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Characterizations of Tilt-Stable Minimizers

in Second-Order Cone Programming

MATÚŠ BENKO∗ HELMUT GFRERER† BORIS S. MORDUKHOVICH‡

Abstract. This paper is devoted to the study of tilt stability of local minimizers, which plays an important

role in both theoretical and numerical aspects of optimization. This notion has been comprehensively investi-

gated in the unconstrained framework as well as for problems of nonlinear programming with C2-smooth data.

Available results for nonpolyhedral conic programs were obtained only under strong constraint nondegeneracy

assumptions. Here we develop an approach of second-order variational analysis, which allows us to establish

complete neighborhood and pointbased characterizations of tilt stability for problems of second-order cone pro-

gramming generated by the nonpolyhedral second-order/Lorentz/ice-cream cone. These characterizations are

established under the weakest metric subregularity constraint qualification condition.

Key words. second-order variational analysis, second-order cone programming, tilt stability, normal cone

mappings, graphical derivatives, C2-cone reducibility, metric subregularity

AMS subject classification. 59J52, 49J53, 90C30, 90C31

Abbreviated title. Tilt stability in conic programming

1 Introduction and Brief Overview

This paper mainly aims at deriving efficient characterizations of tilt-stable local minimizers in prob-

lems of second-order cone programming (SOCP) given as follows:

(1.1) minimize f (x) subject to x ∈ Γ :=
{

x ∈ R
n
∣∣ g(x) ∈ Q

}
,

where f : Rn → R and g : Rn → R
1+m are C2-smooth around the reference point x̄, and where

(1.2) Q :=
{
(q0,qr) ∈ R×R

m
∣∣ ‖qr‖−q0 ≤ 0

}

is known as the second-order/Lorentz/ice-cream cone. Problems of this type, often abbreviated as

SOCPs, have been well recognized in conic programming and numerous applications; see, e.g., [1, 3]

for more discussions and references. Observe that, despite the imposed smoothness of f and g, the

defined SOCP model is a problem of nonsmooth optimization due to the nondifferentiability at the

origin of the norm function presented in (1.2).

The notion of tilt stability of local minimizers was introduced by Poliquin and Rockafellar [26]

in the extended-real-valued framework of unconstrained optimization as follows. Given a function

ϕ : Rn → R := (−∞,∞] with the domain domϕ := {x ∈ R
n | ϕ(x) < ∞}, we say that x̄ ∈ domϕ is a

tilt-stable minimizer of ϕ if there is a number γ > 0 such that the mapping

(1.3) Mγ(v
∗) := argmin

{
ϕ(x)−〈v∗,x〉

∣∣ ‖x− x̄‖ ≤ γ
}
, v∗ ∈ R

n,
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is single-valued and Lipschitz continuous in some neighborhood of v̄∗ := 0 ∈ R
n with Mγ(0) = {x̄}.

The main result of [26] provides a characterization of tilt-stable local minimizers for ϕ via the positive-

definiteness of the second-order subdifferential/generalized Hessian of ϕ at the reference point as

introduced by the third author in [15]. The results of [26] were extended by Mordukhovich and Nghia

[17, 18] who developed a new approach to tilt stability and derived quantitative characterization of

tilt-stable local minimizers with a prescribed Lipschitz modulus of the mapping Mγ in (1.3) and then

computed the exact lower bound of these moduli in terms of the second-order subdifferential and its

“combined” modification in finite and infinite dimensions. The characterizations of [17, 18] were

established in both neighborhood form involving points nearby the reference minimizer as well as via

pointbased criteria expressed entirely at the point in question.

Quite recently, Chieu et al. [4] derived quantitative neighborhood characterizations of tilt stability

in the abstract finite-dimensional framework of (1.3) that are expressed in the form of [18] but with

replacing the dual-space combined second-order subdifferential therein by the primal-dual “subgradi-

ent graphical derivative” discussed in Section 2. We refer the reader to [3, 6, 7, 16, 17, 18, 31] and the

bibliographies therein for other results on tilt stability as well as closely related notions in the abstract

framework of (1.3). Applications of tilt stability to multiplier criticality and convergence rates of some

primal-dual algorithms in numerical optimization have been recently provided in [24].

Efficient implementations and applications of the second-order characterizations of tilt stability

obtained in the abstract scheme (1.3) to structural classes of optimization problems with explicit con-

straints require developing adequate machinery of second-order variational analysis and subdifferen-

tial calculus under appropriate qualification conditions. First results in this direction were obtained by

Mordukhovich and Rockafellar [23] for problems of nonlinear programming (NLPs) with C2-smooth

data under the classical linear independence constraint qualification (LICQ) fulfilled at the given lo-

cal minimizer. In this setting, as shown in [23], tilt stability is characterized by Robinson’s strong

second-order sufficient condition (SSOSC) introduced in [28].

Since LICQ is not necessary for tilt stability in nonlinear programming (in contrast to the case of

strong regularity of the associated KKT systems), several attempts have been made to relax LICQ and

study tilt-stable local minimizers for NLPs with nonunique Lagrange multipliers; see [4, 9, 18, 20].

The most advanced results in this direction were obtained under the weakest metric subregularity

constraint qualification (MSCQ). It was first used by Gfrerer and Mordukhovich [9], being combined

with some other weak constraint qualifications, to derive pointbased sufficient conditions, necessary

conditions as well as complete characterizations of tilt-stable minimizers for NLPs. More recently,

Chieu at al. [4] employed MSCQ to establish a new neighborhood characterization and pointbased

sufficient conditions for tilt stability in NLPs with C2-smooth inequality constraints.

All the methods and results for tilt stability in NLPs discussed above are strongly based on the

polyhedral structure of such problems. Not much is known for tilt stability of local minimizers in

nonpolyhedral problems of conic programming. The main result of [22] yields a characterization of

tilt-stable minimizers for SOCPs in the extended form of SSOSC under a nondegeneracy condition

corresponding to LICQ in the SOCP setting. It is based on the second-order subdifferential calcula-

tions taken from Outrata and Sun [25]. Similar characterizations of tilt stability involving nondegen-

eracy and uniqueness of Lagrange multipliers are established in [19, 21] for C2-reducible problems of

conic programming, where the second-order subdifferential term is calculated in [19], based on the

results of [5], for semidefinite programs entirely in terms of the program data.

The main goal of this paper is to derive verifiable sufficient conditions, necessary conditions,

and complete characterizations of tilt-stable minimizers for SOCPs under an appropriate version of

MSCQ in second-order cone programming that is introduced here. Our results include neighborhood
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characterizations and much more difficult pointbased conditions for tilt stability. Furthermore, we

establish pointbased quantitative evaluations and precise formulas for computing the exact bound of

tilt stability expressed entirely in terms of the given SOCP data. All the results obtained are the first

in the literature for tilt stability in second-order cone programming without imposing nondegeneracy.

In particular, they are new under the Robinson constraint qualification, which corresponds to the

replacement of metric subregularity by the stronger metric regularity assumption. Our results provide

new information (e.g., the calculation of the exact bound of tilt stability) even under nondegeneracy.

The rest of the paper is organizes as follows. Section 2 presents some preliminaries from varia-

tional analysis and generalized differentiation systematically used in the subsequent text. In Section 3

we obtain neighborhood characterizations of tilt-stable minimizers for SOCPs with neighborhood

calculating the exact bound of tilt stability. In Section 4 we begin developing significantly more chal-

lenging and more important pointbased results on tilt stability of local minimizers in SOCPs starting

with second-order sufficient conditions for such minimizers under MSCQ. The major example pre-

sented here illustrates essential features of the obtained conditions in comparison with those known

under nondegeneracy and polyhedrality. Section 5 is devoted to deriving “no-gap” pointbased nec-

essary conditions for tilt-stable minimizers in SOCPs and their complete characterizations for which

an additional “2-regularity” assumption is required in some cases. In the concluding Section 6 we

discuss the main thrust of the paper and some open problems in this area.

Our notation is conventional in variational analysis, conic programming, and generalized differ-

entiation; see, e.g., [3, 16, 29]. Recall that B and S stand respectively for the closed unit ball and

sphere of the space in question, that Br(x) := x+ rB, and that N := {1,2, . . .}. Taking into account the

structure of Q in (1.2), we represent an element q∈R
1+m as q = (q0,qr) with q0 ∈R and qr ∈R

m, and

also denote q̂ := (−q0,qr). This notation is used, in particular, for the mapping g(x) =
(
g0(x),gr(x)

)

in the constraint system Γ from (1.1). Furthermore, we have the following representations for the dual

cone, the tangent cone, and the normal cone to Q, respectively: Q∗ = {q̂ | q ∈ Q},

TQ(q) =





Q if q = 0,

R
1+m if q ∈ intQ,{
u ∈R

1+m
∣∣∣ qr

‖qr‖
ur −u0 ≤ 0

}
if q ∈ bdQ \{0},

(1.4a)

NQ(q) =





Q∗ if q = 0,

{0} if q ∈ intQ,{
α
(
−1,

qr

‖qr‖
) ∣∣∣ α ≥ 0

}
=
{

α q̂
∣∣ α ≥ 0

}
if q ∈ bdQ \{0}.

(1.4b)

Given a (sufficiently) smooth real-valued/scalar function ϕ : Rn → R, denote its gradient and Hessian

at x by ∇ϕ(x) and ∇2ϕ(x), respectively. Considering further a vector function h : Rn →R
s with s > 1,

denote by ∇h(x) the Jacobian of h at x, while by ∇2h(x) we mean a linear mapping from R
n into the

space of s×n matrices defined by

∇2h(x)u := lim
t→0

∇h(x+ tu)−∇h(x)

t
.

We also employ the second-order construction ∇2h(x)(u,v) := (∇2h(x)u)v = limt→0
∇h(x+tu)−∇h(x)

t
v.

2 Preliminaries from Variational Analysis

We first recall generalized differential constructions of variational analysis utilized in what follows.

The reader can find more details in the books [16, 29] and the references therein. Starting with sets,
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consider a nonempty one Ω ⊂ R
n and define the (Bouligand–Severi) tangent cone to Ω at x̄ ∈ Ω by

(2.5) TΩ(x̄) := {v ∈ R
n
∣∣ ∃ tk ↓ 0, ∃vk → v such that x̄+ tkvk ∈ Ω, k ∈N

}
.

The (limiting, Mordukhovich) normal cone to Ω at x̄ ∈ Ω is given by

(2.6) NΩ(x̄) :=
{

x∗ ∈ R
n
∣∣∣ ∃xk

Ω→ x̄, ∃x∗k → x∗ such that limsup
x→x̄

〈x∗,x− xk〉
‖x− xk‖

≤ 0
}
,

where x
Ω→ x̄ indicates that x → x̄ with x ∈ Ω. Note that both cones (2.5) and (2.6) may be nonconvex.

Considering next an extended-real-valued function ϕ : Rn → R finite at x̄, the only subdifferential

of ϕ at x̄ used in this paper is defined by

(2.7) ∂ϕ(x̄) :=
{

x∗ ∈R
n
∣∣∣ ∃xk

ϕ→ x̄, ∃x∗k → x∗ such that liminf
x→xk

ϕ(x)−ϕ(xk)−〈x∗k ,x− xk〉
‖x− xk‖

≥ 0
}
,

where x
ϕ→ x̄ indicates that x → x̄ with ϕ(x) → ϕ(x̄). Note that despite the nonconvexity of ∂ϕ(x̄),

the subdifferential (2.7) enjoys full calculus based on variational/extremal principles of variational

analysis [16, 29]. There are close relationships between (2.7) and (2.6), namely:

(2.8) ∂ϕ(x̄) =
{

x∗ ∈ R
n
∣∣ (x∗,−1) ∈ Nepiϕ

(
x̄,ϕ(x̄)

)}
and NΩ(x̄) = ∂δΩ(x̄),

where epi ϕ := {(x,α) ∈ R
n+1 | α ≥ ϕ(x)} is the epigraph of ϕ , and where δΩ(x) is the indicator

function of ϕ equal to 0 if x ∈ Ω and to ∞ otherwise.

Recall that a lower semicontinuous (l.s.c.) function ϕ : Rn → R is continuously prox-regular at x̄

for x̄∗ ∈ ∂ϕ(x̄) if there exists r > 0 such that

ϕ(x)≥ ϕ(u)+ 〈x∗,x−u〉− (r/2)‖x−u‖2 whenever x,u near x̄ and x∗ ∈ ∂ϕ(u) near x̄∗

and if the mapping (x,x∗) 7→ ϕ(x) is continuous relative to the subdifferential graph gph ∂ϕ at (x̄, x̄∗).
This class is rather large including [29] all l.s.c. convex functions, strongly amenable functions, etc.

