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Abstract

We prove sharp lower bounds for the smallest singular value of a partial Fourier matrix with
arbitrary “off the grid” nodes (equivalently, a rectangular Vandermonde matrix with the nodes
on the unit circle), in the case when some of the nodes are separated by less than the inverse
bandwidth. The bound is polynomial in the reciprocal of the so-called “super-resolution factor”,
while the exponent is controlled by the maximal number of nodes which are clustered together.
As a corollary, we obtain sharp minimax bounds for the problem of sparse super-resolution on
a grid under the partial clustering assumptions.
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1 Introduction

Vandermonde matrices and their spectral properties are of considerable interest in several fields,
such as polynomial interpolation, approximation theory, numerical analysis, applied harmonic anal-
ysis, line spectrum estimation, exponential data fitting and others (e.g. [3, 5, 9, 36, 37, 39] and
references therein). Motivated by questions related to the so-called problem of super-resolution
(more on this in Subsection 3.2 below), in this paper we study the conditioning of rectangular Van-
dermonde matrices V with irregularly spaced nodes on the unit circle, where the number of nodes
s is considered to be relatively small and fixed, while the polynomial degree N ≥ s can be large.

∗The research of DB and LD is supported in part by AFOSR grant FA9550-17-1-0316, NSF grant DMS-1255203,
and a grant from the MIT-Skolkovo initiative. The research of GG and YY is supported in part by the Minerva
Foundation.
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This question has received much attention in the literature, see e.g. [3, 9, 29, 30, 19, 26, 7, 15]. Nor-
malizing the matrix by 1√

N
, the magnitude of the largest singular value is O(

√
s), and so studying

the scaling of the condition number is equivalent to estimating the smallest singular value. As long
as the nodes are separated by at least 1

N , the matrix V is known to be well-conditioned. However,
as the nodes collide, the columns of V become increasingly correlated and therefore the smallest
singular value becomes very small, while the condition number blows up.

In this paper we show (see Section 3.1) that if the nodes are separated by ∆ � 1
N , then under

certain technical conditions the smallest singular value of V scales with the asymptotically tight
rate � (N∆)`−1, where ` ≤ s is the maximal number of nodes which form a small “cluster” (i.e.
a group of at most ` nodes which are separated below ∼ 1

N , see Definition 3.1). This improves
upon previous known results [15, 26] which established this scaling for the extreme case ` = s, and
a recent preprint [24] which deals with the special case ` = 2. During the review of the present
paper, the authors of [26] improved their analysis to the general case ` ≤ s, and we compare their
results to ours in Remark 3.7 below.

The above bounds follow from the solution of the “continuous” version of the problem, where
the row index becomes a continuous “frequency” variable ω ∈ [−Ω,Ω], so that the bandwidth Ω
effectively plays the role of N . In the continuous setting, we establish tight bounds for the smallest
eigenvalue of the corresponding Gramian matrix G with irregularly spaced nodes, which generalizes
well-known results due to Slepian [40] for the prolate matrix (which, in turn, plays a prominent role
in the seminal study of the spectral concentration problem [41]). In fact this continuous version is
what originally appeared in the studies of the super-resolution of sparse atomic measures in [16]
and later [15], and we use our results to derive minimax bounds for this problem in Subsection 3.2.

The paper is organized as follows. In Section 2 we provide the definitions and review known bounds
for singular values of rectangular Vandermonde matrices. In Section 3 we state the definition for
clustered configurations, and formulate the main results regarding the smallest eigenvalue of the
Gramian matrix G, smallest singular value of the corresponding Vandermonde matrix V and the
novel minimax bound for the problem of super-resolution of point sources on the grid. In Section 4
we prove the main results, and in Section 5 we present numerical evidence confirming our bounds.

2 Preliminaries

2.1 Notation

Definition 2.1. For N ∈ N and vector ξ = (ξ1, . . . , ξs) of pairwise distinct real nodes ξj ∈ (−π, π],
we define the rectangular (2N + 1)× s Vandermonde matrix VN (ξ) as

VN (ξ) :=
1√
2N

[
exp (ıkξj)

]j=1,...,s

k=−N,...,N . (2.1)

In many applications of interest, the columns of VN as above arise from sampling the exponential
functions {exp (ıωtj)}sj=1 at equispaced points ωk = k

NΩ, |k| ≤ N , where Ω > 0 is a quantity which

is frequently called the bandlimit or bandwidth, and the nodes {tj :=
Nξj
Ω } represent some relevant

physical parameters, such as angles of arrival, locations of point sources etc. Therefore, in these
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cases it is more natural to regard {tj} and Ω as the primary variables instead of {ξj} and N , while
in fact thinking about the scenario where N can be very large. According with this philosophy, we
shall be primarily interested in the continuous limit N →∞.

Definition 2.2. ForN ∈ N, s ∈ N, x a vector of s distinct nodes x := (t1, . . . , ts) with tj ∈
(
−π

2 ,
π
2

]
,

and bandwidth parameter Ω > 0, denote by VN (x,Ω) the rectangular (2N + 1)× s Vandermonde

matrix with complex nodes zj,N = exp (ıξj,N ) where ξj,N =
tjΩ
N , i.e.

VN (x,Ω) := VN

(
Ω

N
x

)
=

1√
2N

[
exp

(
ık
tjΩ

N

)]j=1,...,s

k=−N,...,N
. (2.2)

With the above definition, the Gramian matrix VN (x,Ω)H VN (x,Ω) becomes in the limit N →∞
the kernel matrix with respect to the well-known sinc kernel.

Definition 2.3. For N ∈ N, the Dirichlet (periodic sinc) kernel of order N is

DN (t) :=

N∑
k=−N

exp (ıkt) =


sin((N+ 1

2
)t)

sin t
2

t 6= 0,

2N + 1 else.

Definition 2.4. For N ∈ N, and x,Ω as in Definition 2.2, let GN be the s× s matrix

GN (x,Ω) := VN (x,Ω)H VN (x,Ω) =
1

2N

[
DN

(
Ω (ti − tj)

N

)]
i,j

.

Definition 2.5. Let the sinc function be defined by

sinc(t) :=
1

2

∫ 1

−1
exp(ıωt)dω =

{
sin t
t t 6= 0,

1 else.

Definition 2.6. For s ∈ N, x a vector of s distinct nodes x := (t1, . . . , ts) with tj ∈
(
−π

2 ,
π
2

]
, and

bandwidth parameter Ω > 0, let G (x,Ω) denote the s× s matrix

G (x,Ω) :=

[
sinc (Ω (ti − tj))

]
1≤i,j≤s

. (2.3)

Proposition 2.7. For x a vector of pairwise distinct nodes, the matrix G (x,Ω) is positive definite.

