T − z0) → {0, 1} as given by Lemma 4.6. By
our assumption above, we know that c0, the heavier colour class induced
by c, contains between 2t

3
and 3t−1

4
vertices, while c1, the lighter colour class,

contains between t
4

and t
3

vertices.
Consider the set {Ti}i∈I of all components of T − z0. Let J ⊆ I be the set of
all indices j such that Tj has more vertices in c0 than in c1. So clearly,∑

j∈J

σ(Tj) >
t

3
. (1)

We claim that moreover,

for each J ′ ⊆ J either
∑
j∈J ′

σ(Tj) <
t

12
or
∑
j∈J ′

σ(Tj) >
t

3
. (2)
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Indeed, if this were not true for some J ′ ⊆ J , we could invert the colours in
all trees in {Tj}j∈J ′ . This yields a colouring with both colour classes having
at most 2t

3
vertices, because c0 lost at least t

12
vertices, and c1 gained at most

t
3

vertices. This contradicts our assumption, and thus proves (2).

Call a family J ′ ⊆ J small if
∑

j∈J ′ σ(Tj) <
t

12
, and large otherwise (that is,

by (2), if
∑

j∈J ′ σ(Tj) >
t
3
). It is easy to see that

if J ′ is large, then there is a j ∈ J ′ such that {j} is large. (3)

In particular, we deduce from (2) and (3) that there is an index j∗ ∈ J such
that {j∗} is large. That is, σ(Tj∗) >

t
3
. Notice that there is only one such

index as otherwise we could switch colour classes in one of the associated
trees and obtain a contradiction to the initial assumption. So, by (3),

J \ {j∗} is small. (4)

We claim that ∑
i∈I\{j∗}

σ(Ti) ≤
⌈
t

6

⌉
. (5)

Indeed, otherwise we could switch colours in every tree Tj with j ∈ J \ {j∗}
to obtain a new colouring of T − z0. In this new colouring, c1 has gained less
than t

12
vertices (by (4)), and thus stays below t

2
. Moreover, c1 now contains

the larger bipartition class of every tree Ti with i ∈ I \ {j∗}, and thus has at
least ∑

i∈I\{j∗}

(
|Ti|
2

+
σ(Ti)

2

)
>
t− |Tj∗|

2
+
d t

6
e

2
≥ t− 1

4
+
t+ 3

12
=
t

3

vertices. Therefore, c0 now has less than 2t
3

vertices, a contradiction to our
assumption that no such colouring exists. This proves (5).

Now, apply Lemma 4.2 to obtain z1 ∈ V (Tj∗) such that every component of

Tj∗ − z1 covers at most d |Tj∗ |−1

2
e vertices. Let Tz0 denote the component of

T−z1 that contains z0 and let {C`}`∈L denote the set of all other components
of T − z1. Further, let Czo denote the unique component of Tj∗ − z1 that is
contained in Tz0 , if such a component exists. Observe that Lemma 4.2 allows
us to assume that

|Czo| ≤
⌊
|Tj∗| − 1

2

⌋
≤
⌊d t

2
e − 1

2

⌋
≤ t− 1

4
. (6)
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Next, group the elements of {C`}`∈L into two forests FA and FB fulfilling

max{|FA|, |FB|} ≤ t+ 1

3
, (7)

which is possible by Lemma 4.4 (ii), and since max{ |Tj∗ |−1

2
, 2

3
|Tj∗|} ≤ t+1

3
.

For i = A,B, consider the proper 2-colouring ci induced by Tj∗ on F i. By
symmetry, we may assume that

σ(cA) ≥ σ(cB). (8)

Observe that by (1), and by the choice of ci, we have that

t

3
< σ(Tj∗) ≤ σCz0∪{z1} + σ(cA) + σ(cB),

where σCz0∪{z1} denotes the imbalance that Tj∗ induces on Cz0 ∪ {z1}. Note
that σCz0∪{z1} ≤ max{|Czo |, 1}, Therefore,

σ(cA) + σ(cB) >
t

3
−max{|Czo|, 1}. (9)

Now we consider and separately treat two possible cases, according to the
imbalance of the canonical colouring of Tz0 . For convenience, let A(Tz0) de-
note the larger colour class of Tz0 in this colouring, and let by B(Tz0) denote
the smaller colour class.

Case 1: σ(Tz0) ≤ t
3
.

In this case, define a new colouring c′ by setting c′0 := A(Tz0) ∪ cA1 ∪ cB0 and
c′1 := (T − z1) \ c′0 = B(Tz0) ∪ cA0 ∪ cB1 . Then, by (8),

|c′0| =
|Tz0|

2
+
σ(Tz0)

2
+
|FA|

2
− σ(cA)

2
+
|FB|

2
+
σ(cB)

2
≤ t

2
+
σ(Tz0)

2
≤ 2t

3
,

and moreover, by (7),

|c′1| <
|Tz0|

2
+ max{|FA| − 1, 1}+

|FB|
2
≤ 2t

3
,

and hence after possibly swapping colours we found a colouring as desired
for the proposition (with z1 in the role of z). This is a contradiction, since
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we assumed no such colouring exists.

Case 2: σ(Tz0) >
t
3
.

This time we define c′ by setting c′0 := A(Tz0) ∪ cA1 ∪ cB1 and c′1 := B(Tz0) ∪
cA0 ∪ cB0 . Let σCz0∪{z0} denote the imbalance that Tz0 induces on Cz0 ∪ {z0}
and note that by (6), we have that

σCz0∪{z0} ≤ max{|Czo|, 1} ≤
t− 1

4
.

Recalling (5) and (9), we obtain

|c′0| =
t

2
+
σ(Tz0)− (σ(cA) + σ(cB))

2

≤ t

2
+

∑
i∈I\{j∗} σ(Ti) + σCz0∪{z0} + max{|Czo |, 1} − t

3

2

≤ t

2
+
t+ 2

12
+ max{|Czo |, 1} −

t

6

≤ 2t

3
.

Furthermore, by (7),

|c′1| ≤
|Tz0|

2
− σ(Tz0)

2
+ |cA0 |+ |cB0 | ≤

2t

3
,

We thus again obtain a contradiction.

5 Embedding trees in robust components

In this section, we discuss the embedding of trees into a large robust com-
ponent of some host graph, by which we mean we embed into graphs whose
corresponding reduced graph has a large connected component. The argu-
ments depend on whether the reduced graph is bipartite or not, and hence
we deal with these situations separately.
The main results from this section are Propositions 5.1 and 5.8 and their
corollaries. They will be used in the proof of Proposition 6.3, our main
embedding result for robust components. Moreover, they will be one of the
tools in the proof of our key embedding lemma, Lemma 7.3, on which most
of our main results rely.
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5.1 The bipartite case

As we mentioned in the introduction, any tree with k edges greedily embeds in
any graph of minimum degree at least k. In a bipartite graph H = (X, Y ;E)
the minimum degree condition can be relaxed: If the tree T has bipartition
classes of sizes k1 and k2, then it is clearly enough to require the vertices
from X to have degree at least k1 and the vertices from Y to have degree at
least k2. In particular, if deg(x) ≥ bk

2
c for all x ∈ X, and deg(y) ≥ k for all

y ∈ Y , then each tree with k edges embeds in H.
If the tree we wish to embed has bounded degree, and the host graph has
an (ε, η)-reduced graph which is bipartite and connected, for some ε and η,
one can do even better: We will now show that in this case it is enough to
require a minimum degree of roughly k

2
for the vertices in only one of the

bipartition classes, as long as this class is not too small.

Proposition 5.1. For all ε ∈ (0, 10−8) and for all d,M0 ∈ N, there is k0

such that for all n, k ≥ k0 the following holds. Let G be an n-vertex graph,
with (ε, 5

√
ε)-reduced graph R that satifies |R| ≤M0, such that

(i) R = (X, Y ) is bipartite and connected;

(ii) diam(R) ≤ d;

(iii) deg(x) ≥ (1 + 100
√
ε)k

2
· |R|
n

, for all x ∈ X; and

(iv) |X| ≥ (1 + 100
√
ε)k · |R|

n
.

Then G contains every tree T with k edges and ∆(T ) ≤ k
1
d as a subgraph.

Proof. Given ε, d and M0 as in the Theorem, we set

k0 :=

(
8M2

0

ε2

)d
.

Let G be a graph as in Proposition 5.1, let X1 ∪ . . . ∪ Xs and Y1 ∪ . . . ∪ Yt
be the (ε, 5

√
ε)-regular partition of G corresponding to the reduced graph R

(in particular s+ t ≤M0). Set m := |Xi| = |Yj| (for any i, j).
For each i ∈ [s], we arbitrarily partition Xi into three sets Xi,S, Xi,L, Xi,C ;
and for each j ∈ [t] we arbitrarily partition Yj into three sets Yj,S, Yj,L, Yj,C ,
such that

|Xi,S| = |Xi,L| = |Yj,S| = |Yj,L| = d10
√
εme.
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The letters S, L and C stand for seeds, links and clusters, respectively (sets
Xi,C and Yj,C contain the bulk of the clusters). We also call these subsets
the L-, S- or C-slice of the corresponding cluster.
Note that, by Fact 3.1, for every (Xi, Yj) with positive density, each of the

pairs (Xi,K , Yj,K′), with K,K ′ ∈ {S, L, C}, is
√
ε

5
-regular with density greater

than 4
√
ε.