Considering further a set-valued mapping F : Rn →→ R
m, recall that the graphical derivative of F

at (x̄, v̄) ∈ gph F is defined via the tangent cone (2.5) by

(2.9) DF(x̄, v̄)(u) :=
{

w ∈R
m
∣∣ (u,w) ∈ TgphF(x̄, v̄)

}
, u ∈ R

n.

The main second-order construction for extended-real-valued functions used in this paper is the

following primal-dual one [21] known as the subgradient graphical derivative of ϕ : Rn → R at

x̄ ∈ domϕ for x̄∗ ∈ ∂ϕ(x̄), which is defined via (2.7) and (2.9) by

(2.10) D∂ϕ(x̄, x̄∗)(u) :=
{

w ∈ R
n
∣∣ (u,w) ∈ Tgph∂ϕ(x̄, x̄

∗)
}
, u ∈ R

n.

The generalized second-order derivative (2.10) is exploited in [4, Theorem 3.3] to derive the fol-

lowing neighborhood characterization of tilt-stable minimizers in the abstract framework of extended-

real-valued functions. As in [17], the exact bound of tilt stability for ϕ at x̄ is defined by

tilt(ϕ , x̄) = inf
γ>0

lipMγ(0),

where lipMγ(0) stands for the infimum of Lipschitz moduli of Mγ from (1.3) around the origin.
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Theorem 2.1 (abstract neighborhood characterization of tilt stability). Let ϕ : Rn → R be a l.s.c.

function that is continuously prox-regular at x̄ ∈ domϕ for x̄∗ = 0. Assume that 0 ∈ ∂ϕ(x̄). Then x̄ is

a tilt-stable local minimizer of ϕ with modulus κ > 0 if and only if there is a constant η > 0 such that

(2.11) 〈u∗,u〉 ≥ 1

κ
whenever u ∈ S , u∗ ∈ D∂ϕ(x,x∗)(u), (x,x∗) ∈ gph ∂ϕ ∩Bη(x̄,0).

Furthermore, the exact bound for tilt stability of ϕ at x̄ is calculated by the formula

(2.12) tilt(ϕ , x̄) = inf
η>0

{
1

〈u∗,u〉
∣∣∣ u ∈ S , u∗ ∈ D∂ϕ(x,x∗)(u), (x,x∗) ∈ gph∂ϕ ∩Bη(x̄,0)

}
.

At what follows we aim at employing this result to establish verifiable conditions for and charac-

terizations of tilt stability in SOCPs with expressing them entirely via the program data. The main

attention is paid to deriving pointbased conditions formulated exactly at the reference point. Our

major assumptions is the novel metric subregularity constraint qualification that is far removed from

constraint nondegeneracy being essentially weaker than the conventional Robinson constraint quali-

fication under which the obtained results are also new. The developed techniques are rather involved

and are based on second-order calculus and calculations in nonpolyhedral settings.

Note that to study tilt stability in the SOCP framework, it is sufficient considering only the case

where g(x̄) = 0, which we always assume in what follows without further mentioning. Indeed, other-

wise it holds that either g(x̄) ∈ intQ, or g(x̄) ∈ bdQ \{0}. In the first case the constraint in (1.1) can

be ignored in our local analysis. In the second case it can be equivalently written as a C2-inequality

‖gr(x)‖−g0(x)≤ 0 for which there exists a comprehensive tilt stability theory.

3 Neighborhood Characterizations of Tilt-Stable Minimizers for SOCPs

We start with neighborhood characterizations of tilt stability for SOCPs and first introduce the un-

derlying metric subregularity constraint qualification for the constraint system in (1.1). Recall that a

mapping Q : Rn →→ R
m is metrically regular around (x̄, ȳ) ∈ gphQ with modulus σ > 0 if there exist

neighborhoods U of x̄ and V of ȳ such that we have the estimate

(3.13) dist
(
x;Q−1(y)

)
≤ σ dist

(
y;Q(x)

)
for all x ∈U and y ∈V,

where dist(w;Ω) signifies the distance between a point and a set. The mapping F is metrically sub-

regular at (x̄, ȳ) with modulus σ if the distance estimate (3.13) holds with y = ȳ therein.

Definition 3.1 (metric subregularity constraint qualification for SOCPs). We say that the METRIC

SUBREGULARITY CONSTRAINT QUALIFICATION (MSCQ) is fulfilled for the SOCP constraint system

Γ from (1.1) at a point x̄ ∈ Γ with modulus σ > 0 if the mapping Q(x) := g(x)−Q is metrically

subregular at (x̄,0) with this modulus, i.e.,

(3.14) dist
(
x;g−1(Q)

)
≤ σ dist

(
g(x);Q

)
for all x ∈U.

To this end, it is worth emphasizing that the more restrictive metric regularity of the mapping Q(·)
from Definition 3.1 around (x̄,0) is equivalent to the Robinson constraint qualification

0 ∈ int
{

g(x̄)+∇g(x̄)Rn −Q
}
.

Taking into account that the validity of MSCQ at x̄ ∈ Γ yields its fulfillment at any x ∈ Γ suffi-

ciently close to x̄ (with the same modulus σ as can be supposed without loss of generality), we deduce
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from [13, Theorem 4.1], [14, Proposition 1], and the formulas in (1.4) that the tangent cone and the

normal cone to Γ at x are computed by

TΓ(x) =
{

u ∈ R
n
∣∣ ∇g(x)u ∈ TQ

(
g(x)

)}

=





{
u ∈ R

n
∣∣ ∇g(x)u ∈ Q} if g(x) = 0,

R
n if g(x) ∈ intQ,
{

u ∈R
n
∣∣∣
〈 gr(x)

‖gr(x)‖
,∇gr(x)u

〉
−∇g0(x)u ≤ 0

}
if g(x) ∈ bdQ \{0};

(3.15)

NΓ(x) =





{
∇g(x)∗λ

∣∣ λ ∈ Q∗} if g(x) = 0,

{0} if g(x) ∈ intQ,{
α
(

∇gr(x)
∗ gr(x)

‖gr(x)‖
−∇g0(x)

∗
) ∣∣∣ α ≥ 0

}
if g(x) ∈ bdQ \{0}.

Given a normal vector x∗ ∈ NΓ(x), consider the corresponding multiplier set

Λ(x,x∗) :=
{

λ ∈ NQ(g(x))
∣∣ ∇g(x)∗λ = x∗

}

and define the critical cone to Γ at (x,x∗) by

KΓ(x,x
∗) = TΓ(x)∩ [x∗]⊥.

Note that for every λ ∈ Λ(x,x∗) we have u ∈ KΓ(x,x
∗) if and only if u ∈ TΓ(x) and 〈λ ,∇g(x)u〉 = 0.

If x∗ = 0, the only multiplier important for our analysis is λ = 0. Thus we introduce the set

Λ0(x,x∗) :=

{
{0} when x∗ = 0,

Λ(x,x∗) otherwise.

Further, for every direction u ∈R
n define the directional multiplier set by

Λ(x,x∗;u) := argmax
λ∈λ(x,x∗)

〈(
∇2〈λ ,g〉(x)+H (x,λ )

)
u,u
〉
,

where the curvature mapping H : Rn ×R
1+m → R

n×n is given by

(3.16) H (x,λ ) :=





−λ0

g0(x)

(
∇gr(x)

∗∇gr(x)−∇g0(x)
∗∇g0(x)

)
if g(x) ∈ bdQ \{0},

0 otherwise.

Now we are ready to establish neighborhood characterizations of tilt stability for local minimizers

of SOCPs with computing the exact bound of tilt stability via the given data of (1.1) and (1.2). Tilt

stability of x̄ in (1.1) is naturally understood as the one for ϕ(x) := f (x)+δΓ(x) in the sense defined

above. Then x̄ ∈ Γ is a stationary point of (1.1) if 0 ∈ ∂ϕ(x̄), i.e.,

0 ∈ ∂ f (x̄)+NΓ(x̄)

due to the standard first-order subdifferential sum rule.
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Theorem 3.2 (neighborhood characterizations of tilt stability for SOCPs). Let x̄ ∈ Γ be a station-

ary point of (1.1), and let MSCQ hold at x̄ with modulus σ from (3.14). Then the following three

assertions are equivalent:

(i) The point x̄ is tilt-stable minimizer for (1.1) with modulus κ > 0.

(ii) There exists a constant η > 0 such that

(3.17)





〈(
∇2 f (x)+∇2〈λ ,g〉(x)+H (x,λ )

)
u,u
〉
≥ 1

κ
whenever x ∈ Γ∩Bη(x̄), ‖x∗‖ ≤ η , u ∈ KΓ

(
x,x∗−∇ f (x)

)
∩S ,

λ ∈ Λ
(
x,x∗−∇ f (x);u

)
∩σ‖x∗−∇ f (x)‖B.

(iii) There exists a constant η > 0 such that

(3.18)





〈(
∇2 f (x)+∇2〈λ ,g〉(x)+H (x,λ )

)
u,u
〉
≥ 1

κ
whenever x ∈ Γ∩Bη(x̄), ‖x∗‖ ≤ η , u ∈ KΓ

(
x,x∗−∇ f (x)

)
∩S ,

λ ∈ Λ
(
x,x∗−∇ f (x);u

)
∩Λ0

(
x,x∗−∇ f (x)

)
.

Furthermore, the exact bound for tilt stability of x̄ in (1.1) is calculated by

(3.19)
tilt( f +δΓ, x̄) = inf

η>0
sup
{

1
/〈(

∇2 f (x)+∇2〈λ ,g〉(x)+H (x,λ )
)
u,u
〉 ∣∣∣ x ∈ Γ∩Bη(x̄),

‖x∗‖ ≤ η , u ∈ KΓ

(
x,x∗−∇ f (x)

)
∩S , λ ∈ Λ

(
x,x∗−∇ f (x);u

)
∩σ‖x∗−∇ f (x)‖B

}
.

Proof. We derive the claimed results from those in Theorem 2.1 with ϕ(x) = f (x) + δΓ(x) by

using the appropriate rules of first-order and second-order generalized differential calculus. Since

f ∈C2, it follows that ∂ ( f +δΓ)(x) = ∇ f (x)+NΓ(x) and

D∂ ( f +δΓ)(x,x
∗) = ∇2 f (x)+DNΓ

(
x,x∗−∇ f (x)

)

for all x sufficiently close to x̄. Due to the validity of MSCQ at such x with modulus σ , we get from

the second-order calculation in [12, Corollary 5.2] that

DNΓ

(
x,x∗−∇ f (x)

)
(u) =

{
∇2〈λ ,g〉(x)u+H (x,λ )u

∣∣ λ ∈ Λ
(
x,x∗−∇ f (x);u

)
∩σ‖x∗−∇ f (x)‖B

}

+NKΓ(x,x∗−∇ f (x))(u) for any u ∈ R
n.

Noting that the validity of MSCQ at x ∈ Γ with modulus σ ensures that this property holds at x with

any modulus σ ′ ≥ σ gives us the formula

DNΓ

(
x,x∗−∇ f (x)

)
(u) =

{
∇2〈λ ,g〉(x)u+H (x,λ )u

∣∣∣ λ ∈ Λ
(
x,x∗−∇ f (x);u

)
∩Λ0

(
x,x∗−∇ f (x)

)
B

}

+NKΓ(x,x∗−∇ f (x))(u) for any u ∈ R
n.

Substituting the above calculations into (2.11) and (2.12) with taking into account that for every vector

ζ ∈ NKΓ(x,x∗−∇ f (x))(u) we have 〈ζ ,u〉 = 0 allows us to complete the proof of the theorem. �

4 Pointbased Sufficient Conditions for Tilt Stability in SOCP

The results of Theorem 3.2 involve all the points from a neighborhood of the reference stationary

point x̄, which makes the verification of the obtained formula (3.17) difficult. The goal of this section

is to derive verifiable sufficient conditions for tilt stability in SOCPs expressed only at the point x̄ in

question. We first present the the following two technical lemmas.
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Lemma 4.1 (curvature mapping on critical directions). For every pair (x,x∗) ∈ gph NΓ, every mul-

tiplier λ ∈ Λ(x,x∗), and every critical direction u ∈ KΓ(x,x
∗) we have

〈
H (x,λ )u,u

〉
≥ 0.

