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Abstract. We propose a multifidelity dimension reduction method to identify a low-dimensional structure present
in many engineering models. The structure of interest arises when functions vary primarily on a low-dimensional
subspace of the high-dimensional input space, while varying little along the complementary directions. Our approach
builds on the gradient-based methodology of active subspaces, and exploits models of different fidelities to reduce
the cost of performing dimension reduction through the computation of the active subspace matrix. We provide a
non-asymptotic analysis of the number of gradient evaluations sufficient to achieve a prescribed error in the active
subspace matrix, both in expectation and with high probability. We show that the sample complexity depends on a
notion of intrinsic dimension of the problem, which can be much smaller than the dimension of the input space. We
illustrate the benefits of such a multifidelity dimension reduction approach using numerical experiments with input
spaces of up to two thousand dimensions.
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1. Introduction. Engineering models are typically parameterized by a large number of input
variables, and can also be expensive to evaluate. Yet these models are often embedded in problems of
global optimization or uncertainty quantification, whose computational cost and complexity increase
dramatically with the number of model inputs. One strategy to circumvent this curse of dimension-
ality is to exploit, when present, some notion of low-dimensional structure and to perform dimension
reduction. Doing so can significantly reduce the complexity of the problem at hand. In this paper,
we consider the problem of identifying the low-dimensional structure that arises when an output of
a model varies primarily on a low-dimensional subspace of the input space, while varying little along
the complementary directions. This structure is commonly found in engineering problems and can
be identified using the active subspace method [7, 39], among other methods. The active subspace
method relies on the computation of a second moment matrix, a step that can be costly as it often
involves many evaluations of the gradient of the model. In this work, we consider the common
engineering setting where cheap low-fidelity approximations of an expensive high-fidelity model, and
its gradients, are available. We propose a multifidelity gradient-based algorithm to reduce the cost
of performing dimension reduction via active subspaces. In particular, we present a multifidelity
estimator of the second moment matrix used by the active subspace method and show, theoretically
and empirically, that fewer evaluations of the expensive gradient are sufficient to perform dimension
reduction.

Several approaches have been devised to identify low-dimensional structure in the input space
of a function. These methods include global sensitivity analysis [41], sliced inverse regression [27],
basis adaptation [46], and low-rank matrix recovery [48]. Recent work has also explored combining
dimension reduction in both the input and the state space of the associated model [2,12,16,28,40,45].
Such methods typically require a large number of (potentially expensive) function evaluations. When
derivative information is available (e.g., via adjoint methods or automatic differentiation), gradient-
based methods have also been proposed to detect the low-dimensional structure of a smooth function,
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with higher sample efficiency [42]. One way to leverage derivative information is to examine the
spectral properties of the second moment matrix of the gradient of the function. The dominant
eigenspace of that matrix contains the directions along which the function, loosely speaking, varies
the most. This dominant eigenspace is called the active subspace [7, 9, 39]. More precisely, in [50],
the second moment matrix is used to construct an upper bound for the function approximation error
induced by dimension reduction. The active subspace’s dimension is then chosen in order to satisfy
a user-defined tolerance, allowing a rigorous control of the approximation error. Gradient-based
methods have been successfully used to detect and exploit low-dimensional structure in engineering
models [8, 18, 19, 29] as well as in Bayesian inverse problems [10, 11, 51]. The efficiency of these
gradient-based methods depends upon the computation of the second moment matrix of the gradient.
This can be an expensive step as it involves computing an integral, over the high-dimensional input
space, of the gradient of an expensive function. Reducing the cost of the dimension reduction step
is particularly important as it allows more computational resources to be allocated to the original
task of interest (e.g., optimization or uncertainty quantification).

To reduce this computational cost, one strategy consists of replacing the expensive gradient with
a cheap-to-evaluate approximation or surrogate. Surrogates with lower evaluation cost are widely
available in engineering problems: they include models defined by numerically solving equations
on coarser meshes, using simplified governing equations, imposing looser convergence criteria, or
employing reduced-order models. In order to control the error induced by the use of a surrogate,
multifidelity methods aim at combining cheap approximations with expensive but accurate infor-
mation in an optimal way (see [35] for a survey). The goal of such approaches is to shift most
of the work to the cheaper model, while querying the expensive model often enough to guarantee
convergence to the desired quantity (in this case, the second moment matrix of the gradient). For
instance, multigrid methods use a hierarchy of cheaper and coarser discretizations to solve systems of
partial differential equations more efficiently [4,5,15]. In multilevel Monte Carlo, expected quantities
and rare event probabilities are computed by distributing the computational work among several
levels of approximation with known error rate and cost [3,14,22,44,49]. When no such information
about error rates is available, or when there is no hierarchy among models, multifidelity techniques
have been employed to accelerate Monte Carlo estimates [36] by solving an optimal resource alloca-
tion problem among a collection of models with varying fidelity. Multifidelity techniques have also
been devised to accelerate optimization [1, 13, 20, 24, 30, 37, 43], global sensitivity analysis [38], or
importance sampling and rare event estimation [25, 26, 33, 34]. While most multifidelity techniques
have focused on estimating the expectations of scalar quantities, high-dimensional objects such as
the second moment matrix in the active subspace method—effectively, the expectation of a matrix-
valued function—have received less attention. Because high-dimensional objects are typically more
challenging to approximate, developing and analyzing multifidelity algorithms for their estimation
could lead to significant computational savings.

In this paper, we use multifidelity techniques to reduce the computational cost of performing
dimension reduction. We build on the gradient-based active subspace method, proposing a multifi-
delity estimator for the second moment matrix that uses the low-fidelity model as a control variate
for the outputs of the high-fidelity model—thus providing variance reduction and reducing compu-
tational costs. We establish non-asymptotic error bounds for this estimator, both in expectation
and in high probability. We show that the sample complexity depends on the intrinsic dimension of
the second moment matrix, a quantity that can be much smaller than the dimension of the input
space when the function of interest varies mostly along a few directions. Finally, we demonstrate
the performance of our proposed multifidelity dimension reduction technique on several analytical
and engineering examples.

The paper is organized as follows. In Section 2, we give a brief review of the active subspace
methodology. Then, we formalize the proposed active subspace multifidelity algorithm in Section
3. Error bounds for the single-fidelity and multifidelity active subspace algorithms are provided in
Section 4. We illustrate the benefits of our approach with numerical examples in Section 5 before



MULTIFIDELITY DIMENSION REDUCTION VIA ACTIVE SUBSPACES 3

summarizing our findings in Section 6.

2. Active subspace. We consider a scalar-valued function f : X → R where the input space X
is a subset of Rd. We refer to the dimension d ∈ N as the ambient dimension. The active subspace
method [7, 9] aims to compute a low-dimensional subspace of X in which most of the variations
of f are concentrated. The active subspace method assumes that f is differentiable and that each
component of ∇f is square integrable on the space X , weighted by a user-defined probability density
ρ : X → R+. This guarantees the well posedness of the second moment matrix

H = E
[
∇f(X)∇f(X)T

]
,

where X ∼ ρ is a random variable taking values in X and E[ · ] denotes the expectation. We refer to H
as the active subspace matrix (AS matrix). The eigendecomposition of H yields information about
the directions along which f varies. Specifically, for any unit norm vector u ∈ Rd, the quantity
uTHu = E[(∇f(X)Tu)2] corresponds to the L2 norm of the gradient ∇f projected on span{u}.
Thus, the largest eigenvector of H, which is a maximizer of uTHu over unit norm vectors u ∈ Rd,
is aligned with the direction in which f has largest (in squared magnitude) average derivative.

Another important property is that, under some mild assumptions on the probability density ρ,
the AS matrix allows us to control the mean square error between f(X) and a ridge approximation
of the form of h(UTr X), where Ur ∈ Rd×r is a matrix with r ≤ d orthonormal columns. In particular,
if h is defined to be the conditional expectation h(UTr X) = E[f(X)|UTr X], X = Rd, and ρ is the
density of the standard normal distribution on X , then Proposition 2.5 in [50] (with Pr = UrU

T
r )

guarantees that

(2.1) E[(f(X)− h(UTr X))2] ≤ trace(H)− trace(UTr HUr),

holds for any Ur such that UTr Ur = Ir. This result relies on Poincaré-type inequalities and can be
extended to more general densities ρ (see Corollary 2 in [51]). In order to obtain a good approxi-
mation of f in the L2 sense, we can choose Ur as a matrix which minimizes the right-hand side of
(2.1). This is equivalent to the problem

(2.2) max
Ur∈Rd×r

s.t. UT
r Ur=Ir

trace(UTr HUr).

