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Abstract

The Douglas–Rachford algorithm is a classical and powerful splitting method for minimizing
the sum of two convex functions and, more generally, finding a zero of the sum of two maximally
monotone operators. Although this algorithm is well understood when the involved operators are
monotone or strongly monotone, the convergence theory for weakly monotone settings is far from
being complete. In this paper, we propose an adaptive Douglas–Rachford splitting algorithm for the
sum of two operators, one of which is strongly monotone while the other one is weakly monotone.
With appropriately chosen parameters, the algorithm converges globally to a fixed point from which
we derive a solution of the problem. When one operator is Lipschitz continuous, we prove global
linear convergence, which sharpens recent known results.

AMS Subject Classifications: Primary: 47H10, 49M27; Secondary: 41A25, 65K05, 65K10,

Keywords: Douglas–Rachford algorithm, Fejér monotonicity, global convergence, inclusion problem, linear

convergence, Lipschitz continuity, strong monotonicity, weak monotonicity.

1. Introduction

Inclusion problems that involve finding a zero of the sum of two set-valued operators play an important
role in various areas of variational analysis and optimization. For instance, under some constraint
qualifications, the classical optimization problem of minimizing the sum of two convex functions can
be converted to the problem of finding a zero of the sum of subdifferential operators of these functions.
One popular approach for the sum of two maximally monotone operators is to employ the Douglas–
Rachford (DR) algorithm. This algorithm was originally introduced in 1956 by Douglas and Rachford
[22] to numerically solve a system of linear equations arising in heat conduction. In 1979, Lions and
Mercier made the algorithm applicable to a broad class of optimization problems through the seminal
work [30]. More specifically, they proved that each sequence generated by the DR algorithm converges
weakly to a fixed point which is then used to derive a solution of the original problem. This result was
later strengthened by Svaiter [36] in which weak convergence of the shadow sequence to a solution was
shown. In the formulation of the DR algorithm, each step involves computing the resolvent of a single
operator, and hence, it is often referred to as a splitting algorithm. Since mathematical structures
emerging from applications are usually complex and difficult to analyze as a whole object, the idea of
splitting is extremely important as it helps the calculation on simple components that make up the

∗CARMA, University of Newcastle, Callaghan, NSW 2308, Australia. E-mail: daonminh@gmail.com
†Department of Mathematical Sciences, Kennedy College of Sciences, University of Massachusetts Lowell, Lowell, MA

01854, USA. E-mail: hung_phan@uml.edu.

1

http://arxiv.org/abs/1809.00761v3


entire mathematical model. It is worth mentioning (see, e.g., [23]) that several splitting methods such
as the method of partial inverses [35] and the alternating direction method of multipliers (ADMM) [25]
can be written in the form of the DR algorithm, which itself can be transformed into the proximal
point algorithm [34]. Other splitting schemes can be found in [13, 14, 16] and the references therein.

When applied to two normal cone operators, the DR algorithm can be used to solve the feasibility
problem of finding a common point of two sets. In this context, the DR algorithm possesses many
good properties; for example, it finds a best approximation point when the intersection of sets is
empty [3, 5, 8], it finds an exact solution after only a finite number of iterations under verifiable
conditions [1, 4, 7], and it converges globally in some nonconvex settings [9, 19] while it converges
locally with linear or sublinear rate under some regularity assumptions [11, 29, 33]. In the absence
of constraint qualifications, [6] suggests that the DR algorithm outperforms the well-known method of
alternating projections. In attempting to generalize the DR algorithm for feasibility problems, several
parameters were added to its formulation [12, 17, 18, 24]. In this case, one has the freedom to modify
the parameters that are associated with the projections without giving up the solution. This approach
is possible because the underlying normal cone operators have homogeneous values, which allows for
scaling them independently. The situation changes completely when working with general problems
where two involved operators may no longer have such homogeneity. In this case, a naive scaling
may destroy the ability to solve the original problem. Therefore, we aim to overcome this hurdle by
proposing an adaptive approach.

The paper is devoted to the convergence analysis of the adaptive DR algorithm for finding a zero of
the sum of α- and β-monotone operators, in which α-monotonicity is a unification of strong and weak
monotonicity (see Definition 3.1). This situation arises in various important applications; see [27] for
a brief discussion. The main contributions are summarized below.

(R1) We incorporate parameters into the DR algorithm so that the weak convergence to some fixed
point is achieved (see Theorem 4.5). The chosen parameters then allow us to derive a solution to the
original problem by using the shadow of the fixed point. In addition, the shadow sequences converge
strongly to the solution whenever the strong monotonicity strictly outweighs the weak counterpart. We
show by a simple proof that the rate of asymptotic regularity of the adaptive DR operator is o(1/

√
n).

As expected, these results are also valid for the classical DR algorithm.

(R2) Under Lipschitz continuity assumption, we prove that the convergence is strong with linear
rate (see Theorems 4.8 and 4.14) and that our linear rate refines previous results (see Corollary 4.10
and Remark 4.11). We note a particular result in Theorem 4.8(ii) that when one operator is Lipschitz
continuous and the other operator is strongly monotone, the adaptive DR algorithm converges linearly
as long as the strong monotonicity constant is greater than the Lipschitz constant. This is interesting
since no monotonicity assumption is imposed on the Lipschitz operator!

To the best of our knowledge, the results are new and encompass several contemporary works in this
direction. Indeed, our results provide a consolidation for the classical DR algorithm and its adaptive
version. In particular, we show how the parameters play a role in the convergence analysis of the
algorithm.

The remainder of the paper is organized as follows. Section 2 supplies definitions and facts that are
necessary for our analysis. In Section 3, we define and study various relevant properties of α-monotone
operators with and without Lipschitz assumptions. The main results for the adaptive DR algorithm and
its convergence analysis are presented in Section 4. Section 5 contains some applications to structured
minimization problems. Finally, concluding remarks and comments are given in Section 6.
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2. Preliminaries

Throughout this work, X is a real Hilbert space with inner product 〈·, ·〉 and induced norm ‖ · ‖. The
set of nonnegative integers is denoted by N, the set of real numbers by R, the set of nonnegative real
numbers by R+ := {x ∈ R

∣∣ x ≥ 0}, and the set of the positive real numbers by R++ := {x ∈ R
∣∣ x > 0}.

We use the notation A : X ⇒ X to indicate that A is a set-valued operator on X and the notation
A : X → X to indicate that A is a single-valued operator on X.

Let A be an operator on X. The domain of A is dom A := {x ∈ X
∣∣ Ax 6= ∅}, the graph of A is

gra A := {(x, u) ∈ X × X
∣∣ u ∈ Ax}, and the set of fixed points of A is Fix A := {x ∈ X

∣∣ x ∈ Ax}.
The inverse of A, denoted by A−1, is the operator with graph gra A−1 := {(u, x) ∈ X × X

∣∣ u ∈ Ax}.
We say that A is Lipschitz continuous with constant ℓ ∈ R+ if it is single-valued and

∀x, y ∈ dom A, ‖Ax − Ay‖ ≤ ℓ‖x − y‖. (1)

The operator A is nonexpansive if it is Lipschitz continuous with constant 1, i.e.,

∀x, y ∈ dom A, ‖Ax − Ay‖ ≤ ‖x − y‖. (2)

An operator A : X ⇒ X is said to be monotone if

∀(x, u), (y, v) ∈ gra A, 〈x − y, u − v〉 ≥ 0, (3)

and said to be maximally monotone if it is monotone and there exists no monotone operator B : X ⇒ X
such that gra B properly contains gra A. The resolvent of A : X ⇒ X is defined by

JA := (Id +A)−1, (4)

where Id is the identity operator. The relaxed resolvent of A with parameter λ ∈ R+ is defined by

Jλ
A := (1 − λ) Id +λJA. (5)

Next, we recall an important characterization of maximally monotone operators.

Fact 2.1. Let A : X ⇒ X be monotone and let γ ∈ R++. Then dom JγA = X if and only if A is
maximally monotone.

Proof. By definition, dom JγA = ran(Id +γA) := (Id +γA)(X). Since γ ∈ R++, it holds that γA is
monotone. According to Minty’s theorem (see, e.g., [2, Theorem 21.1]), dom JγA = ran(Id +γA) = X
if and only if γA is maximally monotone. By [2, Proposition 20.22], the latter occurs if and only if A
is maximally monotone. �

We conclude this section with the following useful identity whose omitted proof is straightforward.
For all s, t ∈ X and all σ, τ ∈ R,

‖σs + τt‖2 = σ(σ + τ)‖s‖2 + τ(σ + τ)‖t‖2 − στ‖s − t‖2, (6)

which is equivalent to

σ‖s‖2 + τ‖t‖2 =
στ

σ + τ
‖s − t‖2 +

1

σ + τ
‖σs + τt‖2 (7)

whenever σ + τ 6= 0.
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3. Relaxed resolvents of α-monotone operators

Definition 3.1 (α-monotonicity). An operator A : X ⇒ X is said to be α-monotone (α ∈ R) if

∀(x, u), (y, v) ∈ gra A, 〈x − y, u − v〉 ≥ α‖x − y‖2. (8)

The constant α is referred to as the monotonicity constant. We also say that A is maximally α-monotone
if it is α-monotone and there is no α-monotone operator whose graph strictly contains gra A.

We note that 0-monotonicity simply means monotonicity, that if α > 0, then α-monotonicity is pre-
cisely the notion of strong monotonicity [2, Definition 22.1(iv)], and that if α < 0, then α-monotonicity
can be referred to as weak monotonicity. For detailed discussions on maximal monotonicity and its
variants as well as the connection to optimization problems, we refer the reader to [2, 10, 15].

Lemma 3.2 (monotonicity versus α-monotonicity). Let A : X ⇒ X and let α, β ∈ R. Then the
following hold:

(i) A is α-monotone if and only if A − β Id is (α − β)-monotone.
(ii) A is maximally α-monotone if and only if A − β Id is maximally (α − β)-monotone.

Consequently, A is (resp., maximally) α-monotone if and only if A − α Id is (resp., maximally) mono-
tone.

Proof. (i): We first have the equivalences

(x, u) ∈ gra A ⇐⇒ (x, u − βx) ∈ gra(A − β Id),

(y, v) ∈ gra A ⇐⇒ (y, v − βy) ∈ gra(A − β Id),

(9a)

(9b)

and

〈x − y, u − v〉 ≥ α‖x − y‖2 ⇐⇒ 〈x − y, (u − βx) − (v − βy)〉 ≥ (α − β)‖x − y‖2, (10)

from which the conclusion follows.