Proof. It can be assumed without loss of generality that λ0 6= 0 and that g(x) ∈ bdQ \{0}, i.e.,

g0(x) = ‖gr(x)‖ > 0. Indeed, otherwise the lemma conclusion holds trivially. Since λ ∈ NQ(g(x)), it

follows that λ0 =−‖λr‖< 0. Further, we deduce from u ∈ KΓ(x,x
∗) and λ ∈ Λ(x,x∗) that

0 = 〈λ ,∇g(x)u〉 = λ0∇g0(x)u+ 〈λr,∇gr(x)u〉 =−‖λr‖∇g0(x)u+ 〈λr,∇gr(x)u〉{
≤ ‖λr‖

(
−∇g0(x)u+‖∇gr(x)u‖

)

≥ ‖λr‖
(
−∇g0(x)u−‖∇gr(x)u‖

)

implying therefore that (∇g0(x)u)
2 ≤ ‖∇gr(x)u‖2. Using now the identity

〈
H (x,λ )u,u

〉
=

−λ0

g0(x)

(
‖∇gr(x)u‖2 − (∇g0(x)u)

2
)

leads us to the claimed inequality and thus completes the proof. �

Lemma 4.2 (limiting procedure). Consider convergent sequences xk
Γ→ x̄, x∗k → 0, λ k → λ̃ , and

uk → ũ as k → ∞ satisfying the inclusions

λ k ∈ Λ
(
xk,x

∗
k −∇ f (xk);uk

)
∩σ‖x∗k −∇ f (xk)‖B and uk ∈ KΓ

(
xk,x

∗
k −∇ f (xk)

)
∩S

for all k ∈N together with the condition

(4.20) limsup
k→∞

〈H (xk,λ
k)uk,uk〉< ∞.

Then we have the limiting relationships

λ̃ ∈ Λ
(
x̄,−∇ f (x̄)

)
∩σ‖∇ f (x̄)‖B ⊂ Λ0

(
x̄,−∇ f (x̄)

)
,(4.21a)

ũ ∈ S , 〈λ̃ ,∇g(x̄)ũ〉= 0, λ̃0

(
‖∇gr(x̄)ũ‖2 − (∇g0(x̄)ũ)

2
)
= 0.(4.21b)

Proof. Passing to the limit as k → ∞ in the conditions

∇g(xk)
∗λ k = x∗k −∇ f (xk), λ k ∈ NQ

(
g(xk)

)
⊂ Q

∗, and ‖λ k‖ ≤ σ‖x∗k −∇ f (xk)‖

verifies that ∇g(x̄)∗λ̃ k =−∇ f (x̄), λ̃ ∈ Q∗, and ‖λ̃‖ ≤ σ‖∇ f (x̄)‖. This yields

λ̃ ∈ Λ
(
x̄,−∇ f (x̄)

)
∩σ‖∇ f (x̄)‖B ⊂ Λ0

(
x̄,−∇ f (x̄)

)
.

It follows from 〈λ k,∇g(xk)uk〉= 0 as k ∈N that 〈λ̄ ,∇g(x̄)ũ〉= 0. Thus it remains to show that

(4.22) λ̃0

(
‖∇gr(x̄)ũ‖2 − (∇g0(x̄)ũ)

2
)
= 0.

Since (4.22) is certainly true if λ̃0 = 0, we proceed with the case where λ̃0 6= 0 and hence λ k
0 6= 0 for

all large k ∈ N. It follows from λ̃ ∈ Q∗ that −λ̃0 ≥ ‖λ̃r‖. If g(xk) = 0 for infinitely many k, then
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∇g(xk)uk ∈ Q and therefore ∇g(x̄)ũ ∈ Q, which in turn is equivalent to ∇g0(x̄)ũ ≥ ‖∇gr(x̄)ũ‖. From

〈λ̃ ,∇g(x̄)ũ〉= 0 we deduce the conditions

−λ̃0∇g0(x̄)ũ = 〈λ̃r,∇gr(x̄)ũ〉 ≤ ‖λ̃r‖ · ‖∇gr(x̄)ũ‖ ≤ −λ̃0∇g0(x̄)ũ

implying that ‖λ̃r‖·‖∇gr(x̄)ũ‖=−λ̃0∇g0(x̄)ũ. Thus we get that either ‖λ̃r‖=−λ̃0 and ‖∇gr(x̄)ũ‖=
∇g0(x̄)ũ, or ‖∇gr(x̄)ũ‖ = ∇g0(x̄)ũ = 0, which verifies equality (4.22) in this case. In the remaining

case where g(xk) 6= 0 for all but finitely many k ∈N it follows that g(xk) ∈ bdQ \{0} for such k. This

is due to the fact that the condition 0 6= λ k ∈ NQ(g(xk)) yields

〈H (xk,λ
k)uk,uk〉=

−λ k
0

g0(xk)

(
‖∇gr(xk)uk‖2 − (∇g0(xk)uk)

2
)
.

Using (4.20) together with g0(xk)→ 0 as k → ∞ and Lemma 4.1 tells us that

lim
k→∞

λ k
0

(
‖∇gr(xk)uk‖2 − (∇g0(xk)uk)

2
)
= λ̃0

(
‖∇gr(x̄)ũ‖2 − (∇g0(x̄)ũ)

2
)
= 0,

which verifies (4.22) in the latter case and thus completes the proof. �

Now we are ready to proceed with deriving pointbased sufficient conditions for tilt stability in

SOCP. It is instructive to split our consideration into the two cases: (a) in-kernel KΓ(x̄,−∇ f (x̄)) ⊂
ker∇g(x̄) and (b) out-of-kernel KΓ(x̄,−∇ f (x̄)) 6⊂ ker∇g(x̄). The second case can be treated directly

by passing to the limit in the conditions of Theorem 3.2 with the usage of the lemmas above.

Theorem 4.3 (sufficient condition for tilt stability in the out-of-kernel case). In addition to the

assumptions of Theorem 3.2 suppose that there is ū ∈ KΓ(x̄,−∇ f (x̄)) satisfying ∇g(x̄)ū 6= 0. Denote

(4.23) λ̄ :=
‖∇ f (x̄)‖

‖∇g(x̄)∗∇ĝ(x̄)ū‖∇ĝ(x̄)ū with ĝ(x) :=
(
−g0(x),gr(x)

)

and assume also that for some κ > 0 we have

(4.24)

〈(
∇2 f (x̄)+∇2〈λ̄ ,g〉(x̄)

)
u,u
〉
>

1

κ
whenever

u ∈ S with 〈λ̄ ,∇g(x̄)u〉 = 0, λ̄0

(
‖∇gr(x̄)u‖2 − (∇g0(x̄)u)

2
)
= 0.

Then x̄ is a tilt-stable local minimizer for (1.1) with modulus κ . Moreover, we have the upper estimate

tilt( f +δΓ, x̄)≤ sup
{

1
/〈(

∇2 f (x̄)+∇2〈λ̄ ,g〉(x̄)
)
u,u
〉 ∣∣∣ u ∈ S , 〈λ̄ ,∇g(x̄)u〉 = 0,

λ̄0

(
‖∇gr(x̄)u‖2 − (∇g0(x̄)u)

2
)
= 0
}
.

Proof. Employing Theorem 3.2, it suffices to show that the second-order condition (4.24) yields

(3.17). Then the claimed upper estimate of the exact bound of tilt stability follows easily. Assuming

on the contrary that (3.17) fails while (4.24) holds, we find sequences xk
Γ→ x̄, x∗k → 0, uk ∈KΓ(xk,x

∗
k −

∇ f (xk))∩S , and λ k ∈ Λ(xk,x
∗
k −∇ f (xk);uk)∩σ‖x∗k −∇ f (xk)‖B satisfying

(4.25)
〈(

∇2 f (xk)+∇2〈λ k,g〉(xk)+H (xk,λ
k)
)
uk,uk

〉
<

1

κ
for all k ∈ N,

which ensures, in particular, that the sequence of 〈H (xk,λ
k)uk,uk〉 is bounded. Thus passing to a

subsequence if necessary tells us that uk converges to some ũ ∈ S and that λk converges to some λ̃
satisfying (4.21) by Lemma 4.2. Employing further

Λ
(
x̄,−∇ f (x̄)

)
⊂ Q

∗∩
(
∇g(x̄)ū

)⊥
= NQ

(
∇g(x̄)ū

)
⊂
{

α∇ĝ(x̄)ū
∣∣ α ≥ 0

}
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together with ∇g(x̄)∗λ = −∇ f (x̄) for all λ ∈ Λ(x̄,−∇ f (x̄)) ensures that Λ0(x̄,−∇ f (x̄)) = {λ̄} and

hence λ̃ = λ̄ . It follows from (4.25) and Lemma 4.1 that

〈(
∇2 f (x)+∇2〈λ̄ ,g〉(x)

)
ũ, ũ
〉
≤ limsup

k→∞

〈(
∇2 f (xk)+∇2〈λ k,g〉(xk)+H (xk,λ

k)
)
uk,uk

〉
≤ 1

κ
,

which contradicts (4.24) and thus completes the proof of the theorem. �

For our subsequent analysis in the in-kernel case we introduce the set

(4.26)
Z :=

{
(u,λ ,v,w) ∈ S ×Λ0

(
x̄,−∇ f (x̄)

)
×S ×R

n
∣∣∣ 〈λ ,∇g(x̄)u〉= 0,

λ0

(
‖∇gr(x̄)u‖2 − (∇g0(x̄)u)

2
)
= 0, ∇g(x̄)v = 0, λ ∈ NQ

(
∇g(x̄)w+ 1

2
∇2g(x̄)(v,v)

)}

Further, for every triple (u,λ ,v) ∈ R
n ×Q∗×R

n define the infimum function

ρ(u,λ ,v) := inf
z∈Rn

{
−λ0

(
‖∇gr(x̄)z+∇2gr(x̄)(v,u)‖2 −

(
∇g0(x̄)z+∇2g0(x̄)(v,u)

)2
) ∣∣∣(4.27)

〈λ ,∇g(x̄)z+∇2g(x̄)(v,u)〉 = 0
}
.

with the convention that ρ(u,λ ,v) := ∞ whenever {z ∈ R
n | 〈λ ,∇g(x̄)z+∇2g(x̄)(v,u)〉 = 0}= /0.

Let us present another lemma before deriving the main result of this section in the in-kernel case.

Lemma 4.4 (properties of the infimum function). For any triple (u,λ ,v) ∈ R
n ×Q∗ ×R

n we get

that ρ(u,λ ,v) ≥ 0. Furthermore, the infimum in (4.27) is attained whenever ρ(u,λ ,v) is finite.

Proof. If λ = 0, we clearly have that ρ(u,λ ,v) = 0 and that the infimum in (4.27) is attained

at any z ∈ R
n. Considering now the case where λ 6= 0 and ρ(u,λ ,v) < ∞, pick any z satisfying

〈λ ,∇g(x̄)z+∇2g(x̄)(v,u)〉 = 0 and denote η := ∇g(x̄)z+∇2g(x̄)(v,u). It follows from λ ∈ Q∗ \{0}
and the structure of Q in (1.2) that −λ0 ≥ ‖λr‖ and −λ0 > 0. Hence

−λ0|η0|= |〈λr,ηr〉| ≤ ‖λr‖ · ‖ηr‖ ≤ −λ0‖ηr‖,

which implies in turn the relationships

0 ≤−λ0(‖ηr‖2 −η2
0 ) =−λ0

(
‖∇gr(x̄)z+∇2gr(x̄)(v,u)‖2 −

(
∇g0(x̄)z+∇2g0(x̄)(v,u)

)2
)
,

and therefore ρ(u,λ ,v) ≥ 0. To show finally that the infimum is attained in (4.27), observe that the

minimization problem therein is with a quadratic cost and one linear equality constraint. It can be

equivalently reduced by some linear transformation z = b+Ay to an unconstrained quadratic program

of the form min 1
2
〈y,By〉+ 〈c,y〉; see, e.g., [8, Chapter 10.1]. The boundedness of the cost function

ensures that the matrix B is positive semidefinite and that there is some vector ȳ satisfying the first-

order optimality condition Bȳ=−c. Indeed, assuming the opposite yields by the fundamental theorem

of linear algebra the existence of some direction d with Bd = 0 and 〈−c,d〉 6= 0, which contradicts the

boundedness of the cost function. Thus the unconstrained optimization problem admits a solution ȳ,

and so z̄ := b+Aȳ is an optimal solution to the constrained problem under consideration. �

The next theorem is a major result of the paper that establishes pointbased sufficient conditions

for tilt-stable minimizers for SOCPs in the most involved in-kernel case.
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Theorem 4.5 (sufficient conditions for tilt stability in the in-kernel case). In addition to the stand-

ing assumptions of Theorem 3.2 suppose that

(4.28) ∇g(x̄)u = 0 for all u ∈ KΓ

(
x̄,−∇ f (x̄)

)
.

