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Continuous-Time Robust Dynamic Programming

TAO BIAN AND ZHONG-PING JIANG

Abstract. This paper presents a new theory, known as robust dynamic pro-
gramming, for a class of continuous-time dynamical systems. Different from
traditional dynamic programming (DP) methods, this new theory serves as
a fundamental tool to analyze the robustness of DP algorithms, and in par-
ticular, to develop novel adaptive optimal control and reinforcement learning
methods. In order to demonstrate the potential of this new framework, four
illustrative applications in the fields of stochastic optimal control and adaptive
DP are presented. Three numerical examples arising from both finance and
engineering industries are also given, along with several possible extensions of
the proposed framework.
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1. Introduction

In 1952, Bellman proposed the original idea of dynamic programming (DP)
[Bel52] to solve a class of optimization problems subject to a controlled process

The opinions expressed in this paper are those of the authors and do not necessarily reflect
the views and policies of Bank of America Merrill Lynch.
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that is usually described by a Markov decision process (MDP), a difference equa-
tion, or a differential equation. Over the past several decades, DP and its extensions
[Put05, Ber05, Ber07, Ber13] have attracted a significant amount of attention, be-
cause of the vital role they have played in several popular fields including reinforce-
ment learning (RL) [SB98, Lit15, BTS17], finance [Mer71, TVR99, Pha09, GP16],
and biological control [KBL70, Tod05], to name a few. Depending on the form
(discrete-time vs. continuous-time) used to describe the dynamical system in ques-
tion, DP problems can be solved by finding the solution to either the Bellman
equation or the Hamilton-Jacobi-Bellman (HJB) equation. However, due to the
complex nature of these equations, the optimal solution cannot be obtained analyt-
ically in most cases, and numerous methods including policy iteration (PI) [How60,
Kle68, Bea95, BJJ14] and value iteration (VI) [Bel57, Ber17, BJ16b, BJ16a] have
been developed to approximate the solutions of these equations. Unfortunately,
these algorithms suffer from serious usage limitations, due to the limited informa-
tion available and the presence of various types of disturbance in practical problems.
Nevertheless, from a control theory point of view, we identify two perspectives to
address these issues. The first one, which we refer to as the “adaptive control
perspective”, aims at learning the unknown components in DP algorithms directly
from available online/offline data. Based on the problem formulation, such un-
known component can be the Q-factor, the policy gradient, and the policy func-
tion. Indeed, the majority of existing adaptive optimal control and DP methods
[BT96, SBPW04, Pow07, LL13, JJ17] falls into this category, and RL is considered
as a machine learning reinterpretation of direct adaptive control [SBW92]. The
main advantage of these methods is that they are effective in tackling the pres-
ence of static uncertainties such as the unknown parameters in the DP algorithm.
As a result, this allows the DP problem to be solved without directly using the
knowledge of the underlying system (also known as the environment in RL), i.e.,
the optimal solution is obtained in a model-free manner. In spite of its popularity,
the adaptive control perspective is not effective in tackling the presence of dynamic
uncertainties [LJH14] in DP algorithms. Such dynamic uncertainty may be caused
by coupling the standard DP algorithm with other numerical algorithms, where
each of these algorithms then serves as a dynamic uncertainty to the DP algorithm.
It may also arise from the decentralized DP problem, where each node in a large-
scale network executes its own version of the DP algorithm, and interacts with its
neighbors through the outputs and inputs. The algorithm executed in its neigh-
boring nodes can be considered as dynamic uncertainty to the node itself. Existing
learning-based DP algorithms are not directly applicable to handle this type of
disturbances.

The second perspective, which we refer to as the “robust control perspective”,
aims at strengthening the DP algorithm so that it is robust to the presence of dis-
turbance. A remarkable feature of this type of methods is that it is effective in
dealing with both static and dynamic uncertainties. Unlike the adaptive control
persepctive, the development in this direction is still rudimentary. Only a few re-
sults [Iye05, NEG05, LXM13] are available for solving DP and RL problems along
this track, in which the authors still only considered the static uncertainty caused
by the unknown transition probability measures. Besides, these methods are only
available for MDPs. In other words, there is no robust DP solution for dynamical
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Table 1. Comparison between Applications of Different DP Methods

Application scenarios DP Adaptive DP Robust DP
Ideal case Yes Yes Yes
Static uncertainty No Yes Yes
Dynamic uncertainty No No Yes
Model free No Yes No

systems described by differential equations. As a result, it is still an open prob-
lem how to develop DP algorithms that are robust to both static and dynamic
uncertainties.

