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Abstract. Diffusion in cell biology is important and complicated. Diffusing particles must
contend with a complex environment as they make their way through the cell. We analyze a particular
type of complexity that arises when diffusing particles reversibly bind to elastically tethered binding
partners. Using asymptotic analysis, we derive effective equations for the transport of both single
and multiple particles in the presence of such elastic tethers. We show that for the case of linear
elasticity and simple binding kinetics, the elastic tethers have a weak hindering effect on particle
motion when only one particle is present, while, remarkably, strongly enhancing particle motion
when multiple particles are present. We give a physical interpretation of this result that suggests a
similar effect may be present in other biological settings.
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1. Introduction. Diffusion is one of the fundamental spatial processes driv-
ing biological function. In many cases, it is the primary mechanism by which cells
distribute or transport particles, both within single cells and throughout tissues.
Diffusion-driven morphogen gradients, in conjunction with chemical reactions and
active transport, are responsible for directional signaling in development [2, 16]; dif-
fusion of signaling molecules from the cell membrane to the nucleus is important for
gene regulation [4, 10]; and within the nucleus, crowding by chromatin has a profound
effect on the diffusion of proteins to specific DNA binding sites [5]. There is a wealth
of other biological examples. A unifying feature of diffusion in cell biology is that
it occurs in a complicated environment rife with heterogeneity, complex mechanical
interactions, and chemical binding.

In this paper, we examine the motion of diffusing particles that bind to and unbind
from other objects as they move. Classical examples of this include the buffered
diffusion of calcium ions as they reversibly bind to buffering proteins, resulting in a
change to calcium’s effective diffusion coefficient[7, 18], and the facilitated diffusion
of oxygen into muscle fibers, where the total inward flux of oxygen is dramatically
amplified by the binding of oxygen and myoglobin [7, 14]. If the particle of interest and
its binding partner are both free to diffuse, as is the case in both of these examples,
binding can dramatically enhance particle transport. If, however, the binding partner
is anchored to a fixed substrate, it is straightforward to show that in the quasi-steady-
state binding limit the particle’s effective diffusion coefficient always decreases.

There is an important intermediate case that, to our knowledge, has not been
studied. This is the case where the binding partner is anchored to a surface by an
elastic tether, so that the binding partner has some freedom to move but does not
diffuse over the entire domain. This situation is biologically relevant. It occurs in the
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nuclear pore complex in the interaction between karyopherin chaperones and elastic
FG nucleoporins [3, 8, 9, 13, 15], and in a similar manner in the ciliary pore complex
[6, 12, 17]. It is also relevant to the diffusion of signaling molecules near membrane-
bound cognate receptors, where elasticity can come from the mechanical properties
of the receptor or from the membrane itself.

The fundamental question is how the mechanical properties of the elastic tether
influence the particle of interest’s overall motion. In classical facilitated and buffered
diffusion, this overall motion is controlled by an interplay between the reaction rates
governing particle binding and the diffusion coefficients of both the particle and its
binding partner. The elastic properties of a tethered binding partner seem likely to
alter this interplay in a way that is hard to predict a priori. On the one hand, we
might intuit that the freedom of bound tethers to fluctuate about their base might
cause them to bind particles “at a distance,” and thereby exert an elastic force that
accelerates particle motion. On the other hand, a particle bound to a tether will not
be able to move very far without unbinding.

In this paper, we develop and analyze a minimal model for investigating the
interactions between particle diffusion, particle-tether binding, and tether elasticity.
We begin by studying the motion of a single particle diffusing in one dimension against
a background density of elastically tethered binding sites. We start with a Fokker-
Planck system describing both the position and the binding state of the particle and,
using a quasi-steady-state reduction, derive a reduced Fokker-Planck equation for
the effective motion of the particle in the limit of fast binding and unbinding. Our
approach is similar to the quasi-steady-state analysis of molecular motors developed
by Newby and Bressloff [11] and extended to nonlinear reaction terms by Zmurchok
et. al. [19]. The key difference is that our analysis explicitly accounts for spatial
variations in the position of the binding sites, which changes the dimensionality of
our starting system of equations. Our analysis shows that the particle’s effective
motion is controlled by a set of moments related to the space-dependent binding and
unbinding rate functions. In particular, we show that for the simplest physical case
of linearly elastic tethers, the particle’s effective diffusion coefficient always drops.

Next, we generalize to the case where multiple diffusing particles are present. To
study this, we apply a slightly modified version of a model that we recently developed
for nucleocytoplasmic transport [3]. We show that, in contrast to the single particle
case, in the limit where binding is fast and the tethers are short compared to the
domain of interest, the effective diffusion coefficient always increases. This qualitative
difference between single and multiple-particle motion is surprising, and in the final
part of the paper we give a physical interpretation of these results.