(ii): Assume that A is maximally α-monotone. By (i), A − β Id is (α − β)-monotone. Now, suppose
that A − β Id is not maximally (α − β)-monotone. Then there must exist B′ : X ⇒ X such that B′

is (α − β)-monotone and gra(A − β Id) ( gra B′. It follows that B := B′ + β Id is α-monotone due
to (i) and that gra A ( gra B, which contradict the maximal α-monotonicity of A. We deduce that if
A is maximally α-monotone, then A − β Id is maximally (α − β)-monotone. This also implies that if
A − β Id is maximally (α − β)-monotone, then A = (A − β Id) + β Id is maximally α-monotone, and
we are done. �

Lemma 3.3 (resolvents of α-monotone operators). Let A : X ⇒ X be α-monotone and let
γ ∈ R++. Then the following hold:

(i) For all (x, a), (y, b) ∈ gra JγA,

〈x − y, a − b〉 ≥ (1 + γα)‖a − b‖2 and

‖x − y‖ ≥ (1 + γα)‖a − b‖.

(11a)

(11b)

(ii) If JγA is single-valued, then, for all x, y ∈ dom JγA,

〈x − y, JγAx − JγAy〉 ≥ (1 + γα)‖JγAx − JγAy‖2, (12)

i.e., JγA is (1 + γα)-cocoercive.
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Proof. (i): Let (x, a), (y, b) ∈ gra JγA. Then x ∈ (Id +γA)a, y ∈ (Id +γA)b, and so x = a + γu,
y = b + γv for some u ∈ Aa, v ∈ Ab. We derive from the α-monotonicity of A that

〈x − y, a − b〉 = 〈(a + γu) − (b + γv), a − b〉
= ‖a − b‖2 + γ 〈a − b, u − v〉
≥ ‖a − b‖2 + γα‖a − b‖2

= (1 + γα)‖a − b‖2.

(13a)

(13b)

(13c)

(13d)

Now, by the Cauchy–Schwarz inequality,

‖x − y‖‖a − b‖ ≥ 〈x − y, a − b〉 ≥ (1 + γα)‖a − b‖2. (14)

which gives ‖x − y‖ ≥ (1 + γα)‖a − b‖ while noting that this is trivial when a = b.

(ii): This is a direct consequence of (i). �

Proposition 3.4 (single-valuedness and full domain). Let A : X ⇒ X be α-monotone and let
γ ∈ R++ such that 1 + γα > 0. Then the following hold:

(i) JγA is single-valued.
(ii) dom JγA = X if and only if A is maximally α-monotone.

Proof. (i): This follows from Lemma 3.3(i).

(ii): By Lemma 3.2(i), A′ := A − α Id is monotone. Noting that (βT )−1 = T −1 ◦ 1

β Id for any
operator T and any β ∈ Rr {0}, we have

JγA = (Id +γA)−1 =
(
(1 + γα) Id +γ(A − α Id)

)−1

=

(
Id +

γ

1 + γα
A′
)−1

◦
(

1

1 + γα
Id

)

= J γ

1+γα
A′ ◦

(
1

1 + γα
Id

)
.

(15a)

(15b)

(15c)

It follows that

dom JγA = X ⇐⇒ dom J γ

1+γα
A′ = X

⇐⇒ A′ is maximally monotone (by Fact 2.1)

⇐⇒ A is maximally α-monotone (by Lemma 3.2(ii)).

(16a)

(16b)

(16c)

The proof is complete. �

Next, we further characterize the maximal α-monotonicity.

Proposition 3.5 (maximal α-monotonicity). The following statements hold:

(i) Let A : X ⇒ X and α ∈ R+. Then A is maximally α-monotone if and only if A is α-monotone
and maximally monotone.

(ii) Let A : X → X and α ∈ R. Then A is maximally α-monotone if A is α-monotone and continuous
with full domain.

Proof. (i): Since α ≥ 0, it follows from Fact 2.1 that A is α-monotone and maximally monotone if and
only if A is α-monotone and dom JA = X, which, by Proposition 3.4(ii), happen if and only if A is
maximally α-monotone.

(ii): Set A′ := A − α Id. Then A′ is monotone (due to Lemma 3.2(i)) and continuous with full
domain. By [2, Corollary 20.28], A′ is maximally monotone, and by Lemma 3.2(ii), A is maximally
α-monotone. �
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In fact, an anonymous colleague has led us to the simple but important equivalence in Proposi-
tion 3.5(i). From now on, we will simply use maximal α-monotonicity whenever convenient.

Remark 3.6 (Lipschitz α-monotone operators). Suppose that A is Lipschitz continuous with
constant ℓ. Then A is single-valued and

∀x, y ∈ dom A, | 〈x − y, Ax − Ay〉 | ≤ ‖x − y‖ · ‖Ax − Ay‖ ≤ ℓ‖x − y‖2, (17)

which yields

∀x, y ∈ dom A, −ℓ‖x − y‖2 ≤ 〈x − y, Ax − Ay〉 ≤ ℓ‖x − y‖2. (18)

We immediately deduce that A is (−ℓ)-monotone. Now suppose, in addition, that A is α-monotone.
On the one hand, we can always assume without loss of generality that α ≥ −ℓ. On the other hand,
it follows from the α-monotonicity and (18) that α ≤ ℓ as soon as dom A has more than one element.
Therefore, unless otherwise stated, whenever A is both α-monotone and Lipschitz continuous with
constant ℓ, we assume that |α| ≤ ℓ.

As seen in the following lemma, when an α-monotone operator is also Lipschitz continuous, its
resolvent possesses metric properties stronger than Lemma 3.3. Some of these properties were also
observed in [26, 32] for the α ≥ 0 case.

Lemma 3.7 (resolvents of Lipschitz α-monotone operators). Let A : X → X be Lipschitz
continuous with constant ℓ and let γ ∈ R++. Then the following hold:

(i) For all (x, a), (y, b) ∈ gra JγA,

‖a − b‖ ≥ 1

1 + γℓ
‖x − y‖,

〈x − y, a − b〉 ≥ 1

2
‖x − y‖2 +

1

2
(1 − γ2ℓ2)‖a − b‖2,

(19a)

(19b)

and if γℓ ≤ 1, then

〈x − y, a − b〉 ≥ 1

1 + γℓ
‖x − y‖2. (20)

(ii) If A is α-monotone with 1 + γα > 0, then, for all x, y ∈ dom JγA,

〈x − y, JγAx − JγAy〉 ≥ (1 + γα)αJ ‖x − y‖2, (21)

where

αJ :=





1

1 + 2γα + γ2ℓ2
if γℓ ≥ 1,

1

(1 + γα)(1 + γℓ)
if γℓ ≤ 1;

(22a)

and if additionally A satisfies (8) with equality, then

αJ :=
1

1 + 2γα + γ2ℓ2
. (22b)

Proof. (i): Let (x, a), (y, b) ∈ gra JγA. Then x = a + γAa and y = b + γAb. By Lipschitz continuity,
‖Aa − Ab‖ ≤ ℓ‖a − b‖. It follows that

‖x − y‖ ≤ ‖a − b‖ + γ‖Aa − Ab‖ ≤ (1 + γℓ)‖a − b‖ (23)
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and that

2 〈x − y, a − b〉 = ‖x − y‖2 + ‖a − b‖2 − ‖(x − a) − (y − b)‖2

= ‖x − y‖2 + ‖a − b‖2 − γ2‖Aa − Ab‖2

≥ ‖x − y‖2 + (1 − γ2ℓ2)‖a − b‖2.

(24a)

(24b)

(24c)

If γℓ ≤ 1, then combining the above inequalities yields

2 〈x − y, a − b〉 ≥ ‖x − y‖2 +
1 − γ2ℓ2

(1 + γℓ)2
‖x − y‖2 =

2

1 + γℓ
‖x − y‖2, (25)

and we get the claim.

(ii): We first note that JγA is single-valued due to Proposition 3.4(i). Then (24) reads as

2 〈x − y, JγAx − JγAy〉 ≥ ‖x − y‖2 + (1 − γ2ℓ2)‖JγAx − JγAy‖2. (26)

We claim that if γℓ ≥ 1 or A satisfies (8) with equality, then

2 〈x − y, JγAx − JγAy〉 ≥ ‖x − y‖2 +
1 − γ2ℓ2

1 + γα
〈x − y, JγAx − JγAy〉 . (27)

Indeed, the former case implies 1 − γ2ℓ2 ≤ 0 and, by combining (26) with Lemma 3.3(ii) and noting
that 1 + γα > 0, we get (27). In the latter case, Lemma 3.3(ii) reduces to

〈x − y, JγAx − JγAy〉 = (1 + γα)‖JγAx − JγAy‖2. (28)

Substituting this into (26), we also obtain (27).

Now, in view of Remark 3.6, 1 + 2γα + γ2ℓ2 ≥ 1 + 2γα + γ2α2 = (1 + γα)2 > 0. It thus follows
from (27) that

〈x − y, JγAx − JγAy〉 ≥ 1 + γα

1 + 2γα + γ2ℓ2
‖x − y‖2. (29)

Finally, if γℓ ≤ 1, then, by (i),

〈x − y, JγAx − JγAy〉 ≥ 1

1 + γℓ
‖x − y‖2, (30)

and the conclusion follows. �

Remark 3.8 (a case of equality in (8)). At first glance, an operator that satisfies (8) with equality
seems unusual. Nevertheless, it turns out that there is a special operator class that falls into this case.
Indeed, let S : X → X be a linear skew operator, i.e., S∗ = −S. Define A := S + α Id with α ∈ R.
Then, for all x, y ∈ dom A = dom S, we have that

〈x − y, Ax − Ay〉 = 〈x − y, S(x − y)〉 + α‖x − y‖2 = α‖x − y‖2, (31)

i.e., A satisfies (8) with equality.

Next, we turn our attention to the relaxed resolvent of an α-monotone operator, which is a special
case of the linear combination of the resolvent and the identity. We will establish two types of metric
estimations for relaxed resolvents, one for general α-monotone operators and one for Lipschitz α-
monotone operators. In fact, the latter case possesses some Lipschitz estimations, which help when
proving the linear convergence in the next section.
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Proposition 3.9 (linear combinations of resolvents and the identity). Let A : X ⇒ X be
α-monotone and let γ ∈ R++. Set J := JγA and define Q := ν Id +λJ with ν, λ ∈ R.

(i) Suppose that J is single-valued and νλ ≤ 0. Then, for all x, y ∈ dom J ,

‖Qx − Qy‖2 ≤ ν2‖x − y‖2 + λ
(
2ν(1 + γα) + λ

)
‖Jx − Jy‖2. (32)

(ii) Suppose that A is Lipschitz continuous with constant ℓ, 1 + γα > 0, and λ
(
2ν(1 + γα) + λ

)
≤ 0.