Proof. The matrix G is nothing but the Gramian matrix of the functions {exp(ıtjω)}j=1,...,s with the

inner product 〈f, g〉Ω := 1
2Ω

∫ Ω
−Ω f(ω)g(ω)dω. For any x as above and nonzero c = (c1, . . . , cs) ∈ Cs

define fx,c(ω) :=
∑s

j=1 cj exp(ıtjω) 6≡ 0, then we have ‖G (x,Ω) c‖22 = 〈fx,c, fx,c〉Ω > 0.

For any matrix G ∈ Cs×s, and a matrix V ∈ CN×s with N ≥ s, we denote as usual

λmin(G) := The minimal eigenvalue of G;

σmin(V) :=
√
λmin(VHV).
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Proposition 2.8. With the above definitions, we have

λmin (G (x,Ω)) = lim
N→∞

λmin (GN (x,Ω)) = lim
N→∞

σ2
min (VN (x,Ω)) . (2.4)

Proof. Approximating the integrals by the Riemann sums, we have that

sinc (Ωt) = lim
N→∞

1

2N

N∑
k=−N

exp

(
ı
k

N
Ωt

)
= lim

N→∞

1

2N
DN

(
Ωt

N

)
,

and therefore G (x,Ω) = limN→∞GN (x,Ω). By definition VH
NVN = GN , and so by continuity of

eigenvalues [22, Section 2.4.9] we conclude that (2.4) holds.

The main subject of the paper is the scaling of the smallest eigenvalue of G and the smallest
singular value of VN , when some of the nodes of x nearly collide (become very close to each other).

Definition 2.9 (Wrap-around distance). For t ∈ R, we denote

‖t‖T := |Arg exp (ıt)| =
∣∣∣∣t mod (−π, π]

∣∣∣∣,
where Arg(z) is the principal value of the argument of z ∈ C\{0}, taking values in (−π, π].

Definition 2.10 (Minimal separation). Given a vector of s distinct nodes x := (t1, . . . , ts) with
tj ∈

(
−π

2 ,
π
2

]
, we define the minimal separation (in the wrap-around sense) as

∆ = ∆ (x) := min
i 6=j
‖ti − tj‖T.

2.2 Known bounds

Let VN be as defined in (2.2), i.e. a rectangular Vandermonde matrix with nodes zj,N = exp (ıξj,N )
on the unit circle with ξj,N = tj

Ω
N , j = 1, . . . , s. Denote ∆N := mini 6=j |ξi,N − ξj,N |.

Several more or less equivalent bounds on σmin (VN ) are available in the “well-separated” case
N∆N > const, using various results from analysis and number theory such as Ingham and Hilbert
inequalities, large sieve inequalities and Selberg’s majorants [23, 30, 34, 3, 31, 32, 19, 9].

The tightest bound was obtained in [3] (slightly improving Moitra’s bound from [30]), where it was
shown that (in our notations we substitute N → 2N + 1) if 2N + 1 > 2π

∆N
then

σmin

(√
2NVN

)
≥
√

2N + 1− 2π

∆N
.

In our setting, we have ∆N = ∆Ω
N and so as N →∞ we obtain, assuming ∆Ω ≥ π, that

σmin (VN ) ≥
√

1 +
1

2N
− 2π

2N∆N
→
√

1− π

Ω∆
.
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The case ∆Ω � 1, or, equivalently, mini 6=j |ξi,N − ξj,N | � 1
N , turns out to be much more difficult

to analyze. All known results provide sharp bounds only in the particular case when all the nodes
are clustered together, or approximately equispaced.

If all the nodes tj are equispaced, say tj = t0 + j∆, j = 1, . . . , s, then the matrix G is the so-called
prolate matrix, whose spectral properties are known exactly [43, 40]. Indeed, we have in this case

Gi,j =
sin (Ω (ti − tj))

Ω(ti − tj)
=

sin (Ω∆ (i− j))
Ω∆ (i− j)

=
π

Ω∆
· sin (2πW (i− j))

π (i− j)
, W :=

Ω∆

2π
,

and therefore G = π
Ω∆Q(s,W ) where Q(s,W ) is the matrix defined in [40, eq. (21)]. The smallest

eigenvalue of Q(s,W ), denoted by λs−1(s,W ) in the same paper, has the exact asymptotics for W
small, given in [40, eqs. (64,65)]:

λs−1 (s,W ) =
1

π
(2πW )2s−1C1(s) (1 +O (W )) , C1(s) :=

22s−2

(2s− 1)
(

2s−2
s−1

)3 , (2.5)

which gives
λmin (G) = C1 (s) (Ω∆)2s−2 (1 +O (Ω∆)) , Ω∆� 1.

The same scaling was shown using Szego’s theory of Toeplitz forms in [15] – see also Subsection
3.2. The authors showed that there exist C > 0 and y∗ > 0 such that for Ω∆ < y∗

C

16

(
sin

2Ω∆

π

)2s−2

≤ λmin (G) ≤ 16

(
sin

2Ω∆

π

)2s−2

.

To conclude the above discussion, defining the “super-resolution factor” as

SRF :=
π

∆Ω
,

we have that

λmin (G) ≈ (1− SRF) , SRF ≤ 1; (2.6)

λmin (G) ≈ SRF−2(s−1), SRF� 1. (2.7)

3 Main results

3.1 Optimal bounds for the smallest eigenvalue

It turns out that the bound (2.7) is too pessimistic if only some of the nodes are known to be
clustered. Consider for instance the configuration x =

(
t1 = ∆, t2 = 2∆, t3 = −π

4

)
, then, as can

be seen in Figure 3.1, we have in fact λmin (G (x,Ω)) ≈ (∆Ω)2, decaying much slower than (∆Ω)4

– which would be the bound given by (2.7).

In this paper we bridge this theoretical gap. We consider the partially clustered regime where at
most 2 ≤ ` ≤ s neighboring nodes can form a cluster (there can be several such clusters), with two
additional parameters ρ, τ, controlling the distance between the clusters and the uniformity of the
distribution of nodes within the clusters.
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-1.5 -1.0 -0.5 0.5 1.0 1.5
t

C1(s=3,ℓ=2ℓ

t1 t2t3

(a) Schematic representation of x.

10−0.5 100.0 100.5 101.0 101.5 102.0 102.5

SRF
10−10.0

10−7.5

10−5.0

10−2.5

100.0

C1(s=3, ℓ=2ℓ
λₘ
SRF2(1 − ℓℓ 
SRF2(1 − ℓℓ

(b) The decay of λmin.

Figure 3.1: For different values of ∆,Ω we plot the quantity λm = λmin (G (x,Ω)) versus the super-resolution
factor SRF = π

∆Ω . (a) x =
(
t1 = ∆, t2 = 2∆, t3 = −π4

)
is a single cluster with s = 3 and ` = 2. (b) The

correct scaling is seen to be λm ∼ (∆Ω)
2(`−1)

rather than λm ∼ (∆Ω)
2(s−1)

. See Section 5 for further details
regarding the experimental setup. The relationship breaks when SRF ≤ O(1), consistent with (2.6).