2. One-dimensional motion of a single particle. In this section, we derive
an equation for the one-dimensional motion of a particle that undergoes diffusion while
rapidly binding to and unbinding from a continuum of elastic tethers with constant
density, as depicted schematically in Figure 1. The starting point for this derivation
is the set of differential Chapman-Kolmogorov equations

∂pu
∂t

= D
∂2pu
∂x2

− pu
∫ ∞
−∞

k+(y − x) dy +

∫ ∞
−∞

k−(y − x)pb(x, y, t) dy,(2.1)

∂pb
∂t

= D
∂2pb
∂x2

− ∂

∂x

(
k

ζ
(y − x)pb

)
+ k+

(
y − x

)
pu − k−

(
y − x

)
pb,(2.2)

where pu(x, t) is the probability density that the particle is unbound and at location
x at time t and pb(x, y, t) is the probability density that the particle is at location x
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x y

Fig. 1: Schematic of single-particle diffusion mediated by elastic tethers. (a) A single
particle (green) diffuses slowly in one dimension. A collection of elastically tethered
binding sites (blue) diffuses much more rapidly than the particle. (b) Rapid diffusion
of tethers means that a particle at position x has a non-zero probability per time of
binding to a tether anchored at position y.

and is bound to a tether whose base is at y. Together, (2.1) and (2.2) describe the
evolution of these probabilities in terms of the particle’s diffusion and drag coefficients
D and ζ, and the tether’s elastic spring constant k. The functions k+(z) and k−(z)
give the on and off rates for particle-tether binding, which we allow to be dependent
on the spacing z between the particle and the tether base. We treat k+ and k− as the
overall reaction rates after accounting for the density of tether bases, so that we do not
need to account for that density separately. The key assumption in our model is that
an unbound tether diffuses much more rapidly than the particle, so that we do not
need to track the position of individual tethers over time. Instead, we can represent
the interaction between free tethers and particles with the binding rate k+(z), which
in general will depend on the equilibrium distribution of the tether head about its
base. This is discussed for a linear spring in subsection 2.4.

Our goal in this derivation is to describe the overall position of the particle,
independent of its binding state. In other words, we seek an equation describing the
evolution of the quantity

(2.3) p(x, t) = pu(x, t) +

∫ ∞
−∞

pb(x, y, t) dy,

which is the total probability density that the particle is at position x at time t. We
seek an approximate equation for p(x, t) that is valid in the limit of fast binding and
unbinding.

2.1. Nondimensionalization. To approximate the particle’s motion in the
limit of fast binding and unbinding, we nondimensionalize (2.1) and (2.2) in order
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to identify the relevant small parameter. This requires us to choose scales L̄ and t̄ for
length and time. Since the relevant lengthscale may vary depending on the specific
physical application being modeled, we leave the lengthscale as L̄.

There are three important timescales: the binding timescale

(2.4) τbinding =

(∫ ∞
−∞

k+(z) dz

)−1

,

the elastic relaxation timescale for a bound particle

(2.5) τrelaxation =
ζ

k
,

and the diffusive timescale

(2.6) τdiffusion =
L̄2

D
.

We expect that in most physical situations, binding dynamics are faster than both
elastic and diffusive motion so that τbinding � τrelaxation and τbinding � τdiffusion. The
relationship between τrelaxation and τdiffusion is more subtle and is discussed below.

We choose to nondimensionalize time in units of the timescale t̄ = τdiffusion. Defin-
ing the functions p̂u(x̂, t̂) and p̂b(x̂, ŷ, t̂), where x̂ = x/L̄, ŷ = y/L̄, and ẑ = z/L̄, by

pu(x, t) =
1

L̄
p̂u(x/L̄, t/t̄)(2.7)

pb(x, y, t) =
1

L̄2
p̂b(x/L̄, y/L̄, t/t̄),(2.8)

the system (2.1) and (2.2) becomes

∂p̂u

∂t̂
=
∂2p̂u
∂x̂2

− p̂u
∫ ∞
−∞

k̂+(ŷ − x̂) dŷ +

∫ ∞
−∞

k̂−(ŷ − x̂)p̂b(x̂, ŷ, t̂) dŷ,(2.9)

∂p̂b

∂t̂
=
∂2p̂b
∂x̂2

− 1

λ

∂

∂x̂

(
(ŷ − x̂)p̂b

)
+ k̂+(ŷ − x̂)p̂u − k̂−(ŷ − x̂)p̂b,(2.10)

where the nondimensionalized on and off rates k̂+ and k̂− are

k̂+(ẑ) = L̄t̄k+(L̄ẑ),(2.11)

k̂−(ẑ) = t̄k−(L̄ẑ),(2.12)

and the non-dimensional parameter λ is

(2.13) λ =
τrelaxation

τdiffusion
.