Assume also that there is a number κ > 0 such that the following two conditions are satisfied:

(a) For every u ∈ KΓ(x̄,−∇ f (x̄))∩S and every λ ∈ Λ(x̄,−∇ f (x̄);u) we have

〈(
∇2 f (x̄)+∇2〈λ ,g〉(x̄)

)
u,u
〉
>

1

κ
.

(b) For every quadruple (u,λ ,v,w) ∈ Z we have

(4.29)

〈(
∇2 f (x̄)+∇2〈λ ,g〉(x̄)

)
u,u
〉
+

ρ(u,λ ,v)

∇g0(x̄)w+ 1
2
∇2g0(x̄)(v,v)

>
1

κ

whenever ∇g(x̄)w+
1

2
∇2g(x̄)(v,v) 6= 0; and

(4.30)
〈(

∇2 f (x̄)+∇2〈λ ,g〉(x̄)
)
u,u
〉
>

1

κ
whenever ρ(u,λ ,v) = 0.

Then x̄ is a tilt-stable local minimizer for (1.1) with modulus κ . Moreover, we have the upper estimate

(4.31) tilt( f +δΓ, x̄)≤
1

min{χ1,χ2,χ3}
,

where the numbers χi, i = 1,2,3, are calculated by

χ1 := inf
{〈(

∇2 f (x̄)+∇2〈λ ,g〉(x̄)
)
u,u
〉 ∣∣ u ∈ KΓ

(
x̄,−∇ f (x̄)

)
∩S , λ ∈ Λ

(
x̄,−∇ f (x̄);u

)}
,

χ2 := inf
{〈(

∇2 f (x̄)+∇2〈λ ,g〉(x̄)
)
u,u
〉 ∣∣ ∃v,w with (u,λ ,v,w) ∈ Z , ρ(u,λ ,v) = 0

}
,

χ3 := inf
{〈(

∇2 f (x̄)+∇2〈λ ,g〉(x̄)
)
u,u
〉
+

ρ(u,λ ,v)

∇g0(x̄)w+ 1
2
∇2g0(x̄)(v,v)

∣∣∣

(u,λ ,v,w) ∈ Z , ∇g(x̄)w+
1

2
∇2g(x̄)(v,v) 6= 0

}

with the set Z defined in (4.26).

Proof. Let us show that the fulfillment of both conditions (a) and (b) implies that the tilt sta-

bility characterization (3.17) of Theorem 3.2 holds. This verifies all the conclusions of the theorem

including the upper bound estimate (4.31), which follows from (3.19) and the proof below.

Arguing by contradiction, suppose that (3.17) fails, i.e., there are sequences xk
Γ→ x̄, x∗k → 0, uk ∈

KΓ(xk,x
∗
k −∇ f (xk))∩S , and λ k ∈ Λ(xk,x

∗
k −∇ f (xk);uk)∩σ‖x∗k −∇ f (xk)‖B satisfying

(4.33)
〈(

∇2 f (xk)+∇2〈λ k,g〉(xk)+H (xk,λ
k)
)
uk,uk

〉
<

1

κ
for all k ∈ N,

and then show that either condition (a) or condition (b) is violated. Passing to a subsequence if

necessary, we get that the sequences uk and λ k converge to some ũ and λ̃ , respectively. Since (4.33)

yields the boundedness of 〈H (xk,λ
k)
)
uk,uk〉, it follows from Lemma 4.2 that

ũ ∈ S , λ̃ ∈ Λ0
(
x̄,−∇ f (x̄)

)
, 〈λ̃ ,∇g(x̄)ũ〉= 0, λ̃0

(
‖∇gr(x̄)ũ‖2 − (∇g0(x̄)ũ)

2
)
= 0.
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Let us split the subsequent proof into the following two cases:

Case I: We have that xk = x̄ for infinitely many k. Suppose without loss of generality that it holds for

all k ∈ N. Then ∇g(x̄)uk ∈ Q whenever k ∈ N, and thus ∇g(x̄)ũ ∈ Q yielding ũ ∈ TΓ(x̄) by (3.15)

due to the imposed MSCQ. Together with 〈λ̃ ,∇g(x̄)ũ〉 = 0 it tells us that ũ ∈ KΓ(x̄,−∇ f (x̄)). Next

we show that λ̃ ∈ Λ(x̄,−∇ f (x̄); ũ). Assuming on the contrary that λ̃ 6∈ Λ(x̄,−∇ f (x̄); ũ), we find

µ ∈ Λ(x̄,−∇ f (x̄)) satisfying 〈µ − λ̃ ,∇2g(x̄)(ũ, ũ)〉> 0, and therefore

(4.34) 〈µ − λ̃ ,∇2g(x̄)(uk,uk)〉> 0 for all large k.

Consider the three possibilities here: λ̃ = 0, λ̃ ∈ intQ∗, and λ̃ ∈ bdQ∗ \ {0}. If λ̃ = 0, take any

sequence tk ↓ 0 and get by ũ ∈ Q the equalities

dist
(
g(x̄+ tkũ);Q

)
= dist

(
g(x̄)+ tk∇g(x̄)ũ+O(t2

k );Q
)
= O(t2

k ) as k → ∞

which allow us, being combined with MSCQ, to find a bounded sequence of zk satisfying g(x̄+ tkũ+
t2
k zk) ∈ Q. Using it together with µ ∈ Q∗ and ∇g(x̄)∗µ =−∇ f (x̄) = 0 gives us

0 ≥ 〈µ ,g(x̄+ tkũ+ t2
k zk)〉 =

〈
µ ,g(x̄)+∇g(x̄)(tkũ+ t2

k zk)+
t2
k

2
∇2g(x̄)(ũ, ũ)+o(t2

k )
〉

=
〈

µ ,
t2
k

2
∇2g(x̄)(ũ, ũ)+o(t2

k )
〉
.

Dividing the above inequality by
t2
k

2
and passing to the limit as k → ∞, we conclude that

〈µ ,∇2g(x̄)(ũ, ũ)〉 ≤ 0 = 〈λ̃ ,∇2g(x̄)(ũ, ũ)〉

and thus arrive at a contradiction in the case where λ̃ = 0.

Assuming now that λ̃ ∈ intQ∗, we get λ k+α(µ − λ̃ )∈ intQ∗ for all α > 0 sufficiently small and

all k ∈N sufficiently large. Together with ∇g(x̄)∗(µ − λ̃ ) =−∇ f (x̄)− (−∇ f (x̄)) = 0 it brings us to

λ k +α(µ − λ̃) ∈ Λ
(
x̄,x∗k −∇ f (x̄)

)
= Λ

(
xk,x

∗
k −∇ f (xk)

)
and

〈λ k +α(µ − λ̃),∇2g(xk)(uk,uk)〉> 〈λ k,∇2g(xk)(uk,uk)〉,
which contradicts the condition λ k ∈ Λ(xk,x

∗
k −∇ f (xk);uk) that follows from the negation of (3.17).

Finally, we consider the remaining possibility where λ̃ ∈ bdQ∗ \{0}. Then it follows from the

structure of Q∗ that −λ̃0 = ‖λ̃r‖> 0, µ0 +‖µr‖ ≤ 0, and

µ0 − λ̃0 +
〈 λ̃r

‖λ̃r‖
,µr − λ̃r

〉
= µ0 − λ̃0 +

〈 λ̃r

‖λ̃r‖
,µr

〉
−‖λ̃r‖ ≤ µ0 − λ̃0 +

‖λ̃r‖
‖λ̃r‖

‖µr‖−‖λ̃r‖

= µ0 − λ̃0 +‖µr‖−‖λ̃r‖ ≤ 0

with the usage of the Cauchy-Schwarz inequality. Since the latter holds as equality if and only if the

two involved vectors are collinear, we have µ0− λ̃0+〈 λ̃r

‖λ̃r‖
,µr− λ̃r〉= 0 if and only if µ =αλ̃ for some

number α ∈ R. This implies by employing ∇g(x̄)∗µ = ∇g(x̄)∗λ̃ =−∇ f (x̄) that (α −1)∇g(x̄)∗λ̃ = 0
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and consequently that −∇ f (x̄) = ∇g(x̄)∗λ̃ = 0 due to µ 6= λ̃ . The latter contradicts the condition

λ̃ = 0 by λ̃ ∈ Λ0(x̄,−∇ f (x̄)). Thus we get that

µ0 − λ̃0 +
〈 λ̃r

‖λ̃r‖
,µr − λ̃r

〉
< 0,

which ensures that µ0 − λ̃0 + 〈 λ k
r

‖λ k
r ‖
,µr − λ̃r〉 < 0 for all k sufficiently large and hence ζ k

0 + ‖ζ k
r ‖ < 0

with ζ k := λ k +αk(µ − λ̃), where αk > 0 is chosen to be sufficiently small. Taking into account that

ζ k ∈Q∗ and combining it with ∇g(x̄)∗ζ k = ∇g(x̄)∗λ k = x∗k −∇ f (x̄) tell us that ζ k ∈ Λ(x̄,x∗k −∇ f (x̄))
for all k ∈ N. It shows together with (4.34) that

〈ζ k,∇2g(x̄)(uk,uk)〉> 〈λ k,∇2g(x̄)(uk,uk)〉, k ∈ N,

which contradicts the inclusion λ k ∈ Λ(x̄,x∗k −∇ f (x̄);uk) and thus finishes the proof in Case I.

Case II: We have that xk 6= x̄ for all but finitely many k. Suppose without loss of generality that it

holds for all k ∈ N. By passing to a subsequence if necessary, we get that the sequence (xk − x̄)/tk
converges to some v̄ ∈ S , where tk := ‖xk − x̄‖. Using g(xk) ∈ Q, 〈λ k,g(xk)〉 = 0 for all k, and the

closedness of the cone Q leads us to the relationships

lim
k→∞

g(xk)

tk
= lim

k→∞

g(xk)−g(x̄)

tk
= ∇g(x̄)v̄ ∈ Q and 0 = lim

k→∞

〈λ k,g(xk)−g(x̄)〉
tk

= 〈λ̃ ,∇g(x̄)v̄〉,

which imply that v̄ ∈ KΓ(x̄,−∇ f (x̄)) and consequently that ∇g(x̄)v̄ = 0 by the assumptions of the

theorem. Denoting wk := t−2
k (xk − x̄) yields

(4.35) g(xk) = g(x̄)+ t2
k

(
∇g(x̄)wk+

1

2
∇2g(x̄)(v̄, v̄)

)
+o(t2

k ) = t2
k

(
∇g(x̄)wk+

1

2
∇2g(x̄)(v̄, v̄)

)
+o(t2

k ).

To proceed further, we split our analysis into the three subcases:

limsup
k→∞

‖g(xk)‖/t2
k = ∞, limsup

k→∞

‖g(xk)‖/t2
k = 0, and 0 < limsup

k→∞

‖g(xk)‖/t2
k < ∞,

which correspond to the following steps in the proof.

Step 1: Assume that limsupk→∞ ‖g(xk)‖/t2
k =∞. Then deduce from (4.35) that limsupk→∞ ‖∇g(x̄)wk‖=

∞. Passing to a subsequence if necessary, we get that limk→∞ ‖∇g(x̄)wk‖ = ∞ and that the sequence

of ∇g(x̄)wk/‖∇g(x̄)wk‖ converges to some element ∇g(x̄)w ∈ S . It follows from (4.35) that

∇g(x̄)w = lim
k→∞

g(xk)

t2
k ‖∇g(x̄)wk‖

∈ Q and 〈λ̃ ,∇g(x̄)w〉= lim
k→∞

〈λ k,g(xk)〉
t2
k ‖∇g(x̄)wk‖

= 0,

which yields w ∈ KΓ(x̄,−∇ f (x̄)). Together with ∇g(x̄)w 6= 0 it contradicts the imposed assumption.

Step 2: Assume that limsupk→∞ ‖g(xk)‖/t2
k = 0. In this setting we deduce from (4.35) that

0 = lim
k→∞

g(xk)

t2
k

= lim
k→∞

∇g(x̄)wk +
1

2
∇2g(x̄)(v̄, v̄).