Root T at any vertex r(T ). By Proposition 4.1, with parameters β = ε
s+t

,
we obtain a decomposition of T into a collection of pieces P , each of order
at most βk, and a family of seeds S of size at most 2

β
. Order the elements

from S ∪ P in a way that the first element is r(T ), and the parent of each
element is either an earlier seed or belongs to an earlier piece.

Our plan is to embed the elements from S ∪P in this order. Seeds will go to
S-slices of appropriate clusters Xi,S or Yj,S, with r(T ) going to cluster Xi if
r(T ) belongs to the heavier bipartition class of T , and going to Yj otherwise.
Pieces from P will go into C-slices (Xi,C , Yj,C) of appropriate pairs (Xi, Yj),
and into L-slices of other clusters.
More precisely, for each piece P ∈ P we will find a pair (Xi, Yj) such that
there is enough space left in (Xi,C , Yj,C) to accommodate P . At this point,
the parent of P is already embedded into some cluster Z, so we need to
embed part of P into a path ZZ1Z2Z3 . . . Zh that connects Z with the pair
(Xi, Yj). Because of the bounded degree of T , and since the diameter of G is
also bounded, this path can be chosen short enough to ensure that the levels
of P that are embedded into this path only contain relatively few vertices.
So we can use the L-slices of the clusters Z` for these levels. The remaining
levels of P will be embedded into the free space of (Xi,C , Yj,C).

Let us make this sketch more precise. During the embedding procedure, we
will write X ′i,C and Y ′j,C for the set of unoccupied vertices of Xi,C and Yj,C
respectively. We will say that a pair (Xi, Yj) is good if d(Xi, Yj) > 0 and
min{|X ′i,C |, |Y ′j,C |} ≥ 5

√
εm. Hence we will be able to apply Lemma 3.4 to

any good pair and any piece belonging to P .
The embedding φ : V (T ) → V (G) will be constructed iteratively, following
the embedding order of S∪P chosen above. Employing the strategy explained
above, we make sure that at every step, the following conditions will be
satisfied:

(A) Each vertex is embedded into a neighbour of the image of its already
embedded parent;
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(B) each s ∈ S is embedded into the S-slice of some cluster;

(C) for each P ∈ P , the first (up to d − 1) levels are embedded into the
L-slices of some clusters, and the rest goes into the C-slices; and

(D) every v ∈ V (T ) is mapped into a vertex that is typical towards both the
S-slice and the L-slice of some adjacent cluster.

Since the set S has constant size, and since we do not particularly care
into which cluster a seed goes, as long as it goes to the S-slice, it is clearly
possible to embed a seed s, when its time comes, satisying conditions (A),
(B) and (D).
So assume we are about to embed a piece P ∈ P . The parent of the root
r(P ) of P is already embedded into some vertex that is typical with respect
to the L-slice of some cluster Z1. In order to be able to embed P according
to our plan, it suffices to ensure that

(I) there exists some good pair (Xi, Yj);

(II) there is a path Z1Z2Z3 . . . Zh of length h ≤ d from Z1 to Xi;

(III) the union of the first h − 1 levels of P is small enough to fit into the
free space in the L-slices of {Z1, Z2, Z3, . . . , Zh−1}.

If we can assure these properties, we can repeatedly apply Lemma 3.4 to em-
bed the first levels of P into the L-slices of the clusters Z`, and the remaining
levels of P into (X ′i,C , Y

′
j,C) in a way that (A), (C) and (D) hold.

So, let us prove (I). We first note that there exists some cluster Xi such that
|φ−1(Xi,C)| < |Xi,C | − 5

√
εm. Indeed, otherwise we have used at least

(1− 25
√
ε)|X| − 5

√
ε|X| ≥ (1− 30

√
ε)(1 + 100

√
ε)k > (1 + 2

√
ε)k > k + 1

vertices from X already, a contradiction, since |T | = k + 1.
Next, we claim there exists some cluster Yj such that (Xi, Yj) is good. If this
was not the case, then we have used at least

(1− 30
√
ε)|N(Xi)| ≥ (1− 30

√
ε)(1 + 100

√
ε)
k

2
> (1 + 2

√
ε)
k

2
>
k + 1

2

vertices of Y already, a contradiction, as we placed the root r(T ) of T in
a way that guaranteed we would embed the smaller bipartition class of T
into Y .
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Observe that (I) implies (II), because of condition (ii) of Proposition 5.1. So
it only remains to prove (III).
Using (C) for already embedded pieces P ′, and using the fact that, for any
such piece P ′, the number of vertices in their first d− 1 levels is bounded by
2(∆(T ) − 1)d−2 (except if ∆(T ) ≤ 2, in which case this number is bounded
by d − 1), we have that the total number of occupied vertices in L-slices is
at most

|S| ·∆(T ) · 2(∆(T )− 1)d−2 ≤ 4

β
· k

d−1
d ≤ 4M0

ε
· k

d−1
d < ε

k

2M0

≤ εm

for k ≥ k0. In particular, each L-slice of a cluster Z` has at least d9
√
εme

unused vertices. This is enough to ensure that the first h− 1 levels of P fit
into the L-slices of the clusters Z1, Z2, Z3, . . . , Zh−1. This proves (III).

Remark 5.2. It is easy to see that instead of conditions (iii) and (iv) from
Proposition 5.1 we could use the weaker requirement that there is a set C of
clusters in X such that deg(x) ≥ (1 + 100

√
ε)k

2
· |R|
n

, for all x ∈ V (C), and

|V (C)| ≥ (1 + 100
√
ε)k · |R|

n
.

Remark 5.3. Observe that Proposition 5.1 remains true with the following
additional conditions. Let U ⊆ V (G) such that

• |U |+ |T | ≤ k + 1;

• |U ∩
⋃
X|+ c0(T ) ≤ k; and

• |U ∩
⋃
Y |+ c1(T ) ≤ k

2
,

where c0(T ) and c1(T ) are the two colour classes of T .
Then T can be embedded into G avoiding U , that is, we can embed T in such
a way φ(V (T )) ⊆ V (G) \ U .

Moreover, observe that by repeatedly applying Proposition 5.1 together with
Remark 5.3, we can actually embed a forest instead of a tree. We say that a
forest F , with colour classes C1 and C2, is a (k1, k2, t)-forest if

1. |Ci| ≤ ki for i = 1, 2, and

2. ∆(F ) ≤ (k1 + k2)t.
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Corollary 5.4. For all ε ∈ (0, 10−8) and for all d,M0 ∈ N there is k0 such
that for all n, k1, k2 ≥ k0 the following holds. Let G be an n-vertex having a
(ε, 5
√
ε)-reduced graph R that satisfies |R| ≤M0, such that

(i) R = (X, Y ) is connected and bipartite;

(ii) diam(R) ≤ d;

(iii) deg(x) ≥ (1 + 100
√
ε)k2 · |R|n , for all x ∈ X; and

(iv) |X| ≥ (1 + 100
√
ε)k1 · |R|n .

Then any (k1, k2,
1
d
)-forest F , with colour classes C1 and C2, can be embedded

into G, with C1 going to
⋃
X and C2 going to

⋃
Y .

Moreover, if F has at most εn
|R| roots, then the images of the roots going to⋃

X can be mapped to any prescribed set of size at least 2ε|
⋃
X| in X, and

the images of the roots going to
⋃
Y can be mapped to any prescribed set of

size at least 2ε|
⋃
Y | in Y .

Remark 5.5. An analogue of Remark 5.3 holds for the situation of Corol-
lary 5.4.

It is easy to see that we can bound the balancedness of trees whose maximum
degree is bounded by some constant ∆. See Section 9.1 for an example of
the most unbalanced such tree.
So it comes as no surprise that for the class of all constant degree trees, it is
possible to show the following improvement of Proposition 5.1.

Corollary 5.6. For all ε ∈ (0, 10−8), d,M0 ∈ N and ∆ ≥ 2 there is a k0

such that for all n, k ≥ k0 the following holds. Let G be an n-vertex graph
that has an (ε, 5

√
ε)-reduced graph R that satisfies |R| ≤M0, such that

(i) R = (X, Y ) is connected and bipartite;

(ii) diam(R) ≤ d;

(iii) deg(x) ≥ (1 + 100
√
ε)k

2
· |R|
n

for all x ∈ X;

(iv) |X| ≥ (1 + 100
√
ε) (∆−1)

∆
k · |R|

n
.

Then G contains every tree T with k edges and ∆(T ) ≤ ∆ as a subgraph.
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5.2 The nonbipartite case

In this section we treat tree embeddings into graph with large nonbipartite
components in the reduced graph. The proof of the corresponding proposi-
tion, Proposition 5.8 below, is very similar to the proof of Proposition 5.1.
For convenience, we will now work with a matching in the reduced graph.
Let G be a graph with an (ε, η)-regular partition, we say that M is a cluster
matching if it is a matching in the corresponding (ε, η)-reduced graph. We
begin our treatment of the nonbipartite case by showing that we can always
find a large cluster matching in graphs with large minimum degree that admit
an (ε, η)-regular partition, for some ε, η ∈ (0, 1).