In this paper, we propose a novel robust DP theory for continuous-time linear
dynamical systems. Compared with traditional DP and adaptive optimal control,
we take a completely different path to investigate DP methods from a viewpoint
of nonlinear system theory [Kha02] and small-gain theory [Zam66, JTP94]. As a
consequence, we will provide a complete robustness analysis on the DP algorithm,
under multiple types of uncertainties, including external disturbance, dynamic un-
certainty, and stochastic noise, that cannot be dealt with by previously known
results. The proposed robust DP framework is based on the dynamic property
of differential matrix Riccati equation (DMRE). Recall from [Wil71, Kuč73] that
under observability and stabilizability assumptions, the unique symmetric positive
definite solution to the algebraic Riccati equation (ARE) is asymptotically stable
for the DMRE, backward in time. In Section 3, we further improve this result by
showing that the DMRE also admits a linear L2 gain [vdS17] for any arbitrarily
large set of initial conditions within the region of attraction, which we will refer
to as “semiglobal gain assignment”. This conclusion lays the foundation of our
small-gain analysis on the continuous-time VI, which in turn leads to a sequence of
convergence and robustness results. A comparison between different DP methods
is given in table 1. We admit that one drawback of robust DP is that it requires the
nominal value of the components in the algorithm, and hence is not model-free as
in existing RL and adaptive optimal control methods. This drawback can be eas-
ily conquered by combining our robust DP with existing adaptive optimal control
results.

To demonstrate the power of the proposed method, in Section 4, we apply ro-
bust DP to solve four classical problems arising from the field of adaptive optimal
control. In the first application, we show that the continuous-time VI can be
implemented with system matrices estimated iteratively from a time series. The
estimation error is treated as an external disturbance, and the convergence of VI
is proved via robust DP theory. In the second application, an improved version
of the continuous-time adaptive dynamic programming (ADP) [BJ16b] is proposed
by coupling the recursive least square (RLS) estimation of certain matrix inverse
in the ADP learning process. Robust DP is used to tackle the presence of RLS
error. Compared with existing results, the proposed ADP algorithm is more com-
putationally efficient, as the estimate of the matrix inverse is updated together with
the ADP learning. In the third application, we develop a continuous-time stochas-
tic ADP theory for a class of ergodic control problems, that generalizes the main
result of [BJJ16]. Different from the stochastic approximation [KY03] and Monte
Carlo methods [SB98, Chapter 5] in traditional RL, a new method for convergence
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analysis based on robust DP is proposed in the continuous-time setting, due to the
complex nature of the continuous-time ergodic control problem. In our fourth and
last application, we propose a novel decentralized VI algorithm for solving coupled
AREs. The state-space based small-gain theory [JTP94] is applied with our ro-
bust DP framework to provide a sufficient condition for the convergence analysis of
coupled AREs. This result is especially useful in developing algorithms for robust
ADP [JJ13] and solving non-zero-sum differential games [SH69b, SH69a].

To further illustrate the proposed result, we also give three practical simulation
examples in Section 5.

Notation: Throughout this paper, In denotes the identity matrix of dimension
n. R and R+ denote the set of real numbers and the set of nonnegative real num-
bers, respectively. Z+ denotes the set of nonnegative integers. | · | denotes the
Euclidean norm for vectors, or the induced matrix norm for matrices. Sn denotes
the normed space of all n-by-n real symmetric matrices, equipped with the in-
duced matrix norm. Sn+ = {P ∈ Sn : P > 0}. For a matrix M ∈ R

n×m, vec(M) =

[MT
1 ,M

T
2 , · · · ,MT

m]T , whereMi ∈ R
n is the i-th column ofM . For anyM ∈ Sn, de-

note λm(M) and λM (M) as the minimum and maximum eigenvalues ofM , respec-
tively; and vech(M) = [M11,M12, · · · ,M1n,M22,M23, · · · ,M(n−1)n,Mnn]