Any matrix Ur whose columns span the r-dimensional dominant eigenspace of H is a solution. The
corresponding subspace is called the active subspace.

In practice, there is no closed-form expression for the AS matrix and H must be approximated
numerically. The following Monte Carlo estimator requires evaluating ∇f at m1 realizations of
the input parameters, drawn independently from ρ. We refer to this estimator as a single-fidelity
estimator (SF estimator).

Definition 2.1 (Single-fidelity estimator). Let m1 ≥ 1 be the number of gradient evaluations.
We define the SF estimator of H to be

ĤSF =
1

m1

m1∑

i=1

∇f(Xi)∇f(Xi)
T ,

where X1, . . . , Xm1 are independent copies of X ∼ ρ.

Computing an estimate of H with a satisfactory error can require a large number m1 of gradient
evaluations. In the following section, we propose a new multifidelity algorithm that leverages a
cheap-to-evaluate approximation of ∇f to reduce the cost of estimating H.

3. Multifidelity dimension reduction. In this section, we describe a multifidelity approach
for estimating the AS matrix H (Sec. 3.1). We also characterize the impact of using such an
approximation of H on the quality of the dimension reduction (Sec. 3.2).
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3.1. Multifidelity active subspace estimator. Suppose we are given a function g : X → R
that is a cheap-to-evaluate approximation of f . We assume that g is differentiable and that each
component of ∇g is square integrable. From now on, we refer to f as the high-fidelity function and
to g as the low-fidelity function. Based on the identity

H = E[∇f(X)∇f(X)T −∇g(X)∇g(X)T ] + E[∇g(X)∇g(X)T ],

we introduce the following unbiased multifidelity estimator (MF estimator).

Definition 3.1 (Multifidelity estimator). Let m1 ≥ 1 and m2 ≥ 1 be the numbers of gradient
evaluations of f and g. We define the MF estimator of H to be:

ĤMF =
1

m1

m1∑

i=1

(∇f(Xi)∇f(Xi)
T −∇g(Xi)∇g(Xi)

T ) +
1

m2

m1+m2∑

i=m1+1

∇g(Xi)∇g(Xi)
T ,

where X1, . . . , Xm1+m2 are independent copies of X ∼ ρ.

Remark 3.2 (Indefiniteness of ĤMF ). While the quantity of interest H is symmetric positive

semi-definite, the multifidelity estimator ĤMF is symmetric but not necessarily positive semi-definite.
It is natural to ask whether a positive semi-definite estimator is necessary to yield good dimension
reduction. In the following, we show that the quality of the dimension reduction is controlled by the
error between H and ĤMF (Corollary 3.4) which can be reduced arbitrarily close to zero with high
probability (Proposition 4.1). In particular, those results do not require positive semi-definiteness

from the estimator ĤMF .

A realization of ĤMF can be obtained using Algorithm 3.1. First, m1 + m2 input parameter
realizations are drawn independently from ρ. Then, the high-fidelity gradients are evaluated at the
first m1 input parameter values while the low-fidelity gradients are evaluated at all m1 +m2 input
parameter values.

Algorithm 3.1 Multifidelity Active Subspace

Function: multifidelity active subspace(m1,m2)
Input: m1 and m2

Draw m1 +m2 independent copies {Xi}m1+m2
i=1 of X ∼ ρ

for i = 1 to m1 do
Compute ∇f(Xi) and ∇g(Xi)

end for
ĤMF ← 1

m1

∑m1

i=1(∇f(Xi)∇f(Xi)
T −∇g(Xi)∇g(Xi)

T )
for i = 1 to m2 do

Compute ∇g(Xm1+i)
end for
ĤMF ← ĤMF + 1

m2

∑m1+m2

i=m1+1∇g(Xi)∇g(Xi)
T

Output: ĤMF

The definition of the proposed MF estimator of the AS matrix uses the low-fidelity gradient
to construct a control variate ∇g(X)∇g(X)T for ∇f(X)∇f(X)T . The MF estimator is written as
the sum of two terms. The first one involves m1 evaluations of the low-fidelity and high-fidelity
gradients. This is an expensive quantity to compute, so the number of samples m1 is typically set to
a low value. Note that if ∇g is a good approximation of ∇f , then the control variate ∇g(X)∇g(X)T

is highly correlated with ∇f(X)∇f(X)T and the first term of the estimator has low variance (in a
sense yet to be made precise for matrices). The low variance of ∇f(X)∇f(X)T − ∇g(X)∇g(X)T

allows for a good estimator of E[∇f(X)∇f(X)T − ∇g(X)∇g(X)T ] despite the small number of
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samples m1. The second term involves m2 evaluations of the cheap low-fidelity gradient. Thus,
m2 can usually be set to a large value, allowing for a good estimation of E[∇g(X)∇g(X)T ] despite

the possibly large variance of ∇g(X)∇g(X)T . Combining the two terms, the MF estimator ĤMF

provides a good approximation of H with few evaluations of the expensive high-fidelity gradient ∇f .
In Section 4, we make this statement precise by providing an analysis of the error between H and
ĤMF as a function of the number of samples m1 and m2.

3.2. Relationship to function approximation. The performance of our MF estimator (or
that of any estimator for H) should be analyzed with respect to the end goal of the problem which,
in this paper, is to perform dimension reduction. Computing a good approximation of H is an
intermediate step in the dimension reduction process. To further motivate the use of a MF estimator
to reduce the difference between H and ĤMF at low cost, we show how this matrix error impacts
the quality of the dimension reduction. As shown in Section 2, one way of performing dimension
reduction is to minimize a bound on the function approximation error (2.1). This corresponds to

maximizing Ur 7→ trace(UTr HUr). Replacing the unknown H by ĤMF , we can compute the matrix

Ûr defined by

(3.1) Ûr ∈ argmax
Ur∈Rd×r

s.t. UT
r Ur=Ir

trace(UTr ĤMFUr),

and ask how does trace(ÛTr HÛr) compare to the maximal value of trace(UTr HUr) over all Ur ∈ Rd×r
such that UTr Ur = Ir. By definition, we have the inequality in the following direction

max
Ur∈Rd×r

s.t. UT
r Ur=Ir

trace(UTr HUr) ≥ trace(ÛTr HÛr).

The next proposition shows that the difference between the two terms of the previous inequality
can be controlled by means of the error ‖H − ĤMF ‖, where ‖ · ‖ denotes the matrix operator norm.
Note that the proof is not restricted to the MF estimator: the same result holds for any symmetric
estimator of H.

Proposition 3.3. Let Ĥ be a symmetric estimator of H and

(3.2) Ũr ∈ argmax
Ur∈Rd×r

s.t. UT
r Ur=Ir

trace(UTr ĤUr),

then

(3.3) trace(ŨTr HŨr) ≥ max
Ur∈Rd×r

s.t. UT
r Ur=Ir

trace(UTr HUr)− 2r‖H − Ĥ‖.

Proof. Consider the eigenvalue decomposition of H − Ĥ = V ΣV T , where Σ = diag{λ1, . . . , λd}
is a diagonal matrix containing the eigenvalues of H − Ĥ and V ∈ Rd×d is a unitary matrix. For
any matrix Ur ∈ Rd×r such that UTr Ur = Ir, we have

| trace(UTr HUr)− trace(UTr ĤUr)| = | trace(UTr (H − Ĥ)Ur)|
= | trace(ΣV TUrU

T
r V )|

≤ max{|λ1|, . . . , |λd|} | trace(V TUrU
T
r V )|

= ‖H − Ĥ‖ | trace(UrU
T
r )|

= r‖H − Ĥ‖.(3.4)
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Letting Ur = Ũr in the above relation yields

trace(ŨTr HŨr)
(3.4)

≥ trace(ŨTr ĤŨr)− r‖H − Ĥ‖
(3.2)

≥ trace(UTr ĤUr)− r‖H − Ĥ‖
(3.4)

≥ trace(UTr HUr)− 2r‖H − Ĥ‖.

Maximizing over Ur ∈ Rd×r, with UTr Ur = Ir, yields (3.3) and concludes the proof.

Corollary 3.4. Let ĤMF be a MF estimator of H and Ûr be defined by (3.1). Then

(3.5) trace(ÛTr HÛr) ≥ max
Ur∈Rd×r

s.t. UT
r Ur=Ir

trace(UTr HUr)− 2r‖H − ĤMF ‖.