Consequently, there is a vector w̃ ∈R
n such that ∇g(x̄)w̃+ 1

2
∇2g(x̄)(v̄, v̄) = 0, and hence the inclusion

(ũ, λ̃ , v̄, w̃) ∈ Z holds. Next we claim that

(4.36) lim
k→∞

λ k
0

‖∇gr(xk)uk‖2 −
(
∇g0(xk)uk

)2

t2
k

= 0.
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Indeed, assuming g(xk) = 0 yields ∇g(xk)uk ∈ Q, λ k ∈ Q∗, and 〈λ k,∇g(xk)uk〉 = 0 while imply-

ing in turn the condition λ k
0

(
‖∇gr(xk)uk‖2 − (∇g0(xk)uk)

2
)
= 0. In the case where g(xk) 6= 0 for

infinitely many k, we deduce from (4.33) that the corresponding sequence of 〈H (xk,λ
k)uk,uk〉 must

be bounded. Then taking into account the definition of H (xk,λ
k), Lemma 4.1, and the convergence

g0(xk)/t2
k → 0 as k → ∞ verifies the validity of (4.36).

Our next claim is that condition (4.36) ensures that ρ(ũ, λ̃ , v̄) = 0. This is certainly true if λ̃ = 0.

In the case where λ̃ 6= 0 we deduce from λ̃0 ≤−‖λ̃r‖ that λ̃0 < 0 and therefore

0 = lim
k→∞

‖∇gr(xk)uk‖2 −
(
∇g0(xk)uk

)2

t2
k

= lim
k→∞

{ ∥∥∇gr(x̄)
uk

tk
+∇2gr(x̄)(v̄, ũ)

∥∥2

−
(
∇g0(x̄)

uk

tk
+∇2g0(x̄)(v̄, ũ)

)2
}
.

Furthermore, we have the equalities

0 = lim
k→∞

〈λ k,∇g(xk)uk〉
tk

= lim
k→∞

〈
λ̃ ,∇g(x̄)

uk

tk
+∇2g(x̄)(v̄, ũ)

〉
.

Supposing that the sequence of ∇g(x̄)uk

tk
is unbounded allows us to find a subsequence of ∇g(x̄)uk

tk
/‖∇g(x̄)uk

tk
‖,

which converges to some ∇g(x̄)z ∈ S satisfying

‖∇gr(x̄)z‖2 −
(
∇g0(x̄)z

)2
= 0 and 〈λ̃ ,∇g(x̄)z〉= 0.

It follows that, depending on the sign of ∇g0(x̄)z, either z ∈ KΓ(x̄,−∇ f (x̄)) or −z ∈ KΓ(x̄,−∇ f (x̄)),
which contradicts the assumption above. Thus the sequence of ∇g(x̄)uk

tk
is bounded, and so its subse-

quence converges to some element ∇g(x̄)z satisfying

‖∇gr(x̄)z+∇2gr(x̄)(v̄, ũ)‖2 −
(
∇g0(x̄)z+∇2g0(x̄)(v̄, ũ))

2 = 0, and 〈λ̃ ,∇g(x̄)z+∇2g(x̄)(v̄, ũ)〉= 0.

Employing now Lemma 4.4 shows that ρ(ũ, λ̃ , v̄) is nonnegative, and therefore we get that ρ(ũ, λ̃ , v̄)=
0. It follows finally from (4.33) and Lemma 4.1 that the inequalities

〈(
∇2 f (x̄)+∇2〈λ̃ ,g〉(x̄)

)
ũ, ũ
〉
≤ limsup

k→∞

〈(
∇2 f (xk)+∇2〈λ k,g〉(xk)+H (xk,λ

k)
)
uk,uk

〉
≤ 1

κ

hold and thus contradict (4.30) in this setting.

Step 3: Assume that 0 < limsupk→∞ ‖g(xk)‖/t2
k < ∞. Passing to a subsequence if necessary allows us

to use that g(xk)/t2
k converges to some vector q ∈ Q \{0}. Then we deduce from (4.35) that ∇g(x̄)wk

converges to such a vector ∇g(x̄)w̃ that q = ∇g(x̄)w̃+ 1
2
∇2g(x̄)(v̄, v̄). Since 〈λ k,g(xk)〉 = 0 for all k,

it follows that 〈λ̃ ,q〉 = 0 and therefore (ũ, λ̃ , v̄, w̃) ∈ Z . Then (4.33) together with the nonnegativity

of 〈H (xk,λ
k)uk,uk〉 tells us that the sequence of 〈H (xk,λ

k)uk,uk〉 is bounded. Let us verify that

limsup
k→∞

〈H (xk,λ
k)uk,uk〉 ≥

ρ(ũ, λ̃ , v̄)

q0

.

Indeed, this claim holds trivially if λ̃ = 0 by the nonnegativity of 〈H (xk,λ
k)uk,uk〉 and ρ(ũ,0, v̄) = 0.

Assuming now that λ̃ 6= 0 yields λ̃0 < 0. Taking into account (4.33), Lemma 4.1 as well as the
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convergence g0(xk)/t2
k → q0 > 0 and λ k

0 → λ̃0 < 0 tells us that the nonnegative sequence of

g0(xk)

−λ k
0 t2

k

〈H (xk,λ
k)uk,uk〉=

‖∇gr(xk)uk‖2 − (∇g0(xk)uk)
2

t2
k

=
∥∥∥∇gr(x̄)

uk

tk
+∇2gr(x̄)(v̄, ũ)+

o(tk)

tk

∥∥∥
2

−
(

∇g0(x̄)
uk

tk
+∇2g0(x̄)(v̄, ũ)+

o(tk)

tk

)2

is bounded. The sequence of ∇g(xk)
uk

tk
must also be bounded since otherwise a subsequence of

∇g(xk)uk/tk

‖∇g(xk)uk/tk‖
=

∇g(x̄)uk/tk +∇2g(x̄)(v̄, ũ)+o(tk)/tk

‖∇g(xk)uk/tk‖
converges to some element ∇g(x̄)w ∈ S satisfying

‖∇gr(x̄)w‖2 −
(
∇g0(x̄)w

)2
= lim

k→∞

g0(xk)

−λ k
0 t2

k‖∇g(xk)uk/tk‖2
〈H (xk,λ

k)uk,uk〉= 0 and

〈λ̃ ,∇g(x̄)w〉= lim
k→∞

〈λ k,∇g(xk)uk/tk〉
‖∇g(xk)uk/tk‖

= 0.

Thus, depending on the sign of ∇g0(x̄)w, we have that either w∈KΓ(x̄,−∇ f (x̄)) or −w∈KΓ(x̄,−∇ f (x̄))
with ∇g(x̄)w 6= 0, which contradicts the imposed assumption. Hence the sequence of

∇g(xk)
uk

tk
= ∇g(x̄)

uk

tk
+∇2g(x̄)(v̄, ũ)+

o(tk)

tk

is bounded, and so is the one of ∇g(x̄)uk/tk. Passing to a subsequence if necessary tells us that

∇g(x̄)uk/tk converges to some ∇g(x̄)z. Thus it follows that

〈λ̃ ,∇g(x̄)z+∇2g(x̄)(v̄, ũ)〉= lim
k→∞

〈λ k,∇g(xk)
uk

tk
〉= 0.

Remembering the definition of ρ in (4.27), we arrive at

limsup
k→∞

〈H (xk,λ
k)uk,uk〉= limsup

k→∞

−λ k
0

g0(xk)/t2
k

‖∇gr(xk)uk‖2 − (∇g0(xk)uk)
2

t2
k

≥ −λ̃0

q0

(
‖∇gr(x̄)z+∇2gr(x̄)(v̄, ũ)‖2 −

(
∇g0(x̄)z+∇2g0(x̄)(v̄, ũ)

)2
)

≥ ρ(ũ, λ̃ , v̄)

q0

.

Combining it with (4.33) and q0 = ∇g0(x̄)w̃+ 1
2
∇2g0(x̄)(v̄, v̄) yields

〈(
∇2 f (x̄)+∇2〈λ ,g〉(x̄)

)
ũ, ũ
〉
+

ρ(ũ, λ̃ , v̄)

∇g0(x̄)w̃+ 1
2
∇2g0(x̄)(v̄, v̄)

≤ limsup
k→∞

〈(
∇2 f (xk)+∇2〈λ k,g〉(xk)+H (xk,λ

k)
)
uk,uk

〉
≤ 1

κ
.

This contradicts (4.29) and thus completes the proof of the theorem. �

The obtained sufficient conditions for tilt stability of local minimizers in SOCPs are rather in-

volved and are hard to verify. Now we derive simplified ones, which imply the sufficient conditions

in both Theorems 4.3 and 4.5. The simplified conditions for tilt stability in SOCPs derived in the next

theorem are formulated in the same way in the in-kernel and out-of-kernel cases and resemble those

established in [9, Theorem 6.1] for NLPs.
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Theorem 4.6 (simplified sufficient conditions for tilt stability in SOCPs). In addition to the as-

sumptions of Theorem 3.2 suppose that, given a number κ > 0, we have the inequality

〈(
∇2 f (x̄)+∇2〈λ ,g〉(x̄)

)
u,u
〉
>

1

κ

that is valid for all the multipliers

λ ∈ Λ̃ :=
⋃

v∈KΓ(x̄,−∇ f (x̄))∩S

Λ
(
x̄,−∇ f (x̄);v

)

and for all the vectors u ∈ S satisfying

〈λ ,∇g(x̄)u〉= 0 and λ0

(
‖∇gr(x̄)u‖2 − (∇g0(x̄)u)

2
)
= 0.

Then x̄ is a tilt-stable local minimizer for (1.1) with the prescribed modulus κ .

Proof. Let us verify that the conditions imposed in the theorem ensure the fulfillment of the

sufficient conditions for tilt stability in both Theorems 4.3 and 4.5. As shown in the proof of Theo-

rem 4.3, we have Λ0(x̄,−∇ f (x̄)) = {λ̄}, which implies that λ̄ ∈ Λ(x̄,−∇ f (x̄); ū) when ∇ f (x̄) 6= 0. If

∇ f (x̄) = 0, consider any multiplier λ ∈ Λ(x̄,0) and take an arbitrary sequence tk ↓ 0. Since

dist
(
g(x̄+ tkū);Q

)
= dist

(
tk∇g(x̄)ū+O(t2

k );Q
)
= O(t2

k ),

there exists a bounded sequence of wk satisfying g(x̄ + tkū+ t2
k wk) ∈ Q. Taking into account that

λ ∈ Q∗ and ∇g(x̄)∗λ = 0, we get

0 ≥ limsup
k→∞

〈λ ,g(x̄+ tkū+ t2
k wk)〉

t2
k

= limsup
k→∞

〈
λ ,∇g(x̄)(tkū+ t2

k wk)+
t2
k

2
∇2g(x̄)(ū, ū)

〉

t2
k

=
1

2
∇2〈λ ,g〉(x̄)(ū, ū).

This yields the inclusion 0 ∈ Λ(x̄,0; ū) and thus shows that condition (4.24) of Theorem 4.3 holds.

Next we verify that both conditions (a) and (b) of Theorem 4.5 are fulfilled. The validity of

(a) follows from the fact that for every u ∈ KΓ(x̄,−∇ f (x̄)) and every λ ∈ Λ(x̄,−∇ f (x̄);u) we have

〈λ ,∇g(x̄)u〉= 0 and λ0

(
‖∇gr(x̄)u‖2−(∇g0(x̄)u)

2
)
= 0. To verify (b), consider an arbitrary quadruple

(u,λ ,v,w) ∈ Z and observe that for any µ ∈ Λ(x̄,−∇ f (x̄)) we get

〈
µ −λ ,

1

2
∇2g(x̄)(v,v)

〉
=
〈

µ −λ ,∇g(x̄)w+
1

2
∇2g(x̄)(v,v)

〉
=
〈

µ ,∇g(x̄)w+
1

2
∇2g(x̄)(v,v)

〉
≤ 0,

which yields λ ∈ Λ(x̄,−∇ f (x̄);v). Then (b) follows by taking into account that ρ(u,λ ,v) ≥ 0 by

Lemma 4.4 and ∇g0(x̄)w+ 1
2
∇2g0(x̄)(v,v) > 0 due to 0 6= ∇g(x̄)w+ 1

2
∇2g(x̄)(v,v) ∈ Q. �

It is important to observe that the nondegeneracy condition, which means that ∇g(x̄) has full rank,

implies that the multiplier set Λ(x̄,−∇ f (x̄)) is a singleton and that the term ρ(u,λ ,v) vanishes. Fur-

thermore, in this case the sufficient conditions obtained in Theorems 4.3, 4.5, and 4.6 are equivalent.

The next example demonstrates that all these phenomena fail for programs that exhibit degeneracy.