The size of λ can be estimated as follows. We know from the Stokes-Einstein relation
that Dζ = kBT , so that λ can be rewritten as

(2.14) λ =
kBT

kL̄2
,

the ratio of thermal energy to the elastic energy stored in a spring stretched deformed
by L̄. If this quantity is large, then the tether springs must be very weak on the
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lengthscale of interest. We do not expect weak springs to substantially alter the
trajectory of the particle. Thus, the interesting dynamics will occur when τrelaxation <
τdiffusion, and so λ < 1.

We expect the binding rate functions k̂+ and k̂− to be large, and so we intro-
duce the nondimensional parameter ε = τbinding/τdiffusion and define the rescaled rate
functions α and β by

α(ẑ) = εk̂+(ẑ),(2.15)

β(ẑ) = εk̂−(ẑ).(2.16)

Note that our definition of ε means that
∫∞
−∞ α(ẑ) dẑ = 1, so we can write the

nondimensional system of equations as

∂p̂u

∂t̂
=
∂2p̂u
∂x̂2

− 1

ε
p̂u +

1

ε

∫ ∞
−∞

β(ŷ − x̂)p̂b(x̂, ŷ, t̂) dŷ,(2.17)

∂p̂b

∂t̂
=
∂2p̂b
∂x̂2

− 1

λ

∂

∂x̂

(
(ŷ − x̂)p̂b

)
+

1

ε
α(ŷ − x̂)p̂u −

1

ε
β(ŷ − x̂)p̂b.(2.18)

In the following sections, we develop an approximate expression for the position
of the particle in the limit ε� 1.

2.2. Splitting. After dropping the hats over our nondimensional functions and
variables, we seek to approximate the system of equations

∂pu
∂t

=
∂2pu
∂x2

− 1

ε
pu +

1

ε

∫ ∞
−∞

β(y − x)pb(x, y, t) dy,(2.19)

∂pb
∂t

=
∂2pb
∂x2

− 1

λ

∂

∂x

(
(y − x)pb

)
+
α(y − x)

ε
pu −

β(y − x)

ε
pb(2.20)

for ε� 1.
In the limit ε → 0 we find the solution of (2.19) and (2.20) into pb = α(y−x)

β(y−x)pu.

Motivated by this, and using vector notation to describe the solution [pu, pb]
T , we

introduce the reaction operator R, defined by

(2.21) R

([
pu
pb

])
=

[
−pu +

∫∞
−∞ β(y − x)pb dy

α(y − x)pu − β(y − x)pb

]
.

This allows us to split the solution into a quasi-steady-state term [qu, qb]
T in the

nullspace of R and a remainder term [ru, rb]
T in the range of R:

(2.22)

[
pu
pb

]
=

[
qu
qb

]
+

[
ru
rb

]
.

The nullspace of R is spanned by [1, α(y − x)/β(y − x)]T . Defining the function
κ(z) = α(z)/β(z), the quasi-steady-state term can be written in terms of a scalar
variable q(x, t) as

(2.23)

[
qu(x, t)
qb(x, y, t)

]
=

1

1 +K0

[
1

κ(y − x)

]
q(x, t),

where K0 =
∫∞
−∞ κ(z) dz, and the prefactor 1

1+K0
is a useful normalization.
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For [ru, rb]
T to be in the range of R, we know from the Fredholm alternative that

it must be orthogonal to the nullspace of the adjoint operator R∗. It is straightforward
to show that the adjoint operator is

(2.24) R∗
([

pu
pb

])
=

[
−pu +

∫∞
−∞ α(y − x)pb dy

βpu − βpb

]
,

where the appropriate inner product is

(2.25)

〈[
fu
fb

]
,

[
gu
gb

]〉
= fugu +

∫ ∞
−∞

fbgb dy.

The nullspace of R∗ is spanned by the vector [1, 1]T , and so the remainder term must
satisfy the orthogonality condition

(2.26) ru +

∫ ∞
−∞

rb dy = 0.

This means we can write the remainder [ru, rb]
T in terms of a single unknown function

r(x, y, t), with rb(x, y, t) = r(x, y, t) and ru(x, t) = −
∫∞
−∞ r(x, y, t) dy.

Substituting this splitting into (2.19) and (2.20), integrating (2.20) over y, and
adding that to (2.19), we get the equation

(2.27)
∂q

∂t
=
∂2q

∂x2
− K1

λ(1 +K0)

∂q

∂x
− 1

λ

∂

∂x

(∫ ∞
−∞

(y − x)r(x, y, t) dy

)
,

where K1 =
∫∞
−∞ zκ(z) dz. Using this expression for ∂q

∂t in (2.20), we also get

(2.28)

ε
∂r

∂t
= −α(y − x)

∫ ∞
−∞

r(x, y, t) dy − β(y − x)r(x, y, t)

+ ε

[
∂2r

∂x2
− 1

λ

∂

∂x

(
(y − x)r(x, y, t)

)
+

κ(y − x)

λ(1 +K0)

∂

∂x

∫ ∞
−∞

(y − x)r(x, y, t) dy

+
1

1 +K0

∂2

∂x2

(
κ(y − x)q

)
− 1

1 +K0
κ(y − x)

∂2q

∂x2

+
K1

λ(1 +K0)2
κ(y − x)

∂q

∂x
− 1

λ(1 +K0)

∂

∂x

(
(y − x)κ(y − x)q

)]
.