Figure 3.2: The schematic representation of a cluster configuration according to Definition 3.1. Here s = 8
and ` = 4. Each node tj defines its “cluster” x(j) of size rj ≤ `. ρ is the minimal distance from any node tj
to another node y not in x(j). The distance between any two nodes in x(j) is between ∆ and τ∆.

Definition 3.1. The node vector x = (t1, . . . , ts) ⊂ (−π
2 ,

π
2 ] is said to form a (∆, ρ, s, `, τ)-clustered

configuration for some ∆ > 0, 2 ≤ ` ≤ s, ` − 1 ≤ τ < π
∆ and ρ ≥ 0, if for each tj , there exist at

most ` distinct nodes

x(j) = {tj,k}k=1,...,rj ⊂ x, 1 ≤ rj ≤ `, tj,1 ≡ tj ,

such that the following conditions are satisfied:

1. For any y ∈ x(j) \ {tj}, we have

∆ ≤ ‖y − tj‖T ≤ τ∆.

2. For any y ∈ x \ x(j), we have
‖y − tj‖T ≥ ρ.

The different parameters are illustrated in Figure 3.2.

Our main result is the following generalization of (2.7) for clustered configurations.
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Theorem 3.2. There exists a constant C2 = C2 (s) such that for any 4τ∆ ≤ ρ, any x forming a
(∆, ρ, s, `, τ)-clustered configuration, and any Ω satisfying

4πs

ρ
≤ Ω ≤ πs

τ∆
, (3.1)

we have

σmin (VN (x,Ω)) ≥ C2 · (∆Ω)`−1 , whenever N > 2s3

⌈
Ω

4s

⌉
; (3.2)

λmin (G (x,Ω)) ≥ C2
2 · (∆Ω)2(`−1) . (3.3)

The proof of Theorem 3.2 is presented in Subsection 4.3 below. It is based on the “decimation-
and-blowup” technique, previously used in the context of super-resolution in [1, 2, 6, 7, 8] and
references therein. In a nutshell, the main idea is to choose an appropriate “decimation” parameter
λ ≈ Ω such that the “inflated” nodes in the vector λx (considered in the wrap-around sense) are
separated by λ∆ ≈ Ω∆ from its cluster neighbors, and by a constant from the other nodes. Then
we fix sufficiently large N and divide the 2N + 1 rows of VN into groups of s rows, separated by
λN
Ω . Each of the resulting square Vandermonde matrices can be explicitly estimated (the inverses

have well-known behaviour), and has smallest singular value of the order 1√
N

(∆Ω)`−1. The main

technical part is to show that such λ exists, and it is proved in Lemma 4.1 by a union bound
argument, showing that the measure of all “bad” values of λ (causing a collision of at least two
nodes) is small. The condition on N in (3.2) is obtained by accurate counting of how many such
“bad” intervals exist.

Remark 3.3. The condition 4τ∆ ≤ ρ ensures that the range of admissible Ω is non-empty, and it
will clearly be satisfied for all small enough ∆ with all the rest of the parameters fixed.

Remark 3.4. The same node vector x can be regarded as a clustered configuration with different
choices of the parameters (`, ρ, τ). For example, the vector x from the beginning of this section (and
also Figure 3.1) is both

(
∆, π4 + ∆, 3, 2, 1

)
-clustered and

(
∆, ρ, 3, 3, π

4∆ + 2
)
-clustered, with any ρ.

To obtain as tight a bound as possible, one should choose the minimal ` such that the condition
(3.1) is satisfied for Ω within the range of interest. For instance, Ω might be too small if ρ is small
enough, however by choosing ` = s one is able to increase ρ without bound. See Figure 5.3 for a
numerical example.

Remark 3.5. The constant C2 is given explicitly in (4.16), and it decays in s like ∼ s−2s. It is
plausible that the best possible bound would scale like c−` for some absolute constant c > 1, see
also Remark 3.7 below.

Our next result is the analogue of (3.2) for the Vandermonde matrix VN as in (2.1), albeit under
an extra assumption that the nodes are restricted to the interval 1

s2

(
−π

2 ,
π
2

]
.

Corollary 3.6. There exists a constant C3 = C3 (s) such that for any 4τ∆ ≤ min
(
ρ, 1

s2

)
, any

ξ = (ξ1, . . . , ξs) ⊂ 1
s2

(
−π

2 ,
π
2

]
forming a (∆, ρ, s, `, τ)-clustered configuration, and any N satisfying

max

(
4πs

ρ
, 4s3

)
≤ N ≤ πs

τ∆
, (3.4)

we have
σmin (VN (ξ)) ≥ C3 · (N∆)`−1 . (3.5)
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Proof. Let us choose Ω̃ := N
s2

so that for all j = 1, . . . , s we have

t̃j :=
Nξj

Ω̃
∈
(
−π

2
,
π

2

]
.

Further define ∆̃ := s2∆, and ρ̃ := s2ρ. We immediately obtain that the vector x̃ :=
(
t̃1, . . . , t̃s

)
forms a

(
∆̃, ρ̃, s, `, τ

)
-clustered configuration according to Definition 3.1, and the rectangular Van-

dermonde matrix VN (ξ) in (2.1) is precisely VN

(
x̃, Ω̃

)
. Clearly, 4τ∆̃ ≤ s2ρ = ρ̃, and also

Ω̃s2 = N ≥ 4s3 =⇒ Ω̃

4s
≥ 1 =⇒ 2Ω̃

4s
>

⌈
Ω̃

4s

⌉
=⇒ N = Ω̃s2 > 2s3

⌈
Ω̃

4s

⌉
. (3.6)

Using (3.4), we obtain precisely the conditions (3.1) with Ω̃, ρ̃ in place of Ω, ρ respectively. Therefore
the conditions of Theorem 3.2 are satisfied for x̃, Ω̃, ρ̃, ∆̃, τ , and so (3.5) follows immediately from
(3.6) and (3.2), with C3 = C2.

Remark 3.7. During the revision of the present paper, the authors of [26] (second version) in-
vestigated the question of bounding σmin(VN ) under assumptions on node distribution which are
similar to our clustering model (they are called “sparse clumps” in [26].) They also obtain the
scaling (N∆)`−1 for the smallest singular value. Comparing their results to Corollary 3.6 (see also
Remark 4 in their paper), we note the following.

1. They do not have the requirement that the vector ξ should be restricted to a small interval.

2. Their bounds hold whenever N ≥ s2, while we require N ≥ 4s3.

3. Although their model is more general, their constants are more complicated. Nevertheless,
the corresponding constant C3 scales as `−` which is better than our s−2s.