Example 4.7 (tilt stability under degeneracy). Consider the following program of type (1.1):

minimize f (x) :=
1

4

(
3x2

1 +
7−

√
15√

15

(
x2

2 + x1x2

)
)
− x3 with x = (x1,x2,x3) ∈ R

3

subject to g(x) =
(
g1(x),g2(x),g3(x)

)
∈ Q,
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where the functions gi(x), i = 1,2,3, are defined by

g1(x) :=
1

2
(x2

1 + x2
2 + x1x2), g2(x) :=

1

4

(
1

2
x2

1 + x2
2 + x1x2

)
, g3(x) :=

1

4

(
x2

1 + x2
2 + x1x2

)
+ x3.

It is not hard to check by direct calculations that x̄ := (0,0,0) is a stationary point of the SOCP under

consideration. We intend to show that Theorem 4.6 cannot detect that x̄ is a tilt-stable local minimizer

of this problem while the more complicated Theorem 4.5 can.

Let us first check that MSCQ is fulfilled for the constraint system g(x) ∈ Q at x̄ represented by

Q =
{

q = (q0,qr) ∈ R×R
2
∣∣ h(q) := ‖qr‖−q0 ≤ 0

}
.

For any x1,x2 denote α := g1(x1,x2,x3) and β := g2(x1,x2,x3) and observe that h(g(x1,x2, x̂3)) = 0

for x̂3 :=−α/2±
√

α2 −β 2. We have furthermore that x = (x1,x2,x3) ∈ g−1(Q) if and only if

−α

2
−
√

α2 −β 2 ≤ x3 ≤−α

2
+
√

α2 −β 2 > 0.

Consider now x3 :=−α/2+
√

α2 −β 2+γ with some γ > 0 and note that g3(x1,x2,x3)=
√

α2 −β 2+
γ . Taking into account that

√
3α ≤ 2

√
α2 −β 2 and β ≤ α/2 and denoting by L > 0 a Lipschitz

constant of h, we get the distance estimate

dist
(
x;g−1(Q)

)
≤ γ =

2√
3




√√√√
(

α +

√
3

2
γ

)2

−α


≤ 2√

3

(√
α2 +2

√
α2 −β 2γ + γ2 −α

)

=
2√
3

(√
β 2 +

(√
α2 −β 2 + γ

)2

−α

)
=

2√
3

∣∣h
(
g(x)

)∣∣≤ 2√
3

Ldist (g(x);Q).

The case where x3 :=−α/2−
√

α2 −β 2+ γ with some γ < 0 can be treated similarly, and hence the

claimed metric subregularity is verified.

To proceed further, calculate the needed values ∇ f (x̄) = (0,0,−1),

KΓ

(
x̄,−∇ f (x̄)

)
= ker ∇g(x̄) = R

2 ×{0}, and Λ
(
x̄,−∇ f (x̄)

)
=
{
(a,b,1)

∣∣ a ≤−
√

b2 +1
}
.

Thus, given a direction (t,s,0) ∈ KΓ(x̄,−∇ f (x̄)), we get that (a,b,1) ∈ Λ(x̄,−∇ f (x̄);(t,s,0)) if and

only if the pair (a,b) is a solution to the optimization problem:

maximize a(t2 + s2 + ts)+
b

2

(
t2

2
+ s2 + ts

)
+

1

2

(
t2 + s2 + ts

)
subject to a ≤−

√
b2 +1.

Taking into account that t2 + s2 + ts > 0, we can reduce the latter problem to the unconstrained maxi-

mization with respect to b only:

maximize −
√

b2 +1
(
t2 + s2 + ts

)
+

b

2

(
t2

2
+ s2 + ts

)
+

1

2

(
t2 + s2 + ts

)
,

which can be solved explicitly. Denoting A := t2 + s2 + ts and B := t2/2+ s2 + ts, the optimal value

of b and consequently of a are calculated by

(4.37) b =
B√

4A2 −B2
and a =− 2A√

4A2 −B2
.
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Note that the numbers A, B, and A−B are nonnegative, and hence it follows that b ≥ 0. Furthermore,

for any multiplier λ = (a,b,1) and any direction u = (p,q,0) ∈ ker ∇g(x̄) we have

(4.38)
〈(

∇2 f (x̄)+∇2〈λ ,g〉(x̄)
)
u,u
〉
=

(
a+

b

4
+2

)
p2 +

(
a+

b

2
+

7

2
√

15

)(
q2 + pq

)
.

Let us check that the number in (4.38) is nonnegative for all λ ∈ Λ(x̄,−∇ f (x̄);v) with some v =
(t,s,0) ∈ KΓ(x̄,−∇ f (x̄))∩S . Indeed, note that (4.37) yields (a+b/4+2)> 0 and (a+b/4+2)>
(a+b/2+7/2

√
15) by B2 ≤ A2. Since t2 + s2 = 1, we get that A = µB for some µ ∈ [1,2], and so

√
4A2 −B2

(
a+

b

2
+

7

2
√

15

)
=

(
7

2
√

15

√
4µ2 −1+

1

2
−2µ

)
B ≥ 0

for all µ ∈ [8/11,2] ⊃ [1,2]. The equality is attained therein if and only if µ = 2, which gives us the

multiplier λ̃ := (−4/
√

15,1/
√

15,1) and the corresponding directions equal either v = (±1,0,0) or

v=(±
√

2/2,∓
√

2/2,0). This ensures therefore that for every multiplier λ 6= λ̃ =(−4/
√

15,1/
√

15,1)
the number in (4.38) is strictly positive whenever direction u = (p,q,0) with p2 +q2 = 1 is taken. In-

deed, it follows from the estimate
(

a+
b

4
+2

)
p2 +

(
a+

b

2
+

7

2
√

15

)(
q2 + pq

)
≥
(

a+
b

2
+

7

2
√

15

)(
p2 +q2 + pq

)

≥ 1

2

(
a+

b

2
+

7

2
√

15

)
.

Considering now the noted multiplier λ̃ = (a,b,1) = (−4/
√

15,1/
√

15,1), we have that (a+ b/2+
7/2

√
15) = 0, and so the number in (4.38) equals (a + b/4 + 2)p2 ≥ 0. Choosing the directions

u = (0,±1,0) gives us the equality

〈(
∇2 f (x̄)+∇2〈λ̃ ,g〉(x̄)

)
u,u
〉
= 0,

which shows that the tilt stability of x̄ cannot be detected by Theorem 4.6.

On the other hand, with the same λ̃ and u = (0,±1,0) we get ρ(u, λ̃ ,v)> 0 for all the directions

v = (k, l,0) such that k+ 2l 6= 0 and k2 + l2 = 1. Indeed, using the values 〈∇2g(x̄)u,v〉 = ±(k/2+

l)(1,1/2,1/2) and ∇g(x̄)z = (0,0,z3) for any z = (z1,z2,z3) and taking into account that 〈λ̃ ,∇g(x̄)z+
〈∇2g(x̄)u,v〉〉 = 0 tell us that z3 =±(7−

√
15)/2

√
15(k/2+ l). Consequently, it yields

∇g(x̄)z+ 〈∇2g(x̄)u,v〉 =±
(

k

2
+ l

)(
1,

1

2
,

7

2
√

15

)

and 49/60(k/2+ l)2 +(k/2+ l)2/4− (k/2+ l)2 > 0 if k/2+ l 6= 0. This verifies that ρ(u, λ̃ ,v)> 0.

It follows from the proof of Theorem 4.6 that λ ∈ Λ(x̄,−∇ f (x̄);v) for any quadruple (u,λ ,v,w) ∈
Z . Since it is the case for the chosen vectors λ̃ , u = (0,±1,0), and v equal to either (±1,0,0) or

v = (±
√

2/2,∓
√

2/2,0), with some w ∈Rn, we get ρ(u, λ̃ ,v)> 0 and thus deduce from Theorem 4.5

in the in-kernel case that x̄ is a tilt-stable minimizer for the SOCP under consideration.

5 Pointbased Necessary Conditions and Criteria for Tilt Stability

This section is mainly devoted to deriving pointbased necessary conditions for tilt-stable minimizers

of SOCPs. The obtained results are complementary to the sufficient conditions for such minimiz-

ers given in Section 4 and, being unified with the latter, allow us to establish complete pointbased

characterizations of tilt stability in second-order cone programming.
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As in Section 4, it makes sense to consider separately the in-kernel and out-of-kernel cases. We

start with the easier out-of-kernel case in which the following no-gap necessary condition holds while

being different from the sufficient one in Theorem 4.3 only by the nonstrict inequality sign.

Theorem 5.1 (necessary condition for tilt-stable minimizers of SOCPs in the out-of-kernel case).

Let x̄ be a tilt-stable local minimizer of (1.1) with modulus κ under the standing assumptions of

Theorem 3.2. Suppose in addition that there is a vector ū ∈ KΓ(x̄,−∇ f (x̄)) satisfying ∇g(x̄)ū 6= 0

and take the multiplier λ̄ defined in (4.23). Then for every direction u ∈S satisfying 〈λ̄ ,∇g(x̄)u〉= 0

and λ̄0(‖∇gr(x̄)u‖2 − (∇g0(x̄)u)
2) = 0 we have the condition

(5.39)
〈(

∇2 f (x̄)+∇2〈λ̄ ,g〉(x̄)
)
u,u
〉
≥ 1

κ
.

Furthermore, the exact bound of tilt stability of (1.1) at x̄ is lower estimated by

tilt( f +δΓ, x̄)≥ sup
{

1
/〈(

∇2 f (x̄)+∇2〈λ̄ ,g〉(x̄)
)
u,u
〉 ∣∣∣ u ∈ S , 〈λ̄ ,∇g(x̄)u〉 = 0,

λ̄0

(
‖∇gr(x̄)u‖2 − (∇g0(x̄)u)

2
)
= 0
}
.

Proof. We proceed with the verification of the necessary condition (5.39) while observing that the

exact bound estimate follows directly from the proof below. Assuming on the contrary that condition

(5.39) fails for the tilt-stable minimizer x̄, find ũ ∈ S satisfying

〈λ̄ ,∇g(x̄)ũ〉= 0, λ̄0

(
‖∇gr(x̄)u‖2 − (∇g0(x̄)ũ)

2
)
= 0, and

〈(
∇2 f (x̄)+∇2〈λ̄ ,g〉(x̄)

)
ũ, ũ
〉
<

1

κ

and then show that x̄ is not a tilt-stable local minimizer of (3.2) with modulus κ by using the neigh-

borhood characterization of this property taken from Theorem 3.2. We proceed with considering the

following two possible settings.

Suppose first that ∇ f (x̄) 6= 0, and so ∇g(x̄)∗λ̄ =−∇ f (x̄) 6= 0 with λ̄ 6= 0. This yields

∇g(x̄)ū ∈ bdQ \{0}, ‖∇gr(x̄)ū‖= ∇g0(x̄)ū > 0, and − λ̄0 = ‖λ̄r‖> 0.

Therefore |∇g0(x̄)ũ| = ‖∇gr(x̄)ũ‖ and, depending on the sign of ∇g0(x̄)ũ, we have that either ũ ∈
KΓ(x,−∇ f (x̄)) or −ũ ∈ KΓ(x,−∇ f (x̄)). Since the left-hand side of (5.39) is quadratic in u, assume

without loss of generality that ũ ∈ KΓ(x,−∇ f (x̄)). Using the same arguments as in the proof of

Theorem 4.3 leads us to the equalities

Λ0
(
x̄,−∇ f (x̄)

)
= Λ

(
x̄,−∇ f (x̄)

)
=
{

λ̄
}
,

which imply that λ̄ ∈ Λ(x̄,−∇ f (x̄); ũ) and show that (3.17) is violated with u = ũ, x = x̄, x∗ = 0, and

λ = λ̄ for every η > 0. This verifies that x̄ is not a tilt-stable local minimizer of (1.1) with modulus κ .

Now suppose that ∇ f (x̄) = 0, and hence λ̄ = 0 by (4.23). Choosing an arbitrary sequence tk ↓ 0

and using MSCQ give us xk ∈ Γ satisfying the estimate

‖xk − (x̄+ tkū)‖ ≤ σdist
(
g(x̄+ tkū);Q

)
= o(tk) for all large k ∈N.

If g(xk)∈ intQ holds for infinitely many k, then for these k we have ũ∈KΓ(xk,0)=R
n and

〈(
∇2 f (xk)+

∇2〈0,g〉(xk)
)
ũ, ũ
〉
< 1/κ when k is sufficiently large. Thus the neighborhood characterization (3.17)

for the tilt stability of x̄ with modulus κ fails whenever η > 0 with u = ũ, x = xk, x∗ = ∇ f (xk), λ = 0,

and large k. Suppose further that g(xk) ∈ bdQ for all but finitely many k. Since

g(xk) = g(x̄)+∇g(x̄)(xk − x̄)+o(‖xk − x̄‖) = tk∇g(x̄)ū+o(tk),
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it follows that g0(xk) = ‖gr(xk)‖> 0 for all large k. Next we consider the real-valued function h(x) :=
‖gr(x)‖−g0(x) and observe that the condition

∇h(xk) =
gr(xk)

∗

‖gr(xk)‖
∇gr(xk)−∇g0(xk) 6= 0

yields the existence of x′k which is arbitrary close to xk and such that h(x′k) < 0, i.e., g(x′k) ∈ intQ.