T , where
Mij ∈ R is the (i, j)-th element of matrix M . 〈·, ·〉F denotes the Frobenius inner
product. ⊗ and ⊕ indicate the Kronecker product and Kronecker sum, respectively.
Given a set Q, int(Q) denotes the interior of Q. Bε denotes an open ball centered
at the origin with radius ε. A function f : Q → R+, where Q ⊆ R

n and 0 ∈ Q,
is called positive definite, if f(x) > 0 for all x ∈ Q \ {0}, and f(0) = 0. For
f : R→ R+ and g : R→ R+, denote f(x) = o(g(x)) if limx→0 f(x)/g(x) = 0.

2. Preliminaries

2.1. System description. Consider the following linear time-invariant system:

ẋ = Ax+Bu,(1)

where x ∈ R
n is the system state, u ∈ R

m is the control input, and A ∈ R
n×n and

B ∈ R
n×m are system matrices. Assume (A,B) is stabilizable.

Denote the cost corresponding to system eq. (1) as

J (x(0);u) =
∫ ∞

0

(xTQx+ uTRu)ds,(2)

where Q = QT ≥ 0, R = RT > 0, and (A,Q1/2) is observable. It is well known that
J is minimized under the optimal controller u∗ = −K∗x, where K∗ = R−1BTP ∗,
with P ∗ the unique symmetric positive definite solution to the following ARE:

0 = ATP ∗ + P ∗A− P ∗BR−1BTP ∗ +Q.(3)

Moreover, A−BK∗ is Hurwitz.

2.2. DMRE and continuous-time VI. Since eq. (3) is a nonlinear matrix equa-
tion, it is not easy to solve P ∗ from the ARE directly. One way of finding P ∗ is
to use the continuous-time VI [BJ16b]. Before introducing the VI algorithm, we
define a real sequence {hk}∞k=0 satisfying

hk > 0, lim
k→∞

hk = 0,
∞
∑

k=0

hk =∞.
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Algorithm 1 Continuous-time value iteration

Choose P0 = PT
0 > 0. Let ε̄ > 0 be a small threshold. k, q ← 0.

loop

Pk+1/2 ← Pk + hk(A
TPk + PkA− PkBR

−1BTPk +Q)
if Pk+1/2 > 0 and |Pk+1/2 − Pk|/hk < ε̄ then

return Pk as an approximation to P ∗

else if |Pk+1/2| > Bq or Pk+1/2 6> 0 then

Pk+1 ← P0. q ← q + 1.
else

Pk+1 ← Pk+1/2

end if

k ← k + 1
end loop

In addition, denote {Bq}∞q=0 as an increasing real sequence with B0 > 0 and
limq→∞Bq =∞.

The continuous-time VI is recalled from [BJ16b] and shown in algorithm 1. Note
that if Q > 0, then the initial choice on P0 can be relaxed to P0 = PT

0 ≥ 0. Detailed
convergence analysis on algorithm 1, and its extensions to model-free adaptive
optimal controller design, can be found in [BJ16b]. However, it still remains an
open problem how robust algorithm 1 is to various types of disturbance. As shown
in subsequent sections, we will provide the first solution to this fundamentally
challenging issue for continuous-time dynamical systems.

3. Robust DP and VI for continuous-time systems

The purpose of this section is to extend algorithm 1 in different directions by
providing a concrete stability and robustness analysis for the DMRE and VI.

3.1. Robust DP and DMRE. As it has been shown in [Wil71, Kuč73], for any
P (0) = P (0)T ≥ 0, the solution to the following DMRE converges to P ∗ asymptot-
ically as t goes to infinity:

Ṗ = ATP + PA− PBR−1BTP +Q.(4)

Denoting K = R−1BTP , we have from eq. (4) that

Ṗ =ATP + PA− PBR−1BTP +Q

=(A−BK)TP + P (A−BK) +KTRK +Q

=(A−BK∗)TP + P (A−BK∗) + (K∗)TRK∗ +Q− (K −K∗)TR(K −K∗).