4. Their equation (2.5) in Theorem 2 requires the product ρN to be at least `5/2 20s√
N∆

, which

essentially forces a single cluster if ∆ is very small (or, alternatively, prevents ∆ to be too
small for certain s, `) 1. In contrast, our equation (3.4) only requires ρN ≥ 4πs, and therefore
doesn’t have these restrictions (although both conditions require ρ to grow with s.)

Remark 3.8. Continuing the above discussion, we would like to emphasize that Corollary 3.6 is
derived by discretization of the continuous setting of Theorem 3.2, and therefore it is perhaps not
surprising that the conditions for which the scaling holds are not optimal.

Returning back to Theorem 3.2, it turns out that the bound (3.3) is asymptotically optimal.

Theorem 3.9. There exists an absolute constant η � 1 and a constant C4 = C4 (`) such that for
any 2 ≤ ` ≤ s and any ∆ satisfying ∆ < π

2(`−1) , there exists a (∆, ρ′, s, `, τ ′)-clustered configuration

xmin with s nodes and certain ρ′, τ ′ depending only on s, `, for which

λmin (G (xmin,Ω)) ≤ C4 · (∆Ω)2(`−1) , ∆Ω < η.

1The particular equation and theorem number might change as [26] is currently a preprint.
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The proof of Theorem 3.9 is presented in Subsection 4.4.

Finally we conclude with the optimal scaling for the condition number of VN = VN (x,Ω), which
is of interest to some applications.

Corollary 3.10. Fix s, `, ρ, τ and Ω. As ∆ → 0 and N → ∞, for any (∆, ρ, s, `, τ)-clustered
configuration x, we have

κ (VN (x,Ω)) :=
σmax(VN )

σmin(VN )
� SRF`−1.

Proof. It is immediate that as N → ∞, the largest singular value (the spectral norm) of VN is
bounded from above by a constant:

σmax(VN ) = ‖VN‖2 ≤
√
s

2N + 1

2N
≤
√

2s,

while the lower bound can be obtained by

σmax(VN ) =
√
λmax(GN ) ≥

√
1

2N
max
t∈R
DN (t) > 1.

Combining this with Theorem 3.2 and Theorem 3.9 finishes the proof.

3.2 Stable super-resolution of point sources

The problem of (sparse) super-resolution is to recover discrete, point-like objects from their noisy
and bandlimited spectral measurements. It arises in many fields such as frequency estimation, sam-
pling theory, array processing, astronomical imaging, seismic imaging, nonuniform FFT, statistics,
radar signal detection, error correction codes, and others [4, 12, 13, 16, 10, 20, 28, 25, 35]. Our
main results have direct implications for the problem of super-resolution under sparsity constraints,
in the so-called “on-grid” model2.

Definition 3.11. For ∆ > 0, denote by T∆ the discrete grid

T∆ :=
{
k∆, k = −

⌊ π
2∆

⌋
, . . . ,

⌊ π
2∆

⌋}
⊂
[
−π

2
,
π

2

]
.

Definition 3.12. For ∆, ρ, s, `, τ as in Definition 3.1, let R := R (∆, ρ, s, `, τ) be the set of point
measures of the form µ =

∑s
j=1 ajδtj , where tj ∈ T∆ for all j = 1, . . . , s, δt is the Dirac mea-

sure supported on t ∈ R, aj ∈ C, and the node vector (t1, . . . , ts) forms a (∆, ρ, s, `, τ)-clustered
configuration according to Definition 3.1.

Consider the problem of reconstructing µ ∈ R from approximate spectral data µ̂ (ω) restricted to
some interval ω ∈ [−Ω,Ω]. Here the Fourier transform µ̂ is defined as

µ =

s∑
j=1

ajδtj =⇒ µ̂ (ω) =

s∑
j=1

aj exp (ıωtj) .

2Note that the results in the previous section are valid for “off-grid” setting, as the nodes {tj} can have arbitrary
real values in

(
−π

2
, π

2

]
.
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The measurement space L2 ([−Ω,Ω]) contains complex-valued square-integrable functions sup-
ported on [−Ω,Ω], with the norm

‖f‖22,Ω :=
1

2Ω

∫ Ω

−Ω
|f (ω) |2dω. (3.7)

Proceeding as in [16, 15], we define the minimax error for this problem as follows.

Definition 3.13. For R as above, ε > 0 and Ω > 0, the minimax error E = E(R,Ω, ε) is the
quantity

E := inf
µ̃(Φµ,e)∈R

sup
µ∈R

sup
e∈L2([−Ω,Ω]), ‖e‖2,Ω≤ε

‖µ̃− µ‖2, (3.8)

where

• Φµ,e ∈ L2 ([−Ω,Ω]) is the measurement function given by

Φµ,e(ω) = µ̂(ω) + e(ω); (3.9)

• µ̃ is any deterministic mapping from L2 ([−Ω,Ω]) to R;

• for µ =
∑s

j=1 ajδtj , the norm ‖µ‖2 is the discrete `2 norm of the coefficient vector:

‖µ‖2 :=

 s∑
j=1

|aj |2
 1

2

.

Using arguments very similar to [33, 16, 15, 26] and the novel bounds of Theorem 3.2 and Theorem
3.9, we obtain the optimal rate for the minimax error for clustered on-grid super-resolution.

Theorem 3.14. Fix s ≥ 1, 2 ≤ ` ≤ s, ε > 0. Put SRF := π
∆Ω . Then the following hold.

1. For any ρ ≥ 0, `− 1 ≤ τ and M ≥ π, there exists α ≥M such that for all sufficiently small
∆ it holds that

E (R (∆, ρ, s, `, τ) ,Ω, ε) ≤ Cs,`SRF2`−1ε, SRF = α, (3.10)

for some absolute constant Cs,` depending only on s and `.

2. There exists an absolute constant β � 1 and ρ′, τ ′, depending only on s, `, such that for any
∆ < π

2(2`−1) it holds that

E
(
R
(
∆, ρ′, s, `, τ ′

)
,Ω, ε

)
≥ C`SRF2`−1ε, SRF > β, (3.11)

for some absolute constant C` depending only on `.

For the proof, see Subsection 4.5 below. This result generalizes [15, 26] (where the scaling E �
SRF2`−1ε was derived for ` = s), as well as [33] (where it was shown that for positive aj it holds
that E / SRF2`ε, with a comparable definition of the Rayleigh regularity `).
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A different but closely related setting was considered in the seminal paper [16], where the measure
µ was assumed to have infinite number of spikes on a grid of size ∆, with one spike per unit of
time on average, but whose local complexity was constrained to have not more than R spikes per
any interval of length R (such R is called the “Rayleigh index”). It was shown in [16] that the
minimax recovery rate for such measures scales like SRFα where 2R − 1 ≤ α ≤ 2R + 1. Our
partial cluster model can therefore be regarded as the finite-dimensional version of these “sparsely
clumped” measures with finite Rayleigh index, showing the same scaling of the error – polynomial
in SRF and exponential in the “local complexity” of the signal.