Lemma 5.7. Let ε, η ∈ (0, 1) and let t, ` ∈ N. Let G be a graph on n ≥
2t vertices and minimum degree at least t, such that G admits an (ε, η)-
regular partition with less than ` parts. Then there exists an (5ε, η − ε)-
regular partition of G with less than 2` parts, a cluster matching M and an
independent family of clusters C, disjoint from M , such that

(i) V (
⋃
M) ∪ V (

⋃
C) = V (G);

(ii) |
⋃
M | ≥ 2t; and

(iii) there is a partition V (M) = V1 ∪ V2, such that N(C) ⊆ V1 and every
edge in M has one endpoint in V1 and one endpoint in V2.

Proof. Let R be the reduced graph corresponding to the (ε, η)-regular parti-
tion of G. By applying Lemma 3.5 to R, we obtain an independent set I, a
matching M ′ and a set of disjoint triangles Γ, such that V (R) = I ∪V (M ′)∪
V (Γ). If Γ is empty, we are done by choosing C := I and M := M ′. So
suppose Γ 6= ∅.
We arbitrarily partition each cluster X ∈ V (R) into X1 and X2 so that∣∣|X1|− |X2|

∣∣ ≤ 1. Thanks to Fact 2, the partition V (G) =
⋃
X∈V (R) X

1∪X2

is (5ε, η − ε)-regular and has less than 2` atoms. We set

M :=
⋃

CD∈M ′
{(C1D1), (C2D2)} ∪

⋃
XY Z∈Γ

{(X1, Y 2), (Y 1, Z2), (Z1, X2)}

and

C :=
⋃
C∈I

{C1, C2}
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Note that C and M inherit the properties of I and M ′, respectively. Prop-
erty (ii) follows from Property (iii) and the minimum degree of G.

Let us note that in Lemma 5.7, given δ > 0, if G has minimum degree at
least (1+δ)k

2
, then one can find a matching covering at least (1+δ)k vertices

of G.

Now we are ready for Proposition 5.8 and its proof.

Proposition 5.8. For all ε ∈ (0, 10−8) and d,M0 ∈ N there exists k0 such
that for all n, k ≥ k0 the following holds. Let G be an n-vertex graph that
has an (ε, 5

√
ε)-reduced graph R that satisfies |R| ≤M0, such that

(i) R is connected and nonbipartite;

(ii) diam(R) ≤ d; and

(iii) R has a matching M with |V (M)| ≥ (1 + 100
√
ε)k · |R|

n
.

Then G contains every tree T with k edges and ∆(T ) ≤ k
1

3d+1 as a subgraph.

Proof. Given ε, d and M0 as in the Theorem, we set

k0 :=

(
8M2

0

ε2

)3d+1

Now, let G be a graph as in Proposition 5.8, let V (G) = V1 ∪ . . . ∪ V` be
the (ε, 5

√
ε)-upper regular partition of G corresponding to the reduced graph

R(in particular ` ≤M0). Set m := |Vi| for any i ∈ [`].
For each i ∈ [`], we partition cluster Vi into sets Vi,S, Vi,L, Vi,C in the same
way as we did in Proposition 5.1. Also, consider the decomposition of T
into T and S given by Proposition 4.1, with β = ε

`
. We order S ∪ P in the

same way as in the proof of Proposition 5.1.
The embedding φ : V (T ) → V (G) will be constructed iteratively, following
the order of S∪P . We make sure that at every step, the following conditions
will be satisfied:

(A) Each vertex is embedded into a neighbour of the image of its already
embedded parent;

(B) each s ∈ S is embedded into the S-slice of some cluster;

28



(C) for each P ∈ P , the first 3d levels are embedded into the L-slices of
some clusters, and the remaining levels go to the C-slices;

(D) every v ∈ V (T ) is mapped to a vertex that is typical with respect to
both the S-slice and the L-slice of some adjacent cluster; and

(E)
∣∣|φ−1(Vi,C)| − |φ−1(Vj,C)|

∣∣ ≤ εm for each pair (Vi, Vj) ∈M .

We already know that it is no problem to embed a seed s, when its time
comes, satisfying conditions (A), (B) and (D). So we mainly have to worry
about (C) and (E).
Assume we are about to embed a piece P ∈ P . The parent of the root r(P )
of P is already embedded into some vertex that is typical with respect to the
L-slice of some cluster Z1. In order to be able to embed P so that the above
conditions are satisfied, it suffices to ensure that

(I) there exists some good pair (Vi, Vj);

(II) for either choice of Z3d+1 ∈ {Vi, Vj} there is a walk Z1Z2 . . . Z3d+1 in R;

(III) the first 3d levels of P are small enough to fit into the free space in
the L-slices of {Z1, Z2 . . . , Z3d},

where a walk in a graph is a sequence Z1Z2 . . . Zh such that each Zi is adjacent
to Zi+1 for all 1 ≤ i < h.
Before we prove (I)–(III), let us explain why these conditions are enough to
ensure we can embed T correctly. As before, we plan to repeatedly apply
Lemma 3.4 in order to embed the first levels of P into the L-slices of the
clusters Z1, Z2, . . . , Z3d, and the later levels into the C-slices of Vi, Vj, always
avoiding all vertices used earlier.
Since our aim is to embed P in a way that (E) is fulfilled, we take care
to choose Z3d+1 ∈ {Vi, Vj} in a way that the larger bipartition class of the
tree P ′ obtained from P by deleting its first 3d levels goes to the less occupied
slice Vi,C , Vj,C . That is, assuming that

∣∣φ−1(Vi,C)
∣∣ ≤ ∣∣φ−1(Vj,C)

∣∣ (the other
case is analogous), we proceed as follows. If the levels of P ′ that lie at even
distance from the root of P in total contain more vertices than those lying at
odd distance, we choose Z3d+1 = Vj. Otherwise, we choose Z3d+1 = Vi. We
then embed P , making the first 3d levels go to L-slices, and embedding P ′

into Vi,C ∪ Vj,C .
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Let us now prove (I). Suppose there is no good pair in M . This together
with (E) implies that the number of embedded vertices is at least∑
AB∈M

(|Ai,C | − 6
√
εm+ |Bi,C | − 6

√
εm) ≥ (1− 33

√
ε)(1 + 100

√
ε)k > k + 1,

a contradiction, since |T | = k + 1.
Next, we show (II). Assume we chose Z3d+1 = Vi (the other case is analo-
gous). Let C = C1C2 . . . CpC1 be a minimal odd cycle in the reduced graph.
Since C is minimally odd, the shortest path between two clusters in C is the
shortest arc in the cycle, and hence p ≤ 2d + 1. Let U := Z1U1 . . . UsC1 be
a shortest path from Z1 to C1 and let Q := Cd p

2
eQ1 . . . QtVi be a shortest

path from Cd p
2
e to Vi. As diam(R) ≤ d, we have that s + t + 2 ≤ 2d. So,

by using the appropriate one of the two C1–Cd p
2
e paths in C, we can extend

U ∪Q to an odd walk of length at most 2d+(d+1) = 3d+1, which connects
Z1 with Vi. By going back- and forwards on this walk, if necessary, we can
obtain a walk of length exactly 3d+ 1, which is as desired. So, condition (II)
holds.
Finally, using the same reasoning as in Proposition 5.1 we can prove that the
total number of occupied vertices in L-slices is at most

|S| ·∆(T ) · 2(∆(T )− 1)3d−1 ≤ 4

β
· k

3d
3d+1 < εm

for k ≥ k0. In particular, the L-slice of each cluster has at least d9
√
εme

unused vertices and, therefore, we can embed each vertex of the first 3d levels
of P into the L-slices of the clusters from the walk Z1Z2 . . . Z3d without a
problem. This proves (III).

Remark 5.9. If d = 1 we can actually embed trees with maximum degree
bounded by ρk, where ρ is a sufficiently small constant, without modifying
our proof significantly, because we can reach both Vi and Vj in one step from
the image of the latest embedded seed.

Remark 5.10. Similar as in the bipartite case, we can add an extra hy-
pothesis as in Remark 5.3. Consider an arbitrary set U ⊆ V (G) such that
|U | + |T | ≤ k + 1 and such that U is reasonably balanced in M , that is,∣∣|U ∩ C| − |U ∩D|∣∣ < ε|C| for all CD ∈ M . Then T can be embedded into
G avoiding U .
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Repeatedly applying Proposition 5.8, together with Remark 5.10, we can
embed a forest instead of a tree.

Corollary 5.11. Let ε ∈ (0, 10−8) and let d,M0 ∈ N. There exists k0 ∈ N
such that for all n, k ≥ k0 the following holds. Let G be a n-vertex graph with
an (ε, 5

√
ε)-reduced graph R that satisfies |R| ≤M0. Suppose that

(i) R is connected and nonbipartite;

(ii) diam(R) ≤ d;

(iii) R has a matching M with |V (M)| ≥ (1 + 100
√
ε)k · |R|

n
;

then any forest F on at most k + 1 vertices that satisfies ∆(F ) ≤ k
1

3d+1 is a
subgraph of G. Moreover, if F has at most εn

|R| roots, then the images of the
roots can be mapped into any prescribed set of size at least 2εn.