Subtracting eq. (3) from the above equation, and letting P̃ = P − P ∗, we have

˙̃P = (A−BK∗)T P̃ + P̃ (A−BK∗)− P̃BR−1BT P̃ .(5)

The following two lemmas play an important role in developing our robust VI:
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Lemma 3.1. P̂ is globally1 exponentially stable at P ∗, where P̂ is the solution of
the following system:

˙̂
P = (A−BK∗)T P̂ + P̂ (A−BK∗) + (K∗)TRK∗ +Q, P̂ (0) ∈ R

n×n.(6)

Proof. Denote ξ = vec(P̂ − P ∗) ∈ R
n2

. Then, by subtracting eq. (3) from eq. (6),
one has

ξ̇ = ((A−BK∗)⊕ (A−BK∗))T ξ.(7)

Since A − BK∗ is Hurwitz, ((A − BK∗) ⊕ (A − BK∗))T is also Hurwitz [Bre78].
This completes the proof. �

Remark 3.1. Note from eq. (6) that when P̂ (0) ∈ Sn, we have P̂ (t) ∈ Sn for all

t > 0. Since Sn ⊂ R
n×n, we know P̂ is also exponentially stable at P ∗ in Sn.

Lemma 3.2. Consider a dynamical system defined on the inner product space
(Sn, 〈·, ·〉F ):

Ṗ = G(P ),(8)

where G : Sn → Sn is locally Lipschitz, and satisfies G(0) = 0. If RA is the region
of attraction of the origin for system eq. (8), then there exists a smooth Lyapunov
function V : RA → R+, such that

〈∂xV (P ), G(P )〉F < 0, V (P ) > 0 ∀P ∈ RA \ {0},
lim

P→∂RA

V (P ) =∞, 〈V (0), G(0)〉F = 0, V (0) = 0.

Proof. Denote a mappingM(·) : Sn → R
n(n+1)/2, such that

M(M) = [M11,
√
2M12, · · · ,

√
2M1n,M22,

√
2M23, · · · ,

√
2M(n−1)n,Mnn]

T .

Then, for any M1,M2 ∈ Sn, MT (M1)M(M2) = 〈M1,M2〉F . Hence, M(·) is a
smooth isometric isomorphism2. Then, one can rewrite eq. (8) as the following
ODE:

ṗ = g(p),(9)

where p = M(P ), and g = M ◦ G ◦ M−1. Denote the region of attraction of
0 ∈ R

n(n+1)/2 by R′
A ⊆ R

n(n+1)/2. Since RA is not empty, R′
A is also not empty.

By converse Lyapunov theorem [Kha02, Theorem 4.17], we know there exists a
smooth function W (·) : R′

A → R+, such that

∂xW (p)g(p) < 0, W (p) > 0 ∀p ∈ R′
A \ {0},

lim
p→∂R′

A

W (p) =∞, ∂xW (0)g(0) = 0, W (0) = 0.

We claim R′
A =M(RA). Otherwise, if there exist P0 ∈ RA and M(P0) 6∈ R′

A,
then R′

A is no longer the region of attraction for eq. (9) since the solution to eq. (9)
starting fromM(P0) also converges to the origin, by the norm preserving property
ofM. Similarly, if there exists p0 ∈ R′

A such thatM−1(p0) 6∈ RA, then RA is no
longer the region of attraction for eq. (8).

1Global in the sense that the region of attraction is the entire normed space of all n-by-n real
matrices equipped with the induced matrix norm.

2 A bounded linear operator is called an isometric isomorphism if it is a norm preserving
bijection which is continuous and has a continuous inverse [RS80, pp. 71].
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Now, we define a function V (·) : RA → R+, such that V = W ◦ M. By the
definition of matrix calculus, ∂xV =M−1 ◦ ∂xW ◦M. It is easy to see that all the
higher-order derivatives of V can be defined in a similar manner. Hence, V is also
smooth. By the definition of Frobenius inner product,

∂xW (p)g(p) = 〈∂xV (P ), G(P )〉F , ∀P ∈ Sn.

This concludes the proof. �

Remark 3.2. lemma 3.2 extends the converse Lyapunov theorem for general non-
linear systems [Kha02, Theorem 4.17] to the space of real symmetric matrices. The
converse statement of lemma 3.2, i.e., the Lyapunov theorem for the stability of
general nonlinear systems over (Sn, 〈·, ·〉F ), can also be derived in a similar way.
Moreover, one can also generalize the converse Lyapunov theorem for exponentially
stable systems [Kha02, Theorem 4.14]. We omit this direct extension to avoid
duplication.