It is important to note that (2.27) and (2.28) are exact. There is no approximation
in going from (2.19) and (2.20) to (2.27) and (2.28), only a change of variables from
pu and pb to q and r. Note also that the orthogonality condition (2.26) implies that

(2.29) pu(x, t) +

∫ ∞
−∞

pb(x, y, t) dy = q(x, t),

so that q is the total probability density that the particle is at position x. This was
the reason for the prefactor of 1

1+K0
in the definition of q in (2.23).
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2.3. Approximation. We seek an approximate equation for q that is valid when
ε� 1. To do this, we expand r as a power series in ε:

(2.30) r(x, y, t) = r0(x, y, t) + εr1(x, y, t) +O(ε2),

and solve for r0 and r1. From (2.28), the zeroth order equation is

(2.31) 0 = −α(y − x)

∫ ∞
−∞

r0(x, y, t) dy − β(y − x)r0(x, y, t).

Dividing (2.31) by β(y − x) and integrating gives

(2.32) (1 +K0)

∫ ∞
−∞

r0(x, y, t) dy = 0.

Substituting this back into (2.31), we get r0(x, y, t) = 0. This confirms that, as
expected, the remainder term r is small when the reactions are fast. Substituting
r0 = 0 into (2.28) gives the first order equation

(2.33)

0 = −(1 +K0)
(
r1 + κ(y − x)

∫ ∞
−∞

r1(x, y, t) dy
)

+
1

β(y − x)

∂2

∂x2

(
κ(y − x)q

)
− κ(y − x)

β(y − x)

∂2q

∂x2
− 1

λβ(y − x)

∂

∂x

(
(y − x)κ(y − x)q

)
+

K1

λ(1 +K0)

κ(y − x)

β(y − x)

∂q

∂x
.

We can integrate this equation over y to solve for
∫∞
−∞ r1. Noting that all the integrals

share a similar form, we write

(2.34) φi,j,k(z) =
zi

β(z)

∂j

∂zj

(
zkκ(z)

)
for integers i, j, and k, and let Φi,j,k =

∫∞
−∞ φi,j,k(z) dz.

In terms of Φ, the integral of r1 is

(2.35)

∫ ∞
−∞

r1(x, y, t) dy =
1

λ(1 +K0)2

[(
λΦ0,2,0 + Φ0,1,1

)
q(x, t)

−
(

2λΦ0,1,0 + Φ1,0,0 −
K1

1 +K0
Φ0,0,0

) ∂q
∂x

]
.

Substituting this back into (2.33) lets us solve for r1. Finally, substituting for r1 in
(2.27), we get a single differential equation for q:

(2.36)

∂q

∂t
=
∂2q

∂x2
− K1

λ(1 +K0)

∂q

∂x

+
ε

λ2(1 +K0)

[(
K1

1 +K0

(
Φ0,1,1 + λΦ0,2,0

)
−
(
Φ1,1,1 + λΦ1,2,0

)) ∂q
∂x

+

(
Φ1,0,1 + 2λΦ1,1,0 − 2

K1

1 +K0

(
λΦ0,1,0 + Φ1,0,0

)
+

(
K1

1 +K0

)2

Φ0,0,0

)
∂2q

∂x2

]
+O(ε2).

Equation (2.36) is our desired result. This equation describes the evolution of the
particle position to order ε purely in terms of q and integrals of the binding on and off
rate functions. In the following sections, we analyze (2.36) in some important special
cases.
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2.4. Diffusive motion of a single particle. Equation (2.36) simplifies sub-
stantially when the binding and unbinding rates are spatially symmetric. When this
is true, both α(z) and β(z) are even functions of z. This causes many of the integral
terms in (2.36) to evaluate to zero. Specifically,

(2.37) K1 =

∫ ∞
−∞

zκ(z) dz =

∫ ∞
−∞

z
α(z)

β(z)
dz = 0,

and

(2.38) Φi,j,k =

∫ ∞
−∞

zi

β(z)

∂j

∂zj

(
zkκ(z)

)
dz = 0

for i+ j + k odd. Then, to order ε, the equation for q becomes

(2.39)
∂q

∂t
=
∂2q

∂x2
+

ε

λ2(1 +K0)

(
Φ1,0,1 + 2λΦ1,1,0

) ∂2q

∂x2
.