If the grid assumption is relaxed, then one might wish to measure the accuracy of recovery ‖µ̃−µ‖
by comparing the locations of the recovered signal µ̃ with the true ones {tj}. In this case, there are
additional considerations which are required to derive the minimax rate, and it is possible to do so
under the partial clustering assumptions. See [1, 8] for details, where we prove that E � SRF2`−1∆ε
in this scenario, for uniform bound on the noise ‖e‖∞ := sup|ω|≤Ω |e (ω)| ≤ ε / SRF1−2`. The
extreme case ` = s has been treated recently in [6, 7].

In the case of well-separated spikes (i.e. clusters of size ` = 1), a recent line of work using `1
minimization ([12, 11, 17, 14] and the great number of follow-up papers) has shown that the
problem is stable and tractable.

Therefore, the partial clustering case is somewhat mid-way between the extremes ` = 1 and ` = s,
and while our results in this paper (and also in [8]) show that it is much more stable than in the
unconstrained sparse case, it is an intriguing open question whether provably tractable solution
algorithms exist.

Several candidate algorithms for sparse super-resolution are well-known – MUSIC, ESPRIT/matrix
pencil, and variants; these have roots in parametric spectral estimation [42]. In recent years, the
super-resolution properties of these algorithms are a subject of ongoing interest, see e.g. [18, 29,
38, 26, 27] and references therein. Smallest singular values of the partial Fourier matrices VN , for
finite N , play a major role in these works, and therefore we hope that our results and techniques
may be extended to analyze these algorithms as well.

4 Proofs

4.1 Blowup

Here we introduce the uniform blowup of a node vector x = (t1, . . . , ts) by a positive parameter λ,
and study the effect of such a blowup mapping on the minimal wrap-around distance between the
mapped nodes.

Lemma 4.1. Let x form a (∆, ρ, s, `, τ) cluster, and suppose that 4πs
ρ ≤ Ω ≤ πs

τ∆ . Then, for any

0 ≤ ξ ≤ 1 there exists a set I ⊂
[

Ω
2s ,

Ω
s

]
of total measure Ω

2sξ such that for every λ ∈ I the following
holds for every tj ∈ x:

‖λy − λtj‖T ≥ λ∆ ≥ ∆Ω

2s
, ∀y ∈ x(j) \ {tj}; (4.1)

‖λy − λtj‖T ≥
1− ξ
s2

π, ∀y ∈ x \ x(j). (4.2)

11



Furthermore, the set Ic :=
[

Ω
2s ,

Ω
s

]
\ I is a union of at most s2

2

⌈
Ω
4s

⌉
intervals.

Proof. We begin with (4.1). Let λ ∈
[

Ω
2s ,

Ω
s

]
, then λτ∆ ≤ π and since ‖tj − y‖T ≤ τ∆ we

immediately conclude that
‖λtj − λy‖T = λ‖tj − y‖T ≥ λ∆.

To show (4.2), let ν be the uniform probability measure on
[

Ω
2s ,

Ω
s

]
. Let tj ∈ x and y ∈ x \ x(j) be

fixed and put δ := ‖y − tj‖T. For λ ∈
[

Ω
2s ,

Ω
s

]
, let γ(λ) = γ(tj ,y)(λ) be the random variable on ν,

defined by
γ(tj ,y)(λ) := ‖λtj − λy‖T.

We now show that for any 0 ≤ α ≤ 1

ν {γ (λ) ≤ απ} ≤ 2α. (4.3)

Since δ ≥ ρ ≥ 4πs
Ω , we can write Ω

2s = 2π
δ (n+ ζ) where n ≥ 1 is an integer and 0 ≤ ζ < 1. We

break up the probability (4.3) as follows:

ν {γ (λ) ≤ απ} =

n∑
k=1

ν

{
γ (λ) ≤ απ

∣∣∣∣∣λ− Ω

2s
∈ 2π

δ
[k − 1, k]

}
ν

{
λ− Ω

2s
∈ 2π

δ
[k − 1, k]

}

+ ν

{
γ (λ) ≤ απ

∣∣∣∣∣λ− Ω

2s
∈ 2π

δ
[n, n+ ζ]

}
ν

{
λ− Ω

2s
∈ 2π

δ
[n, n+ ζ]

}
.

(4.4)

Now, consider the number a = y − tj . As λ varies between Ω
2s + 2(k−1)π

δ and Ω
2s + 2kπ

δ , the number
exp(ıλa) traverses the unit circle exactly once, and therefore the variable γ(λ) traverses the interval
[0, απ] exactly twice. Consequently,

ν

{
γ (λ) ≤ απ

∣∣∣∣∣λ− Ω

2s
∈ 2π

δ
[k − 1, k]

}
=

2απ

2π
= α.

Similarly, when λ varies between Ω
2s + 2πn

δ and Ω
2s + 2π(n+ζ)

δ , we have

ν

{
γ (λ) ≤ απ

∣∣∣∣∣λ− Ω

2s
∈ 2π

δ
[n, n+ ζ]

}
≤ 2απ

2πζ
≤ α

ζ
.

Overall,

ν {γ (λ) ≤ απ} ≤ α n

n+ ζ
+
α

ζ

ζ

n+ ζ
= α

n+ 1

n+ ζ
≤ 2α,

proving (4.3).

It is clear from the above that {λ : γ (λ) ≤ απ} is a union of intervals, each of length 2απ, repeating
with the period of 2π

δ . Consequently the set
{
λ ∈

[
Ω
2s ,

Ω
s

]
: γ (λ) ≤ απ

}
is a union of at most

⌈
Ω
2s

δ
2π

⌉
intervals. Since δ ≤ π we have

⌈
Ω
2s

δ
2π

⌉
≤
⌈

Ω
4s

⌉
, and so the set

{
λ ∈

[
Ω
2s ,

Ω
s

]
: γ (λ) ≤ απ

}
is a union

of at most
⌈

Ω
4s

⌉
intervals.
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Now we put α0 = 1−ξ
s2

and apply (4.3) for every pair (tj , y) where j = 1, . . . , s and y ∈ x \ x(j).
Denote

J :=
⋃

tj ,y∈x\x(j)

{
λ ∈

[
Ω

2s
,
Ω

s

]
: γ(tj ,y)(λ) ≤ α0π

}
,

then by the union bound we obtain

ν (J) ≤
∑
tj ,y

2α0 = 2

(
s

2

)
1− ξ
s2

< 1− ξ. (4.5)

Fixing I as the complement of the above set, I =
[

Ω
2s ,

Ω
s

]
\ J , we have that I is of total measure

greater or equal to ξ Ω
2s , and for every λ ∈ I the estimate (4.2) holds. Clearly J is a union of at

most s2

2

⌈
Ω
4s

⌉
intervals.