Proposition 3.3. P is exponentially stable at P ∗ over Sn.

Proof. Note from lemma 3.1 and remark 3.1 that for any P̂ (0) ∈ Sn, P̂ converges
exponentially to P ∗. Then, following lemma 3.2, remark 3.2, and eq. (7), there
exists a smooth Lyapunov function V : Sn → R+ satisfying

C1|P̂ − P ∗|2 ≤ V (P̂ − P ∗) ≤ C2|P̂ − P ∗|2,
V̇ (P̂ − P ∗) ≤ −C3|P̂ − P ∗|2, |∂xV (P̂ − P ∗)| < C4|P̂ − P ∗|,

for any P̂ on Sn, where Ci > 0, i = 1, 2, 3, 4. Note that we use the induced norm
here instead of the Frobenius norm, due to the equivalence of matrix norms.

Comparing the dynamics of P̂ and P , we see the only difference between these
two systems is the quadratic term P̃BR−1BT P̃ . Now, by taking the derivative of
V along the solutions of system eq. (5), we have

V̇ (P̃ ) ≤ −C3|P̃ |2 + C5|∂xV (P̃ )||P̃ |2 ≤ −C3|P̃ |2 + C4C5|P̃ |3,

for any P̃ ∈ Sn and constant C5 > 0. From the above inequality, we know there
exist ε > 0 and C6 > 0, such that,

V̇ (P̃ ) ≤ −C6|P̃ |2 ≤ −
C6

C2
V (P̃ ), ∀|P̃ | < ε.(10)

The proof is then completed using the Lyapunov theorem [Kha02, Theorem 4.10].
�

Remark 3.3. Compared with [Wil71, Remark 21] and [Kuč73, Theorem 17], propo-
sition 3.3 provides a stronger result, in the sense that it characterizes the conver-
gence speed of P̃ (t) in a neighborhood of the origin. This is the foundation of our
robustness analysis on DMRE and VI.

We will exploit the important feature of exponential stability further in the rest
of this paper. First, let us consider the following variant of eq. (4) subject to a
disturbance input ∆(t) = ∆T (t):

Ṗ∆ = ATP∆ + P∆A− P∆BR
−1BTP∆ +Q+∆, P∆(0) = PT

∆(0) ≥ 0.(11)
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Remark 3.4. ∆ can represent a large class of disturbances. In particular, we conduct
robustness analysis on eq. (11) in theorem 3.4 below by considering three different
forms of ∆, including a) a state-independent external signal (theorem 3.4, parts
(i) and (ii)); b) the output of a nonlinear dynamical system (theorem 3.4, part
(iii)); and c) a stochastic disturbance (theorem 3.4, part (iv)). The assumption
∆(t) = ∆T (t) is to guarantee that P∆ is always symmetric. This condition can be
easily satisfied in practice, since for anyM ∈ R

n×n, xTMx = 1
2x

T (M +MT )x, and
1
2 (M +MT ) is real symmetric.

Theorem 3.4. Consider system eq. (11) with Q > 0. Denoting P̃∆ = P∆ − P ∗,
we have

If inft λm(Q + ∆(t)) ≥ 0 and supt λM (Q + ∆(t)) < ∞, then P∆ is well
defined on R+, and there exists M ∈ Sn that is dependent on P∆(0), such
that 0 ≤ P∆(t) < M for all t > 0.

(i)

If∆ satisfies the conditions in (i), and limt→∞ ∆(t) = 0, then limt→∞ P∆(t) =

P ∗. If in addition ∆ ∈ L2, then P̃∆ ∈ L2.

(ii)

There exists γ > 0, such that if the following system3

Ṁ = f(M,P∆), ∆(t) = ∆(P∆,M),(12)

where f and ∆ are locally Lipschitz, f(M∗, P ∗) = 0, and ∆(P ∗,M∗) = 0, is
zero-state detectable4 and admits an IOS Lyapunov function Vf satisfying

V̇f (M̃) ≤ −|∆|2 + γ2|P̃∆|2, ∀M ∈ Bε0(M
∗), ε0 > 0,(13)

where M̃ =M −M∗, then (P∆,M) is asymptotically stable at (P ∗,M∗).