Then Q is Lipschitz continuous with constant

ρ :=
√

ν2 + λ
(
2ν(1 + γα) + λ

)
αJ , (33)

where αJ is defined as (22). If additionally λ
(
ν + λ

1−γ2ℓ2

)
≥ 0 whenever γℓ < 1, then the

Lipschitz constant (33) can be improved to

ρ :=

√

ν2 +
λ
(
2ν(1 + γα) + λ

)

1 + 2γα + γ2ℓ2
≤ ρ. (34)

Proof. Let x, y ∈ dom J . By the definition of Q,

‖Qx − Qy‖2 = ‖ν(x − y) + λ(Jx − Jy)‖2

= ν2‖x − y‖2 + 2νλ 〈x − y, Jx − Jy〉 + λ2‖Jx − Jy‖2.

(35a)

(35b)

(i): Since νλ ≤ 0, combining (35) with Lemma 3.3(ii) yields

‖Qx − Qy‖2 ≤ ν2‖x − y‖2 + 2νλ(1 + γα)‖Jx − Jy‖2 + λ2‖Jx − Jy‖2

= ν2‖x − y‖2 + λ
(
2ν(1 + γα) + λ

)
‖Jx − Jy‖2.

(36a)

(36b)

(ii): First, according to Proposition 3.4(i), J is single-valued, and so is Q. Next, using (35),
Lemma 3.3(ii), and Lemma 3.7(ii) and noting that λ

(
2ν(1 + γα) + λ

)
≤ 0, we have

‖Qx − Qy‖2 ≤ ν2‖x − y‖2 + 2νλ 〈x − y, Jx − Jy〉 +
λ2

1 + γα
〈x − y, Jx − Jy〉

= ν2‖x − y‖2 +
λ
(
2ν(1 + γα) + λ

)

1 + γα
〈x − y, Jx − Jy〉

≤ ν2‖x − y‖2 + λ
(
2ν(1 + γα) + λ

)
αJ‖x − y‖2 = ρ2‖x − y‖2,

(37a)

(37b)

(37c)

which implies that Q is Lipschitz continuous with constant ρ.

For the last statement, we show that αJ in formula (33) can be replaced by

αJ :=
1

1 + 2γα + γ2ℓ2
. (38)

If 〈x − y, Jx − Jy〉 ≥ (1 + γα)αJ‖x − y‖2, then (37) also holds with αJ replaced by αJ . Now, assume
that 〈x − y, Jx − Jy〉 < (1 + γα)αJ‖x − y‖2. By Lemma 3.7(ii), we must have γℓ < 1, and then, by
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assumption, λ
(
ν + λ

1−γ2ℓ2

)
≥ 0. It now follows from (35) and (19b) that

‖Qx − Qy‖2 ≤ ν2‖x − y‖2 + 2νλ 〈x − y, Jx − Jy〉

+
λ2

1 − γ2ℓ2
(2 〈x − y, Jx − Jy〉 − ‖x − y‖2)

=
(
ν2 − λ2

1 − γ2ℓ2

)
‖x − y‖2 + 2λ

(
ν +

λ

1 − γ2ℓ2

)
〈x − y, Jx − Jy〉

≤
(
ν2 − λ2

1 − γ2ℓ2

)
‖x − y‖2 + 2λ

(
ν +

λ

1 − γ2ℓ2

)
(1 + γα)αJ‖x − y‖2

=
(
ν2 + λ

(
2ν(1 + γα) + λ

)
αJ

)
‖x − y‖2 = ρ2‖x − y‖2.

(39a)

(39b)

(39c)

(39d)

Finally, we will prove αJ ≥ αJ , which implies ρ ≤ ρ, i.e., the Lipschitz constant is indeed improved.
From the definition of αJ , it suffices to consider the case in which αJ = 1/((1 + γα)(1 + γℓ)). Then
γℓ ≤ 1. Since |α| ≤ ℓ (see Remark 3.6), it holds that

0 < (1 + γα)2 ≤ 1 + 2γα + γ2ℓ2 ≤ 1 + 2γα + γ2ℓ2 + (γℓ − γα) − γℓ(γℓ − γα)

= 1 + γα + γℓ + (γα)(γℓ)

= (1 + γα)(1 + γℓ),

(40a)

(40b)

(40c)

and so

αJ =
1

1 + 2γα + γ2ℓ2
≥ αJ =

1

(1 + γα)(1 + γℓ)
. (41)

The proof is complete. �

Remark 3.10. In the setting of Proposition 3.9(ii), if νλ ≤ 0, then one can also obtain a Lipschitz
constant of Q via Proposition 3.9(i) and (19a) in Lemma 3.7(i), in particular,

‖Qx − Qy‖2 ≤
(

ν2 +
λ
(
2ν(1 + γα) + λ

)

(1 + γℓ)2

)
‖x − y‖2, (42)

i.e., Q is Lipschitz continuous with constant

ρ′ :=

√

ν2 +
λ
(
2ν(1 + γα) + λ

)

(1 + γℓ)2
. (43)

However, ρ′ is actually larger than ρ in (33), which means that ρ is a better Lipschitz constant than
ρ′. To see this, since λ(2ν(1 + γα) + λ) ≤ 0, we only need to check that 1/(1 + γℓ)2 ≤ αJ . Noting from
Remark 3.6 that α ≤ ℓ, we have 0 < 1 + γα ≤ 1 + γℓ and 0 < 1 + 2γα + γ2ℓ2 ≤ (1 + γℓ)2. Therefore,

1

(1 + γℓ)2
≤ min

{
1

(1 + γα)(1 + γℓ)
,

1

1 + 2γα + γ2ℓ2

}
≤ αJ . (44)

Corollary 3.11 (relaxed resolvents of α-monotone operators). Let A : X ⇒ X be α-monotone
and let γ ∈ R++. Suppose that J := JγA is single-valued and define R := (1 − λ) Id +λJ with λ ∈ R+,
and Q := R + ε Id with ε ∈ R. Then the following hold:

(i) If λ ≥ 1, then, for all x, y ∈ dom J ,

‖Rx − Ry‖2 ≤ (λ − 1)2‖x − y‖2 − λ
(
(λ − 1)(2 + 2γα) − λ

)
‖Jx − Jy‖2. (45)
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(ii) If ε ≤ λ − 1, then, for all x, y ∈ dom J ,

‖Qx − Qy‖2 ≤ (λ − 1 − ε)2‖x − y‖2

− λ
(
(λ − 1)(2 + 2γα) − λ − 2ε(1 + γα)

)
‖Jx − Jy‖2. (46)

Consequently, if additionally (λ−1)(2+2γα)−λ−2ε(1+γα) ≥ 0, then Q is Lipschitz continuous
with constant (λ − 1 − ε).

Proof. Because (i) is a consequence of (ii) with ε = 0, it suffices to prove only the latter. To this end,
noting that Q = R + ε Id = (1 − λ + ε) Id +λJ and using Proposition 3.9(i) with ν = 1 − λ + ε ≤ 0, we
have that

‖Qx − Qy‖2 ≤ (1 − λ + ε)2‖x − y‖2 + λ (2(1 − λ + ε)(1 + γα) + λ) ‖Jx − Jy‖2

= (λ − 1 − ε)2‖x − y‖2 − λ
(
(λ − 1)(2 + 2γα) − λ − 2ε(1 + γα)

)
‖Jx − Jy‖2

(47a)

(47b)

which proves (ii). �

Corollary 3.12 (relaxed resolvents of Lipschitz α-monotone operators). Let A : X → X be
α-monotone and Lipschitz continuous with constant ℓ. Also let γ ∈ R++ and λ ∈ R++ be such that

1 + γα > 0 and λ(1 + 2γα) − 2(1 + γα) ≥ 0. (48)

Define J := JγA, R := (1 − λ) Id +λJ , and Q := Id −εR with ε ∈ R+. Then the following hold:

(i) R is Lipschitz continuous with constant
√

(λ − 1)2 − λ
(
(λ − 1)(2 + 2γα) − λ

)

1 + 2γα + γ2ℓ2
. (49)

(ii) Q is Lipschitz continuous with constant
√

(1 + ε(λ − 1))2 − ελ
[
2(1 + γα) + ε

(
λ(1 + 2γα) − 2(1 + γα)

)]
αJ , (50)

where αJ is defined as (22).

Proof. (i): We observe that R = ν Id +λJ with ν := 1 − λ, that

λ(2ν(1 + γα) + λ) = −λ
(
λ(1 + 2γα) − 2(1 + γα)

)
≤ 0, (51)

and that, whenever γℓ < 1,

ν +
λ

1 − γ2ℓ2
= (1 − λ) +

λ

1 − γ2ℓ2
> 1 − λ + λ = 1 > 0. (52)

Applying Proposition 3.9(ii) to R = ν Id +λ Id implies that R is Lipschitz continuous with constant
√

(1 − λ)2 +
λ
(
2(1 − λ)(1 + γα) + λ

)

1 + 2γα + γ2ℓ2
, (53)

which gives the claim.

(ii): Using the first part of Proposition 3.9(ii) and writing Q = ν̃ Id +λ̃J with ν̃ := 1 + ε(λ − 1) and
λ̃ := −ελ, it suffices to check that

λ̃(2ν̃(1 + γα) + λ̃) = (−ελ)
(
2(1 + ε(λ − 1))(1 + γα) + (−ελ)

)
≤ 0. (54)

Indeed, we have that ε ≥ 0, λ > 0, and

2(1 + ε(λ − 1))(1 + γα) − ελ = 2(1 + γα) + ε
(
2(λ − 1)(1 + γα) − λ

)

= 2(1 + γα) + ε(λ(1 + 2γα) − 2(1 + γα)) > 0

(55a)

(55b)

by (48). So (54) holds and the conclusion follows. �
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4. Adaptive Douglas–Rachford algorithm

Throughout this section, A, B : X ⇒ X, (γ, δ, λ, µ) ∈ R4
++, and κ ∈ ]0, 1[. We define

J1 := JγA = (Id +γA)−1, R1 := Jλ
γA = (1 − λ) Id +λJ1,

J2 := JδB = (Id +δB)−1, R2 := Jµ
δB = (1 − µ) Id +µJ2

(56a)

(56b)

and consider the adaptive DR operator defined by

T := (1 − κ) Id +κR2R1. (56c)

For convenience of notation, we already drop the parameters λ, µ, κ and A, B associated with the
operators J1, R1, J2, R2, and T . When (λ, µ, κ) = (2, 2, 1/2), the operator T in (56c) reduces to the
classical DR operator [22, 30]. In fact, formulation (56) was previously used in [17, 18] for feasibility
problems, which allow for eliminating γ and δ while choosing the parameters λ and µ independently.
However, such an advantage no longer exists for the case of general operators. In other words, all
parameters γ, δ, λ, and µ must satisfy a certain set of requirements simultaneously, as we will see
shortly.