Thus we are in the same position as just before that gives us a contradiction with (3.17).

The remaining case is where ∇h(xk) = 0. By the assumed MSCQ we get from (3.15) that TΓ(xk) =
{u ∈ R

n | ∇g(xk)u ∈ TQ(g(xk))}, which together with

TQ(g(xk)) =
{

v ∈R
n
∣∣∣
〈 gr(xk)

‖gr(xk)‖
,vr

〉
− v0 ≤ 0

}
⊃
(
−1,

gr(xk)

‖gr(xk)‖
)⊥

ensures the following relationships:

TΓ(xk)⊃
{

u ∈ R
n
∣∣∣
〈 gr(xk)

‖gr(xk)‖
,∇gr(xk)u

〉
−∇g0(xk)u = 0

}
=
{

u ∈ R
n
∣∣ ∇h(xk)u = 0

}
= R

n.

Thus ũ ∈ KΓ(xk,0), and for every η > 0 condition (3.17) is violated again with u = ũ, x = xk, x∗ =
∇ f (xk), and λ = 0 when k is chosen sufficiently large. This completes the proof of the theorem. �

Combining the results of Theorems 4.3 and 5.1, we arrive at the following effective pointbased

characterization of tilt stability for SOCPs in the out-of-kernel case.

Theorem 5.2 (pointbased characterization of tilt-stable minimizers for SOCPs in the out-of-kernel

case). In the setting of Theorem 3.2, assume that there exists ū∈KΓ(x̄,−∇ f (x̄)) such that ∇g(x̄)ū 6= 0.

Then x̄ is a tilt-stable local minimizer for (1.1) with some modulus κ > 0 if and only if for every di-

rection u ∈ S satisfying 〈λ̄ ,∇g(x̄)u〉 = 0 and λ̄0(‖∇gr(x̄)u‖2 − (∇g0(x̄)u)
2) = 0 we have

〈(
∇2 f (x̄)+∇2〈λ̄ ,g〉(x̄)

)
u,u
〉
> 0,

where the multiplier λ̄ is defined in (4.23). Furthermore, the exact bound for tilt stability of (1.1) at x̄

is precisely calculated by the formula

tilt ( f +δΓ, x̄) = sup
{

1
/〈(

∇2 f (x̄)+∇2〈λ̄ ,g〉(x̄)
)
u,u
〉 ∣∣∣ u ∈ S , 〈λ̄ ,∇g(x̄)u〉 = 0,

λ̄0

(
‖∇gr(x̄)u‖2 − (∇g0(x̄)u)

2
)
= 0
}
.

Proof. The major observation here is that the modulus of tilt stability is not specified in the formu-

lation of the theorem, which concerns therefore tilt-stable local minimizers of (1.1) with some modulus

κ > 0. Thus the claimed characterization and exact bound formula are derived from combining the

corresponding results of Theorems 4.3 and 5.1. �

Prior to examining the in-kernel case in what follows, we present the following technical lemma

that concerns a certain error bound for the second-order cone constraint in (1.1).

Lemma 5.3 (error bound for second-order cone constraint systems). Define h : Rn →R by h(x) :=
‖gr(x)‖−g0(x). Given any δ > 0, there is a number ε > 0 and a neighborhood U of x̄ such that for

every x0 ∈U with |h(x0)|< ε‖gr(x0)‖ and ‖∇h(x0)‖ ≥ δ we can find x̃ satisfying

h(x̃) = 0 and ‖x̃− x0‖ ≤ 2
|h(x0)|

δ
.
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Proof. Let L > 0 be a common Lipschitz constant for the mappings g(x) and h(x) on x̄+B. We

can see that h is C2-smooth around every x with gr(x) 6= 0 and its derivatives are calculated by

∇h(x) =
gr(x)

∗

‖gr(x)‖
∇gr(x)−∇g0(x),

∇2h(x) =
gr(x)

∗

‖gr(x)‖
∇2gr(x)−∇2g0(x)+

1

‖gr(x)‖
∇gr(x)

∗(I − gr(x)gr(x)
∗

‖gr(x)‖2

)
∇gr(x),

where I is the identity matrix. Thus we can find constants A,B > 0 such that

‖∇2h(x)‖ ≤ A+
B

‖gr(x)‖
for all x ∈ x̄+B with gr(x) 6= 0.

Take an arbitrary number δ > 0 and then choose γ > 0 and 0 < ε ≤ δ/4L so small that

A|h(x)|+2Bε

δ 2
≤ 1

2
and γ +2

|h(x)|
δ

≤ 1 for all x ∈ Bγ(x̄).

Pick x0 ∈ Bγ(x̄) such that |h(x0)| < ε‖gr(x0)‖ and ‖∇h(x0)‖ ≥ δ and denote ρ := 2|h(x0)|/δ . Then

there exists x1 satisfying h(x0)+∇h(x0)(x1 − x0) = 0 and ‖x1 − x0‖ ≤ |h(x0)|/δ . Furthermore, for all

x ∈ Bρ(x0)⊂ x̄+B we get the inequalities

‖gr(x)‖ ≥ ‖gr(x0)‖−L‖x− x0‖ ≥ ‖gr(x0)‖−Lρ = ‖gr(x0)‖−2L
|h(x0)|

δ

≥ ‖gr(x0)‖
(

1−2L
ε

δ

)
≥ ‖gr(x0)‖

2
,

which bring us to the estimate

‖∇2h(x)‖ ≤ A+
2B

‖gr(x0)‖
.

It implies that ∇h(·) is Lipschitz continuous on Bρ(x0) with constant A+2B/‖gr(x0)‖ and that

τ :=
1

δ

(
A+

2B

‖gr(x0)‖
)
‖x1 − x0‖ ≤

(
A+

2B

‖gr(x0)‖
) |h(x0)|

δ 2
≤ A|h(x0)|+2Bε

δ 2
≤ 1

2
.

Denoting τ̂ := τ−1(1−
√

1−2τ) ≤ 2, we apply Robinson’s stability result from [27, Theorem 2] to

get the existence of x̃ ∈ x0 + τ̂|h(x0)|/δB ⊂ Bρ(x0) with h(x̃) = 0. This completes the proof. �

To proceed further with deriving necessary conditions for and then characterizations of tilt-stable

minimizers in the in-kernel case of SOCPs, we invoke the notion of 2-regularity, which was initiated

by Tret’yakov [30] in the case of zero Jacobian and then was strongly developed by Avakov [2] whose

definition is mainly reflected in what follows.

Definition 5.4 (2-regularity of mappings). Let g : Rn →R
s be twice Fréchet differentiable at x̄ ∈R

n.

We say that g is 2-REGULAR at the point x̄ in the DIRECTION v ∈R
n if for any p ∈R

s the system

∇g(x̄)z+∇2g(x̄)(v,w) = p, ∇g(x̄)w = 0

admits a solution (z,w) ∈ R
n ×R

n.

The next theorem provides two necessary conditions for tilt-stable minimizers in SOCPs with a

prescribed modulus in the in-kernel setting. Both of them are parallel to the sufficient conditions of

Theorem 4.5 with the replacement of the strict inequality therein by the nonstrict one. Note that only

the second condition below requires the assumption on 2-regularity in addition to the standing MSCQ.
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Theorem 5.5 (necessary condition for tilt-stable minimizers of SOCPs in the in-kernel case).

Let x̄ be a tilt-stable local minimizer for (1.1) with modulus κ under the standing assumptions of

Theorem 3.2, and assume that for every critical direction u ∈ KΓ(x̄,−∇ f (x̄)) we have ∇g(x̄)u = 0.

Suppose further that for every (u,λ ,v,w) ∈Z fulfilling ∇g(x̄)w+ 1
2
∇2g(x̄)(v,v) = 0 the mapping g(·)

is 2-regular in the direction v. Then the following conditions are satisfied:

(a) For every u ∈ KΓ(x̄,−∇ f (x̄))∩S and every λ ∈ Λ(x̄,−∇ f (x̄);u) we have

〈(
∇2 f (x̄)+∇2〈λ ,g〉(x̄)

)
u,u
〉
≥ 1

κ
.

(b) For every (u,λ ,v,w) ∈ Z we have

(5.40)

〈(
∇2 f (x̄)+∇2〈λ ,g〉(x̄)

)
u,u
〉
+

ρ(u,λ ,v)

∇g0(x̄)w+ 1
2
∇2g0(x̄)(v,v)

≥ 1

κ

whenever ∇g(x̄)w+
1

2
∇2g(x̄)(v,v) 6= 0; and

(5.41)
〈(

∇2 f (x̄)+∇2〈λ ,g〉(x̄)
)
u,u
〉
≥ 1

κ
whenever ρ(u,λ ,v) = 0.

Furthermore, the lower estimate of the exact bound of tilt stability is given by

tilt( f +δΓ, x̄)≥
1

min{χ1,χ2,χ3}
,

where the numbers χi, i = 1,2,3, are taken from Theorem 4.5.

Proof. Note first that the claimed lower estimate of the tilt stability bound follows from the proofs

of the necessity of conditions (a) and (b). To verify the necessity of (a) for tilt stability, we just pass

to the limit as η ↓ 0 in the neighborhood characterization (ii) of Theorem 3.2. To prove the necessity

of (b), pick a quadruple (u,λ ,v,w) ∈ Z and get for any t > 0 that

dist
(
g(x̄+ tv+ t2w);Q

)
= dist

(
g(x̄)+ t∇g(x̄)v+ t2

(
∇g(x̄)w+

1

2
∇2g(x̄)(v,v)

)
+o(t2);Q

)
= o(t2).

We split the subsequent proof into the following two cases.

Case I: λ = 0. In this case ∇ f (x̄) = 0, and by the assumed MSCQ for every t > 0 we find some

xt ∈ Γ satisfying ‖xt − (x̄+ tv+ t2w)‖ = o(t2). If there is a sequence tk ↓ 0 such that g(xtk ) 6= 0,

then it follows from the proof of Theorem 5.1 that 〈∇2 f (x̄)u,u〉 ≥ 1/κ . This verifies (5.41) since

ρ(u,0,v) = 0. Suppose now that g(xt) = 0 for all small t > 0. By

g(xt) = g
(
x̄+ tv+ t2w+o(t2)

)
= t2

(
∇g(x̄)w+

1

2
∇2g(x̄)(v,v)

)
+o(t2)

we have ∇g(x̄)w+ 1
2
∇2g(x̄)(v,v) = 0, and thus g(·) is 2-regular at x̄ in the direction v. Fixing any

q ∈ intQ and applying [11, Proposition 2(c)] ensure the existence of β > 0 such that

dist
(
xt ;g−1(t3q)

)
≤ β

‖xt − x̄‖‖t3q−g(xt)‖= O(t2) for small t > 0.

Thus we find points x′t for which ‖x′t − xt‖ = O(t2) and g(x′t) = t3q ∈ intQ. This tells us that

KΓ(x
′
t ,0) =R

n. Using further Theorem 3.2 with x= x′t , x∗ =∇ f (x′t), and λ = 0 yields 〈∇2 f (x′t)u,u〉 ≥
1
κ for all small t > 0. To get finally (5.41) in this case, we pass to the limit as t ↓ 0 with taking into
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account the equality ρ(u,0,v) = 0.

Case II: λ 6= 0. Since λ ∈ Q∗, it follows that −λ0 ≥ ‖λr‖, and consequently −λ0 > 0. We have fur-

thermore that |∇g0(x̄)u|= ‖∇gr(x̄)u‖ and 〈λ ,∇g(x̄)u〉= 0, which implies that either u∈KΓ(x̄,−∇ f (x̄))
or −u ∈ KΓ(x̄,−∇ f (x̄)). This gives us ∇g(x̄)u = 0 by the assumption of the theorem. We split the

subsequent analysis in this case into the following two steps.

Step 1: ∇g(x̄)w+ 1
2
∇2g(x̄)(v,v) = 0. Then g(x̄+ tv+ t2w) = o(t2), and its follows from [11, Propo-

sition 2(c)] due to the imposed 2-regularity of g(·) at x̄ in the direction v that there is β > 0 for which

dist
(
x̄+ tv+ t2w;g−1(0)

)
≤ β

‖tv+ t2w‖‖g(x̄+ tv+ t2w)‖= o(t) for small t > 0.