(iii)

Suppose ∆(t) =
∑N

i=1 ∆i(P∆)vi(t), where N > 0, ∆i : Sn → Sn, and the vi
are one-dimensional i.i.d. Gaussian white noises. Then, there exists γ > 0,
such that if

∑

i |∆i|2 < γ|P̃∆| in a neighborhood of P ∗, P∆ is asymptotically
stable at P ∗ in the mean square sense over Sn.

(iv)

Proof. To prove part (i), we first introduce the following finite-horizon cost:

Jt(x(t);u,Q) = xT (0)P∆(0)x(0) +

∫ 0

t

(xT (s)Q(s)x(s) + uT (s)Ru(s))ds,

where t < 0 is an arbitrary time instant, and Q(s) = Q+∆(s). Since Q(s) ≥ 0 on
[t, 0], it is well known from the LQR theory [Lib12, Chapter 6.1] that infu Jt(x(t);u,Q) =
xT (t)M(t)x(t), where M(s) =MT (s) > 0, s ∈ [t, 0], satisfies

−Ṁ = ATM +MA−MBR−1BTM +Q+∆, M(0) = P∆(0).

Moreover, the optimal controller for Jt is uo(s) := −R−1BTM(s).

3M can be either a real vector or a real matrix, depending on the specific problem formulation.
For consistency, here we consider M as a real matrix of an appropriate dimension.

4Here, with slight abuse of notation, we say eq. (12) is zero-state detectable if ∆ ≡ 0 and
P∆ ≡ P ∗ imply M ≡ M∗.
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On the other hand, we have from the conditions on Q + ∆ that there exists a
constant matrix Q ∈ S, such that 0 ≤ Q(s) < Q for all s. Thus,

0 ≤ xT (t)M(t)x(t) ≤ xT (0)P∆(0)x(0) +

∫ 0

t

(xTQ(s)x+ (ūo)TRūo)ds

≤ xT (0)P∆(0)x(0) +

∫ 0

t

(xTQx+ (ūo)TRūo)ds,(14)

where ūo := arg infu Jt(x(t);u,Q). Since Q is positive definite, we know there
exists a real symmetric matrix M > 0, such that

inf
u
Jt(x(t);u,Q) < xT (t)Mx(t).

Then, we have from eq. (14) that 0 ≤ M(t) < M for all t < 0. Comparing the
definitions of M and P∆, we know M(t) = P∆(−t). Thus, 0 ≤ P∆(t) < M for all
t > 0.

To prove part (ii), note from part (i) that P∆ is bounded on R+. Then, since P (t)
converges to P ∗, for any ε > 0, there exists T0 > 0, such that supT>T0

|P (t+ T )−
P ∗| < ε, given P (t) = P∆(t) for any t > 0. On the other hand, by [Son98, Theorem
55], for any T1 > 0 and ε > 0, we can find t0 > 0 under which supt≥t0 |∆(t)| is
sufficiently small, so that supT∈[0,T1] |P (t+T )−P∆(t+T )| < ε, given P (t) = P∆(t)
for all t > t0.

Now, by picking T1 = 2T0, one can guarantee from the above analysis that |P ∗−
P∆(t+T )| < 2ε for all t > t0 and T ∈ [T0, 2T0]. Thus, we know supt>t0+T0

|P∆(t)−
P ∗| ≤ 2ε. Since t0 exists for any ε, which can be made arbitrarily small, we have
limt→∞ P∆(t) = P ∗.