The adaptive DR operator is indeed motivated by the problem of finding a zero of the sum of two
operators, that is,

find x ∈ X such that 0 ∈ Ax + Bx. (57)

We also denote by

zer(A + B) := (A + B)−1(0) = {x ∈ X
∣∣ 0 ∈ Ax + Bx} (58)

the set of solutions of problem (57). Given a starting point x0 ∈ X, the adaptive DR algorithm
generates a sequence (xn)n∈N, also called a DR sequence, by

∀n ∈ N, xn+1 ∈ T xn. (59)

Then, we expect the DR sequence (xn)n∈N to converge to some point x ∈ Fix T such that J1x contains
a solution to the original problem (57). For this purpose, we will require that

(λ − 1)(µ − 1) = 1 and δ = (λ − 1)γ, (60)

which are also equivalent to λ = µ/(µ − 1) and γ = (µ − 1)δ, respectively. The next lemma shows the
necessity of (60).

Lemma 4.1 (fixed points of adaptive DR operator). The following statements hold:

(i) Id −T = κ(Id −R2R1).
(ii) Suppose that (λ − 1)(µ − 1) = 1. Then

∀x ∈ dom T, (Id −T )x = {κµ (a − J2 ((1 − λ)x + λa))
∣∣ a ∈ J1x}. (61)

Consequently, if J1 is single-valued, then Id −T = κµ(J1 − J2R1).
(iii) Suppose that (60) holds. Then Fix T 6= ∅ if and only if zer(A + B) 6= ∅. Moreover, if J1 is

single-valued, then

J1(Fix T ) = zer(A + B). (62)
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Proof. (i): This is clear from the definition of T .

(ii): Let x ∈ dom T . Noting that (λ − 1)(µ − 1) = 1 also implies λ(µ − 1) = µ, we have

(Id −R2R1)x = {x − R2

(
(1 − λ)x + λa

) ∣∣ a ∈ J1x}
= {x − (1 − µ)

(
(1 − λ)x + λa

)
− µJ2

(
(1 − λ)x + λa

) ∣∣ a ∈ J1x}
= {µ (a − J2 ((1 − λ)x + λa))

∣∣ a ∈ J1x}.

(63a)

(63b)

(63c)

This together with (i) proves (61), from which the remaining conclusion follows.

(iii): We derive from the assumption and (ii) that

x ∈ Fix T ⇐⇒ 0 ∈ (Id −T )x

⇐⇒ ∃a ∈ J1x, a ∈ J2

(
(1 − λ)x + λa

)

⇐⇒ ∃a ∈ J1x, (1 − λ)(x − a) ∈ δBa

⇐⇒ ∃a ∈ X, x − a ∈ γAa and − (x − a) ∈ γBa

⇐⇒ ∃a ∈ J1x, 0 ∈ γAa + γBa

⇐⇒ ∃a ∈ J1x ∩ zer(A + B),

(64a)

(64b)

(64c)

(64d)

(64e)

(64f)

which completes the proof. �

As shown in Lemma 4.1, a solution of (57) can be found by means of fixed points of the adaptive
DR operator. Therefore, our analysis will mainly revolve around the convergence to the fixed points
under the condition (60).

4.1. Convergence via Fejér monotonicity

Recall that a sequence (xn)n∈N is said to be Fejér monotone with respect to a nonempty subset of C
of X if

∀c ∈ C, ∀n ∈ N, ‖xn+1 − c‖ ≤ ‖xn − c‖. (65)

The use of Fejér monotonicity is quite common in the convergence theory of monotone operators.
In the following abstract convergence result, our analysis relies on the Fejér monotonicity of DR se-
quences generated by the adaptive DR operator T with respect to Fix T and does not require the
nonexpansiveness of R2R1.

Theorem 4.2 (abstract convergence). Let (ω1, ω2, ω3) ∈ R3 such that

either
{
ω2 = ω3 = 0 and ω1 > 0

}
;

or
{
ω2 + ω3 > 0 and ω1 +

ω2ω3

κ2µ2(ω2 + ω3)
> 0

}
.

(66a)

(66b)

Suppose that (λ − 1)(µ − 1) = 1, that J1 and J2 are single-valued, that Fix T 6= ∅, and that, for all
x ∈ dom T , y ∈ Fix T ,

‖T x − y‖2 ≤ ‖x − y‖2 − ω1‖(Id −T )x‖2

− ω2‖J1x − J1y‖2 − ω3‖J2R1x − J2R1y‖2. (67)

Let (xn)n∈N ⊂ dom T be a DR sequence generated by T . Then (xn)n∈N converges weakly to a point
x ∈ Fix T . Furthermore, the following hold:
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(i) If ω2 + ω3 > 0, then the shadow sequences (J1xn)n∈N and (J2R1xn)n∈N converge strongly to J1x
and J1(Fix T ) = J2R1(Fix T ) = {J1x}.

(ii) If T is nonexpansive, then the rate of asymptotic regularity of T is o(1/
√

n), i.e., ‖(Id −T )xn‖ =
o(1/

√
n) as n → +∞.

(iii) If, for all x, y ∈ dom T ,

‖T x − T y‖2 ≤ ‖x − y‖2 − ω1‖(Id −T )x − (Id −T )y‖2

− ω2‖J1x − J1y‖2 − ω3‖J2R1x − J2R1y‖2, (68)

then (67) holds for all x ∈ dom T , y ∈ Fix T , and T is nonexpansive.

Proof. Define

ω′
2 :=

{
ω2ω3

ω2+ω3
if ω2 + ω3 > 0,

0 if ω2 = ω3 = 0
and ω′

3 :=

{
1

ω2+ω3
if ω2 + ω3 > 0,

0 if ω2 = ω3 = 0.
(69)

Then

ω1 +
ω′

2

κ2µ2
> 0 and ω′

3 ≥ 0. (70)

For all x, y ∈ dom T , we derive from (7) and Lemma 4.1(ii) that

ω2‖J1x − J1y‖2 + ω3‖J2R1x − J2R1y‖2

= ω′
2‖(J1 − J2R1)x − (J1 − J2R1)y‖2 + ω′

3‖ω2

(
J1x − J1y

)
+ ω3

(
J2R1x − J2R1y

)
‖2

=
ω′

2

κ2µ2
‖(Id −T )x − (Id −T )y‖2 + ω′

3‖ω2

(
J1x − J1y

)
+ ω3

(
J2R1x − J2R1y

)
‖2.

(71a)

(71b)

(71c)

Combining with the assumption on T implies that, for all x ∈ dom T , y ∈ Fix T ,

‖T x − y‖2 ≤ ‖x − y‖2 −
(
ω1 +

ω′
2

κ2µ2

)
‖(Id −T )x‖2

− ω′
3‖ω2

(
J1x − J1y

)
+ ω3

(
J2R1x − J2R1y

)
‖2. (72)

Therefore, for all n ∈ N and all y ∈ Fix T ,

‖xn+1 − y‖2 ≤ ‖xn − y‖2 −
(
ω1 +

ω′
2

κ2µ2

)
‖(Id −T )xn‖2

− ω′
3‖ω2

(
J1xn − J1y

)
+ ω3

(
J2R1xn − J2R1y

)
‖2. (73)

We deduce that (xn)n∈N is Fejér monotone with respect to Fix T and hence bounded. By the telescoping
technique, for all y ∈ Fix T ,

(
ω1 +

ω′
2

κ2µ2

) +∞∑

n=0

‖(Id −T )xn‖2 + ω′
3

+∞∑

n=0

‖ω2

(
J1xn − J1y

)
+ ω3

(
J2R1xn − J2R1y

)
‖2

≤ ‖x0 − y‖2 < +∞. (74)

Since ω1 +
ω′

2

κ2µ2 > 0, it follows that

(Id −T )xn → 0 as n → +∞. (75)
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Now let x∗ be a weak cluster point of (xn)n∈N. Then there exists a subsequence (xkn
)n∈N of (xn)n∈N

such that xkn
⇀ x∗. By (75), (Id −T )xkn

→ 0, and by [2, Corollary 4.28], x∗ ∈ Fix T . In turn, [2,
Theorem 5.5] implies that (xn)n∈N converges weakly to a point x ∈ Fix T .

(i): If ω2 + ω3 > 0, then ω′
3 = 1/(ω2 + ω3) > 0 and, by (74), for all y ∈ Fix T ,

ω2

(
J1xn − J1y

)
+ ω3

(
J2R1xn − J2R1y

)
→ 0. (76)

Together with

(
J1xn − J1y

)
−
(
J2R1xn − J2R1y

)
=

1

κµ

(
(Id −T )xn − (Id −T )y

)
=

1

κµ
(Id −T )xn → 0, (77)

we obtain

J1xn → J1y and J2R1xn → J2R1y = J1y, (78)

which also means that J1(Fix T ) = J2R1(Fix T ) = {J1x}.

(ii): By the nonexpansiveness of T ,

∀n ∈ N, ‖(Id −T )xn+1‖ = ‖T xn − T xn+1‖ ≤ ‖xn − xn+1‖ = ‖(Id −T )xn‖. (79)

Combining with (74), we obtain that

n

2
‖(Id −T )xn‖2 ≤

n∑

k=⌊n/2⌋

‖(Id −T )xk‖2 → 0 as n → +∞, (80)

where ⌊n/2⌋ is the largest integer not exceeding n/2. The conclusion then follows.

(iii): Assume that (68) holds for all x, y ∈ dom T . Then (67) holds for all x ∈ dom T , y ∈ Fix T
since (Id −T )y = 0 in this case. Next, it follows from (68) and (71) that, for all x, y ∈ dom T ,

‖T x − T y‖2 ≤ ‖x − y‖2 −
(
ω1 +

ω′
2

κ2µ2

)
‖(Id −T )x − (Id −T )y‖2

− ω′
3‖ω2

(
J1x − J1y

)
+ ω3

(
J2R1x − J2R1y

)
‖2

≤ ‖x − y‖2,

(81a)

(81b)

which completes the proof. �

The following result provides a quantitative measurement for the adaptive DR operator, which is
important for our analysis.