Fix ξ = 1
2 and consider the set I given by Lemma 4.1. Let us also fix a finite and positive integer

N , and consider the set of 2N + 1 equispaced points in [−Ω,Ω]:

PN :=

{
k

Ω

N

}
k=−N,...,N

.

Proposition 4.2. If N > 2s3
⌈

Ω
4s

⌉
, then PN ∩ I 6= ∅.

Proof. By Lemma 4.1, the set Ic consists of K ≤ s2

2

⌈
Ω
4s

⌉
intervals, and by (4.5) the total length of Ic

is at most Ω
4s . Denote the lengths of those intervals by d1, . . . , dK . The distance between neighboring

points in PN is Ω
N , and therefore each interval contains at most

djN
Ω +1 points. Overall, the interval

Ic contains at most
K∑
j=1

(
djN

Ω
+ 1

)
≤ Ω

4s

N

Ω
+K

points from PN , and since the total number of points in
[

Ω
2s ,

Ω
s

]
is at least N

2s , we have

|PN ∩ I| ≥
N

2s
− N

4s
−K ≥ N

4s
− s2

2

⌈
Ω

4s

⌉
> 0.

4.2 Square Vandermonde matrices

Let ξ = (ξ1, . . . , ξs) be a vector of s pairwise distinct complex numbers. Consider the square
Vandermonde matrix

V(ξ) :=


1 1 . . . 1
ξ1 ξ2 . . . ξs
ξ2

1 ξ2
2 . . . ξ2

s
...

...
. . .

...

ξs−1
1 ξs−1

2 . . . ξs−1
s

 . (4.6)
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Theorem 4.3 (Gautschi, [21]). For a matrix A = (ai,j) ∈ Cm×n, let ‖A‖∞ denote the `∞ induced
matrix norm

‖A‖∞ := max
1≤i≤m

∑
1≤j≤n

|ai,j |.

Then we have

‖V−1 (ξ) ‖∞ ≤ max
1≤i≤s

∏
j 6=i

1 + |ξj |
|ξj − ξi|

. (4.7)

Proposition 4.4. Suppose that ξ = (ξ1, . . . , ξs) is a vector of pairwise distinct complex numbers
with |ξj | = 1, j = 1, . . . , s, and let r ∈ R be arbitrary. Let

V (ξ, r) :=


ξr1 ξr2 . . . ξrs
ξr+1

1 ξr+1
2 . . . ξr+1

s

ξr+2
1 ξr+2

2 . . . ξr+2
s

...
...

. . .
...

ξr+s−1
1 ξr+s−1

2 . . . ξr+s−1
s

 . (4.8)

For 1 ≤ j < k ≤ s, denote by δj,k the angular distance between ξj and ξk:

δj,k :=

∣∣∣∣Arg

(
ξj
ξk

)∣∣∣∣ =
∣∣Arg(ξj)−Arg(ξk) mod (−π, π]

∣∣.
Then

σmin (V (ξ, r)) ≥ π1−s
√
s

min
1≤j≤s

∏
k 6=j

δj,k. (4.9)

Proof. Clearly, the matrix V (ξ, r) can be factorized as

V (ξ, r) = V (ξ, 0)× diag {ξr1, . . . , ξrs} .

Since V (ξ, 0) = V (ξ) as in (4.6), using (4.7) we immediately have

‖V−1 (ξ, r) ‖∞ ≤ 2s−1 max
1≤j≤s

∏
k 6=j
|ξj − ξk|−1. (4.10)

For any |θ| ≤ π
2 we have

2

π
|θ| ≤ sin |θ| ≤ |θ| ,

and since for any ξj 6= ξk

|ξj − ξk| =
∣∣∣∣1− ξj

ξk

∣∣∣∣ = 2 sin

∣∣∣∣12 Arg
ξj
ξk

∣∣∣∣ = 2 sin

∣∣∣∣δj,k2

∣∣∣∣ ,
we therefore obtain

2

π
δj,k ≤ |ξj − ξk| ≤ δj,k. (4.11)

Plugging (4.11) into (4.10) we have

σmax

(
V−1 (ξ, r)

)
≤
√
s‖V−1 (ξ, r) ‖∞ ≤

√
sπs−1 max

1≤j≤s

∏
k 6=j

δ−1
j,k ,

which is precisely (4.9).
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4.3 Proof of Theorem 3.2

We shall bound σmin (VN (x,Ω)) defined as in (2.2) for sufficiently large N . For any subset R ⊂
{−N, . . . , N} let VN,R, be the submatrix of VN containing only the rows in R. By the Rayleigh
characterization of singular values, it is immediately obvious that if {−N, . . . , N} = R1 ∪ · · · ∪RP
is any partition of the rows of VN then

σ2
min(VN ) ≥

P∑
n=1

σ2
min(VN,Rn). (4.12)

Let I be the set from Lemma 4.1 for ξ = 1
2 . By Proposition 4.2 we have that for all N > 2s3

⌈
Ω
4s

⌉
,

I will contain a rational multiple of Ω of the form λN = Ω
Nm for some m ∈ N.

Consider the ”new” nodes

uj,N := tj
Ω

N
m = λN tj , j = 1, . . . , s. (4.13)

Since λN ∈ I, we conclude by Lemma 4.1 that for every j = 1, . . . , s

‖uj,N − uk,N‖T ≥
1

2s
(∆Ω), ∀tk ∈ x(j) \ {tj}; (4.14)

‖uj,N − uk,N‖T ≥
π

2s2
, ∀tk ∈ x \ x(j). (4.15)

Since λN ≤ Ω
s it follows that ms ≤ N . Now consider the particular interleaving partition of the

rows {−N, . . . , N} by blocks R−m, . . . , R−1, R0, R1, . . . , Rm of s rows each, separated by m−1 rows
between them (some rows might be left out):

R0 = {0,m, . . . , (s− 1)m} ,
R1 = {1,m+ 1, . . . , (s− 1)m+ 1} ,
R−1 = {−1,−m− 1, . . . ,−(s− 1)m− 1} ,

. . .

Rm−1 = {m− 1, 2m− 1, . . . , sm− 1} ,
R−m+1 = {−m+ 1,−2m+ 1, . . . ,−sm+ 1} .

For n = −m+ 1, . . . ,m− 1, each VN,Rn is a square Vandermonde-type matrix as in (4.8),

VN,Rn =
1√
2N

V (ξ, n) ,

with node vector
ξ = {eıuj,N }sj=1 ,

where uj,N are given by (4.13). We apply Proposition 4.4 with the crude bound obtained from
(4.14) and (4.15) above:

min
1≤j≤s

∏
k 6=j

δj,k ≥
1

2s−1s2s−2
(∆Ω)`−1

15



and obtain

σmin (VN,Rn) ≥ C5(s)√
2N

(∆Ω)`−1 , C5(s) :=
1

(2π)s−1s2s−2
√
s
.