Proof. This follows from applying Proposition 3.3 to Ĥ = ĤMF and Ũr = Ûr.

We now establish the connection between the result of Corollary 3.4 and the quality of the
dimension reduction. Assume that inequality (2.1) holds true for any UTr Ur = Id (this is in particular

the case if X ∼ N (0, Id)). Replacing Ur by Ûr in (2.1) and using Corollary 3.4, we can write

E[(f(X)− h(ÛTr X))2] ≤ trace(H)− max
Ur∈Rd×r

s.t. UT
r Ur=Ir

trace(UTr HUr) + 2r‖H − ĤMF ‖(3.6)

=
(
λr+1 + . . .+ λd

)
+ 2r‖H − ĤMF ‖,(3.7)

where h(ÛTr X) = E[f(X)|ÛTr X]. Here λi ≥ 0 denotes the i-th largest eigenvalue of H. This relation
shows that a strong decay in the spectrum of H is favorable to efficient dimension reduction. Also,
increasing the number r of active variables has competitive effects on the two terms in the right-hand
side: the first term (λr+1 + . . . + λd) is reduced whereas the second term 2r‖H − ĤMF ‖ increases

linearly in r. Given the importance of ‖H − ĤMF ‖ in controlling the quality of the dimension
reduction, we show in the next section how this error can be controlled at cheap cost using the
proposed MF estimator.

Remark 3.5 (Angle between subspaces). Another way of controlling the quality of the approx-

imate active subspace (the span of the columns of Ûr) is via the principal angle between the exact

and the approximate active subspaces [6, 17]. This angle, denoted by ∠(Ŝ,S), is defined by

sin(∠(Ŝ,S)) = ‖ÛrÛTr − ŨrŨTr ‖,

where Ŝ = range(Ûr) is the approximate subspace and S = range(Ũr) is the exact active subspace,

Ũr being a solution to (2.2). This requires Ŝ and S to be uniquely defined, which might not be

the case if there is a plateau in the spectra of H and ĤMF . For instance, if the r-th eigenvalue
of H equals the (r + 1)-th, problem (2.2) admits infinitely many solutions and S is not uniquely
defined. Note that in practice, r is chosen such that the spectral gap is large, by inspection of the
spectrum. To our knowledge, all analyses focusing on controlling the principal angle ∠(Ŝ,S) rely on
the spectral gap assumption λr > λr+1, where λr is the r-th eigenvalue of H.

In contrast, the goal-oriented approach consisting of minimizing the upper bound of the func-
tional error does not require the spectral gap assumption. This results from (2.2) and Corollary 3.4.
In particular, the uniqueness of the active subspace is not required, as any solution to (2.2) yields an
equally good active subspace for the purpose of function approximation. Therefore, in this paper, we
do not further consider the principal angle ∠(Ŝ,S). Instead we focus on comparing trace(ÛTr HÛr)

to trace(ŨTr HŨr). As illustrated by Corollary 3.4, this is sufficient to control the error ‖H − ĤMF ‖
between the AS matrix and its estimator.
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4. A non-asymptotic analysis of the estimator. In this section, we use results from non-
asymptotic random matrix theory to express the number of gradient evaluations sufficient to control
the error in an estimate of H, up to a user-defined tolerance. We present our main results in this
Section and defer the proofs to Appendix A.1 and Appendix A.2.

In general, Monte Carlo estimation of a high-dimensional object such as a d × d matrix can
require a large number of samples. If the matrix does not have some special structure, one can
expect the sample complexity to scale with the large ambient dimension d. This is costly if each
sample is expensive. However, the AS matrix H enjoys some structure when the problem has
low effective dimension. In particular, when most of the variation of f is concentrated in a low-
dimensional subspace, we expect the number of samples required to obtain a good approximation
of H to depend on the dimension of this subspace, rather than on the ambient dimension d of the
input space. One case of interest occurs when f is a ridge function that only depends on a small
number of linear combinations of input variables. This leads to a rank-deficient matrix H. In such a
case, we expect the number of samples to depend on the rank of H. Another important case occurs
when a (possibly full-rank) matrix H has a quickly decaying spectrum. In such a case, we expect
that the number of samples should depend on a characteristic quantity of the spectrum (e.g., the
sum of the eigenvalues). To make a precise statement, we use the notion of intrinsic dimension [47]
(Def. 7.1.1), also called the effective rank [21] (Def. 1). The intrinsic dimension of H is defined by

δH =
trace(H)

‖H‖ .

The intrinsic dimension is a measure of the spectral decay of H. It is bounded by the rank of H,
i.e., 1 ≤ δH ≤ rank(H) ≤ d.

Our main result, Proposition 4.1 below, establishes how many evaluations of the gradient are
sufficient to guarantee that the error ‖H−ĤMF ‖ is below some user-defined tolerance. In particular,
the number of gradient evaluations from the low-fidelity and high-fidelity models is shown to be a
function of the intrinsic dimension of H and of two coefficients θ and β, characterizing the quality of
the low-fidelity model and the maximum relative magnitude of the high-fidelity gradient, respectively.

Proposition 4.1. Assume there exist positive constants β < ∞ and θ < ∞ such that the
relations

‖∇f(X)‖2 ≤ β2 E[‖∇f(X)‖2],(4.1)

‖∇f(X)−∇g(X)‖2 ≤ θ2 E[‖∇f(X)‖2],(4.2)

hold almost surely. Let ĤMF be the MF estimator introduced in Definition 3.1 and assume

m2 ≥ m1 max

{
(θ + β)2(1 + θ)2

θ2(2 + θ)2
;

(θ + β)2

θ(2β + θ)

}
.(4.3)

Then, for any ε > 0, the condition

m1 ≥ ε−2δH θ log(2d) max
{

4δHθ(2 + θ)2 ; 2/3(2β + θ)
}
,(4.4)

is sufficient to ensure

E[‖H − ĤMF ‖] ≤ (ε+ ε2)‖H‖.(4.5)

Furthermore for any 0 < ε ≤ 1 and 0 < η < 1, the condition

m1 ≥ ε−2δH θ log(2d/η)
(
4δHθ(2 + θ)2 + ε4/3(2β + θ)

)
,(4.6)

is sufficient to ensure

P
{
‖H − ĤMF ‖ ≤ ε‖H‖

}
≥ 1− η.(4.7)
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Proof. See Appendix A.1.

Similarly, we can derive the number of high-fidelity gradient evaluations m1 sufficient to control
the SF estimator error in expectation and with high probability. This is the purpose of the following
proposition (see also [23]). Note that a high-probability bound similar to equations (4.11) and (4.12)
is established by Corollary 2.2 from [17].

Proposition 4.2. Assume there exists β <∞ such that

‖∇f(X)‖2 ≤ β2 E[‖∇f(X)‖2],(4.8)

holds almost surely. Then for any 0 < ε ≤ 1 the condition

m1 ≥ Cε−2δH log(1 + 2δH)(1 + β2),(4.9)

is sufficient to ensure

E[‖H − ĤSF ‖] ≤ (ε+ ε2)‖H‖.(4.10)

Here C is an absolute (numerical) constant. Furthermore for any 0 < ε ≤ 1 and any 0 < η ≤ 1, the
condition

m1 ≥ 2ε−2δH log(8δH/η)(β2 + ε(1 + β2)/3),(4.11)

is sufficient to ensure

P{‖H − ĤSF ‖ ≤ ε‖H‖} ≥ 1− η.(4.12)

Proof. See Appendix A.2.

The previous propositions show that when θ2 is small (i.e., when ∇g is a good approximation of
∇f), the number of samples m1 of the high-fidelity function can be significantly reduced compared
to the single-fidelity approach. The number of samples m2 has to be adjusted according to (4.3).
The guarantees provided for the MF estimator are different than those for the SF estimator. For
the MF estimator, the bound on m1 is a function of the intrinsic dimension but is also weakly (i.e.,
logarithmically) dependent on the ambient dimension d.

These results are especially interesting when β2 has no dependency (or weak dependency) on
the ambient dimension d. In such a case, the number of evaluations sufficient to obtain a satisfactory
relative error depends only on the intrinsic dimension δH and the parameter β2, and does not depend
(or only weakly depends) on the ambient dimension d. Recall that β2 quantifies the variation of the
square norm of the gradient, ‖∇f‖2, relative to its mean E[‖∇f(X)‖2]. In Section 5, we provide an
example of gradient function ∇f for which β2 is independent of d.