Moreover, choosing the same Lyapunov function in the proof of proposition 3.3,
we know there exist positive constants C1, C2, and ε1, such that

V̇ (P̃∆) ≤ −C1|P̃∆|2 + C2|P̃∆||∆|, ∀|P̃∆| < ε1,(15)

where P̃∆ = P∆ − P ∗. By completing the squares, we have from eq. (15) that
eq. (11) admits a finite linear L2 gain in a neighborhood of P ∗. Thus, by H∞

control theory, P̃∆ ∈ L2 if ∆ ∈ L2.
Now, we prove part (iii). Note from eq. (13) and eq. (15) that if

γ <
C1√
2C2

,

then by defining V̄ (P,M) = V (P ) +
C2

2

C1
Vf (M),

d

dt
V̄ (P̃∆, M̃) ≤ −C1|P̃∆|2 + C2|P̃∆||∆| −

C2
2

C1
|∆|2 + C2

2

C1
γ2|P̃∆|2

= −
(

C1

2
− C2

2

C1
γ2
)

|P̃∆|2 −
C2

2

2C1
|∆|2

≤ −C3|P̃∆|2 −
C2

2

2C1
|∆|2, ∀|P̃∆| < ε1, |M̃ | < ε0,

for some C3 > 0. Since eq. (12) is zero-state detectable, we have from LaSalle’s
invariance principle [Kha02, Corollary 4.1] that (P∆,M) is asymptotically stable
at (P ∗,M∗).
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Finally, to prove part (iv) involving stochastic disturbance, from Itô’s lemma
[Ste01] and eq. (10), it follows that

LV (P̃∆) ≤ −C1|P̃∆|2 + C4

N
∑

i=1

|∆i|2, ∀|P̃∆| < ε,

for some positive constants ε and C4, where L denotes the differential generator.
Note that C4 is bounded since ∂2xV is bounded on any compact sets, as V is smooth.
Obviously, if

N
∑

i=1

|∆i|2 <
C1

C4
|P̃∆|2,

then

LV (P̃∆) ≤ −C5|P̃∆|2, ∀|P̃∆| < ε,

for some C5 > 0. This concludes the proof. �

proposition 3.3 and theorem 3.4 imply that the DMRE behaves very similar to
an exponentially stable linear system in a neighborhood of P ∗, and thus exhibits
a series of nice properties. However, the stability and robustness results in these
two theorems are of limited use in practice, since they hold only in a neighborhood
of P ∗. In order to obtain desirable transient performance for the DMRE in a
sufficiently large compact set, we need to design carefully the cost eq. (2). Indeed,
the following corollary shows that by choosing Q and R properly, we can guarantee
the semi-global exponential stability of eq. (4) at P ∗. By ”semi-global”, we mean
that the domain of attraction is bounded but can be made as large as possible
[Sas99].

Corollary 3.5. Given Q0 = QT
0 > 0 and R0 = RT

0 > 0, for any compact set
S0 ⊂ Sn+, there exists a constant λ > 0, such that by choosing Q = λQ0 and
R = λR0, each trajectory of eq. (4) starting at P (0) ∈ S0 converges exponentially
to P ∗.

Proof. First, note that under the choice of Q = λQ0 and R = λR0, K
∗ is inde-

pendent of λ, as both Q and R are derived from Q0 and R0 by multiplying the
same scaling factor. Moreover, P ∗ is a linear function of λ, and limλ→0+ P

∗ = 0.
Now, for any S0, we can find a small enough λ > 0, such that P ∗ < P (0) for all

P (0) ∈ S0. Then, by choosing P̂ (0) = P (0) in eq. (6), we have for any given t > 0
and x(−t) ∈ R

n,

xT (−t)P (t)x(−t) = inf
u

{

xT (0)P (0)x(0) +

∫ 0

−t

(xTQx+ uTRu)ds

}

≤ (x∗(0))TP (0)x∗(0) +

∫ 0

−t

(x∗)T (Q+ (K∗)TRK∗)x∗ds = xT (−t)P̂ (t)x(−t),

where x∗ is the solution to system eq. (1) with u = −K∗x∗ and x∗(−t) = x(−t).
Moreover, by monotonicity [BJ16a, Lemma 1], P ∗ ≤ P (t) for all t. Since by

lemma 3.1 P̂ (t) converges to P ∗ exponentially, xT P̂ x also converges to xTP ∗x

exponentially for all x. Using xTP ∗x ≤ xTPx ≤ xT P̂x, we know xTPx converges
to xTP ∗x exponentially. Noting that this is true for all x, P thus converges to P ∗

exponentially. This completes the proof. �
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Remark 3.5. It is easy to see from corollary 3.5 that although multiplying the
same scalar to Q0 and R0 does not influence the optimal feedback gain matrix,
the transient performance of the DMRE can be quite different. Given any P (0),
by proposition 3.3 and the converse Lyapunov theorem [Kha02, Theorem 4.14], we
can find a Lyapunov function V satisfying