6 Improving the maximum degree bound

In the previous section we proved that in graphs of minimum degree at least
(1 + δ)k

2
which have a large connected component after applying regularity

and performing the usual cleaning-up, all trees of maximum degree kO(δ)

appear as subgraphs (see Theorem 6.1). The aim of the present section is to
prove a similar statement as there, but with a significant weakening in the
bound on the maximum degree of the tree. More precisely, the exponent in
this bound will no longer depend on the diameter of the reduced graph.
The exact statement is given in Proposition 6.3, and its proof can be found
in Subsection 6.1. Then, in Subsection 6.2, we give a quick application of
Proposition 6.3 to the Erdős-Sós conjecture.

6.1 Improving the exponent from the maximum de-
gree bound

We need a theorem from [10], which says that one can bound the diameter
of any connected graph in terms of its number of vertices and its minimum
degree.
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Theorem 6.1 (Erdős, Pach, Pollach and Tuza [10]). Let G be a connected
graph on n vertices with minimum degree at least 2. Then

diam(G) ≤
⌊

3n
δ(G)+1

⌋
− 1.

We also need the following lemma. Given a graph G and a vertex v ∈ V (G),
let Ni(v) denote the ith neighbourhood of v (i.e. the set of vertices of G at
distance i from v).

Lemma 6.2. Let q ∈ N and let G be a connected graph, and let v ∈ V (G).
Then ∣∣∣∣∣

3q+1⋃
i=0

Ni(v)

∣∣∣∣∣ ≥ min{(q + 1)(δ(G) + 1), |V (G)|}.

Proof. If Ni(v) = ∅ for some i ∈ [3q + 1], then, as G is connected, V (G) ⊆⋃i−1
j=0Nj(v) and thus |

⋃3q+1
j=0 Nj(v)| = |V (G)|. Therefore, we assume that

Ni(v) 6= ∅ for every i ∈ [3q + 1].
Now, for each j ∈ [q], pick a vertex v3j ∈ N3j(v). Observe that N(v3j) ⊆
N3j−1(v) ∪N3j(v) ∪N3j+1(v), and hence,

|N3j−1(v) ∪N3j(v) ∪N3j+1(v)| ≥ δ(G) + 1.

We also know that |N0(v)∪N1(v)| = |N(v)|+ 1 ≥ δ(G) + 1. This proves the
statement.

The next result shows that we can make the exponent in Proposition 5.1
and Proposition 5.8 only depend on the minimum degree of G. In order
to prove the result we will first apply a strategy similar to the one used in
Propositions 5.1 and 5.8. If this strategy fails, we will have found a good
structure in the host graph and then, forgetting about the earlier attempt
at an embedding of T , we make use of the structure to embed the tree in a
different way.

Proposition 6.3. For all α ∈ [1
2
, 1), ε ∈ (0, 10−8) and M0 ∈ N, there exists

k0 ∈ N such that for all n, k ≥ k0 the following holds.
Let G be a n-vertex graph with δ(G) ≥ (1 + 100

√
ε)αk that has a connected

(ε, 5
√
ε)-reduced graph R with |R| ≤M0. If

(a) R = (A,B) is bipartite and such that |A| ≥ (1 + 100
√
ε)k · |R|

n
; or
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(b) R is non-bipartite and n ≥ (1 + 100
√
ε)k;

then G contains every k-edge tree of maximum degree at most k
1
c , where

c = 18d 2
α
e − 5.

Proof. Given α, we define

d1 := 3d 2
α
e − 2 and d2 := 2(d1 + 1),

and observe that
c = 3d2 + 1.

Given ε and M0, let k0 be the maximum of the outputs of Proposition 5.1
and Proposition 5.8, for input ε, d2 and 2M0.
Let G be as in Proposition 6.3. Note that if |V (G)| < (1 + 100

√
ε)2k, then

Theorem 6.1 implies that diam(R) ≤ b 6
α
c − 1 ≤ d2. Therefore (and because

of Fact 3.3), we may apply either Proposition 5.1 or Proposition 5.8, together
with Lemma 5.7, to conclude. Thus, from now on we will assume that

|V (G)| ≥ (1 + 100
√
ε)2k. (10)

Let T be a tree on k edges with ∆(T ) ≤ k
1
c and root T at any vertex. We

partition T using Proposition 4.1, with β := εn
|R| , obtaining a set S of seeds

and a family P of pieces. We first try to emulate the embedding scheme used
in the proof of Proposition 5.1.
Consider the regular partition associated to the reduced graph R of G, and
divide each cluster X into three sets XC , XS, XL, with |XS| = |XL| =
d10
√
ε|X|e. We are going to embed T in |S| steps, letting φ denote the

partial embedding defined so far.
At step j we consider a vertex sj ∈ S not embedded yet, but whose parent
uj is already embedded (except in the step j = 1, in which case we embed
the root of T into any cluster of our choice). We know that φ(uj) is typical
towards the S-slice of some adjacent cluster Q. Embed sj in QS, choosing
φ(sj) typical to UL and to US, where U is any neighbour of Q.
Now, suppose there is a good pair (W,Z), that is, an edge WZ such that both
clusters W and Z have free space of size at least 5

√
ε|W |, and additionally,

dist(U,W ) ≤ d1. Find a shortest path from U to W , say X0X1 . . . Xt−1Xt,
where X0 = R and Xt = W and, further, t ≤ d1.
Consider a piece P adjacent to sj that is not yet embedded. We map the root
of P into the neighbourhood of φ(sj) in (X0)L. We then embed the first t
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levels of P into the path X0X1 . . . Xt−1Xt, mapping the vertices from the
ith level of P into unoccupied vertices from (Xi)L that are typical towards
(Xi+1)L and to (Xi+1)S, for each i = 0, . . . , t− 1 respectively. Finish the em-
bedding of P , by mapping the remaining levels into the unoccupied vertices
of (WC , ZC). For this, we use Lemma 3.4, mapping the vertices from the tth

level of P into WC and picking all the images typical towards the L-slice and
the S-slice of some adjacent cluster. We repeat this procedure for every not
yet embedded piece adjacent to sj and then move on to the next seed.

If every step of this process is successful, then T is satisfactorily embedded
into G. However, it might happen that the embedding cannot be completed,
because at some step we could not find a good pair (W,Z) at close distance.
In that case, consider the seed s∗ where the process stopped and let C∗ be
the cluster to which s∗ was assigned. Let us define H as the subgraph of R
induced by all those clusters that lie at distance at most d1 from C∗. Further,
let S be the set of all those clusters C ∈ V (H) that have free space of size
at least 5

√
ε|C|.

Note that, since the embedding could not be finished, then

S is an independent set. (11)

By applying Lemma 6.2, with q = d 2
α
e−1, and since δ(R) ≥ (1+100

√
ε)αk· |R|

n

and by (10), we deduce that

|V (H)| > (1 + 100
√
ε)2k · |R|

n
.

This is more than twice the space needed for embedding T . So, since we
have embedded at most k vertices before we declared the embedding to have
failed, we conclude that

|V (S)| ≥ (1 + 200
√
ε)k · |R|

n
. (12)

Let us define H ′ as the subgraph of R induced by all clusters at distance
at most d1 + 1 from C∗. So, V (H ′) consists of V (H) together with the
neighbours of H in R.
Forgetting about our previous attempt to embed T , we are now going to
embed T with the help of our earlier propositions. We distinguish two cases,
depending on whether H ′ is bipartite or not.
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Case 1: H ′ is nonbipartite.

Let M be a matching in H covering a maximal number of clusters from S.
We claim that |V (M)| ≥ (1 + 100

√
ε)k · |R|

n
. Indeed, otherwise (12) implies

that there is a cluster X ∈ V (S) \ V (M). By our choice of M , and because
of (11), we know that x sees at most one endvertex of each edge from M ,
and no cluster outside V (M). This contradicts the fact that degH′(X) ≥
(1 + 100

√
ε)k

2
· |R|
n

.
Hence, as diam(H ′) ≤ 2(d1 + 1) = d2, we can apply Proposition 5.8 to H ′

and the subgraph of G induced by the clusters of H ′, and we are done.

Case 2: H ′ is bipartite.

Since |V (H)| ≥ (1+100
√
ε)2k · |R|

n
, one of the bipartition classes of H ′, say A,

satisfies |A∩H| ≥ (1+100
√
ε)k · |R|

n
. Since degH′(X) ≥ (1+100

√
ε)k

2
· |R|
n

for
each X ∈ V (H), we can apply Proposition 5.1, together with Remark 5.2, to
obtain the embedding of T .

6.2 An approximate Erdős–Sós result:
The proof of Theorem 1.9

As a quick application of the result from the previous subsection, we now
prove our approximate version of the Erdős–Sós conjecture for trees of bounded
degree and dense host graphs.

Proof of Theorem 1.9. We choose ε and η such that 0 < ε � η � δ. Let
N0,M0 be given by Lemma 3.2 for inputs ε, η and m0 = 1

ε
. Set n0 as the

maximum between N0 and the output of Proposition 6.3, with input ε, α := 1
2

and M0.
Now, let G be a n-vertex graph with d(G) ≥ (1+δ)k. It is well-known that G
has a subgraph H with d(H) ≥ (1+δ)k and minimum degree at least (1+δ)k

2
.