Proposition 4.3 (metric inequality for adaptive DR operator). Suppose that A and B are
respectively α- and β-monotone, that (60) holds and min{λ, µ} ≥ 1, and that J1 and J2 are single-
valued. Then for all x, y ∈ dom T ,

‖T x − T y‖2 ≤ ‖x − y‖2 − 1 − κ

κ
‖(Id −T )x − (Id −T )y‖2

− κµ(2 + 2γα − µ)‖J1x − J1y‖2

− κµ
(
µ − (2 − 2γβ)

)
‖J2R1x − J2R1y‖2. (82)

Proof. Let x, y ∈ dom R2R1 = dom T . We observe from (6) and Lemma 4.1(i) that

‖T x − T y‖2 = (1 − κ)‖x − y‖2 + κ‖R2R1x − R2R1y‖2

− κ(1 − κ)‖(Id −R2R1)x − (Id −R2R1)y‖2

= (1 − κ)‖x − y‖2 − 1 − κ

κ
‖(Id −T )x − (Id −T )y‖2 + κ‖R2R1x − R2R1y‖2.

(83a)

(83b)
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Next, applying Corollary 3.11(i) first to R2 and then to R1 yields

‖R2R1x − R2R1y‖2 ≤ (µ − 1)2(λ − 1)2‖x − y‖2

− (µ − 1)2λ
(
(λ − 1)(2 + 2γα) − λ

)
‖J1x − J1y‖2

− µ
(
(µ − 1)(2 + 2δβ) − µ

)
‖J2R1x − J2R1y‖2

=: η0‖x − y‖2 − η1‖J1x − J1y‖2 − η2‖J2R1x − J2R1y‖2.

(84a)

(84b)

(84c)

(84d)

Now, it follows from (60) that

η0 =
(
(µ − 1)(λ − 1)

)2
= 1,

η1 = (µ − 1)2(λ − 1)2 λ

λ − 1

(
(2 + 2γα) − λ

λ − 1

)
= µ

(
2 + 2γα − µ

)
,

η2 = µ
(
2(µ − 1) + 2γβ − µ

)
= µ

(
µ − (2 − 2γβ)

)
.

(85a)

(85b)

(85c)

Altogether, we get the conclusion. �

So far in this section, we have often assumed single-valuedness of the resolvents J1 and J2, which
leads to the same property for the adaptive DR operator T . Indeed, since either A or B may not
necessarily be monotone, the single-valuedness is not guaranteed. Nevertheless, the choice of parame-
ters can help clearing up the issue as seen in the following lemma, which is based on Proposition 3.4.
We will further establish that, given suitable α- and β-monotone operators, it is always possible to
choose parameters (γ, δ, λ, µ) ∈ R2

++ × ]1, +∞[2 so that all objectives are met: the adaptive DR oper-
ator enjoys the single-valuedness and full domain properties; (60) is satisfied; and every DR sequence
converges to a fixed point via which problem (57) is solved.

Lemma 4.4 (single-valuedness and full domain of adaptive DR operator). Suppose that A
and B are maximally α- and β-monotone with α+β ≥ 0. Then there exists (γ, δ, λ, µ) ∈ R2

++×]1, +∞[2

such that

1 + 2γα > 0,

µ ∈ [2 − 2γβ, 2 + 2γα] ,

(λ − 1)(µ − 1) = 1, and δ = (λ − 1)γ.

(86a)

(86b)

(86c)

Moreover, (86) implies that min{1 + γα, 1 + δβ} > 0 and that J1, J2, and T are single-valued and have
full domain.

Proof. To show the existence, we first take γ > 0 such that 1/γ > −2α. Then 1 + 2γα > 0 and
2 + 2γα = 1 + (1 + 2γα) > 1. Using α + β ≥ 0, we derive that

2 + 2γα = 2γ(α + β) + (2 − 2γβ) ≥ 2 − 2γβ. (87)

Hence, we can always choose µ > 1 satisfying (86b). Next, with such µ, we define λ := µ/(µ − 1) =
1 + 1/(µ − 1) > 1 and δ := (λ − 1)γ. Then (86c) is clearly satisfied.

Now, take any (γ, δ, λ, µ) satisfying (86). We have

1 + δβ = (λ − 1)(µ − 1) + (λ − 1)γβ =
1

2
(λ − 1)(µ + µ − (2 − 2γβ)) > 0. (88)

Thus, min{1 + γα, 1 + δβ} > 0. The remaining conclusion follows from Proposition 3.4. �

We are now ready to state our convergence results for the adaptive DR algorithm.
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Theorem 4.5 (adaptive DR algorithm for α- and β-monotone operators). Suppose that A and
B are respectively maximally α- and β-monotone with zer(A + B) 6= ∅, and that one of the following
holds:

(i) (Adaptive DR algorithm) α + β ≥ 0 and (γ, δ, λ, µ) ∈ R2
++ × ]1, +∞[2 satisfies (86).

(ii) (Classical DR algorithm) λ = µ = 2, γ = δ ∈ R++, and

either α = β = 0;

or α + β > 0 and 1 + γ
αβ

α + β
> κ.

(89a)

(89b)

Then every DR sequence (xn)n∈N generated by T converges weakly to a point x ∈ Fix T with J1x ∈
zer(A + B) and the rate of asymptotic regularity of T is o(1/

√
n). Moreover, if α + β > 0, then the

shadow sequences (J1xn)n∈N and (J2R1xn)n∈N converge strongly to J1x and zer(A + B) = {J1x}.

Proof. We first observe that if (i) holds, then, by Lemma 4.4,

min{1 + γα, 1 + δβ} > 0. (90)

Let us show that (90) is also satisfied when (ii) holds. Indeed, if α = β = 0, then (90) is obvious.
Otherwise, it follows from α + β > 0 and 1 + γ αβ

α+β > κ > 0 that

1 + γα =

(
1 + γ

αβ

α + β

)
+ γ

α2

α + β
> 0 (91)

and that

1 + δβ = 1 + γβ =

(
1 + γ

αβ

α + β

)
+ γ

β2

α + β
> 0. (92)

Thus, (90) holds for all cases.

From (90) and Proposition 3.4, we have that J1 and J2 are single-valued and have full domain, so
does T . Now by Proposition 4.3, for all x, y ∈ X,

‖T x − T y‖2 ≤ ‖x − y‖2 − ω1‖(Id −T )x − (Id −T )y‖2

− ω2‖J1x − J1y‖2 − ω3‖J2R1x − J2R1y‖2 (93)

with ω1 := (1−κ)/κ > 0, ω2 := κµ(2+2γα−µ), ω3 := κµ
(
µ− (2−2γβ)

)
. Next, since zer(A+B) 6= ∅,

Lemma 4.1(iii) yields Fix T 6= ∅. In view of Theorem 4.2, it suffices to verify assumption (66). If (i)
holds, then, by (86), ω2, ω3 ≥ 0, so (66) is satisfied; if (ii) holds, then ω2 = 4κγα, ω3 = 4κγβ, and (66)
holds due to (89). The proof is complete. �

Remark 4.6 (under- and over-reflecting the resolvents). Let us consider problem (57) with
A and B respectively maximally α and (−α)-monotone for some α > 0. Recall that the classical
DR algorithm uses the exact reflections of the resolvents (i.e., λ = µ = 2) if both operators are
monotone. This is not applicable in this situation since A is strongly monotone while B is weakly
monotone. Therefore, in order to guarantee the convergence, the adaptive DR algorithm requires the
choice µ = 2 + 2γα > 2 (Theorem 4.5(i)), and thus λ = µ/(µ − 1) = 1 + 1/(1 + 2γα) < 2. That means,
we must under-reflect (λ < 2) the resolvent of A, the strongly monotone operator, and over-reflect
(µ > 2) the resolvent of B, the weakly monotone one. This phenomenon is somewhat counterintuitive,
since in order to preserve nonexpansiveness, one would naturally think of doing the opposite, i.e.,
over-reflecting the resolvent of the strongly monotone operator and under-reflecting that of the weakly
one.
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While Theorem 4.5(i) is new, Theorem 4.5(ii) not only unifies and simplifies but also extends
Theorems 4.4 and 4.6 in [27] to the context of operators in Hilbert spaces (here we note that the
condition (3.4) in [27] implies the second condition in (89b)). Moreover, the proof for the rate of
asymptotic regularity of T in Theorem 4.5, which follows from Theorem 4.2(ii)–(iii), is simpler than
the treatment presented in [27, Theorems 5.1 and 5.2].

The following result is an immediate corollary of Theorem 4.5, in which we note that the adaptive
DR algorithm reduces to the classical one when choosing µ = 2.

Corollary 4.7 (one monotone and one strongly monotone operators). Let α ∈ R+ and γ ∈
R++. Suppose that A and B are maximally monotone and that either

(i) A is α-monotone and µ ∈ [2, 2 + 2γα], or
(ii) B is α-monotone and µ ∈ [2 − 2γα, 2].

Suppose also that zer(A + B) 6= ∅ and that λ = µ/(µ − 1) and δ = (µ − 1)γ. Then every DR sequence
(xn)n∈N generated by T converges weakly to a point x ∈ Fix T with J1x ∈ zer(A + B) and the rate of
asymptotic regularity of T is o(1/

√
n). Moreover, if α > 0, then the shadow sequences (J1xn)n∈N and

(J2R1xn)n∈N converge strongly to J1x and zer(A + B) = {J1x}.

Proof. By Proposition 3.5(i), we readily have that either A or B is maximally α-monotone while the
other is maximally monotone. Now, apply Theorem 4.5(i) with (α, β) replaced by (α, 0) or (0, α). �

4.2. Linear convergence under Lipschitz assumption

In this section, we provide linear convergence results for the adaptive DR algorithm for α- and β-
monotone operators when, in addition, one operator is Lipschitz continuous. Comparing with [26, 32],
our work indeed gives a new perspective on this topic by using adaptive parameters. Moreover, we
improve the linear convergence rate obtained by [32] for the classical DR algorithm for a Lipschitz
monotone and a strongly monotone operator (see Remark 4.11).

Recall that a sequence (xn)n∈N converges to x with Q-linear (or simply linear) rate ρ ∈ [0, 1[ if

∀n ∈ N, ‖xn+1 − x‖ ≤ ρ‖xn − x‖. (94)

Theorem 4.8 (linear convergence when A is Lipschitz). Suppose that either

(i) A is α-monotone and Lipschitz continuous with constant ℓ, B is maximally β-monotone, and
α + β > 0; or

(ii) A is Lipschitz continuous with constant ℓ, B is maximally β-monotone with β > ℓ, and α := −ℓ.