Now we use (4.12) to aggregate the bounds on σmin for each square matrix VN,Rn and obtain

λmin

(
VH
NVN

)
= σ2

min (VN ) ≥ (2m− 1)
C2

5

2N
(∆Ω)2(`−1) .

Since m = λNN
Ω ≥ ΩN

2sΩ = N
2s and since by assumption N > 2s3, we have that 2m−1

2N ≥ 1
4s and so

σ2
min (VN ) ≥ C2

5

4s
(∆Ω)2(`−1) .

This proves (3.2) and (3.3) with

C2(s) :=
1

2(2π)s−1s2s−1
. (4.16)

4.4 Proof of Theorem 3.9

Let `, s,∆,Ω be fixed, with ∆Ω < η, where η will be specified during the proof below, and ∆ <
π

2(`−1) . We shall exhibit a (∆, ρ′, s, `, τ ′)-clustered configuration xmin with certain ρ′, τ ′, such that

λmin (G (xmin,Ω)) ≤ C4 · (∆Ω)2(`−1) , (4.17)

for some constant C4 = C4 (`).

Define x`,∆ = {t1, . . . , t`} to be the vector of ` equispaced nodes separated by ∆, i.e. tj = j∆, j =
1, . . . , `. Let G(`,`) = G (x`,∆,Ω) be the corresponding `× ` prolate matrix.

Proposition 4.5. There exists an absolute constant 0 < η1 � 1 and C6 = C6 (`) such that
whenever Ω∆ ≤ η1, we have

λmin

(
G(`,`)

)
≤ C6 · (Ω∆)2(`−1) . (4.18)

Proof. By Slepian’s results [40] elaborated in Section 2, there exists a constant η′ � 1 for which
(2.5) holds for all s, in particular for s = `, whenever W ≤ η′, i.e. whenever Ω∆ ≤ η1 := 2πη′.

We define xmin to be the extension of x`,∆ such that the remaining s − ` nodes are maximally
equally spaced between −π

2 and 0, not including the endpoints. Under the assumptions on s, `,∆
specified in Theorem 3.9, it is easy to check that the nodes t1, . . . , t` are between 0 and π

2 , while
the remaining nodes are separated at least by

ρ′ :=
π

2 (s− `+ 1)
. (4.19)

Therefore, xmin is a particular (∆, ρ′, s, `, τ ′)-clustered configuration according to Definition 3.1,
with ρ′ given by (4.19) and τ ′ := `− 1.

It is clear that G(`,`) is a principal submatrix of G (xmin,Ω), and therefore we can apply the inter-
lacing theorem for eigenvalues of partitioned Hermitian matrices [22, Theorem 4.3.28]. Together
with (4.18), this concludes the proof of (4.17) and of Theorem 3.9 with C4 = C6 and η = η1.
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4.5 Proof of Theorem 3.14

By the definition of the matrix G and (3.7), we immediately obtain the following fact.

Proposition 4.6. For µ =
∑s

j=1 ajδtj ∈ R, denote x = xµ := suppµ = (t1, . . . , ts) ∈ Rs and
c = cµ := (a1, . . . , as) ∈ Cs. Then we have

‖µ̂‖22,Ω = c∗G (x,Ω) c.

The next result shows that for any two measures with s nodes and clusters of size `, their difference
has clusters of size at most 2`, provided that the grid size is small enough. Note that it may happen
that some nodes are in the support of both measures, in which case the difference measure will
have less than 2s nodes, and the largest cluster may be of size strictly smaller than 2`.

Lemma 4.7. Fix s, `, ρ, τ , and let there be given K ≥ 2. Then there exists ∆0 such that for all
∆ ≤ ∆0 the following holds: for any µ1, µ2 ∈ R (∆, ρ, s, `, τ) we have

µ1 − µ2 ∈ R
(
∆, ρ′, s′, `′, τ ′

)
for some `′ ≤ 2`, s′ ≤ 2s, some ρ′, τ ′ satisfying ρ′ = Kτ ′∆ and τ ′ ≥ 1.

Proof. Let ∆ ≤ ∆0 be given (with ∆0 to be determined below), and put ρ0 := τ∆.

Consider the intervals I0, I1, . . . , I2s+2 (see Figure 4.1):

I0 = [0, ρ0] ,

I1 = [ρ0,Kρ0] ,

I2 =
[
Kρ0,K

2ρ0

]
,

. . .

such that the length aj of each Ij is

a0 = |I0| = ρ0;

aj = |Ij | = (K − 1) ·Kj−1ρ0, j ≥ 1.

One can verify that

an = (K − 1)

n−1∑
j=0

aj , n ≥ 1;

n∑
j=0

aj = Knρ0, n ≥ 0.

The overall length of the 2s + 3 intervals is therefore K2s+2ρ0. From now on we assume that this
quantity is at most ρ

2 , which in particular means that ∆ ≤ ∆0 := ρ
2τK2s+2 .
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... ...

new cluster size

Figure 4.1: Merging µ1 and µ2 - see Lemma 4.7. The orange circles are the sets Sj , j = 1, . . . , s.

For each tj ∈ suppµ1, consider the following sets of distances:

Rj := {‖y − tj‖T : y ∈ suppµ1} ∩
[
0,
ρ

2

]
,

Sj := {‖y − tj‖T : y ∈ suppµ2} ∩
[
0,
ρ

2

]
.

It is obvious that  s⋃
j=1

Rj

 ∩
2s+2⋃

j=2

Ij

 = ∅.

Now, since µ2 ∈ R, each one of the sets S1, . . . ,Ss intersects at most two of the intervals I2, . . . ,
I2s+2. Therefore, by the pigeonhole’s principle (Dirichlet’s principle), there exists an index C ∈
{2, . . . , 2s+ 2} such that

IC
⋂ s⋃

j=1

Sj

 = ∅.

Clearly we also have IC
⋂(⋃s

j=1Rj
)

= ∅. Put IC = [a, b]. The proof is finished by taking

τ ′ := a
∆ ≥

Kρ0

∆ = τ ≥ 1 and ρ′ := b = Ka = Kτ ′∆.

Proof of upper bound. Let s, `, τ, ρ and ε be fixed. Put K := 8sM and let ∆0 be as specified in
Lemma 4.7. Let ∆ ≤ ∆0, and put R = R (∆, ρ, s, `, τ) as in Definition 3.12.

Since the set R is finite, it is clearly possible to enumerate all its elements. To prove the up-
per bound for the minimax error rate E , consider the following estimator (clearly realizable, but
computationally intractable) function µ̃0 = µR,Ω,ε : L2 ([−Ω,Ω])→ R:

µ̃0 (Φ) := {the first µ ∈ R subject to ‖Φ− µ̂‖2,Ω ≤ ε} .