By Lemma 3.2, we can find a subgraph H ′ ⊆ H, which admits an (ε, η)-
regular partition and satisfies δ(H ′) ≥ (1+ δ

2
)k

2
and d(H ′) ≥ (1+ δ

2
)k. LetR be

the (ε, η)-reduced graph of H ′. By averaging, there is a connected component

C of R such that d(C) ≥ (1 + δ
2
)k · |R||H′| . In particular, |

⋃
C| ≥ (1 + δ

2
)k.

Clearly, C preserves the minimum degree in H ′, that is, δ(H ′[C]) ≥ (1+ δ
2
)k

2
.

Since c = 67 = 18 · 4 − 5, we can apply Proposition 6.3 to C in order to
obtain the desired embedding of T .
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Clearly, this proof can easily be modified to give the following corollary
(which will not be used anywhere in this paper). For ε > 0, we say that
a subgraph C of an n-vertex graph G is essentially εn2-edge-connected if,
after deleting any set of at most εn2 edges of G, there is a component con-
taining C.

Corollary 6.4. For every δ > 0 there is n0 ∈ N such that for each n-vertex
graph G with n ≥ n0 and for each k with δn ≤ k ≤ n the following holds.
If G has an essentially δn2-edge connected subgraph C of size at least (1+δ)k
with δ(C) > (1 + δ)k

2
, then C contains every k-edge tree of maximum degree

at most k
1
67 .

7 The key embedding lemma

In the current section, we present and prove our key embedding lemma,
namely Lemma 7.3. This lemma describes a series of configurations which,
if they appear in a graph G, allow us to embed any bounded degree tree of
the right size into G. So, in a way the lemma can be seen as a compendium
of favourable scenarios.
Before stating the lemma we need two simple definitions.

Definition 7.1 (θ-see). Let θ ∈ (0, 1). A vertex x of a graph H θ-sees a set
U ⊆ V (H) if it has at least θ|U | neighbours in U .
Furthermore, if C is a component of some reduced graph of H − x, we say
that x θ-sees C if x has at least θ|

⋃
V (C)| neighbours in

⋃
V (C).

Definition 7.2 ((k, θ)-small, (k, θ)-large). Let k ∈ N and let θ ∈ (0, 1). A
nonbipartite graph G is said to be (k, θ)-small if |V (G)| < (1+θ)k. A bipartite
graph H = (A,B) is said to be (k, θ)-small if max{|A|, |B|} < (1 + θ)k.
If a graph is not (k, θ)-small, we will say that it is (k, θ)-large.

We are now ready for the key lemma.

Lemma 7.3 (Key embedding lemma). For each α ∈ [1
2
, 1), for each ε ∈

(0, 10−10) and for each M0 ∈ N there is n0 ∈ N such that for all n, k ≥ n0

the following holds.
Let G be an n-vertex graph of minimum degree at least (1+ 4

√
ε)αk and let T be

a k-edge tree whose maximum degree is bounded by k
1
c , where c = 18d 2

α
e− 5.

Let x ∈ V (G), and let R be an (ε, 5
√
ε)-reduced graph of G−x, with |R| ≤M0,

such that at least one of the following conditions (I)–(IV) holds:
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(I) R has a (k · |R|
n
, 4
√
ε)-large nonbipartite component; or

(II) R has a (k1 · |R|n , 4
√
ε)-large bipartite component, where k1 is the size of

the larger bipartition class of T ; or

(III) R has a (2k
3
· |R|
n
, 4
√
ε)-large bipartite component such that x

√
ε-sees

both sides of the bipartition; or

(IV) x
√
ε-sees two components C1 and C2 of R in a way that one of the

following holds:

(a) x sends at least one edge to a third component C3 of R;

(b) there is i ∈ {1, 2} such that Ci is nonbipartite and (2k
3
· |R|
n
, 4
√
ε)-

large;

(c) there is i ∈ {1, 2} such that Ci is bipartite and x sees both sides of
the bipartition;

(d) there is i ∈ {1, 2} such that Ci is bipartite with parts A and B,

min{|A|, |B|} ≥ (1 + 4
√
ε)2k

3
· |R|
n

and x sees only one side of the
bipartition;

(e) C1 and C2 are bipartite with parts A1, B1 and A2, B2, respectively,

min{|A1|, |B2|} ≥ (1 + 4
√
ε)2k

3
· |R|
n

and x does not see B1 ∪B2.

Then T embeds in G.

Proof. Let k′0 be the maximum of the outputs k0 of Proposition 6.3, Corol-
lary 5.4 and Corollary 5.11, for inputs ε, d = 6

α
and 2M0, and choose

n0 := k′0 + 1 as the numerical output of Lemma 7.3.
Now assume we are given an n-vertex graph G with x ∈ V (G), and let T
be a k-edge tree as in Lemma 7.3. Let R be the (ε, 5

√
ε)-reduced graph of

G− x. An easy computation shows that

δ(R) ≥ (1 + 1
2

4
√
ε)αk · |R|

n
≥ (1 + 100

√
ε)αk · |R|

n
, (13)

where the last inequality follows since ε ≤ 10−10. Furthermore, note that R
must fulfill one of the conditions (I)–(IV) from Lemma 7.3. If R contains a

(k · |R|
n
, 4
√
ε)-large nonbipartite component or a (k1 · |R|n , 4

√
ε)-large bipartite

component, then we can conclude by Proposition 6.3.
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So we can discard scenarios (I) and (II) from Lemma 7.3. Therefore, by
Theorem 6.1, and by (13), we can assume that every connected component
C of R satisfies

diam(C) ≤ 3|V (C)|
δ(C) + 1

≤
3(1 + 4

√
ε)2k · |R|

n

(1 + 1
2

4
√
ε)αk · |R|

n

≤ 6

α
+ 1, (14)

and thus
c ≥ 3 · diam(C) + 1. (15)

So, the maximum degree of T and the diameter of the components are in
the right relation to each other, meaning that we could apply Corollaries 5.4
and 5.11 to each connected component of R (if the other conditions of these
corollaries hold).

In order to embed T under scenarios (III) and (IV), we use the results from
Section 4.2.

Case 1 (scenario (III)): R has a (2k
3
· |R|
n
, 4
√
ε)-large bipartite component C

such that x
√
ε-sees both sides of the bipartition.

Applying Proposition 4.8 to T , we obtain a cut-vertex z0 ∈ V (T ) and a
proper 2-colouring c : V (T − z0)→ {0, 1} of T − z0 such that

|c1| ≤ |c0|, |c0| ≤
2k

3
and |c1| ≤

k

2
.

Let us note that, because of the bound on k0, the number of components of
T − z0 is bounded by

∆(T ) ≤ k
1
c ≤ εk

M0

≤ εn

|R|
. (16)

Now, we map z0 into x. Recalling (13), (14), (15) and the fact that T − z0

is a (2k
3
, k

2
, 1
c
)-forest we can apply Corollary 5.4 to embed T − z0 into C, and

by (16) we may choose the images of the roots of T − z0 as neighbours of x.

Case 2 (scenario (IV)): x
√
ε-sees two components C1 and C2 of R.

Let z1 ∈ V (T ) be the vertex given by Lemma 4.2 applied to T , with any
leaf v. Let T be the set of connected components of T − z1. Then T is a
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family of at most ∆(T ) rooted trees whose roots are neighbours of z1 in T ,
and |V (T ′)| ≤ dk

2
e for every T ′ ∈ T.

Apply Lemma 4.4 (i) to T to obtain a partition of T into three families of
trees F1,F2 and F3, where F3 could be empty, such that

|V (
⋃
F3)| ≤ |V (

⋃
F2)| ≤ |V (

⋃
F1)| ≤

⌈
k

2

⌉
. (17)

For later use, let us record here that

|F1|+ |F2|+ |F3| ≤ ∆(T ) ≤ εn

|R|
. (18)

Furthermore, due to Remark 4.5, we know that

|F3| ≤ 1. (19)

Similarly, applying Lemma 4.4 (ii) to T we obtain a partition of T into two
families of trees J1 and J2 such that

|V (
⋃

J2)| ≤ k

2
and |V (

⋃
J2)| ≤ |V (

⋃
J1)| ≤ 2k

3
, (20)

and again, we know that

|J1|+ |J2| ≤ ∆(T ) ≤ εn

|R|
. (21)

We split the remainder of the proof into six cases, according to which of the
conditions (IVa), (IVb), (IVc), (IVd) or (IVe) holds. Depending on the case
we will make use of partition {Fi}i=1,2 or {Ji}i=1,2,3.

Case 2a (scenario (IVa)): x
√
ε-sees two components C1, C2 and sends at

least one edge to a third component C3.

We embed z1 into x, and then proceed to embed the roots of the trees from Fi
into the neighbourhood of x in Ci, for each i = 1, 2, 3. This is possible since
by (19), there is at most one root to embed into C3. Furthermore, by (18),
there are at most ∆(T ) ≤ εn

|R| roots to be embedded into Ci, for i = 1, 2.