Thus, when binding and unbinding are spatially symmetric, the net motion of the
particle is purely diffusive. Moreover, fast binding to and unbinding from elastic teth-
ers is capable of increasing or decreasing the particle’s effective diffusion coefficient,
depending on the sign of Φ1,0,1+2λΦ1,1,0, which in turn depends on the specific choices
of the reaction rate functions α and β as well as the ratio λ = τrelaxation/τdiffusion.

2.4.1. Binding rate for a linear elastic spring. The simplest binding rates
occur when the elastic tether is a simple linear spring and when the diffusion coefficient
of a free tether is much larger than that of the particle. In this case, the dimensional
steady-state probability ptether(x; y) that the tether’s free end is at position x with
base fixed at y satisfies the differential equation

(2.40) 0 = Dtether
∂2ptether

∂x2
− ktether

ζtether

∂

∂x

(
(y − x)ptether

)
,

and so ptether is Gaussian:

(2.41) ptether(x; y) =
1√
2π

√
ktether

Dtetherζtether
e
− 1

2

ktether
Dtetherζtether

(y−x)2
.

Here Dtether, ζtether, and ktether are the diffusion, drag, and spring coefficients of the
free tether. The Stokes-Einstein relation tells us that diffusion and drag are related
by Dtether = kBT

ζtether
, so

(2.42) ptether(x; y) =
1√
2π

√
ktether

kBT
e
− 1

2

ktether
kBT

(y−x)2
.

We return to ptether in a moment, but first we need to consider the basic kinetics
of particle-tether binding. If the reaction simply occurred in a well-mixed solution
of particles and tether binding sites (without the elastic anchors), the system would
evolve according to mass-action kinetics as

(2.43)
dccomplex

dt
= koncparticlectether − koffccomplex,

for linear densities of particles, tether binding sites, and particle-tether complexes
cparticle, ctether, and ccomplex, and rate constants kon and koff. We can use the rate
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constant kon along with ptether to compute the separation-dependent binding rate
function k+.

Let the linear density of tether bases anchored to the domain be ρ. For a small
length dy the quantity ρ ptether(x; y) dy can be interpreted as the expected density of
tether free ends at x with bases in the interval (y, y+ dy). Since pu is the probability
density that there is a free particle at x, the quantity kon ρ ptether(x; y) dy pu(x, t) is
the rate of increase of the probability density that there is a particle-tether complex
with base in (y, y+ dy) at position x. By definition, that is the rate of increase of the
quantity pb(x, y, t) dy. Recalling (2.2), our original Fokker-Planck equation for the
evolution of pb, the kinetic rate constant kon is thus related to the rate function k+

according to

(2.44) k+(y − x) = kon ρ ptether(x; y) = kon ρ
1√
2π

√
ktether

kBT
e
− 1

2

ktether
kBT

(y−x)2
.

In nondimensional variables, this gives us the binding rate function

(2.45) α(y − x) =

√
ktether

2πkλ
e−

ktether
2kλ (y−x)2 .

Note that ρ and k+ do not appear in (2.45). This is because α was defined by α(·) =

εk̂+(·) =
τbinding

τdiffusion
k̂+(·), and τbinding =

(∫∞
−∞ k+(z) dz

)−1

= 1/(ρkon). The quantity

ktether/k is the ratio of the free tether spring coefficient to the bound tether spring
coefficient. These two spring coefficients could be different due to conformational
changes that occur upon binding.

2.4.2. Diffusion mediated by linearly-elastic binding. Taking the unbind-
ing rate to be constant, we have the dimensional expression

(2.46) k−(z) = koff,

which is equivalent to the nondimensional expression

(2.47) β(z) = β0,

where β0 = τbindingkoff = koff
ρkon

.

The evolution equation (2.39) for q simplifies to

(2.48)
∂q

∂t
=
∂2q

∂x2
+ ε

ν − 2

β0(1 + β0)λ

∂2q

∂x2
,

where ν = k/ktether is the ratio of bound to unbound tether spring coefficients. Equa-
tion (2.48) predicts that for elastic tethers to increase the diffusion coefficient of a
single particle, the inequality k > 2ktether must be satisfied, meaning that the tether
must be at least twice as stiff when bound to a particle than when unbound. It is easy
to envision how, in a biological setting, this could be the case: binding could induce a
conformational change that stiffens the tether. In such a case, we expect that either
the binding or unbinding step would require an input of chemical energy in the form
of ATP. If, on the other hand, there is no conformational change due to particle-tether
binding (so k = ktether and therefore ν = 1), (2.48) predicts that binding will hinder
the particle’s effective motion.
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Another reasonable choice for k−(z) would be a classic slip bond with force-
dependent unbinding [1]:

(2.49) k−(z) = koffe

(
k|z|/Funbinding

)
,

for some characteristic unbinding force Funbinding. In nondimensional units, (2.49)
becomes

(2.50) β(z) = β0e

(
|z|/γ

)
,

where β0 = koffτbinding and γ = Funbinding/(kL̄). With this unbinding rate function,
the evolution equation for q becomes
(2.51)

∂q

∂t
=
∂2q

∂x2
+ ε

2
√

2(1− ν)ν
√

λν
γ2 +

√
πνe

2λν
γ2

(
4λ(ν−1)ν

γ2 + ν − 2
)

erfc
(√

2λν
γ2

)
√
πβ0λν

(
β0 + e

λν
2γ2 erfc

(√
λν
2γ2

))
 ∂2q

∂x2
.

While this equation is clearly more complicated than when β(z) = β0, the qualitative
predictions are similar. Note that the numerator of the correction term in (2.51) de-
pends only on ν and the quantity γ2/λ. Using this, we plot the parameter regimes for
which (2.51) predicts enhanced and hindered diffusion in Figure 2. We can interpret
γ2/λ by rewriting it as

(
F 2

unbinding/k
)/
kBT . The numerator here is the work it takes

to stretch the tether by length Funbinding/k, which is the characteristic lengthscale
at which the bond begins to slip. Thus, as Figure 2 shows, the larger the unbinding
lengthscale the easier it is for diffusion to be enhanced. Indeed, in the limit as γ →∞,
(2.51) reduces to (2.48), for which diffusion is enhanced when ν > 2. Additionally,
when ν = 1, diffusion is hindered regardless of the value of γ2/λ. This is easily verified
algebraically by substituting ν = 1 into (2.51).

The main conclusions of this section are first, that for general spatially-dependent
binding and unbinding rates, it is possible for a particle’s overall motion to be en-
hanced by binding to a population of elastic tethers; and second, that in the simplest
case where the tether mechanical properties are fixed and binding is governed by the
linear elasticity of the tethers, the particle’s diffusion is always reduced. A natural
question, which we address in the following section, is whether there is some way to
enhance particle motion even in the simple case.

3. Motion of multiple particles. In [3], we proposed a model for enhanced
transport through the nuclear pore that relied on competition between two distinct
species of particles for binding to a population of elastic tethers. Enhanced nuclear
transport in that case depended on a set of biochemically motivated boundary con-
ditions as well as the interaction between two distinct species of moving particles.

Here, we derive a version of that model but with only one chemical species and
with a scaling consistent with our analysis in section 2. We show that even when
the elastic tethers are simple linear springs, intraspecies competition is sufficient to
substantially enhance particle diffusion. Even more remarkably, we show that this
enhancement effect is O(1).

3.1. Model derivation. The derivation in this section follows the general ap-
proach we developed in [3]. We proceed in three main steps: first, for a given spatial
distribution v(x, t) of particles we derive an expression for the probability density that
a tether anchored at y is bound to a particle at x. Second, for an ensemble of tethers
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Fig. 2: Parameter regimes for enhanced and hindered diffusion with slip bond un-
binding given by (2.50).

we estimate the expected force exerted on each particle. Third, we approximate this
force to obtain a closed form expression for the flux of particles. From this flux we
can write down a conservation law for the evolution of the particle distribution.

3.1.1. Probability density for a tether to be bound. Let v(x, t) be the
concentration (number per unit length) of particles at position x and time t, and
consider a single elastic tether anchored at position y. We can write an equation
describing the probability of finding the tether bound to a particular particle:

(3.1)
∂pv
∂t

=
1

ρ
k+
(
y − x

)
v(x, t)pf (t; y)− k−

(
y − x)

)
pv(x, t; y).

Here, pv(x, t; y) is the probability density that the tether anchored at y is bound to
a particle at x at time t, and pf (t; y) is the probability that the tether at position
y is free. We have written the tether base coordinate y as a parameter rather than
an independent variable to emphasize that we are considering a single tether fixed at
y. The binding rate includes a factor of 1

ρ because our definition of k+ in section 2

incorporates the effect of tether density, while in (3.1) we are considering a single
tether.

Note also that since our probabilities must sum to 1, we have

(3.2) pf (t; y) = 1−
∫ ∞
−∞

pv(x, t; y) dx.
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We can non-dimensionalize (3.1) and (3.2) with the same scaling as in section 2:

ε
∂p̂v

∂t̂
=
v̄

ρ
α(ŷ − x̂)v̂(x̂, t̂)p̂f (t̂; ŷ)− β(ŷ − x̂)p̂v(x̂, t̂; ŷ),(3.3)

p̂f (t̂; ŷ) = 1−
∫ ∞
−∞

p̂v(x̂, t̂; ŷ) dx̂.(3.4)

where v̄ is a concentration scale for the particles. Since ε � 1, we take pv to be in
quasi-steady-state:

(3.5) p̂v(x̂; ŷ) =
κ(ŷ − x̂)v̂(x̂, t̂)

ρ
v̄ +

∫∞
−∞ κ(ŷ − x̂)v̂(x̂, t̂) dx̂

.