The proofs of Propositions 4.1 and 4.2 use a similar strategy. The key ingredient is the use
of a concentration inequality to bound the error between the AS matrix and its estimator. These
inequalities are applicable to matrices expressed as the sum of independent matrices (i.e., indepen-
dent summands), a condition met by the MF and SF estimators of H. The error bounds depend
on two characteristics of the matrix of interest: the variance of the estimator and an upper bound
on the norm of the summands. Those two characteristic quantities are functions of the number
of samples used to construct the estimator. Once established, those bounds are used to express
sufficient conditions on the number of samples to guarantee a user-defined tolerance for the error,
both in expectation and with high probability. The full proofs of Propositions 4.1 and 4.2 are given
in Appendix A.1 and Appendix A.2.

We conclude this section by summarizing the connection between our main results and a quantity
of interest in dimension reduction: the functional error. As shown in (2.1), for any matrix Ur ∈ Rd×r
with r ≤ d orthonormal columns, the functional error E[(f(X) − h(UTr X))2] is upper bounded by
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trace(H) − trace(UTr HUr). Thus, the quality of the dimension reduction can be controlled by
finding the maximizer U∗r of Ur 7→ trace(UTr HUr), as U∗r yields the tightest upper bound on the
functional error. However, U∗r cannot be computed because H is unknown. Instead, we compute

an approximator ĤMF of H and its associated Ûr (see (3.1)). Corollary 3.4 shows that using Ûr
instead of U∗r yields an upper bound close to the tightest one when ‖H − ĤMF ‖ is small. As a

result, the functional error E[(f(X) − h(ÛTr X))2] incurred by the ridge approximation built with

Ûr is at most 2r‖H − ĤMF ‖ larger than the tightest bound defined by the unknown U∗r (see (3.6)).

Finally, Proposition 4.1 shows how ‖H − ĤMF ‖ can be controlled by increasing the number of
gradient evaluations. Therefore, those results establish a direct link between the number of gradient
evaluations and the upper bound on the functional error of the ridge function built with Ûr.

5. Numerical results. In this section, we conduct numerical experiments illustrating the per-
formance of the proposed MF estimator. We first demonstrate the algorithm on synthetic examples
for which we can compute errors; we conduct a parametric study and compare the SF and MF estima-
tor performances. Second, we consider a high-dimensional engineering case: performing dimension
reduction on a linear elasticity problem involving parameterized material properties of a wrench.
Finally, we consider an expensive engineering problem: finding the active subspaces associated with
the shape optimization of the ONERA M6 wing in a turbulent flow.

5.1. Analytical problem. In this section, we consider an example for which all characteristic
quantities (δH , ‖H‖, E[‖∇f(X)‖2], β2) are known with closed-form expressions. 1

5.1.1. Problem description. We consider the input space X = [−1, 1]d and define ρ to be
the uniform distribution over X . We introduce the function f : X → R such that for all x ∈ X

f(x) =

√
3

2

d∑

i=1

ai x
2
i and ∇f(x) =

√
3



a1x1

...
adxd


 ,

where a = (a1, . . . , ad)
T ∈ Rd is a user-defined vector with |a1| ≥ |a2| ≥ . . . ≥ 0. With X ∼ ρ, we

have

H = E[∇f(X)∇f(X)T ] =



a21 0

. . .

0 a2d


 ,

so that ‖H‖ = a21, trace(H) = ‖a‖2 and

δH =
trace(H)

‖H‖ =
‖a‖2
a21

.

We define β as the smallest parameter that satisfies ‖∇f(X)‖2 ≤ β2 E[‖∇f(X)‖2]. Given that
E[‖∇f(X)‖2] = trace(H) = ‖a‖2, we have

β2 = sup
x∈X

‖∇f(x)‖2
E[‖∇f(X)‖2]

= sup
x∈X

3
∑d
i=1(aixi)

2

∑d
i=1 a

2
i

= 3,

where the supremum is attained by maximizing each term in the numerator. This corresponds to
x2i = 1 for all 1 ≤ i ≤ d. Notice that β =

√
3 is independent of the ambient dimension d and the

user-defined vector a.

1Code for the analytical problems available at https://github.mit.edu/rlam/MultifidelityDimensionReduction.

https://github.mit.edu/rlam/MultifidelityDimensionReduction
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We define the low-fidelity function g : X → R such that, for all x ∈ X , g(x) = f(x) −
bT‖a‖ cos(xd/T ), where b ≥ 0 and T > 0 are two user-defined parameters. In other words, g is a
perturbation of f such that g − f depends only on the last component. We have

∇g(x) = ∇f(x) +




0
...
0

b‖a‖ sin(xd/T )


 ,

for all x ∈ X . We let θ be the smallest parameter such that ‖∇f(x) −∇g(x)‖2 ≤ θ2E[‖∇f(X)‖2]
for all x ∈ X . We obtain

θ2 = sup
x∈X

‖∇f(x)−∇g(x)‖2
E[‖∇f(X)‖2]

= sup
x∈X

(b‖a‖ sin(xd/T ))2

‖a‖2 =

{
b2 sin(1/T )2 if T ≥ 2

π

b2 otherwise.

For the numerical experiments, we set b =
√

0.05 and T = 0.1, leading to a parameter θ =
√

0.05.
The number of samples m2 is set using the criteria of (4.3), leading to

m2 = 63m1 ≥ m1 max

{
(θ + β)2(1 + θ)2

θ2(2 + θ)2
;

(θ + β)2

θ(2β + θ)

}
.

In the two following subsections, we consider the case where H is rank deficient, and the case where
H is full rank but has a small intrinsic dimension. From now on, the ambient dimension is set to
d = 100.

5.1.2. Rank-deficient matrices. In this section, we consider the parameter a ∈ Rd defined
by

a = (1, . . . , 1︸ ︷︷ ︸
k

, 0, . . . , 0︸ ︷︷ ︸
d−k

),

for some k ∈ {1, 3, 10, 30, 100}. With this choice, the function f only depends on the k first variables
of the input x. This yields

H =

(
Ik 0
0 0

)
and δH = k ∈ {1, 3, 10, 30, 100},

where Ik is the identity matrix of size k. We study the dependence of the relative error ‖Ĥ−H‖/‖H‖
on the intrinsic dimension δH and the number of samples m1.

Figure 1 shows the average relative error of the SF estimator (left panel) and the MF estimator
(right panel) as a function of the number of samples m1 for δH ∈ {1, 10, 100}. The numerical results
are in accordance with the theoretical bounds: the errors are dominated by the theoretical bounds
and the slopes are similar. Comparing the left and right panels, we conclude that the MF estimator
outperforms the SF estimator for a given number of high-fidelity evaluations. For example, in the
case δH = 1, with m1 = 10 high-fidelity samples, the MF estimator achieves a relative error of 0.07
while the SF relative error is 0.23—i.e., a relative error 3.47 times lower. Similarly, Figure 2 shows
the average relative error as a function of the intrinsic dimension of H for m1 ∈ {10, 100, 1000}. We
notice that the difference between the theoretical bound and the actual estimator error is larger for
the MF estimator than for the SF estimator.

5.1.3. Full-rank matrices. In this section, we define the parameter a ∈ Rd to be ai =
exp(−Ci), for all 1 ≤ i ≤ d, where the value of C ≥ 0 is set to match the intrinsic dimensions
δH ∈ {2, 5, 10, 50, 100}. The function f now depends on every component of the input x and the

matrix H is full rank. Again, we study the dependence of the relative error ‖Ĥ −H‖/‖H‖ on the
intrinsic dimension δH and the number of samples m1.
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Fig. 1: Rank-deficient example. Average relative error (solid line) as a function of the number
of samples m1 for the SF estimator (left panel) and the MF estimator (right panel). Average is
computed over 100 trials. Dashed lines represent theoretical bounds.
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Fig. 2: Rank-deficient example. Average relative error (solid line) as a function of the intrinsic
dimension δH for the SF estimator (left panel) and the MF estimator (right panel). Average is
computed over 100 trials. Dashed lines represent theoretical bounds.

Figure 3 shows the average relative error of the SF estimator (left panel) and the MF estimator
(right panel) as a function of the number of samples m1 for δH ∈ {2, 10, 100}. The numerical results
agree with the theoretical bounds: the errors are dominated by the theoretical bounds and the slopes
are similar. Comparing the left and right panels, we conclude that the MF estimator outperforms
the SF estimator for a given number of high-fidelity evaluations. For example, in the case δH = 1,
with m1 = 10 high-fidelity samples, the MF estimator achieves a relative error of 0.09 while the
SF relative error is 0.37, leading to a relative error 3.86 times lower. Similarly, Figure 4 shows the
average relative error as a function of the intrinsic dimension of H for m1 ∈ {10, 100, 1000}. Again,
we observe that the empirical results satisfy the theoretical bounds.