Finally, because of the minimum degree in G, and because of (17), we can
greedily embed the remaining vertices of each forest Fi into Ci.
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Case 2b (scenario (IVb)): x
√
ε-sees two components C1 and C2, and one

of these components, say C1, is nonbipartite and (2k
3
· |R|
n
, 4
√
ε)-large.

We map z1 into x, and then embed the roots of J2 into C2 (we know that x
has enough neighbours in C2 because of (18)). We then embed the rest of⋃
J2 greedily into C2.

For the trees from J1, we can make use of Corollary 5.11 and Lemma 5.7,
whose conditions hold by (13), (14), (15) and (20), to map

⋃
J1 to C1.

Case 2c (scenario (IVc)): x
√
ε-sees two components C1 and C2, one of

these components, say C1, is bipartite, and x sees both sides A, B of the
bipartition.

First, we map z1 into x and then embed
⋃
F1 greedily into C2 (embedding

the roots into neighbours of x, as before). For the remaining forests, F2 and
F3, observe that for any proper 2-colouring of

⋃
F2 and

⋃
F3, and for any

i = 2, 3, the larger colour class of
⋃
Fi and the smaller colour class of

⋃
F5−i

add up to at most

|
⋃
Fi|+

|
⋃
F5−i|
2

≤ |
⋃
F1|+ |

⋃
F2|+ |

⋃
F3|

2
=
k

2
. (22)

Now, our aim is to embed the roots and all the even levels of
⋃
F2 into A,

while embedding the odd levels into B. Moreover, we plan to embed
⋃
F3 in

a way that its larger colour class goes to the same set as the smaller colour
class of

⋃
F2.

As x
√
ε-sees C1, we may assume that x

√
ε

2
-sees A. Moreover, since x has at

least one neighbour b ∈ B, and since
⋃
F3 has only one root because of (19),

we can choose whether we map the single root of
⋃
F3 into b, or into some

neighbour of x in A. We will make this choice according to our plan above
(that is, it will depend on whether the even or the odd levels of

⋃
F2 contain

more vertices).
We then greedily embed the rest of

⋃
F3 into C1. Now, we can make use

of Corollary 5.4 together with Remark 5.5, whose conditions hold by (15)
and by (22), to complete the embedding of

⋃
F2 into C1, while avoiding the

image of
⋃
F3.

Case 2d (scenario (IVd)): x
√
ε-sees two components C1 and C2, one of

them is bipartite with parts A and B, min{|A|, |B|} ≥ (1 + 4
√
ε)2k

3
· |R|
n

and
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x sees only one side of the bipartition.

Let us assume that C1 is the bipartite component with parts A and B con-
taining at least (1 + 4

√
ε)2k

3
· |R|
n

clusters each and that x only sees the set
A. We map z1 into x and then embed

⋃
J2 greedily into C2 (embedding

the roots into neighbours of x, as before). Note that there are few roots of
trees in J1 ∪ J2, because of (21). Since J1 is a (2k

3
, k

2
, 1
c
)-forest, we may apply

Corollary 5.4 so that we can embed
⋃
J1 into C1 in a way that the images of

its roots are neighbours of x. This works because of (20).

Case 2e (scenario (IVe)): x
√
ε-sees two bipartite components C1 and

C2, with parts A1, B1 and A2, B2 respectively, such that min{|A1|, |B2|} ≥
(1 + 4

√
ε)2k

3
· |R|
n

and x sees only A1 and A2.

We map z1 into x, note that x
√
ε-sees A1 and A2. Consider the colouring

ϕ that T induces in
⋃

J1. If the roots of the trees in J1 are contained in the
heavier colour class of ϕ, then we embed

⋃
J1 into C1, otherwise we embed⋃

J1 into C2. In any case, and since J1 is a (2k
3
, k

2
, 1
c
)-forest, we may use

Corollary 5.4 to embed
⋃

J1 (taking care of mapping the roots into neigh-
bours of x). Finally, we greedily embed

⋃
J2 into the remaining component.

This completes the proof of Lemma 7.3.

8 Embedding trees with degree conditions

In this section we finally prove our main results, namely Theorems 1.5, 1.6
and 1.8. All of them will be proved using Lemma 7.3, which, fortunately,
makes all these proofs quite straightforward.
We begin by proving the principal result of this article, Theorem 1.5, in
Section 8.1. Then, we show Theorem 1.8 (the approximate version of 2

3
–

conjecture) in Section 8.2. In Section 8.3, we show Theorem 1.6 (our exten-
sion of Theorem 1.5 to constant degree trees).
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8.1 An approximate version of Conjecture 1.3:
the proof of Theorem 1.5

Given δ ∈ (0, 1), we set

ε :=
δ4

1010
, and α :=

1

2
.

Let N0,M0 be given by Lemma 3.2, with input ε as defined above, η := 5
√
ε

and m0 := 1
ε
, and let n′0 be given by Lemma 7.3, with input α, ε and M0.

We choose n0 := (1 − ε)−1 max{n′0, N0} + 1 as the numerical output of the
theorem.
Now, let G be an n-vertex graph with minimum degree at least (1 + δ)k

2
and

maximum degree at least 2(1 + δ)k, where

n ≥ k ≥ δn (23)

and n ≥ n0. Let T be a k-edge tree with maximum degree at most k
1
c , where

c = 67 = 18 · 4− 5.
We apply Lemma 3.2 to G− x so that we get a subgraph G′ ⊆ G− x, with
|G′| ≥ (1 − ε)(n − 1), that admits an (ε, 5

√
ε)-regular partition. Moreover,

the minimum degree in G′ is at least

δ(G′) ≥ (1 + δ)
k

2
− (ε+ 5

√
ε)(n− 1)− 1 ≥ (1 + 4

√
ε)
k

2
. (24)

Let R be the corresponding (ε, 5
√
ε)-reduced graph of G′. Our aim is to show

that R fulfills at least one of the conditions (I)–(IV) from Lemma 7.3, for
inputs α, ε and M0. We will assume that

all the components of R are (k · |R||G′| ,
4
√
ε)-small, (25)

as otherwise either we have (I) or (II) from Lemma 7.3, and we are done.
Since G′ misses less than εn vertices from G, we have that

degG(x,G′) ≥ 2(1 + δ
2
)k ≥ 2(1 + 100 4

√
ε)k. (26)

Suppose that x does not
√
ε-see any component of R. By (23) and by (26),

this would mean that

2δn ≤ 2(1 + δ
2
)k ≤ degG(x,G′) =

∑
C

degG(x,
⋃

V (C)) ≤
√
εn, (♥)
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a contradiction. Therefore, there is some component C1 of R receiving more
than

√
ε|
⋃
V (C1)| edges from x.

By (25), x can have at most 2(1 + 4
√
ε)k neighbours in C1. So by (26),

there are more than 4
√
εk neighbours of x outside C1. Following the same

reasoning as in (♥), there must be a second component C2 receiving at least√
ε|
⋃
V (C2)| edges from x. We can assume that x has no neighbours outside

C1 ∪ C2, as otherwise condition (IVa) from Lemma 7.3 holds.
By (26) and by symmetry, we can assume that

degG(x,
⋃

V (C1)) ≥ (1 + δ
2
)k.

In particular, we can again employ (25) to see that C1 is bipartite, and more-
over x has to see both classes of the bipartition. Therefore, condition (IVc)
from Lemma 7.3 holds and the proof is finished.

8.2 An approximate version of the 2
3-conjecture:

the proof of Theorem 1.8

Given δ ∈ (0, 1), we set

ε :=
δ4

1010
, and α :=

2

3
.

Let N0,M0 be given by Lemma 3.2, with input ε, and further input η := 5
√
ε

and m0 := 1
ε
, and let n′0 be given by Lemma 7.3, with input α, ε and M0.

We choose n0 := (1 − ε)−1 max{n′0, N0} + 1 as the numerical output of the
theorem.
Let G be an n-vertex graph as in Theorem 1.8, with n ≥ n0, and let T be
a k-edge tree whose maximum degree is at most k

1
c , where n ≥ k ≥ δn and

c = 49 = 18 · 3− 5.

Let x ∈ V (G) be a vertex of degree at least (1 + δ)k. Since n ≥ n0, we can
apply Lemma 3.2 to G − x in order to get a subgraph G′ ⊆ G − x, with
|G′| ≥ (1 − ε)(n − 1), that admits an (ε, 5

√
ε)-regular partition. Let R be

the corresponding (ε, 5
√
ε)-reduced graph of G′, we will assume that every

component of R is (k · |R||G′| , 4
√
ε)-small. An easy computation shows that

δ(G′) ≥
(
1 + δ

2

) 2k

3
≥ (1 + 100 4

√
ε)

2k

3
, (27)
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because of the minimum degree in G. Also, note that degG(x,G′) ≥ (1+ δ
2
)k.

Following the same reasoning as in (♥), and because of the degree of x, there
is some component C1 of R such that x

√
ε-sees C1. First, assume that x

has more than (1 + 2 4
√
ε)k neighbours in C1. Since C1 is small, C1 must be

bipartite and x must see at least a
√
ε-portion of both sides of the bipartition,

namely A and B. Then, by (27) we have max{|A|, |B|} ≥ (1 + 4
√
ε)2k

3
· |R||G′|

and, therefore, G′ satisfies condition (III) from Lemma 7.3.