Equation (3.5) can be interpreted as the fraction of time that an isolated tether
anchored at ŷ spends bound to a particle at position x̂. When more than one tether
is present, we expect there to be correlations between the binding states of different
tethers. We ignore those correlations, and treat (3.5) as a mean-field expression for
the fraction of time that a tether at ŷ spends bound to a particle at x̂ even when
other tethers are present.

3.1.2. Expected force. This approximation lets us estimate the average force
on each particle due to tether binding. For a constant linear density of tethers ρ, the
total dimensional force on all particles at position x is

(3.6) F (x, t) = ρ

∫ ∞
−∞

k(y − x)pv(x; y) dy.

For problems on this physical scale, the natural measure of energy is kBT , and so
the natural scale for force is F̄ = kBT/L̄. With this scaling, the nondimensional
expression for the force is

(3.7) F̂ (x̂, t̂) =
L̄ρ

λ

∫ ∞
−∞

(ŷ − x̂)κ(ŷ − x̂)v̂(x̂, t̂)
ρ
v̄ +

∫∞
−∞ κ(ẑ)v̂(ẑ, t̂) dẑ

dŷ.

With the expressions for α(·) and β(·) from (2.45) and (2.47), this becomes

(3.8) F̂ (x̂, t̂) =
L̄ρ

λ

∫ ∞
−∞

1
β0

√
2πλ

(ŷ − x̂) exp
(
−(ŷ − x̂)2/2λ

)
v̂(x̂, t̂)

ρ
v̄ + 1

β0

√
2πλ

∫∞
−∞ exp

(
−(ŷ − ẑ)2/2λ

)
v̂(ẑ, t̂) dẑ

dŷ.

The width of the Gaussians in (3.8) is governed by the parameter λ, which we recall is
τrelaxation/τdiffusion, the ratio of the elastic relaxation time to the time it takes for a free
particle to have diffused a mean-squared distance of L̄. We have already argued that
the physically interesting case is λ < 1. Now we assume that λ� 1, and approximate
the integrals in (3.8) for small λ.

Letting Ẑ = (ŷ − x̂)/
√
λ, we can rewrite the inner integral in (3.8):

(3.9)

∫ ∞
−∞

exp
(
−(ŷ − ẑ)2/2λ

)
v̂(ẑ, t̂) dẑ =

∫ ∞
−∞

√
λ exp

(
−Ẑ2/2

)
v̂(ŷ +

√
λẐ, t̂) dẐ

≈
√

2πλv̂(ŷ, t̂) +O
(
λ3/2

)
.

Using a similar expansion for the outer integral, we get the expected force

(3.10) F̂ (x̂, t̂) ≈ −L̄ρ v̂(x̂, t̂)v̂x̂(x̂, t̂)(
β0

ρ
v̄ + v̂(x̂, t̂)

)2 +O(λ).
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We use this approximate expression for the force to compute the expected flux of
particles.

3.1.3. Flux of vvv. The quantity F (x) is the expected total force on all particles at
position x. This force will cause the particles to move. Recalling that ζ is the particle
drag coefficient, the expected flux of particles due to this elastic force is 1

ζF (x). The
total flux of particles is a combination of this elastic flux and normal Fickian diffusion:

(3.11) J(x, t) = −Dvx(x, t) +
1

ζ
F (x, t).

This leads to the conservation law

(3.12)
∂v

∂t
= D

∂

∂x

(
−vx +

F (x, t)

kBT

)
.

In non-dimensional variables, this becomes

(3.13)
∂v̂

∂t̂
=

∂

∂x̂

(
−v̂x̂ +

F̂ (x̂, t̂)

L̄v̄

)
,

and using (3.10) for the force F̂ , the conservation law becomes

(3.14)
∂v̂

∂t̂
= − ∂

∂x̂

v̂x̂ +
ρ

v̄

v̂v̂x̂(
β0

ρ
v̄ + v̂

)2


Choosing the concentration scale v̄ = koff

kon
, and recalling that β0 = koff

ρkon
, we arrive at

the equation

(3.15)
∂v̂

∂t̂
= − ∂

∂x̂

(
v̂x̂ +

1

β0

v̂v̂x̂
(1 + v̂)2

)
.

3.2. Enhanced diffusion. Equation (3.15) can be interpreted as a nonlinear dif-
fusion equation with the concentration-dependent diffusion coefficient 1+ 1

β0
v̂/(1+v̂)2.