This allows us to find for such t some vectors xt ∈R
n for which g(xt) = 0 and ‖xt − (x̄+ tv+ t2w)‖=

o(t). If ρ(u,λ ,v) 6= 0, then there is nothing to prove, and hence we suppose that ρ(u,λ ,v) = 0.

Employing Lemma 4.4 in this case gives us a vector z ∈ R
n satisfying

−λ0

(
‖∇gr(x̄)z+∇2gr(x̄)(v,u)‖2 −

(
∇g0(x̄)z+∇2g0(x̄)(v,u)

)2
)
= 〈λ ,∇g(x̄)z+∇2g(x̄)(v,u)〉 = 0,

which implies in turn the equalities

∇g(xt)(u+tz)=
(
∇g(x̄)+t∇2g(x̄)v+o(t)

)
(u+tz)=∇g(x̄)u+t

(
∇g(x̄)z+∇2g(x̄)(v,u)

)
+o(t)= o(t).

It follows from [11, Proposition 2(d)] that there is a number β ′ > 0 such that for all t > 0 sufficiently

small we get vectors ut ∈ R
n satisfying

∇g(xt)ut = 0 and ‖ut − (u+ tz)‖ ≤ β ′ ‖∇g(xt)(u+ tz)‖
‖xt − x̄‖ =

o(t)

t
,

which tells us that ut ∈ KΓ(xt ,∇g(xt)
∗λ ). Applying [11, Proposition 2(d)] again ensures that the

Jacobian matrix ∇g(xt) is of full rank, and therefore

Λ
(
xt ,∇g(xt)

∗λ
)
= Λ

(
xt ,∇g(xt)

∗λ ;ut

)
=
{

λ
}
.

Employing the neighborhood condition (3.18) from Theorem 3.2 with x= xt , x∗ =∇ f (xt)+∇g(xt)
∗λ ,

and u = ut/‖ut‖ and then taking into account that H (xt ,λ ) = 0 due to g(xt) = 0, we arrive at

〈(
∇2 f (xt)+∇2〈λ ,g〉(xt )

) ut

‖ut‖
,

ut

‖ut‖
〉
≥ 1

κ
for all small t > 0.

Passing there to the limit as t ↓ 0 verifies (5.41) in this setting.

Step 2: ∇g(x̄)w+ 1
2
∇2g(x̄)(v,v) 6= 0. Remembering that λ 6= 0 and λ ∈ NQ(∇g(x̄)w+ 1

2
∇2g(x̄)(v,v))

in this case gives us the conditions

λ ∈ bdQ
∗, ∇g(x̄)w+

1

2
∇2g(x̄)(v,v) ∈ bdQ, and λ̂ = α

(
∇g(x̄)w+

1

2
∇2g(x̄)(v,v)

)

for some α > 0. It implies, in particular, that −λ0 = ‖λr‖ > 0 and ∇g0(x̄)w + 1
2
∇2g0(x̄)(v,v) =

‖∇gr(x̄)w+ 1
2
∇2gr(x̄)(v,v)‖ > 0. Note also that ∇g(x̄)∗λ 6= 0, since otherwise ∇ f (x̄) = 0 and conse-

quently λ = 0. For the function h(x) = ‖gr(x)‖−g0(x) we have the representations

h(x̄+ tv+ t2w) = ‖gr(x̄+ tv+ t2w)‖−g0(x̄+ tv+ t2w)

= ‖gr(x̄)+ t∇gr(x̄)v+ t2(∇gr(x̄)w+
1

2
∇2gr(x̄)(v,v))‖

−
(

g0(x̄)+ t∇g0(x̄)v+ t2
(
∇g0(x̄)w+

1

2
∇2g0(x̄)(v,v)

))
+o(t2) = o(t2),
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∇h(x̄+ tv+ t2w) =
gr(x̄+ tv+ t2w)∗

‖gr(x̄+ tv+ t2w)‖∇gr(x̄+ tv+ t2w)−∇g0(x̄+ tv+ t2w)

=

(
t2(∇gr(x̄)w+ 1

2
∇gr(x̄)(v,v))+o(t2)

)∗

‖t2
(
∇gr(x̄)w+ 1

2
∇gr(x̄)(v,v)

)
+o(t2)‖

(
∇gr(x̄)+O(t)

)
−
(
∇g0(x̄)+O(t)

)

=

(
λr +o(t2)/t2

)∗

‖λr‖+o(t2)/t2

(
∇gr(x̄)+O(t)

)
−
(
∇g0(x̄)+O(t)

)
=

λ ∗

‖λr‖
∇g(x̄)+

o(t2)

t2
,

which yield, in particular, the relationships

lim
t↓0

‖∇h(x̄+ tv+ t2w)‖= ‖λ ∗∇g(x̄)‖
‖λr‖

=
‖∇ f (x̄)‖
‖λr‖

> 0 and lim
t↓0

‖∇h(xt)‖=
‖λ ∗∇g(x̄)‖

‖λr‖
> 0.

Using now Lemma 5.3 gives us vectors xt satisfying h(xt) = 0 and ‖xt − (x̄+ tv+ t2w)‖ = o(t2) for

small t > 0. Defining for such t the multipliers λ t := α ĝ(xt)/t2 ∈ NQ(g(xt)) and employing

g(xt) = g(x̄+ tv+ t2w)+o(t2) = t2
(

∇g(x̄)w+
1

2
∇2g(x̄)(v,v)

)
+o(t2)

ensure that limt↓0 λ t = λ . Since for ρ(u,λ ,v) = ∞ condition (5.40) certainly holds, we consider the

case where ρ(u,λ ,v) is finite. Then Lemma 4.4 gives us z ∈ R
n satisfying the equalities

〈λ ,∇g(x̄)z+∇2g(x̄)(v,u)〉= 0, ρ(u,λ ,v)=−λ0

(
‖∇gr(x̄)z+∇2gr(x̄)(v,u)‖2−

(
∇g0(x̄)z+∇2g0(x̄)(v,u)

)2
)
.

Remembering that g0(xt) = ‖gr(xt)‖ leads us to the expressions

∇h(xt)(u+ tz) =
gr(xt)

∗

‖gr(xt)‖
∇gr(xt)(u+ tz)−∇g0(xt)(u+ tz) =

〈 ĝ(xt)

‖gr(xt)‖
,∇g(xt)(u+ tz)

〉

=
〈 ĝ(xt)

‖gr(xt)‖
,∇g(x̄)u+ t

(
∇g(x̄)z+∇2g(x̄)(v,u)

)
+o(t)

〉

= t
〈 λ t

‖λ t
r‖

,∇g(x̄)z+∇2g(x̄)(v,u)
〉
+o(t)

= t
〈 λ t

‖λ t
r‖

− λ

‖λr‖
,∇g(x̄)z+∇2g(x̄)(v,u)

〉
+o(t) = o(t).

In this way we get, whenever t > 0 is sufficiently small, that

∇h(xt)ut =
1

‖λ t
r‖
〈
λ t ,∇g(xt)ut

〉
= 0 for ut := u+ tz− ∇h(xt)(u+ tz)

‖∇h(xt)‖2
∇h(xt)

∗ = u+ tz+o(t).

It follows that ut ∈ KΓ(xt ,x
∗
t − ∇ f (xt)), where x∗t := ∇ f (xt) + ∇g(xt)

∗λ t → 0 as t → 0. Since

NQ(g(xt)) = {α ĝ(xt) | α ≥ 0} and x∗t −∇ f (xt) 6= 0, we easily see that Λ(xt ,x
∗
t −∇ f (xt)) = {λ t}.

Therefore, the neighborhood condition (3.18) from Theorem 3.2 implies that

(5.42)
〈(

∇2 f (xt)+∇2〈λ t ,g〉(xt)+H (xt ,λ
t)
) ut

‖ut‖
,

ut

‖ut‖
〉
≥ 1

κ
for small t > 0.
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Using the construction of the curvature function H in (3.16) together with the limiting relations

λ t
0 → λ0 and g0(xt)/t2 → ∇g0(x̄)w+ 1

2
∇2g0(x̄)(v,v) as t ↓ 0, we get

lim
t↓0

〈
H (xt ,λ

t)ut ,ut

〉
= lim

t↓0

−λ t
0

g0(xt)

(
‖∇gr(xt)ut‖2 − (∇g0(xt)ut)

2
)

= lim
t↓0

−λ t
0

g0(xt)

(
‖∇gr(x̄)u+ t

(
∇gr(x̄)z+∇2gr(x̄)(v,u)

)
+o(t)‖2

−
(
∇g0(x̄)u+ t

(
∇g0(x̄)z+∇2g0(x̄)(v,u)

)
+o(t)

)2
)

= lim
t↓0

−λ t
0

g0(xt)/t2

(
‖∇gr(x̄)z+∇2gr(x̄)(v,u)+

o(t)

t
‖2 −

(
∇g0(x̄)z+∇2g0(x̄)(v,u)+

o(t)

t

)2
)

=
ρ(u,λ ,v)

∇g0(x̄)w+ 1
2
∇2g0(x̄)(v,v)

.

Finally, we arrive at (5.40) by passing to the limit in (5.42) as t ↓ 0. �

We conclude this section by deriving the following verifiable characterization of tilt-stable mini-

mizers for SOCPs in the in-kernel case.

Theorem 5.6 (pointbased characterization of tilt-stable minimizers for SOCPs in the in-kernel

case). In addition to the assumptions of Theorem 3.2 suppose that ∇g(x̄)u = 0 for every critical direc-

tion u ∈KΓ(x̄,−∇ f (x̄)) and that for every quadruple (u,λ ,v,w) ∈Z with ∇g(x̄)w+ 1
2
∇2g(x̄)(v,v) =

0 the mapping g(·) is 2-regular in the direction v. Then x̄ is a tilt-stable local minimizer for problem

(1.1) with some modulus κ > 0 if and only if the following conditions hold simultaneously:

(a) For every u ∈ KΓ

(
x̄,−∇ f (x̄)

)
∩S and every λ ∈ Λ(x̄,−∇ f (x̄);u) we get

〈(
∇2 f (x̄)+∇2〈λ ,g〉(x̄)

)
u,u
〉
> 0.

(b) For every quadruple (u,λ ,v,w) ∈ Z we get

〈(
∇2 f (x̄)+∇2〈λ ,g〉(x̄)

)
u,u
〉
+

ρ(u,λ ,v)

∇g0(x̄)w+ 1
2
∇2g0(x̄)(v,v)

> 0

whenever ∇g(x̄)w+
1

2
∇2g(x̄)(v,v) 6= 0; and

〈(
∇2 f (x̄)+∇2〈λ ,g〉(x̄)

)
u,u
〉
> 0 whenever ρ(u,λ ,v) = 0.

Furthermore, the exact bound of tilt-stability of x̄ in (1.1) is calculated by the formula

tilt( f +δΓ, x̄) =
1

min{χ1,χ2,χ3}
,

where the numbers χi, i = 1,2,3, are taken from Theorem 4.5.

Proof. We derive the claimed statements from the results of Theorems 4.5 and 5.5 by taking into

account that modulus of tilt stability is not specified in this theorem. �

6 Concluding Remarks

The results of this paper and the presented proofs show that the situation with deriving pointwise

conditions (sufficient, necessary, and characterizations) for tilt-stable minimizers in nonpolyhedral

cone programming without nondegeneracy (and thus with nonunique Lagrange multiplies) is a highly
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challenging and dramatically more involved task in comparison with polyhedral and/or nondegener-

ate settings. Our attention to this issue is motivated not only by the theoretical interest but also by

the increasing importance of tilt stability for the design and justification of primal-dual numerical

algorithms of optimization and obtaining their convergence rates.

Based on advanced recent developments in second-order variational analysis, we are able to es-

tablish here comprehensive qualitative and quantitative results on tilt stability in SOCPs generated by

a single second-order cone under merely metric subregularity constraint qualification that is far re-

moved not only from nondegeneracy but also from the conventional Robinson constraint qualification

in conic programming. However, it remains to study SOCPs described by products of second-order

cones and to investigate other remarkable classes of conic programs. Note that the recent results of

[10] allows us to calculate the main generalized differential construction of second-order variational

analysis implemented here, the so-called subgradient graphical derivative, for the normal cone map-

pings generated by constraint sets in C2-reducible conic programs. This makes it possible to proceed

with deriving neighborhood characterizations of tilt-stable minimizers in such programs based on the

abstract criterion in [4] and the technique developed above. On the other hand, establishing pointbased

conditions for tilt stability required by applications is a big issue for our future research.
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