Now, we may assume that x has less than (1+2 4
√
ε)k neighbours in C1. As in

(♥), we can calculate that there is a second component C2 containing at least√
ε|
⋃
V (C2)| neighbours of x. We can assume that x does not send edges to

any other component, otherwise we are in case (IVa) from Lemma 7.3, and
are done.
Also, by symmetry we can assume that degG(x,

⋃
V (C1)) ≥ (1 + δ

2
)k

2
. Fol-

lowing the same reasoning as before we conclude that |C1| ≥ (1 + δ
2
)2k

3
· |R||G′| .

In particular, if C1 is nonbipartite, then G′ satisfies condition (IVb) from
Lemma 7.3 and we are done.
So we may suppose that C1 is bipartite. If x sees both sides of the bipartition,
condition (IVc) from Lemma 7.3 holds, so let us assume this is not the case.
The minimum degree tells us that one of the sides of the bipartition of C1

has size at least (1 + δ
2
)2k

3
· |R||G′| clusters, and we can argue similarly for the

other side of the bipartition. This means that G′ satisfies condition (IVd)
from Lemma 7.3, which completes the proof.

8.3 Embedding constant degree trees:
the proof of Theorem 1.6

Given δ ∈ (0, 1) and ∆ ≥ 2, we set

ε :=
δ4

1010
and α :=

1

2
.

Let N0,M0 be given by Lemma 3.2, with input ε, η := 5
√
ε and m0 := 1

ε
,

and let n′0 be given by Lemma 7.3, with input α, ε and M0. We choose
n0 := (1− ε)−1 max{n′0, N0}+ 1 as the numerical output of the theorem.
Let G be an n-vertex graph as in Theorem 1.6, where n ≥ n0, and let T
be a k-edge tree whose maximum degree is bounded by ∆, where k is such
that n ≥ k ≥ δn. Let x ∈ V (G) be a vertex of degree at least 2(∆−1

∆
+ δ)k.

We apply Lemma 3.2 to G − x and we obtain a subgraph G′, with |G′| ≥
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(1 − ε)(n − 1), that admits an (ε, 5
√
ε)-regular partition. Let R be the

corresponding (ε, 5
√
ε)-reduced graph.

Observe that each k-edge tree T with maximum degree at most ∆ will satisfy

k1 ≤
∆− 1

∆
k, (28)

where k1 is the size of the larger bipartition class of T . We can discard
scenarios (I) and (II) and therefore assume that

all nonbipartite components of R are (k · |R||G′| ,
4
√
ε)-small, (29)

and, by (28),

all bipartite components of R are (∆−1
∆
k · |R||G′| ,

4
√
ε)-small. (30)

As we removed only few vertices from G, it is clear that x has at least
2(∆−1

∆
+ δ

2
)k neighbours in G′. This, together with (29) and (30), implies

that there are components C1 and C2 of R such that

degG(x,
⋃

V (Ci)) ≥
√
ε|
⋃

V (Ci)|, for i = 1, 2.

Moreover, we may assume that x does not see any other components, oth-
erwise G′ satisfies condition (IVa) from Lemma 7.3 and we are done. First,
suppose that ∆ = 2, that is, T is a path of length k. In this case, we choose
a k

2
-separator z of T and embed z into x. After that, we can greedily embed

each component of T − z into C1 and C2, respectively.
Now, suppose that ∆ ≥ 3. By symmetry, we may assume that

degG(x,
⋃

V (C1)) ≥ (∆−1
∆

+ δ
2
)k. (31)

If C1 is nonbipartite, G′ satisfies condition (IVb) from Lemma 7.3 as ∆ ≥ 3.
If C1 is bipartite with parts A and B, we can employ (30) together with (31)
to conclude that G′ satisfies condition (IVc) from Lemma 7.3. This concludes
the proof.

9 Conclusion

9.1 Constant degree trees

For trees whose maximum degree is bounded by an absolute constant ∆,
we believe that the bound on the maximum degree of the host graph from
Conjecture 1.3 can be weakened.
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Conjecture 9.1. Let k,∆ ∈ N, and let G be a graph with δ(G) ≥ k
2

and
∆(G) ≥ 2(1− 1

∆
)k. Then G contains all trees T with k edges with ∆(T ) ≤ ∆.

Evidence for this conjecture is given by Theorem 1.6. Note that the bounds
on the maximum and minimum degree of G are close to best possible, which
can be seen by considering the following example.

Example 9.2. Let ∆ ≥ 2 and let T be a tree on an odd number of levels,
where the root has degree ∆ + 1, also every vertex in an odd level has degree
∆ + 1, and every vertex in an even level, except for the leaves and except for
the root, has degree 2.
Setting k := |T |−1, we can calculate that there are ∆

∆+1
k+1 vertices in even

levels, that is, there are ∆
∆+1

k vertices in positive even levels. (For this, note
that we can cover all but one vertex of T by disjoint stars K1,∆ centered at
the vertices from odd levels.)
Consider the complete bipartite graph H with bipartition classes A, B of sizes
|A| = ( ∆

∆+1
)2k and |B| = ∆

2(∆+1)
k. Take two copies of H, and join a new

vertex x to each vertex in the larger bipartition classes. The obtained graph G
misses the degree conditions from Conjecture 9.1 only by a factor of ∆

∆+1
.

Observe that G does not contain T , because either one of the sets B would
have to receive at least half of all vertices in positive even levels of T , or one
of the sets A would have to receive the root of T , plus at least a ∆

∆+1
-fraction

of all vertices in positive even levels of T .

It is easy to see that the tree from Example 9.2 is the most unbalanced tree
whose maximum degree is bounded by the constant ∆.

9.2 A variation of the 2k–k
2 conjecture

We believe that a more general statement than the one given in Conjec-
ture 1.3 should be true. More precisely, if we relax our bound on the maxi-
mum degree of the host graph, while at the same time asking for a stronger
bound on the minimum degree of the host graph, the conclusion of Conjec-
ture 1.3 should still hold true. Quantitatively speaking, we conjecture the
following (see also [3]).

Conjecture 9.3. Let k ∈ N, let 0 ≤ α ≤ 1
2

and let G be a graph with
δ(G) ≥ (1 + α)k

2
and ∆(G) ≥ 2(1 − α)k. Then G contains all trees with k

edges.
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Note that for α = 0, the bounds from Conjecture 9.3 coincide with the bounds
from Conjecture 1.3. For all α ∈ [1

3
, 1

2
], Conjecture 9.3 follows from the 2

3
-

conjecture. Also, it is easy to see the conjecture holds for stars, double-stars
and paths (see [3]).
We will discuss Conjecture 9.3 in more detail in the forthcoming manuscript [3].
In particular, we show that the conjecture is asymptotically true for bounded
degree trees in dense host graphs, and we show that Conjecture 9.3 is asymp-
totically best possible in the following sense.

Proposition 9.4. [3] For each odd ` ∈ N with ` ≥ 3, and for each γ > 0
there are k ∈ N, a k-edge tree T , and a graph G with δ(G) ≥ (1 + 1

`
− γ)k

2

and ∆(G) ≥ 2(1− 1
`
− γ)k such that T is not a subgraph of G.

In particular, this disproves a conjecture from [19].

9.3 Maximum degree 4k
3

Host graphs of maximum degree close to 4
3
k have already appeared in the

examples given in [12] for the sharpness of the 2
3
-conjecture. In [12], two

examples are given: a balanced complete bipartite graph of order 4
3
k − 4 to

which a universal vertex is added, and the union of two disjoint copies of
K 2

3
k−1, to which a universal vertex is added. These graphs have maximum

degree 4
3
k − 4 and 4

3
k − 2, respectively, and minimum degree 2

3
k − 1. The

tree consisting of three stars of order k
3
, whose centres are joined to a new

vertex v, does not fit into either of the graphs described above. Let us note
that also the tree obtained from taking three paths of order k

3
and joining

their first vertices to a new central vertex does not fit into the second host
graph described above.
It follows from Proposition 9.4 that requiring a maximum degree of at least
ck, for any c < 2 (in particular for c = 4

3
), and a minimum degree of at least k

2

is not enough to guarantee all trees with k edges as subgraphs. Nevertheless,
graphs that look very much like the graph from Example 1.4 (or the similar
example underlying Proposition 9.4) might be the only obstructions to embed
a tree with k edges into a graph of maximum degree greater than 4k

3
and

minimum degree greater than k
2
. In the forthcoming [3], this suspicion is

partially confirmed. We show that asymptotically, any bounded degree tree
embeds in any host graph of maximum degree greater than 4k

3
and minimum

degree greater than k
2
, as long as it does not too closely resemble the graph

from Example 1.4 or a similar example.
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9.4 Large first and second neighbourhood

A different way of avoiding Example 1.4 would be to impose a condition on
the size of the second neighbourhood of a large degree vertex. We explore
this approach in the present section.
Let N2(x) denote the second neighbourhood of vertex x ∈ V (G).

Conjecture 9.5. Let k ∈ N, and let G be a graph with δ(G) ≥ k
2
, which has

a vertex x such that min{|N(x)|, |N2(x)|} ≥ 4k
3

. Then G contains all trees
with k edges.

We can prove an approximate version of this for bounded degree trees, and
dense host graphs.