5.2. Linear elasticity analysis of a wrench. We now demonstrate the proposed MF esti-
mator on a high-dimensional engineering example.
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Fig. 3: Full-rank example. Average relative error (solid line) as a function of the number of samples
m1 for the SF estimator (left panel) and the MF estimator (right panel). Average computed over
100 trials. Dashed lines represent theoretical bounds.
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Fig. 4: Full-rank example. Average relative error (solid line) as a function of the intrinsic dimension
δH for the SF estimator (left panel) and the MF estimator (right panel). Average computed over
100 trials. Dashed lines represent theoretical bounds.

5.2.1. Problem description. We consider a two-dimensional linear elasticity problem which
consists of finding a smooth displacement field u : Ω→ R2 that satisfies

div(K : ε(u)) = 0 on Ω ⊂ R2,

where ε(u) = 1
2 (∇u+∇uT ) is the strain field and K is the Hooke tensor. The boundary conditions

are depicted in Figure 5a. Using the plane stress assumption, the Hooke tensor K satisfies

K : ε(u) =
E

1 + ν
ε(u) +

νE

1− ν2 trace(ε(u))I2,

where ν = 0.3 is the Poisson’s ratio and E ≥ 0 the Young’s modulus. We model E as a random
field such that log(E) ∼ N (0, C) is a zero-mean Gaussian field over Ω with covariance function
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C : Ω× Ω → R such that C(s, t) = exp(−‖s− t‖22/l0) with l0 = 1. We consider the output defined
by the vertical displacement of a point of interest (PoI) represented by the green point in Figure 5a.
We denote by u2(PoI) this scalar output, where the subscript ‘2’ refers to the vertical component of
u.

We denote by uh the finite element solution defined as the Galerkin projection of u on a finite
element space comprising continuous piecewise linear functions over the mesh depicted in Figure 5b.
To compute uh, we approximate the Young’s modulus log(E) by a piecewise constant field log(Eh)
that has the same statistics as log(E) at the center of the elements. Denoting by d = 2197 the
number of elements in the mesh, we define f : Rd → R as the map from the log–Young’s modulus
to the quantity of interest

f : X = log(Eh) 7→ uh2 (PoI).

(a) Geometry and boundary conditions. (b) Mesh and realization of uh(X)

Fig. 5: Left panel: Dirichlet condition u = 0 (black chopped lines), vertical unitary linear forcing
(red arrows), and point of interest PoI (green dot). Right panel: mesh and finite element solution
uh(X) associated with one realization of X, the random Young’s modulus. The color represents the
von Mises stress.

The gradients of f are computed with the adjoint method; see for instance [31]. The complexity
of computing the gradient increases with the number of elements in the mesh. For this reason,
we introduce a low-fidelity model g that relies on the coarser mesh depicted in Figure 6d. This
coarse mesh contains 423 elements, so that the function g and its gradient can be evaluated with
less computational effort compared to f . We now explain in detail how g is defined. First, the log of
the Young’s modulus on the coarse mesh is defined as the piecewise constant field whose value at a
given (coarse) element equals the spatial mean of X = log(Eh) restricted to that coarse element; see
the illustration from Figure 6a to Figure 6b. Then, we compute the coarse finite element solution
and we define g(X) as the vertical displacement of the PoI. Figure 6c and Figure 6d show that
the fine and coarse solutions are similar. With our implementation2, evaluating the gradient of the
low-fidelity model ∇g is approximately 7 times faster than computing ∇f .

Since the error bound (2.1) holds when X is a standard Gaussian random vector, we em-
ploy the following change of variables. Denoting by Σ the covariance matrix of X ∼ N (0,Σ),
we write X = Σ1/2Xstd where Xstd ∼ N (0, Id) and where Σ1/2 is a positive square root of
Σ. After this change of variables, the high-fidelity and low-fidelity models are respectively fstd :
Xstd 7→ f(Σ1/2Xstd) and gstd : Xstd 7→ g(Σ1/2Xstd) and the standardized AS matrix is Hstd =
E[∇fstd(Xstd)∇fstd(Xstd)T ]. This change of variable can be interpreted as a preconditioning step
of the AS matrix H = E[∇f(X)∇f(X)T ] since we can write Hstd = ΣT/2HΣ1/2. For the sake of
simplicity, we omit the subscript ‘std’ and we use the notations H, f , and g for the standardized
version of the AS matrix, the high-fidelity model, and low-fidelity model.

2Code available at https://gitlab.inria.fr/ozahm/wrenchmark.git.

https://gitlab.inria.fr/ozahm/wrenchmark.git
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(a) Realization of X = log(Eh) on the fine mesh (b) Projection of X on the coarse mesh

(c) Finite element solution on the fine mesh (d) Finite element solution on the coarse mesh

Fig. 6: Construction of the low-fidelity approximation g of f using a coarse mesh. Figure 6a
represents a realization of the Young’s modulus on the fine mesh and Figure 6b its projection onto
the coarser mesh. The corresponding finite element solution on the fine mesh (resp. coarse) and von
Mises stress are represented in Figure 6c (resp. Figure 6d).

5.2.2. Numerical results. We compute 104 evaluations of the high-fidelity gradient ∇f and
use them to form a SF estimator Ĥref

SF that we consider as a reference AS matrix. We compare
the performance of the MF and SF estimators computed on ten cases characterized by different
computational budgets. For a given case γ ∈ {1, . . . , 10}, the SF estimator is computed with
m1 = 3γ gradient evaluations while the MF estimator uses m1 = 2γ and m2 = 5γ. Given that
evaluating ∇g is 7 times faster than evaluating ∇f , the computational costs of the SF and MF
estimators are equivalent. In the following, we refer to γ as the cost coefficient, as we have set the
computational budget to increase linearly with γ.

Figure 7 (left panel) shows the relative error with respect to the reference estimator Ĥref
SF as a

function of the cost coefficient γ, averaged over 100 independent experiments. The MF estimator
outperforms the SF estimator for all the budgets tested. In particular, the MF estimator (respectively
SF estimator) reaches a relative error of 0.4 for γ = 4 (respectively γ = 7). This represents a
42.8% reduction in computational resources for the MF estimator. Figure 7 (right panel) shows
the eigenvalues of the AS matrix estimators, compared to those of the reference, for cost coefficient
γ = 10. The MF estimator provides a better approximation of the spectral decay of the AS matrix
than the SF estimator. We note that the spectral decay suggests that a few modes (≈ 5) are
sufficient to describe the behavior of the function f . Finally, Figure 8 shows the two leading modes
(eigenvectors) from the reference, the SF, and the MF estimators for cost coefficient γ = 10. We
note that both the SF and the MF estimators recover the leading modes correctly.

5.3. ONERA M6 wing shape optimization. In this section, we illustrate the proposed MF
estimator on an expensive-to-evaluate engineering example.

We consider the problem of finding the active subspace associated with the shape optimization
of the ONERA M6 wing. The shape of the wing is parameterized by free form deformation (FFD)
box control points. In our experiment we used 5 × 8 × 2 = 80 FFD boxes. Imposing second-order
continuity of surfaces with the FFD fixes 5×3×2 = 30 variables, leaving d = 50 control points. These
correspond to the input variable x ∈ X = [−0.05, 0.05]50. The functions of interest are the drag
and the lift coefficients. Those quantities are computed using expensive-to-evaluate computational
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Fig. 7: Left panel: Relative error as a function of cost coefficient γ, averaged over 100 independent
experiments. At equivalent computational budget, the MF estimator outperforms the SF estimator.
Right panel: Eigenvalues of the AS matrix estimators for the vertical displacement of the wrench
PoI averaged over 100 independent experiments. Shadings represent the minimum and maximum
values over the 100 independent experiments. The high-fidelity SF estimator used m1 = 30 samples
and the MF estimator is constructed with with m1 = 20 and m2 = 50 samples. This corresponds to
a similar computational budget.

fluid dynamics (CFD) tools. We use the SU23 package [32] to solve the Reynolds-averaged Navier-
Stokes (RANS) equations and compute the gradients using the continuous adjoint method. The
flow conditions are such that the Mach number is M∞ = 0.8395, the angle of attack of the wing is
α = 3.03◦, and the Reynolds number is Re = 11.72× 106. We use the Spalart-Allmaras turbulence
model.