Given µ ∈ R and e ∈ L2 ([−Ω,Ω]) with ‖e‖2,Ω ≤ ε, let µ̃0 = µ̃0 (Φµ,e) where Φµ,e is given by (3.9).
Then, since ‖Φµ,e − µ̂‖2,Ω = ‖e‖2,Ω ≤ ε and also by the definition of µ̃0, we have

‖̂̃µ0 − µ̂‖2,Ω ≤ 2ε.

18



Denote µ2 := µ̃0 − µ. By Lemma 4.7, we get that µ2 ∈ R (∆, ρ′, s′, `′, τ ′) where s′ ≤ 2s, `′ ≤ 2`,
τ ′ ≥ 1 and ρ′ = 8sMτ ′∆. In particular, ρ′ > 4τ ′∆, and therefore by applying Theorem 3.2 we
obtain that for all Ω satisfying

πs′

2sMτ ′∆
=

4πs′

ρ′
≤ Ω ≤ πs′

τ ′∆
,

it holds that √
λmin (G (suppµ2,Ω)) ≥ C2(s′) (Ω∆)`

′−1 .

In particular, for π
Ω∆ := α = Mτ ′ 2ss′ ≥M , we have, using the above and Proposition 4.6, that

2ε ≥ ‖µ̂2‖2,Ω ≥
√
λmin (G (suppµ2,Ω))‖µ2‖2

≥ C2(s′) (Ω∆)`
′−1 ‖µ2‖2

≥ C2(2s) (Ω∆)2`−1 ‖µ2‖2

(here we also used that the constant C2(s) is decreasing with s and ∆Ω < 1). This in turn proves
that E ≤ 2

C2(2s)π2`−1 SRF2`−1ε.

Proof of the lower bound. Let η be the constant from Theorem 3.9, and put β := π
η . Now suppose

that α := SRF > β, that is, Ω∆ < η. Applying Theorem 3.9 with 2s, 2` we obtain ρ′, τ ′ and
the minimal configuration xα. Let cα ∈ C2s denote the corresponding minimal eigenvector of
G (xα,Ω), with the normalization

‖cα‖22 =
ε2

C4α2(2`−1)
. (4.20)

Let µ be the measure defined by xα, cα, which therefore satisfies µ ∈ R (∆, ρ′, 2s, 2`, τ ′). By
Proposition 4.6, (4.20) and Theorem 3.9 we have

‖µ̂‖22,Ω = λmin (G (xα,Ω)) ‖cα‖22 ≤ ε2.

Clearly it is possible to write µ = µ1 − µ2 where µ1, µ2 ∈ R (∆, ρ′, s, `, τ ′). Let the measurement
function Φ be such that Φ(ω) := µ̂2(ω), ω ∈ [−Ω,Ω], and let µ̃ = µ̃(Φ) ∈ R (∆, ρ′, s, `, τ ′). Clearly
Φ = Φµ1,−µ̂ = Φµ2,0 (as per (3.9)), while also

ε

C
1
2
4 α

2`−1
= ‖cα‖2 = ‖µ‖2 = ‖µ1 − µ2‖2

≤ ‖µ1 − µ̃‖2 + ‖µ2 − µ̃‖2
≤ 2 max (‖µ1 − µ̃‖2, ‖µ2 − µ̃‖2) ,

which shows (3.11) with C` = 1
2C
− 1

2
4 .

5 Numerical experiments

In order to validate the bounds of Theorem 3.2 and Theorem 3.9, we computed λmin (G) for varying
values of ∆,Ω, `, s and the actual clustering configurations. As before, we put SRF := π

∆Ω . We
checked two clustering scenarios:
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(a) s = 8, ` = 4, 1 cluster (configuration C1).

-1.5 -1.0 -0.5 0.5 1.0 1.5
t

C2(s=5,ℓ=2ℓ

t1 t2t3 t4 t5

(b) s = 5, ` = 2, 2 clusters (configuration C2).

Figure 5.1: Examples for the configurations C1 and C2.

C1 A single equispaced cluster of size ` in [∆, `∆], with the rest of the nodes equally spaced and
maximally separated in

(
−π

2 , 0
)
. For example, in the case s = 8, ` = 4 (as in Figure 5.1a) we

have tj = j∆ for j = 1, . . . , 4, and tj = −π
2 + (j − 4) π10 for j = 5, . . . , 8.

C2 Split the s nodes into two groups, and construct two single-clustered configurations as follows:

(a) s1 =
⌊
s
2

⌋
nodes, a single equispaced cluster of size `1 = ` in [∆, `∆], and the rest of the

s1 − `1 nodes maximally separated and equally spaced in
(
`∆, π2

)
;

(b) s2 = s− s1 nodes, a single equispaced cluster of size `2 = ` in
[
−π

2 + ∆,−π
2 + `∆

]
, and

the rest of the s2 − `2 nodes maximally separated and equally spaced in
(
−π

2 + `∆, 0
)
.

For example, in the case s = 5, ` = 2 (as in Figure 5.1b) we have t1 = ∆, t2 = 2∆ and
t3 = −π

2 + ∆, t4 = −π
2 + 2∆, t5 = −π

4 + ∆.

In each experiment we fixed `, s and one of the scenarios above, and run n = 1000 random tests with
∆,Ω randomly chosen within appropriate ranges for each experiment. The results are presented
Figure 5.2.

In another experiment (Figure 5.3), we fixed ∆, `, s and changed Ω. As expected, when Ω became
small enough, the left inequality in (3.1) was violated, and indeed we can see that in this case the
asymptotic decay was ≈ SRF2(1−s). See Remark 3.4 for further discussion.

20



10−0.5 100.0 100.5 101.0 101.5 102.0 102.5

SRF

10−30

10−20

10−10

100

C1(s=8, ℓ=4ℓ
λₘ
SRF2(1 − ℓℓ 
SRF2(1 − ℓℓ

(a) s = 8, ` = 4, 1 cluster (configuration C1).
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(b) s = 5, ` = 2, 2 clusters (configuration C2).

Figure 5.2: Decay rate of λmin as a function of SRF. Results of n = 1000 random experiments with
randomly chosen ∆,Ω are plotted versus the theoretical bound SRF2(1−`). The curve SRF2(1−s) is shown
for comparison. The bound stops to be accurate for SRF < O(1).
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(a) Configuration C1.
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(b) Configuration C2.

Figure 5.3: Breakdown of cluster structure. When Ω is small enough, the assumptions of Theorem 3.2 are
violated for certain ` < s. As a result, the decay rate of λmin corresponds to the entire x being a single
cluster of size ` = s. ∆ is kept fixed. See Remark 3.4.
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