Suppose also that zer(A + B) 6= ∅ and that (γ, δ, λ, µ) ∈ R2
++ × ]1, +∞[2 satisfies (86). Then T is

Lipschitz continuous with constant

ρ := (1 − κ)
√(

1 + ε1(λ − 1)
)2 − ϕαJ + κ(1 − ε(λ − 1))

√
1 − µ(2 + 2γα − µ)

1 + 2γα + γ2ℓ2
< 1, (95)

where

ε :=
µ − (2 − 2γβ)

2(1 + δβ)
, ε1 :=

κε

1 − κ
,

ϕ := ε1λ[2(1 + γα) + ε1

(
λ(1 + 2γα) − 2(1 + γα)

)
],

αJ as in (22).

(96a)

(96b)

(96c)

Consequently, every DR sequence (xn)n∈N generated by T converges strongly to the unique fixed point
x of T with linear rate ρ.
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Proof. In view of Remark 3.6, assumption (ii) implies assumption (i) because if A is Lipschitz contin-
uous with constant ℓ, then A is also α-monotone with α := −ℓ. It thus suffices to assume (i). First,
Proposition 3.5(ii) implies that A is maximally α-monotone. Next, we learn from Lemma 4.4 that

min{1 + γα, 1 + δβ} > 0 (97)

and that all operators J1, J2, and T are single-valued and have full domain.

By the choice of µ, it holds that 0 < µ − 1 ≤ 1 + 2γα, and so

λ = 1 +
1

µ − 1
≥ 1 +

1

1 + 2γα
=

2(1 + γα)

1 + 2γα
, (98)

which yields

λ(1 + 2γα) − 2(1 + γα) ≥ 0. (99)

From µ ≥ 2 − 2γβ, we have that ε ≥ 0 and ε1 ≥ 0. It follows that ϕ ≥ 0 and that

ϕ = 0 ⇐⇒ ε1 = 0 ⇐⇒ ε = 0 ⇐⇒ µ = 2 − 2γβ. (100)

Define Q1 := Id −ε1R1. Using Corollary 3.12 and noting that λ = µ(λ − 1), we derive that R1 is
Lipschitz continuous with constant

√

(λ − 1)2 − λ
(
(λ − 1)(2 + 2γα) − λ

)

1 + 2γα + γ2ℓ2
= (λ − 1)

√

1 − µ(2 + 2γα − µ)

1 + 2γα + γ2ℓ2
, (101)

and that Q1 is Lipschitz continuous with constant

ρ1 :=
√

(1 + ε1(λ − 1))2 − ϕαJ ≤ 1 + ε1(λ − 1), (102)

where αJ is defined as in (22). It follows from (100) that the inequality is strict whenever µ > 2− 2γβ.

Next, define Q2 := R2 + ε Id. Since γ = (µ − 1)δ, we note that

ε =
µ − (2 − 2γβ)

2(1 + δβ)
=

(µ − 1)(2 + 2δβ) − µ

2(1 + δβ)
< µ − 1, (103)

which also gives

(µ − 1)(2 + 2δβ) − µ − 2ε(1 + δβ) = 0. (104)

By Corollary 3.11(ii), Q2 is Lipschitz continuous with constant (µ−1−ε). Combining with the Lipschitz
continuity of R1 and noting that (µ − 1)(λ − 1) = 1, we have that Q2R1 is Lipschitz continuous with
constant

ρ2 := (µ − 1 − ε)(λ − 1)

√

1 − µ(2 + 2γα − µ)

1 + 2γα + γ2ℓ2

= (1 − ε(λ − 1))

√
1 − µ(2 + 2γα − µ)

1 + 2γα + γ2ℓ2

≤ 1 − ε(λ − 1),

(105a)

(105b)

(105c)

where the inequality is strict whenever µ < 2 + 2γα.

Now, we express

T = (1 − κ) Id −(1 − κ)ε1R1 + κR2R1 + κεR1

= (1 − κ)(Id −ε1R1) + κ(R2 + ε Id)R1

= (1 − κ)Q1 + κQ2R1.

(106a)

(106b)

(106c)
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We note from α + β > 0 that 2 + 2γα > 2 − 2γβ, so at least one of two inequalities in (102) and (105)
is strict. Therefore, T is Lipschitz continuous with constant

ρ := (1 − κ)ρ1 + κρ2 < (1 − κ)(1 + ε1(λ − 1)) + κ(1 − ε(λ − 1)) = 1, (107)

which completes the proof. �

The following is a direct consequence of Theorem 4.8, which was also proved in [26].

Corollary 4.9 ([26, Theorem 6.5]). Suppose that A is α-monotone with α ∈ R++ and Lipschitz
continuous with constant ℓ, that B is maximally monotone, and that zer(A + B) 6= ∅. Suppose also
that λ = µ = 2 and γ = δ ∈ R++. Then T is Lipschitz continuous with constant

ρ := (1 − κ) + κ

√
1 − 4γα

1 + 2γα + γ2ℓ2
< 1. (108)

Proof. Since λ = µ = 2, γ = δ, and α > 0, one can check that (86) holds with β = 0. Now apply
Theorem 4.8 and note that ε = ε1 = 0 in this case. �

Next, we present another case of the classical DR algorithm when A is monotone and B is strongly
monotone. We note the exchange of monotonicity assumptions on A and B in Corollaries 4.9 and 4.10,
and that in the latter result, we consider only the κ = 1/2 case for simplicity.

Corollary 4.10 (linear convergence of classical DR algorithm). Suppose that A is monotone
and Lipschitz continuous with constant ℓ, that B is maximally β-monotone with β ∈ R++, and that
zer(A + B) 6= ∅. Suppose also that λ = µ = 2, κ = 1/2, and γ = δ ∈ R++. Then T is Lipschitz
continuous with constant

ρ :=
1

2(1 + γβ)

(√
(1 + 2γβ)2 − 4γβ(1 + γβ) min

{ 1

1 + γℓ
,

1

1 + γ2ℓ2

}
+ 1

)
< 1. (109)

Furthermore, if the monotonicity assumption of A is replaced by

∀x, y ∈ dom A, 〈x − y, Ax − Ay〉 = 0, (110)

then the Lipschitz constant of T is improved to

ρ :=
1

2(1 + γβ)

(√
(1 + 2γβ)2 − 4γβ(1 + γβ)

1 + γ2ℓ2
+ 1

)
< 1. (111)

Proof. Since λ = µ = 2, γ = δ > 0, and β > 0, it is clear that (86) is satisfied with α = 0. Applying
Theorem 4.8, we obtain that T is Lipschitz continuous with constant

ρ :=
1

2

(√
(1 + ε)2 − 4εαJ + 1 − ε

)
, (112)

where ε := γβ
1+γβ . Then

ρ =
1

2

(√(1 + 2γβ

1 + γβ

)2

− 4γβ

1 + γβ
αJ +

1

1 + γβ

)

=
1

2(1 + γβ)

(√
(1 + 2γβ)2 − 4γβ(1 + γβ)αJ + 1

)
.

(113a)

(113b)
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Now, it follows from (22) that

αJ =





1

1 + γ2ℓ2
if γℓ ≥ 1,

1

1 + γℓ
if γℓ ≤ 1

= min

{
1

1 + γℓ
,

1

1 + γ2ℓ2

}
,

(114a)

(114b)

which yields (109).

Finally, if A satisfies (110), then, again by (22),

αJ =
1

1 + γ2ℓ2
, (115)

and we get (111). �

Remark 4.11 (improved Lipschitz constant for classical DR operator). For the classical DR
operator (λ = µ = 2 and κ = 1/2), the Lipschitz constant obtained in Corollary 4.10 is sharper than
the one obtained in [32, Theorem 4.4(i)]. Indeed, by setting γ = δ = 1, the Lipschitz constant of [32,
Theorem 4.4(i)] is

r =
1

2(1 + β)

(√
2β2 + 2β + 1 + 2

(
1 − 1

(1 + ℓ)2
− 1

1 + ℓ2

)
β(1 + β) + 1

)

=
1

2(1 + β)

(√
(1 + 2β)2 − 2β(1 + β)

(
1

(1 + ℓ)2
+

1

1 + ℓ2

)
+ 1

)
,

(116a)

(116b)

while Corollary 4.10 gives the Lipschitz constant

ρ =
1

2(1 + β)

(√
(1 + 2β)2 − 2β(1 + β) min

{
2

1 + ℓ
,

2

1 + ℓ2

}
+ 1

)
. (117)

One can check that

min

{
2

1 + ℓ
,

2

1 + ℓ2

}
>

1

(1 + ℓ)2
+

1

1 + ℓ2
. (118)

Therefore, ρ is strictly less than r.

Regarding the second part of Corollary 4.10, we note that Remark 3.8 provides a class of operators
satisfying (110) and that the Lipschitz constant (111) was shown to be sharp in [32].

Remark 4.12 (choosing the parameter γ for best Lipschitz constant). When the Lipschitz
constant ℓ of A and the monotonicity constant β of B are known, in order to find the best Lipschitz
constant for the classical DR operator, one can sketch ρ in (109) as a function of γ and approximate
numerically the value γ that yields the minimum of ρ. It is, however, not clear how to obtain an explicit
formula for the best such value. Indeed, a similar situation was also mentioned in [32, Remark 5.4].

As a counterpart of Theorem 4.8, we next consider the adaptive DR algorithm for the case in which
B is Lipschitz continuous. For this case, however, we need an additional assumption that B is a linear
operator, which implies that J2 and R2 are also linear. To make the argument more symmetric, we
will prove an equivalent form of (86).
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Lemma 4.13. Suppose that (γ, δ, λ, µ) ∈ R2
++ × ]1, +∞[2. Then (86) is equivalent to

1 + 2δβ > 0,

λ ∈ [2 − 2δα, 2 + 2δβ] ,

(µ − 1)(λ − 1) = 1, and γ = (µ − 1)δ.

(119a)

(119b)

(119c)

Proof. It suffices to prove one implication that (86) implies (119) because the converse is totally similar.
First, it is clear that (119c) is equivalent to (86c). For the reminder of the proof, we will use λ > 1,
(λ − 1)(µ − 1) = 1, and δ = (λ − 1)γ. By (86b),

λ − (2 − 2δα) = λ − 1 − (λ − 1)(µ − 1) + 2(λ − 1)γα = (λ − 1)(2 + 2γα − µ) ≥ 0,

2 + 2δβ − λ = (λ − 1)(µ − 1) + 2(λ − 1)γβ + 1 − λ = (λ − 1)
(
µ − (2 − 2γβ)

)
≥ 0.