The high-fidelity function uses the aforementioned CFD model with the following stopping
criteria: the solution of the RANS equations and the associated adjoint are computed with a limit
of 104 iterations or fewer if the Cauchy convergence criteria reaches 10−5 within this limit (i.e.,
maximum variation of the quantity of interest over 100 iterations is lower than 10−5). For the low-
fidelity function g, we use the same model as the high-fidelity function f but reduce the maximum
number of iterations allowed for convergence from 104 to 103. An evaluation of the high-fidelity
model (drag and lift coefficients and associated gradients) is thus approximately 10 times more
expensive than the low-fidelity model.

We compute a total of 100 high-fidelity evaluations and 500 low-fidelity evaluations. We use the
100 evaluations of the high-fidelity model to compute a first “reference” SF estimator (m1 = 100)

that we denote Ĥ
(100)
SF . We split the collected data into 5 independent experimental batches and

construct three estimators per batch. The first is a SF estimator constructed with m1 = 10 high-
fidelity evaluations. The second is a SF estimator built with m1 = 20 high-fidelity evaluations. The
last estimator is a MF estimator with m1 = 10 and m2 = 90 evaluations. For these three estimators,
the m1 high-fidelity evaluations are common. We note that the computational cost of the second

3https://github.com/su2code/SU2/tree/ec551e427f20373511432e6cd87402304cc46baa

https://github.com/su2code/SU2/tree/ec551e427f20373511432e6cd87402304cc46baa
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Fig. 8: First (top row) and second leading modes (bottom row) of the AS matrix for the reference
estimator (left column), SF estimator (middle column) and MF estimator (right column) for the
cost coefficient γ = 10. Both the SF and the MF estimators correctly capture the two leading modes
of the reference AS matrix.

SF estimator (m1 = 20) and the MF estimator (m1 = 10 and m2 = 90) are similar.
Figure 9 shows the 20 first eigenvalues of the three estimators (averaged over 5 independent

batches) and Ĥ
(100)
SF . Note that the SF estimators (except Ĥ

(100)
SF ) are rank deficient (rank 10 and

rank 20). The MF estimator is full rank (rank 50). The MF estimator is closer to Ĥ
(100)
SF than

the two SF estimators. In particular, the MF estimator outperforms the second SF estimator with
similar computational budget. The error bars show the maximum and the minimum values over the
5 independent experiments for each estimator and confirm the robustness of the proposed method.

Figure 10 shows the 50 eigenvalues of the SF estimator Ĥ
(100)
SF (m1 = 100) and a MF estima-

tor using all the available evaluations (m1 = 100, m2 = 400). The leading eigenvalues are similar
for both estimators. The difference between the two estimators increases for lower eigenvalues
(higher indices). For both estimators, we compute approximations of the characteristic quantities
δH , E[‖∇f(X)‖2], ‖H‖, β2, and θ2 and summarize them in Table 1. The SF quantities are com-

puted based on the m1 = 100 high-fidelity evaluations: ‖H‖ and δH are computed using Ĥ
(100)
SF

in lieu of H, E[‖∇f(X)‖2] is approximated by 1
m1

∑m1

i=1 ‖∇f(Xi)‖2, while β2 is approximated by

maxi ‖∇f(Xi)‖2/E[‖∇f(X)‖2] for i ∈ {1, . . . ,m1}. The MF quantities are computed based on the
m1 = 100 high-fidelity evaluations and m1 + m2 = 500 low-fidelity evaluations: ‖H‖ and δH are
computed using the MF estimator in lieu of H, E[‖∇f(X)‖2] is approximated by the (scalar) MF
estimator 1

m1

∑m1

i=1(‖∇f(Xi)‖2 − ‖∇g(Xi)‖2) + 1
m2

∑m1+m2

i=m1+1 ‖∇g(Xi)‖2, while θ2 is approximated

by maxi ‖∇f(Xi) − ∇g(Xi)‖2/E[‖∇f(X)‖2] for i ∈ {1, . . . ,m1}. From Table 1, it can be seen
that the intrinsic dimension of the AS matrix is approximately 9 for both the drag and lift coeffi-
cients. Table 1 also shows that the parameter β2 is not large (≤ 2), which indicates, along with the
low intrinsic dimension, that computing a good estimator of H requires relatively few evaluations.
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Fig. 9: Eigenvalues of the AS matrix estimators for the drag coefficient (left panel) and for the lift
coefficient (right panel) averaged over 5 independent experiments. The SF estimator with m1 = 20
and the MF estimator (dashed lines) used the same computational budget to evaluate the gradients.

At equal budget, the MF estimator provides a better estimate of the spectrum of Ĥ
(100)
SF than the SF

estimator. Shadings represent maximum and minimum values over the 5 independent experiments.

Table 1: Approximation of the characteristic quantities for the SF and MF estimators for the drag
and lift coefficients.

Drag coefficient Cd Lift coefficient Cl

SF MF SF MF

E[‖∇f(X)‖2] 1.74× 10−5 1.81× 10−5 5.96× 10−3 6.08× 10−3

‖H‖ 2.09× 10−6 1.99× 10−6 6.16× 10−4 6.38× 10−4

δH 8.34 9.10 9.67 9.53
β2 1.76 - 1.54 -
θ2 - 1.30× 10−5 - 1.03× 10−4

We also note that the low-fidelity model is a good approximation of the high-fidelity model, with
θ2 ≤ 1.5× 10−5 for the drag and θ2 ≤ 1.1× 10−4 for the lift. Figure 11 shows the normalized sum
of the eigenvalues of the best rank-r approximation of Ĥ. Selecting the 20 first eigenvectors of Ĥ
allows us to capture more than 80% of the spectral content and decreases by 30 the dimensionality
of the shape optimization problem (a 60% decrease).

6. Conclusions. We proposed a multifidelity approach to identify low-dimensional subspaces
capturing most of the variation of a function of interest. Our approach builds on the gradient-
based active subspace methodology, which seeks to compute the matrix H containing the second
moments of the gradient function. The proposed approach reduces the computational cost of Monte
Carlo methods used to estimate this matrix, by using a low-fidelity, cheap-to-evaluate gradient
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Fig. 10: Eigenvalues of the AS matrix estimators for the drag coefficient (left panel) and for the
lift coefficient (right panel). The high-fidelity SF estimator used m1 = 100 samples and the MF
estimator is constructed with with m1 = 100 and m2 = 400 samples.

approximation as a control variate. The performance improvements of the resulting multifidelity
(MF) estimator ĤMF are demonstrated on two engineering examples governed by partial differential
equations: a high-dimensional linear elasticity problem defined over more than two thousand input
variables and an expensive shape optimization problem defined over 50 input variables.

Analysis of the performance of the multifidelity technique yields error bounds for the matrix
error ‖H − ĤMF ‖ both in expectation and with high probability. These error bounds depend on
the intrinsic dimension of the problem, which is related to the spectral decay of the active subspace
matrix. When a function varies mostly along a few directions, the intrinsic dimension is low. In such
a case, approximating H may require only a small number of gradient evaluations. This relationship
was confirmed empirically by a parametric study conducted on two analytical problems: lower
intrinsic dimension led to lower matrix error for the same number of high-fidelity evaluations.

The performance improvements of the multifidelity approach are threefold. First, we showed
that the MF estimator reduces the cost of performing dimension reduction. This was illustrated on
the linear elasticity problem, where the multifidelity approach needed about 43% less computational
effort than its single-fidelity counterpart to achieve the same relative error. Second, we showed that
the multifidelity approach was able to recover eigenvectors qualitatively similar to the exact ones.
Third, the MF estimator led to better estimates of the spectral decay of H. On the linear elasticity
problem, which is characterized by a low intrinsic dimension (≤ 5), the multifidelity approach led
to better estimates, especially for smaller eigenvalues. On the shape optimization problem, which
is characterized by a higher intrinsic dimension (≈ 9), the MF estimator led to better estimates for
all eigenvalues. This behavior is in contrast to the single-fidelity method, which overestimated the
leading eigenvalues and underestimated the lower eigenvalues, thereby underestimating the intrinsic
dimension of H and overestimating the spectral decay. Recovering the spectral decay of H is
particularly important since one popular way of choosing the dimension r of the active subspace is
based on the spectral gap between consecutive eigenvalues. If the spectral decay is overestimated,
r might be chosen too small to correctly capture the behavior of the high-fidelity function. By
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∑i
k=1 λr(Ĥ)/tr(Ĥ) captured by the best rank-r approximation

of Ĥ, where λk(Ĥ) is the kth eigenvalue of Ĥ.

providing a better estimate of the spectral decay, the MF estimator reduces this risk.
The dimension of the active subspace can also be chosen to control an error bound on the

associated function approximation error, i.e., when using the active subspace to construct a ridge
approximation of the original function. We showed that the approximation of this bound, which
depends on the unknown H, improves as the matrix error decreases. Because the MF estimator re-
duces the error in estimating H for a given computational effort, the proposed multifidelity approach
leads to a better selection of the active subspace dimension r.