This predicts that when ε� 1 and λ� 1, diffusion is always enhanced by the compet-
itive interaction between multiple particles and a density of elastic tethers. Interest-
ingly, the form of the diffusion coefficient suggests an optimal particle concentration
for enhanced diffusion. The diffusion coefficient grows like 1+ v̂/β0 for v̂ � 1, reaches
a maximum of 1 + 1

4β0
when v̂ = 1, and decays back to 1 as v̂ →∞.

This prediction of enhanced diffusion is in sharp contrast to the hindered diffusion
in the single-particle case, where we found a diffusion coefficient of 1 − ε 1

β0(1+β0) .

This contrast is striking for two reasons. First, there is the simple fact that the same
collection of elastic tethers slows down the motion of a single particle while speeding
up the motion of an ensemble. Second, the magnitudes of the two effects are different:
the hindrance in the single-particle case is only O(ε), while the enhancement in the
multiple-particle case is O(1).

3.3. Physical interpretation. At first glance, it seems counter-intuitive that
the effect of tether binding in the single and multiple particle cases would be different
in both sign and order of magnitude. We can understand the physics driving this
phenomenon by careful considering the force driving particle motion in each case.
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Particles move due to a combination of Brownian motion driven by thermal fluc-
tuations and directed motion driven by elastic tethers. When only one particle is
present, as shown in Figure 3a, symmetry means that the net elastic force on the par-
ticle is zero. Moreover, the particle spends most of its time bound to the tethers that
are directly under it. Since the magnitude of the elastic tether force is proportional
to the distance between the particle and the tether base, the particle feels little to
no force from these tethers. Instead, these tethers anchor the particle and prevent it
from drifting due to Brownian motion. While the particle does spend some amount
of time bound to tethers that are anchored far away from the particle, the anchoring
effect of binding to nearby tethers is dominant.

When multiple particles are present, competition for tether binding breaks the
symmetry of the system. Figure 3b shows the case where two particles are near one
another. The two particles can each bind to the tethers in between them, and so those
tethers spend part of their time bound to each particle. This means that the particle
on the left spends more overall time bound to tethers that are anchored to its left,
and the particle on the right similarly spends more time bound to tethers to its right.
Thus, the expected force on the left particle points to the left, and the average force
on the right particle points to the right. For the two particles shown in Figure 3b, this
leads to an effective repulsive force between particles. For a collection of particles,
that repulsion will push particles from regions of high concentration to regions of low
concentration.

4. Conclusion. Understanding how particles move in the crowded, complex,
and biochemically active environment of the cell is one of the major challenges of
modern biology. We have developed a minimal model to explore one aspect of this
challenge: how diffusion is influenced by frequent and reversible binding to elastic
binding sites. Remarkably, our model predicts that the behavior of a single diffusing
particle is dramatically different than the behavior of an ensemble. While the single
particle’s motion is hindered by binding, chemical competition within the ensemble
generates an effective repulsion that drives particles down concentration gradients.

The key insight that explains this phenomenon is the observation that when
binding sites are attached to flexible tethers, competition for binding occurs not just
among particles at a single spatial location, but between particles at nearby locations.
This nonlocal competition provides a mechanism by which particles “sense” the local
concentration gradient: they are more likely to bind to an adjacent tether on the side
with fewer neighbors, and so they are more likely to experience a force pulling them
to that side.

While our model and analysis are limited to the one-dimensional case with linear
springs for tethers, the underlying mechanism is quite general. Whenever elastic
fluctuations introduce the possibility of binding at a distance, the system becomes
sensitive to the local concentration gradient. This remains true even when the binding
distance is quite short relative to lengthscales of interest, as was the case in our
analysis.

In deriving our multiple particle model, we chose to ignore correlations between
the binding states of individual tethers. It is unclear how significant these correlations
are, and so it is unknown whether including them would change the qualitative pre-
dictions of our model. Future study and new analytical or computational techniques
are necessary to answer this question.

To our knowledge, this quasi-steady-state analysis of a non-local representation of
binding is new, and opens exciting avenues for future research. Equation (2.36), the
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Fig. 3: Schematic explanation of tether-facilitated diffusion with one and two particles.
(a) A single particle spends equal time bound to particles on either side of it, so it
experiences a net elastic force. It is most likely to bind to tethers that are anchored
directly underneath it (orange curve), which will tend to prevent the particle from
drifting. (b) When two particles compete to bind tethers, they spend a smaller
fraction of time bound to the tethers in between them than to other tethers (orange
curve). The net elastic force on each particle is non-zero, and causes the particles to
repel one another (large arrows).

reduced Fokker-Planck equation for single-particle motion, is valid for very general
binding and unbinding rate functions, including the spatially anisotropic functions
that might arise from complicated macromolecules such as molecular motors. We
believe that our model framework, in both the single and multiple particle cases,
will be a useful starting point for answering questions about transport in these more
complicated settings.
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