(120a)

(120b)

Thus, 1 + 2δβ = (2 + 2δβ − λ) + (λ − 1) > 0, which completes (119). �

Theorem 4.14 (linear convergence when B is Lipschitz). Suppose that either

(i) A is maximally α-monotone, B is linear, β-monotone, and Lipschitz continuous with constant ℓ,
and α + β > 0; or

(ii) A is maximally α-monotone, B is linear and Lipschitz continuous with constant ℓ < α, and
β := −ℓ.

Suppose also that zer(A + B) 6= ∅ and that (γ, δ, λ, µ) ∈ R2
++ × ]1, +∞[2 satisfies (86). Then T is

Lipschitz continuous with constant

ρ := (1 − κ)
√(

1 + ε2(µ − 1)
)2 − ϕαJ + κ(1 − ε(µ − 1))

√
1 − λ(2 + 2δβ − λ)

1 + 2δβ + δ2ℓ2
< 1, (121)

where

ε :=
λ − (2 − 2δα)

2(1 + γα)
, ε2 :=

κε

1 − κ
,

ϕ := ε1µ[2(1 + δβ) + ε1

(
µ(1 + 2δβ) − 2(1 + δβ)

)
],

αJ as in (22) with (α, γ) replaced by (β, δ).

(122a)

(122b)

(122c)

Consequently, every DR sequence (xn)n∈N generated by T converges strongly to the unique fixed point
x of T with linear rate ρ.

Proof. For the same reason as in the proof of Theorem 4.8, we only prove the result under assumption
(i). Notice that B is maximally α-monotone due to Proposition 3.5(ii). Now, by Lemma 4.4,

min{1 + γα, 1 + δβ} > 0, (123)

and all operators J1, J2 and T are single-valued and have full domain.

Since B is linear, so are J2 = JδB = (Id +δB)−1 and R2 = (1 − µ) Id +µJ2. We can thus write

T = (1 − κ) Id −(1 − κ)ε2R2 + κR2R1 + κεR2

= (1 − κ)Q2 + κR2Q1,

(124a)

(124b)

where Q1 := R1 + ε Id and Q2 := Id −ε2R2.

Now, by Lemma 4.13, (86) is equivalent to (119). Proceeding similarly to the proof of Theorem 4.8,
we derive that Q2 is Lipschitz continuous with constant

√
(1 + ε2(µ − 1))2 − ϕαJ ≤ 1 + ε2(µ − 1), (125)
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that R2Q1 is Lipschitz continuous with constant

(1 − ε(µ − 1))

√
1 − λ(2 + 2δβ − λ)

1 + 2δβ + δ2ℓ2
≤ 1 − ε(µ − 1), (126)

and that at least one of these two inequalities is strict. The conclusion thus follows. �

Remark 4.15. It is worth pointing out that the sum of α- and β-monotone operators with α + β ≥ 0
can be transformed into the sum of two monotone operators by shifting the identity between them as

A + B =
(
A +

β − α

2
Id
)

+
(
B +

α − β

2
Id
)

=: Ã + B̃. (127)

Then one can apply the classical DR algorithm for two new monotone operators Ã and B̃. However,
this is the algorithm that operates on different operators. Here, our main goal is to show the behavior
of the DR algorithm on original data and the smooth transition from the classical case to the adaptive
case of the DR algorithm. This approach might be especially helpful when the resolvents are given as
black boxes, in which case one just needs to adjust the algorithm using corresponding parameters.

When involving two shifted operators like Ã and B̃, it is natural to seek a shifting strategy to
obtain the optimal linear convergence rate in Theorem 4.8 or Theorem 4.14. The answer is not clear
to us as we hope to address the issue in some future work.

5. Applications to structured minimization problems

Given a function f : X → ]−∞, +∞], we recall that f is proper if

dom f := {x ∈ X
∣∣ f(x) < +∞} 6= ∅ (128)

and lower semicontinuous if

∀x ∈ dom f, f(x) ≤ lim inf
z→x

f(z). (129)

The function f is said to be α-convex (see, e.g., [37, Definition 4.1]) for some α ∈ R if ∀x, y ∈ dom f ,
∀κ ∈ ]0, 1[,

f((1 − κ)x + κy) +
α

2
κ(1 − κ)‖x − y‖2 ≤ (1 − κ)f(x) + κf(y). (130)

We say that f is convex if α = 0, strongly convex if α > 0, and weakly convex if α < 0. It is worthwhile
noting that (130) is equivalent to

f((1 − κ)x + κy) − α

2
‖(1 − κ)x + κy‖2 ≤ (1 − κ)

(
f(x) − α

2
‖x‖2

)
+ κ

(
f(y) − α

2
‖y‖2

)
(131)

due to (6). Thus,

f is α-convex ⇐⇒ f − α

2
‖ · ‖2 is convex. (132)

In this section, we focus on an important application of the adaptive DR algorithm to the (α, β)-
convex minimization problem, which can be stated as

min
x∈X

{f(x) + g(x)} (133)
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where f and g are respectively α- and β-convex functions. To formulate the adaptive DR algorithm
for (133), we also recall that the proximity operator of a proper function f : X → ]−∞, +∞] with
parameter γ ∈ R++ is the mapping Proxγf : X ⇒ X defined by

∀x ∈ X, Proxγf (x) := argmin
z∈X

(
f(z) +

1

2γ
‖z − x‖2

)
. (134)

Now let (γ, δ, λ, µ) ∈ R4
++ and κ ∈ ]0, 1[. The adaptive DR algorithm for (133) is given by

∀n ∈ N, xn+1 ∈ T xn, (135)

where

T := (1 − κ) Id +κR2R1,

R1 := (1 − λ) Id +λ Proxγf ,

R2 := (1 − µ) Id +µ Proxδg .

(136a)

(136b)

(136c)

Next, we will collect necessary concepts from convex analysis and establish that the adaptive DR oper-
ators in (136) is indeed a special case of (56) when applied to subdifferential operators. In particular,
we will show in Lemma 5.2 that for α-convex functions, proximity operators are exactly resolvents of
Fréchet subdifferentials. We note that this connection is well known for convex functions (see, e.g., [2,
Proposition 16.44]), where the Fréchet subdifferential reduces to the classical convex subdifferential.

Recall that the Fréchet subdifferential of f at x is defined by

∂̂f(x) :=

{
u ∈ X

∣∣∣ lim inf
z→x

f(z) − f(x) − 〈u, z − x〉
‖z − x‖ ≥ 0

}
. (137)

It is known that if f is differentiable at x, then ∂̂f(x) = {∇f(x)}. When f is a proper convex
function, the Fréchet subdifferential coincides with the classical convex subdifferential (see, e.g., [31,
Theorem 1.93]), i.e.,

∂̂f(x) = ∂f(x) := {u ∈ X
∣∣ ∀z ∈ X, f(z) − f(x) ≥ 〈u, z − x〉}. (138)

Fact 5.1 (subdifferential sum rule). Let f : X → ]−∞, +∞] be proper and ϕ : X → ]−∞, +∞] be
differentiable at x ∈ dom f . Then

∂̂(f + ϕ)(x) = ∂̂f(x) + ∇ϕ(x). (139)

Proof. This follows from [31, Proposition 1.107(i)]. �

Lemma 5.2 (proximity operators of α-convex functions). Let f : X → ]−∞, +∞] be proper,
lower semicontinuous, and α-convex. Also let γ ∈ R++ be such that 1 + γα > 0. Then the following
hold:

(i) ∂̂f is maximally α-monotone.
(ii) Proxγf = J

γ∂̂f
is single-valued and has full domain.

Proof. According to (132), the function h := f − α
2
‖ · ‖2 is convex.

(i): By Fact 5.1,

∂̂f = ∂̂
(
h +

α

2
‖ · ‖2

)
= ∂̂h + α Id . (140)

Since h is proper lower semicontinuous convex, we learn from [2, Theorem 21.2] that ∂̂h is maximally
monotone, which implies that ∂̂f is maximally α-monotone due to Lemma 3.2(ii).
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(ii): By (i) and Proposition 3.4, J
γ∂̂f

is single-valued and has full domain. Let x ∈ X and set

ϕ := f + 1

2γ ‖ · −x‖2. Then

ϕ(z) = f(z) +
1

2γ
‖z − x‖2

=
(
f(z) − α

2
‖z‖2

)
+

1 + γα

2γ

∥∥∥∥z − 1

1 + γα
x

∥∥∥∥
2

− α

2(1 + γα)
‖x‖2.

(141a)

(141b)

Since h = f − α
2

‖ · ‖2 is convex, so is ϕ. Using (134) and Fact 5.1, we have

p ∈ Proxγf (x) ⇐⇒ 0 ∈ ∂ϕ(p) = ∂̂f(p) +
1

γ
(p − x)

⇐⇒ x ∈ (Id +γ∂̂f)(p)

⇐⇒ p ∈ J
γ∂̂f

(x),

(142a)

(142b)

(142c)

and the conclusion follows. �

Lemma 5.3. Let f : X → ]−∞, +∞] and g : X → ]−∞, +∞] be respectively α- and β-convex. Then
f + g is (α + β)-convex. Moreover, if additionally α + β ≥ 0, then zer(∂̂f + ∂̂g) ⊆ argmin(f + g).

Proof. We write

f + g =
(
f − α

2
‖ · ‖2

)
+
(
g − β

2
‖ · ‖2

)
+

α + β

2
‖ · ‖2, (143)

which together with (132) implies the (α + β)-convexity of f + g. Next, let x ∈ zer(∂̂f + ∂̂g). If
α + β ≥ 0, then f + g is convex, and we have that

0 ∈ ∂̂f(x) + ∂̂g(x) ⊆ ∂̂(f + g)(x) = ∂(f + g)(x), (144)

so x ∈ argmin(f + g). The proof is complete. �

Theorem 5.4 (adaptive DR algorithm for (α, β)-convex minimization). Let f : X → ]−∞, +∞]
and g : X → ]−∞, +∞] be proper and lower semicontinuous. Suppose also that f and g are respectively
α- and β-convex with zer(∂̂f + ∂̂g) 6= ∅, and that one of the following holds:

(i) (Adaptive DR algorithm) α + β ≥ 0 and (γ, δ, λ, µ) ∈ R2
++ × ]1, +∞[2 satisfies (86).

(ii) (Classical DR algorithm) λ = µ = 2, γ = δ ∈ R++, and

either α = β = 0;

or α + β > 0 and 1 + γ
αβ

α + β
> κ.

(145a)

(145b)

Then every DR sequence (xn)n∈N generated by T converges weakly to a point x ∈ Fix T with Proxγf (x) ∈
zer(∂̂f+∂̂g) ⊆ argmin(f+g) and the rate of asymptotic regularity of T is o(1/

√
n). Moreover, if α+β >

0, then (Proxγf (xn))n∈N and (Proxδg(R1xn))n∈N converge strongly to Proxγf (x) and argmin(f + g) =
{Proxγf (x)}.