Appendix A. Proofs of main results. In this section, we present the details of the proofs
of Proposition 4.1 (Appendix A.1) and Proposition 4.2 (Appendix A.2).

A.1. Proof of Proposition 4.1. The proof of Proposition 4.1 relies on the concentration
inequality known as the matrix Bernstein theorem. It corresponds to Theorem 6.1.1 from [47]
restricted to the case of real symmetric matrices.

Theorem A.1 (Matrix Bernstein: real symmetric case [47]). Let S1, . . . , Sm be m independent
zero-mean random symmetric matrices in Rd×d. Assume there exists L <∞ such that

‖Si‖ ≤ L,

almost surely for all 1 ≤ i ≤ m, and let v be such that

‖E[(S1 + . . .+ Sm)2]‖ ≤ v.

Then,

E[‖S1 + . . .+ Sm‖] ≤
√

2v log(2d) +
1

3
L log(2d).

Furthermore, for any t ≥ 0 we have

P{‖S1 + . . .+ Sm‖ ≥ t} ≤ 2d exp

( −t2/2
v + Lt/3

)
.
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In order to apply the matrix Bernstein theorem, we need to express the difference between
the AS matrix H and the MF estimator ĤMF as the sum of independent matrices. We write
H − ĤMF = S1 + . . .+ Sm, where m = m1 +m2 and

Si =

{ 1
m1

(
H −G− (∇f(X)∇f(X)T −∇g(X)∇g(X)T )

)
, if 1 ≤ i ≤ m1,

1
m2

(
G−∇g(X)∇g(X)T

)
. otherwise,

where G = E[∇g(X)∇g(X)T ]. The following property provides bounds for ‖Si‖ and E[‖S1 + . . . +
Sm‖]. Those bounds are expressed as functions of m1, m2, β, θ, and E[‖∇f(X)‖2].

Property A.2. Assumptions (4.1) and (4.2) yield

(A.1) ‖E[(S1 + . . .+ Sm)2]‖ ≤
(
θ2(2 + θ)2

m1
+

(θ + β)2(1 + θ)2

m2

)
E[‖∇f(X)‖2]2,

and

(A.2) ‖Si‖ ≤ max

{
2θ(2β + θ)

m1
;

2(θ + β)2

m2

}
E[‖∇f(X)‖2].

almost surely for all 1 ≤ i ≤ m.

Proof. We first derive the bound (A.1) for the variance of the estimator before proving the
bound (A.2) for the norm of the summands.

Using the independence of the summands Si and the fact that E[Si] = 0, we have

E[(S1 + . . .+ Sm)2] = E[S2
1 ] + . . .+ E[S2

m1
] + E[S2

m1+1] + . . .+ E[S2
m]

=
1

m1
E[(A− E[A])2] +

1

m2
E[(B − E[B])2],(A.3)

where

A = ∇f(X)∇f(X)T −∇g(X)∇g(X)T ,

B = ∇g(X)∇g(X)T .

Notice that 0 4 E[(A−E[A])2] = E[A2]−E[A]2 4 E[A2] so that ‖E[(A−E[A])2]‖ ≤ ‖E[A2]‖, where
4 denotes the Loewner partial order. Similarly, one has ‖E[(B − E[B])2]‖ ≤ ‖E[B2]‖. Taking the
norm of (A.3) and using a triangle inequality yields

‖E[(S1 + . . .+ Sm)2]‖ ≤ 1

m1
‖E[A2]‖+

1

m2
‖E[B2]‖.

To obtain (A.1), it remains to show (i) that ‖E[A2]‖ ≤ θ2(2 + θ)2E[‖∇f(X)‖2]2 and (ii) that
‖E[B2]‖ ≤ (β + θ)2(1 + θ)2E[‖∇f(X)‖2]2. Let u ∈ Rd such that ‖u‖ ≤ 1. We have

uTE[A2]u = E[uT (∇f(X)∇f(X)T −∇g(X)∇g(X)T )2u]

= E[‖(∇f(X)∇f(X)T −∇g(X)∇g(X)T )u‖2]

= E[‖∇f(X)(∇f(X)−∇g(X))Tu− (∇g(X)−∇f(X))∇g(X)Tu‖2].

Using triangle inequalities, we can write

uTE[A2]u ≤ E[(‖∇f(X)(∇f(X)−∇g(X))Tu‖+ ‖(∇g(X)−∇f(X))∇g(X)Tu‖)2]

≤ E[(‖∇f(X)‖ ‖∇f(X)−∇g(X)‖+ ‖∇g(X)−∇f(X)‖ ‖∇g(X)‖)2]

≤ E[‖∇f(X)−∇g(X)‖2(‖∇f(X)‖+ ‖∇g(X)‖)2]

≤ E[‖∇f(X)−∇g(X)‖2(2‖∇f(X)‖+ ‖∇f(X)−∇g(X)‖)2]

≤ θ2E[‖∇f(X)‖2] E[(2‖∇f(X)‖+ θ
√

E[‖∇f(X)‖2])2],(A.4)
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where for the last inequality we used Assumption (4.2). Expanding the last term yields

E[(2‖∇f(X)‖+ θ
√

E[‖∇f(X)‖2])2]

= 4E[‖∇f(X)‖2] + 4θE[‖∇f(X)‖]
√
E[‖∇f(X)‖2] + θ2E[‖∇f(X)‖2]

≤ 4E[‖∇f(X)‖2] + 4θE[‖∇f(X)‖2] + θ2E[‖∇f(X)‖2]

= (2 + θ)2E[‖∇f(X)‖2].(A.5)

Here, we used the relation E[‖∇f(X)‖]2 ≤ E[‖∇f(X)‖2], which holds true by Jensen’s inequality.
Combining (A.4) and (A.5) and taking the supremum over ‖u‖ ≤ 1 yields

‖E[A2]‖ ≤ θ2(2 + θ)2E[‖∇f(X)‖2]2,

which gives (i). To show (ii), we first notice that Assumptions (4.1) and (4.2) yield

(A.6) ‖∇g(X)‖2 ≤ (‖∇f(X)‖+ ‖∇g(X)−∇f(X)‖)2 ≤ (β + θ)2E[‖∇f(X)‖2],

almost surely. Then, for any u ∈ Rd such that ‖u‖ ≤ 1, we have

uTE[B2]u = E[uT (∇g(X)∇g(X)T )2u]

= E[‖∇g(X)‖2(∇g(X)Tu)2]

≤ (β + θ)2E[‖∇f(X)‖2]E[(∇g(X)Tu)2].(A.7)

Using similar arguments, the last term in the above relation satisfies

E[(∇g(X)Tu)2] = E[(∇g(X)Tu)2 − (∇f(X)Tu)2] + E[(∇f(X)Tu)2]

= E[((∇g(X) +∇f(X))Tu)(∇g(X)−∇f(X)Tu)] + E[(∇f(X)Tu)2]

≤ E[‖∇g(X) +∇f(X))‖ ‖∇g(X)−∇f(X)‖] + E[‖∇f(X)‖2]

≤ E[(2‖∇f(X)‖+ ‖∇g(X)−∇f(X)‖)‖∇g(X)−∇f(X)‖] + E[‖∇f(X)‖2]

≤ 2E[‖∇f(X)‖]θ
√
E[‖∇f(X)‖2] + θ2E[‖∇f(X)‖2] + E[‖∇f(X)‖2]

≤ (2θ + θ2 + 1)2E[‖∇f(X)‖2] = (1 + θ)2E[‖∇f(X)‖2].(A.8)

Combining (A.7) with (A.8) and taking the supremum over ‖u‖ ≤ 1 yields

‖E[B2]‖ ≤ (β + θ)2(1 + θ)2E[‖∇f(X)‖2]2,

which establishes (ii). This proves (A.1).