Theorem 9.6. Let δ ∈ (0, 1). There exist k0 ∈ N such that for all n, k ≥ k0

with n ≥ k ≥ δn the following holds for every n-vertex graph G with δ(G) ≥
(1 + δ)k

2
and every k-edge tree T with ∆(T ) ≤ k

1
67 .

If there is a vertex x ∈ V (G) with min{|N(x)|, |N2(x)|} ≥ (1 + δ)4k
3

, then T
embeds in G.

Proof. Given δ ∈ (0, 1), set ε := δ4

1010
and α := 1

2
. Let N0,M0 be given

by Lemma 3.2, with input ε, η := 5
√
ε and m0 := 1

ε
. Let n′0 be given by

Lemma 7.3, with input α, ε and M0. Choose n0 := (1−ε)−1 max{n′0, N0}+1
as the numerical output of the theorem.
Now, let G, x ∈ V (G) and T be given as in Theorem 9.6. We apply
Lemma 3.2 to G−x, obtaining subgraph G′ which admits an (ε, 5

√
ε)-regular

partition, with corresponding (ε, 5
√
ε)-reduced graph R. Note that

δ(R) ≥ (1 +
δ

2
)
k

2
· |R|
|G′|
≥ (1 + 100 4

√
ε)
k

2
· |R|
|G′|

.

We quickly deduce that x
√
ε-sees two components C1 and C2 of R, and does

not see any other component, as otherwise we are in one of scenarios (I),
(II), (III), or (IVa) from Lemma 7.3, and can thus embed T . In particular,
we have N2(x) ⊆

⋃
V (C1 ∪ C2).

Symmetry allows us to assume that degG(x,
⋃
V (C1)) ≥ degG(x,

⋃
V (C2)).

In particular, degG(x,
⋃
V (C1)) ≥ (1 + δ

2
)2k

3
. If we are in neither of scenar-

ios (IVb) or (IVc) from Lemma 7.3, then C1 is bipartite, say with parts A1

and B1, and x sees only one side of C1, say A1.
Now, if |B1| ≥ (1+ 4

√
ε)2k

3
· |R||G′| , we are in scenario (IVd) from Lemma 7.3, and

can embed T . So assume otherwise. Then, C2 contains at least (1 + 4
√
ε)2k

3
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vertices from N2(x). If we are in neither of scenarios (IVb) or (IVc) from
Lemma 7.3, then C2 is bipartite, say with parts A2 and B2. Furthermore,
x does not see B2 and |B2| ≥ (1 + 4

√
ε)2k

3
· |R||G′| . If |A2| ≥ (1 + 4

√
ε)2k

3
· |R||G′| ,

we are in scenario (IVd) from Lemma 7.3. Otherwise, we are scenario (IVe)
from Lemma 7.3, which concludes our proof.

9.5 Supersaturation

Given a graph F , the function ex(n, F ) is defined as the maximum number an
n-vertex graph can have without containing a copy of F . The supersaturation
phenomenon is that once a graph on n vertices has substantially more than
ex(n, F ) edges, a large number of copies of F appear. In our context, the
Erdős–Sós conjecture would imply that

ex(n, Tk) = 1
2
(k − 1)n,

where Tk is any fixed k-edge tree. In view of our Theorem 1.9, the only
question we can answer here is how many copies of Tk the theorem guarantees,
where T is of linear size and bounded degree. We can see from Lemma 3.4,
that if we are embedding t vertices into an (ε, 5

√
ε)-regular pair, then the

number of ways one can embed those vertices is at least

2tεt
(n
`

)t
≥
(

2ε

M0

)t
nt,

where ` and M0 are as in Lemma 3.2. So, given δ > 0, given a graph G with
e(G) ≥ (1 + δ)k

2
n and n ≥ n0, and given any k-edge tree T with bounded

maximum degree, one can easily deduce from the proof of Theorem 1.9 that G
contains at least ck+1nk+1 copies of T , where c is a very small constant that
only depends on δ.
Similarly, given δ > 0 and an n-vertex graph G as in Theorem 1.5, one
can deduce that the number of copies of any k-edge tree T with bounded
maximum degree is at least Cknk, where C is a very small constant depending
on δ. (The exponent drops to k because we map a cutvertex z of T into some
maximum degree vertex of G. So, if the number of vertices of degree at least
(1 + δ)2k in G is not linear in n, we cannot expect as many copies of T as in
the situation of Theorem 1.9.)
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9.6 Extremal graphs

What happens to our results if the minimum/average/maximum degree of a
graph is slightly below the thresholds given in the theorems? Can we still
embed any k-edge tree T of bounded maximum degree, and if not, can we
describe the structure of G?
It is possible to deduce5 from the proofs of Propositions 5.1, 5.8 and 6.3
that if the minimum degree of G is close to the bound k

2
, then we are still

able to embed the tree T , unless our graph G has the following structure:
each component of G has size less than k, or every large component of G is
the disjoint union of sets A and B such that A is almost independent and
almost all edges are present between A and B. In the latter case, we know
that furthermore, either B is almost independent, and both A and B are
smaller than k, which means we are not able to embed trees that are very
unbalanced, or B has size less than k

2
, in which case we cannot embed trees

that are almost perfectly balanced.

Extremal graphs for Theorem 1.9. For Theorem 1.9 (our approximate
version of the Erdős–Sós conjecture), one can prove that the components
of G are either almost complete and of size roughly k, or bipartite and as
described above.
The two situations correspond to the classical examples for the sharpness of
the Erdős–Sós conjecture: the union of n

k
complete graphs on k vertices (if k

does not divide n, add in a smaller complete graph); a complete bipartite
graph with bipartition classes of size almost k; and a complete graph on n
vertices from which all edges inside a set A have been deleted, where |A| =
n− bk

2
c+ 1 (note that the second example has slightly less edges).

Extremal graphs for Theorems 1.5 and 1.6. For Theorem 1.5 (our
approximate version of Conjecture 1.3), we arrive at the following situation
if we cannot embed T as planned. Any maximum degree vertex x of G sees
exactly two components C1, C2 of G′−x. Both C1, C2 are bipartite and x sees
only one side of each Ci. This is precisely the situation from Example 1.4
(although G might have more components that are simply too small).
For Theorem 1.6 (the variant of Theorem 1.5 for constant degree trees), we
arrive at an example similar to the one from Example 1.4, with the size of

5See the forthcoming [4] for a more precise argument.
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the sets slightly adjusted.

Extremal graphs for Theorem 1.8. For Theorem 1.8 (our approximate
version of the 2

3
-conjecture), it might again happen that G consists of com-

ponents that are each to small to accommodate T .
It might also happen that any maximum degree vertex x sees both sides A
and B of a bipartite component C of G′ − x, and both A and B are smaller
than 2

3
k. This is exactly the situation described in one of the examples

from [12] for the sharpness of the 2
3
-conjecture (a complete bipartite graph

with sides of size 2
3
k − 2 plus a universal vertex).

If that is not the case, then any maximum degree vertex x sees at least two
components C1, C2 of G′−x, and if it sees a third component, the embedding
succeeds. It might now happen that x sees two almost complete components
of size almost 2

3
k, and we cannot embed T . This corresponds to the second

example from [12] for the sharpness of the 2
3
-conjecture (two complete graphs

of order 2
3
k − 1 plus a universal vertex).

However, it might also happen that C1 is bipartite, with bipartition classes
A1 and B1, such that one of these classes is slightly smaller than 2

3
k, and

such that x sees only one side of the bipartition, say A1. In this case, it
might again be impossible to embed T .
The latter situation is described in the following example. Note that this
example is quite similar to Example 1.4, but allows for two different shapes
of the second component.

Example 9.7. Assume that k is divisible by 3. For i = 1, 2, let Ci = (Ai, Bi)
be a complete bipartite graph with |Ai| = 2

3
k − 2 and |Bi| = 2

3
k − 3. Let C ′2

be a complete graph with |C ′2| = 2
3
k − 1.

Let G be obtained from C1 ∪ C2 by adding a new vertex x adjacent to all of
A1 ∪A2. Let G′ be obtained from C1 ∪C ′2 by adding a new vertex x adjacent
to all of A1 ∪ V (C ′2).
Then the tree T obtained from taking three stars of order k

3
and adding a new

vertex adjacent to their centres, does not embed in either of G, G′.

Note that if we take the sizes of the sets Ai in Example 9.7 to be 2
3
k − 3

instead of 2
3
k − 2, then also the tree T ′, obtained from taking three stars of

order k
3

and adding a new vertex adjacent to one leaf from each of the stars,
does not embed in either of G, G′.
The reader might object that Example 9.7 does not really apply to the sit-
uation from Theorem 1.8, as the tree T from the example has maximum
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degree k
3
. However, we can modify the tree a bit in order to comply with

the maximum degree requirement, keeping it as unbalanced as possible, and
maintaining the property that it consists of three subtrees of the same order
plus a vertex that joins them. Then Example 9.7 still works, after adjusting
the sizes of the sets Ai and Bi.
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[8] Erdős, P. Extremal problems in graph theory. In Theory of graphs
and its applications, Proc. Sympos. Smolenice (1964), pp. 29–36.
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2018, arXiv:1804.06791.
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