Proof. In view of Lemmas 5.2 and 5.3, we apply Theorem 4.5 to A = ∂̂f and B = ∂̂g. �

Remark 5.5 (strongly and weakly convex minimization). In [27, Theorems 4.4 and 4.6], the
authors proved the convergence of the classical DR algorithm for problem (133) when f and g are
respectively α- and β-convex functions in a Euclidean space with either α > −β > 0 or β > −α > 0.
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Roughly speaking, these results require that the strong convexity strictly outweighs the weak counter-
part.

In contrast, our approach (Theorem 5.4) for this problem assumes α + β ≥ 0, which means the
weak convexity only needs to be neutralized. Under this assumption, we adapt the parameters so that
the convergence is guaranteed. Let us recall that when both functions in (133) are convex, we may just
assume there is neither a strong nor a weak component, i.e., α = β = 0, and obtain the convergence
for the classical DR algorithm.

Recently, for the α + β = 0 case, the classical DR algorithm has been considered in [28], where
the convergence requires that one function is strongly convex with Lipschitz continuous gradient. We
note that in this case, the convergence of the adaptive DR algorithm is established in Theorem 5.4(i)
without any differentiability assumption on the functions.

Finally, we present a linear convergence result under Lipschitz assumption on the gradient of f . For
other linear convergence results of related splitting methods in the context of structured minimization
problems, we refer interested readers to [20, 21] and the references therein.

Theorem 5.6 (linear convergence when ∇f is Lipschitz continuous). Let f : X → R be a
differentiable function whose gradient ∇f is Lipschitz continuous with constant ℓ, and let g : X →
]−∞, +∞] be a proper lower semicontinuous function. Suppose that either

(i) f is α-convex, g is β-convex, and α + β > 0; or
(ii) g is β-convex with β > ℓ, and α := −ℓ.

Suppose also that zer(∇f + ∂̂g) 6= ∅ and that (γ, δ, λ, µ) ∈ R2
++ × ]1, +∞[2 satisfies (86). Then the

adaptive DR operator T is Lipschitz continuous with constant less than 1. Consequently, every DR
sequence (xn)n∈N generated by T converges strongly to the unique fixed point x of T with linear rate.

Proof. Apply Theorem 4.8 with A = ∂̂f = ∇f and B = ∂̂g. �

6. Conclusion

We have studied the adaptive DR algorithm for finding a zero of the sum of α- and β-monotone
operators. The adaptive parameters provide great flexibility for adjusting the DR algorithm so that
the convergence is guaranteed. We have derived the rate of asymptotic regularity o(1/

√
n) for the

adaptive DR operator. When the strong convexity strictly outweighs the weak one, we have further
obtained the strong convergence of shadow sequences to the solution of the original problem. Global
linear convergence is also achieved with a sharp rate in several important cases. Our new approach,
on the one hand, generalizes previous works in the same direction and, on the other hand, unifies the
convergence analysis of the DR algorithm under monotone-type assumptions.

Acknowledgement

The authors are grateful to the associate editor and the two anonymous referees for their constructive
comments and suggestions. MND was partially supported by the Australian Research Council (ARC)
Discovery Project DP160101537 and by the Priority Research Centre for Computer-Assisted Research
Mathematics and its Applications (CARMA) at the University of Newcastle. HMP was partially
supported by Autodesk, Inc via a gift made to the Department of Mathematical Sciences, University
of Massachusetts Lowell.

25



References

[1] F.J. Aragón Artacho, J.M. Borwein, and M.K. Tam, Global behavior of the Douglas–Rachford
method for a nonconvex feasibility problem, J. Global Optim. 65(2), 309–327 (2016).

[2] H.H. Bauschke and P.L. Combettes, Convex Analysis and Monotone Operator Theory in Hilbert
Spaces, 2nd ed., Springer, Cham (2017).

[3] H.H. Bauschke, P.L. Combettes, and D.R. Luke, Finding best approximation pairs relative to two
closed convex sets in Hilbert spaces, J. Approx. Theory 127, 178–192 (2004).

[4] H.H. Bauschke and M.N. Dao, On the finite convergence of the Douglas–Rachford algorithm for
solving (not necessarily convex) feasibility problems in Euclidean spaces, SIAM J. Optim. 27(1),
507–537 (2017).

[5] H.H. Bauschke, M.N. Dao, and W.M. Moursi, The Douglas–Rachford algorithm in the affine-
convex case. Oper. Res. Lett. 44(3), 379–382 (2016).

[6] H.H. Bauschke, M.N. Dao, D. Noll, and H.M. Phan, Proximal point algorithm, Douglas–Rachford
algorithm and alternating projections: a case study, J. Convex Anal. 23(1), 237–261 (2016).

[7] H.H. Bauschke, M.N. Dao, D. Noll, and H.M. Phan, On Slater’s condition and finite convergence
of the Douglas–Rachford algorithm for solving convex feasibility problems in Euclidean spaces, J.
Global Optim. 65(2), 329–349 (2016).

[8] H.H. Bauschke and W.M. Moursi, On the Douglas–Rachford algorithm, Math. Program., Ser.
A 164(1–2), 263–284 (2017).

[9] J. Benoist, The Douglas–Rachford algorithm for the case of the sphere and the line, J. Global
Optim. 63(2), 363–380 (2015).

[10] J.M. Borwein, Fifty years of maximal monotonicity, Optim. Lett. 4(4), 473–490 (2010).

[11] J.M. Borwein, G. Li, and M.K. Tam, Convergence rate analysis for averaged fixed point iterations
in common fixed point problems, SIAM J. Optim. 27(1), 1–33 (2017).

[12] J.M. Borwein, B. Sims, and M.K. Tam, Norm convergence of realistic projection and reflection
methods, Optimization 64(1), 161–178, 2015.

[13] R.I. Boţ, E.R. Csetnek, and A. Heinrich, A primal-dual splitting algorithm for finding zeros of
sums of maximally monotone operators, SIAM J. Optim. 23(4), 2011–2036 (2013).

[14] L.M. Briceño-Arias and P.L. Combettes, A monotone + skew splitting model for composite mono-
tone inclusions in duality, SIAM J. Optim. 21(4), 1230–1250 (2011).

[15] R.S. Burachik and A.N. Iusem, Set-Valued Mappings and Enlargements of Monotone Operators,
Springer, New York (2008).

[16] P.L. Combettes, Iterative construction of the resolvent of a sum of maximal monotone operators,
J. Convex Anal. 16(3), 727–748 (2009).

[17] M.N. Dao and H.M. Phan, Linear convergence of projection algorithms, Math. Oper. Res. 44(2),
715–738 (2019).

[18] M.N. Dao and H.M. Phan, Linear convergence of the generalized Douglas–Rachford algorithm for
feasibility problems, J. Global Optim. 72(3), 443–474 (2018).

[19] M.N. Dao and M.K. Tam, A Lyapunov-type approach to convergence of the Douglas–Rachford
algorithm, J. Global Optim. 73(1), 83–112 (2019).

[20] D. Davis and W. Yin, Faster convergence rates of relaxed Peaceman–Rachford and ADMM under
regularity assumptions, Math. Oper. Res. 42(3), 783–805 (2017).

[21] W. Deng and W. Yin, On the global and linear convergence of the generalized alternating direction
method of multipliers, J. Sci. Comput. 66(3), 889–916 (2016).

26



[22] J. Douglas and H.H. Rachford, On the numerical solution of heat conduction problems in two and
three space variables, Trans. Amer. Math. Soc. 82, 421–439 (1956).

[23] J. Eckstein and D.P. Bertsekas, On the Douglas–Rachford splitting method and the proximal
point algorithm for maximal monotone operators, Math. Program., Ser. A 55(3), 293–318 (1992).

[24] M. Fält and P. Giselsson, Optimal convergence rates for generalized alternating projections, in
Proceedings of the 2017 IEEE 56th Annual Conference on Decision and Control, IEEE, Piscataway
(2017), pp. 2268–2274.

[25] D. Gabay and B. Mercier, A dual algorithm for the solution of nonlinear variational problems via
finite element approximation, Comput. Math. Appl. 2(1), 17–40 (1976).

[26] P. Giselsson, Tight global linear convergence rate bounds for Douglas–Rachford splitting, J. Fixed
Point Theory Appl. 19(4), 2241–2270 (2017).

[27] K. Guo, D. Han, and X. Yuan, Convergence analysis of Douglas–Rachford splitting method for
“strongly + weakly” convex programming, SIAM J. Numer. Anal. 55(4), 1549–1577 (2017).

[28] K. Guo and D. Han, A note on the Douglas–Rachford splitting method for optimization problems
involving hypoconvex functions, J. Global Optim. 72(3), 431–441 (2018).

[29] R. Hesse and D.R. Luke, Nonconvex notions of regularity and convergence of fundamental algo-
rithms for feasibility problems, SIAM J. Optim. 23(4), 2397–2419 (2013).

[30] P.-L. Lions and B. Mercier, Splitting algorithms for the sum of two nonlinear operators, SIAM J.
Numer. Anal. 16(6), 964–979 (1979).

[31] B.S. Mordukhovich, Variational Analysis and Generalized Differentiation I: Basic Theory,
Springer, Berlin (2006).

[32] W.M. Moursi and L. Vandenberghe, Douglas–Rachford splitting for a Lipschitz continuous and a
strongly monotone operator, J. Optim. Theory Appl., to appear.

[33] H.M. Phan, Linear convergence of the Douglas–Rachford method for two closed sets, Optimiza-
tion 65(2), 369–385 (2016).

[34] R.T. Rockafellar, Monotone operators and the proximal point algorithm, SIAM J. Control Op-
tim. 14(5), 877–898 (1976).

[35] J.E. Spingarn, Partial inverse of a monotone operator, Appl. Math. Optim. 10, 247–265 (1983).

[36] B.F. Svaiter, On weak convergence of the Douglas–Rachford method, SIAM J. Control Op-
tim. 49(1), 280–287 (2011).

[37] J.-P. Vial, Strong and weak convexity of sets and functions. Math. Oper. Res. 8(2), 231–259 (1983).

27


	1 Introduction
	2 Preliminaries
	3 Relaxed resolvents of -monotone operators
	4 Adaptive Douglas–Rachford algorithm
	4.1 Convergence via Fejér monotonicity
	4.2 Linear convergence under Lipschitz assumption

	5 Applications to structured minimization problems
	6 Conclusion