Now we prove the second part of the property: the bound on the summand (A.2). Recall that
Si is defined as 1

m1
(E[A]− A) if 1 ≤ i ≤ m1 and as 1

m2
(E[B]−B) if m1 ≤ i ≤ m. To obtain (A.2),

it is then sufficient to show (iii) that ‖E[A] − A‖ ≤ 2θ(2β + θ)E[‖∇f(X)‖2] almost surely and (iv)
that ‖E[B]−B‖ ≤ 2(β + θ)2E[‖∇f(X)‖2] almost surely. To show (iii), we first notice that

‖A‖ = ‖∇f(X)∇f(X)T −∇g(X)∇g(X)T ‖
= ‖∇f(X)(∇f(X)−∇g(X))T − (∇g(X)−∇f(X))∇g(X)T ‖
≤ ‖∇f(X)‖‖∇f(X)−∇g(X))‖+ ‖∇g(X)−∇f(X)‖‖∇g(X)‖
≤ ‖∇f(X)−∇g(X))‖(2‖∇f(X)‖+ ‖∇f(X)−∇g(X)‖)
≤ θ
√

E[‖∇f(X)‖2](2β
√
E[‖∇f(X)‖2] + θ

√
E[‖∇f(X)‖2])

≤ θ(2β + θ)E[‖∇f(X)‖2].
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Then, we can write

‖E[A]−A‖ ≤ ‖E[A]‖+ ‖A‖ ≤ 2θ(2β + θ)E[‖∇f(X)‖2],

which gives (iii). Finally we have

‖E[B]−B‖ ≤ E[‖∇g(X)‖2] + ‖∇g(X)‖2
(A.6)

≤ 2(β + θ)2E[‖∇f(X)‖2],

which gives (iv) and therefore (A.2). This concludes the proof of Property A.2.

To prove our main result, Proposition 4.1, it remains to express the bounds of the estimator
variance and the summands as a function of m1 and to apply the matrix Bernstein theorem. By

Assumption (4.3), we have m2 ≥ m1
(θ+β)2

θ(2β+θ) so that, using equation (A.2) of Property A.2, we have

that

‖Si‖ ≤
2θ(2β + θ)

m1
E[‖∇f(X)‖2] =: L,

holds almost surely for all 1 ≤ i ≤ m. By Assumption (4.3), we also have m2 ≥ m1
(θ+β)2(1+θ)2

θ2(2+θ)2 so

that equation (A.1) yields

‖E[(S1 + . . .+ Sm)2]‖ ≤ 2θ2(2 + θ)2

m1
E[‖∇f(X)‖2]2 =: v.

Applying the matrix Bernstein theorem (Theorem A.1) gives

E[‖H − ĤMF ‖] = E[‖S1 + . . .+ Sm‖]

≤
√

2v log(2d) +
1

3
L log(2d)

=
(2θ(2 + θ)

√
log(2d)√

m1
+

2θ(2β + θ) log(2d)

3m1

)
E[‖∇f(X)‖2]

(4.4)

≤ (ε+ ε2)
E[‖∇f(X)‖2]

δH
= (ε+ ε2)‖H‖,

where, for the last equality, we used the definition of δH = trace(H)/‖H‖ and the fact that
trace(H) = traceE(∇f(X)∇f(X)T ) = E[‖∇f(X)‖2]. This proves equation (4.5).

To show equation (4.7), we apply the high-probability bound of Theorem A.1 with t = ε‖H‖.
We obtain

P
{
‖H − ĤMF ‖ ≥ ε‖H‖

}
≤ 2d exp

( −ε2‖H‖2/2
v + Lε‖H‖/3

)

= 2d exp

( −ε2m1

4θ2(2 + θ)2δ2H + 4/3θ(2β + θ)δHε

)
(4.6)

≤ η,

which is equation (4.7). This concludes the proof of Proposition 4.1.

A.2. Proof of Proposition 4.2. The proof of Proposition 4.2 relies on the concentration in-
equality known as the intrinsic dimension matrix Bernstein theorem. It corresponds to Property 7.3.1
and Corollary 7.3.2 from [47], restricted to the case of real symmetric matrices.

Theorem A.3 (Matrix Bernstein: intrinsic dimension, real symmetric case). Let S1, . . . , Sm
be m zero-mean random symmetric matrices in Rd×d. Assume the existence of L <∞ such that

‖Si‖ ≤ L,
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almost surely for all 1 ≤ i ≤ m. Let V ∈ Rd×d be a symmetric matrix such that

E[(S1 + . . .+ Sm)2] 4 V,

and let δV = trace(V )/‖V ‖ and v = ‖V ‖. Then, we have

E[‖S1 + . . .+ Sm‖] ≤ C0

(√
v ln(1 + 2δV ) + L ln(1 + 2δV )

)
,

where C0 is an absolute (numerical) constant. Furthermore, for any t ≥ √v + L/3, we have

P{‖S1 + . . .+ Sm‖ ≥ t} ≤ 8δV exp

( −t2/2
v + Lt/3

)
.

Proof. Using the definition of V and the symmetry of the matrices Si, we have:

V < E[(S1 + . . .+ Sm)2] = E[(S1 + . . .+ Sm)(S1 + . . .+ Sm)T ](A.9)

V < E[(S1 + . . .+ Sm)2] = E[(S1 + . . .+ Sm)T (S1 + . . .+ Sm)].(A.10)

Defining the matrix M =

(
V 0
0 V

)
, we have δM = 2δV . A direct application of Property 7.3.1 and

Corollary 7.3.2 from [47] yields the theorem.

In order to apply the intrinsic dimension matrix Bernstein theorem, we express the difference
between the AS matrix H and the SF estimator ĤSF as the sum of independent matrices. We write
H − ĤSF = S1 + . . .+ Sm1 where

Si =
1

m1

(
H −∇f(Xi)∇f(Xi)

T
)
,

for all 1 ≤ i ≤ m1. Since H = E[∇f(X)∇f(X)], we have

‖Si‖ ≤
‖H‖+ ‖∇f(Xi)∇f(Xi)

T ‖
m1

≤ E[‖∇f(X)‖2] + ‖∇f(Xi)‖2
m1

(4.8)

≤ E[‖∇f(X)‖2] + β2E[‖∇f(X)‖2]

m1
=

1 + β2

m1
E[‖∇f(X)‖2] =: L

almost surely for all 1 ≤ i ≤ m1. By independence of the summands Si and given E[Si] = 0, we
have

E[(S1+ . . .+ Sm1
)2] = E[S2

1 ] + . . .+ E[S2
m1

]

=
1

m1
E[(∇f(X)∇f(X)T − E[∇f(X)∇f(X)T ])2]

4
1

m1
E[(∇f(X)∇f(X)T )2] =

1

m1
E[‖∇f(X)‖2∇f(X)∇f(X)T ]

(4.8)

4
β2E[‖∇f(X)‖2]

m1
E[∇f(X)∇f(X)T ] =

β2E[‖∇f(X)‖2]

m1
H =: V

With the above definition of V , we have

v := ‖V ‖ =
β2E[‖∇f(X)‖2]‖H‖

m1

δ :=
trace(V )

‖V ‖ =
trace(H)

‖H‖ = δH .
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Applying the expectation bound of Theorem A.3 gives

E[‖H − ĤSF ‖] = E[‖S1 + . . .+ Sm‖] ≤ C0

(√
v ln(1 + 2δ) + L ln(1 + 2δ)

)

≤ C0



√
β2E[‖∇f(X)‖2]‖H‖

m1
ln(1 + 2δH) +

1 + β2

m1
E[‖∇f(X)‖2] ln(1 + 2δH)




(4.9)

≤ C0

(√
ε−2‖H‖2

C
+
ε−2‖H‖

C

)
≤ (ε+ ε2)‖H‖,

where the last inequality is obtained by defining C = max{C0, C
2
0}. This yields equation (4.10).

Finally, letting t = ε‖H‖, the high-probability bound of Theorem A.3 ensures that

P{‖H − ĤSF ‖ ≥ ε‖H‖} ≤ 8δH exp

( −ε2‖H‖2/2
v + Lε‖H‖/3

)

= 8δH exp

(
−ε2‖H‖2/2

β2E[‖∇f(X)‖2]‖H‖
m1

+ 1+β2

m1
E[‖∇f(X)‖2]ε‖H‖/3

)

= 8δH exp

( −m1ε
2/2

β2δH + (1 + β2)δHε/3

)
(4.11)

≤ η,

which is equation (4.12). This concludes the proof of Proposition 4.2.
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