C1|P̃ |2 ≤ V (P̃ ) ≤ C2|P̃ |2, V̇ (P̃ ) ≤ −C3|P̃ |2, |∂xV (P̃ )| < C4|P̃ |,
where Ci > 0, i = 1, 2, 3, 4, over a connected compact set including P (0) and P ∗.
As a result, corollary 3.5 allows us to extend the result obtained in theorem 3.4 to
any compact sets containing P ∗ in Sn+.

If we are allowed to have more freedom on choosing Q and R, it is possible to
have the following semi-global gain assignment result:

Corollary 3.6. Given Q0 = QT
0 > 0 and R0 = RT

0 > 0, if B has full rank, then
for any ε > 0 and γ > 0, there exists λ > 0, such that eq. (11) admits a finite linear

L2 gain from ∆ to P̃∆ less than or equal to γ for P (0) ∈ {P ∈ Sn+ : P ∈ Bε(P
∗)},

with Q = λQ0 and R = o(λ)R0.

Proof. Since Q0 and R0 are multiplied by different scaling factors, different from
corollary 3.5, K∗ depends on λ here. Hence, the first step of our proof is to char-
acterize the influence of λ on the eigenvalues of A−BK∗.

Note that choosing Q = λQ0 and R = o(λ)R0 is equivalent to choosing Q = Q0

and R = δλR0, where δλ = o(λ)/λ, in the sense that these two choices lead to the
same optimal controller. Denoting P ∗

λ as the solution to eq. (3) with Q = Q0 and
R = δλR0, we have

(A−BK∗
λ)

TP ∗
λ + P ∗

λ (A−BK∗
λ) =

−
(

Q0 +

(

√

δ−1
λ P ∗

λ

)

BR−1
0 BT

(

√

δ−1
λ P ∗

λ

))

,(16)

where K∗
λ = δ−1

λ R−1
0 BTP ∗

λ . Since B has full rank, we know from [KS72, (40)] that

there exists P̄ ∈ Sn, such that limλ→0

√

δ−1
λ P ∗

λ = P̄ . Thus, for any two positive

constants C and ε, we can choose a small enough λ, such that

∣

∣

∣

∣

√

δ−1
λ P ∗

λ − P̄
∣

∣

∣

∣

< ε

and
√

δ−1
λ

(

Q0 +

(

√

δ−1
λ P ∗

λ

)

BR−1
0 BT

(

√

δ−1
λ P ∗

λ

))

> CIn.

This, together with the Lyapunov equation eq. (16), implies that for any α > 0, we
can find λ > 0, such that

(A−BK∗
λ)

TM +M(A−BK∗
λ) < −αM

for some constant matrix M = MT > 0. This implies that the eigenvalues of
A − BK∗

λ can be placed arbitrarily far to the left from the imaginary axis, by
choosing a small enough λ.

Now, by the linear matrix inequality argument [GA94, Lemma 4.1], we know
that for any γ > 0, one can find a λ > 0, such that the following system admits a
linear L2 gain from v to ξ less than or equal to γ:

ξ̇ = ((A −BK∗
λ)⊕ (A−BK∗

λ))
T ξ + v.
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Algorithm 2 Continuous-time robust VI

Choose P0 = PT
0 ≥ 0. k, q ← 0.

loop

Pk+1/2 ← Pk + hk(A
TPk + PkA− PkBR

−1BTPk +Q+∆k +Wk)
if Pk+1/2 > 0 and |Pk+1/2 − Pk − hk(∆k +Wk)|/hk < ε̄ then

return Pk as an approximation to P ∗

else if |Pk+1/2| > Bq or Pk+1/2 6> 0 then

Pk+1 ← P0. q ← q + 1.
else

Pk+1 ← Pk+1/2

end if

k ← k + 1
end loop

By following similar Lyapunov theorem arguments in the proof of proposition 3.3,
we know that for any ε > 0, the L2 gain of system eq. (11) can be made arbitrarily
small on {P ∈ Sn+ : P ∈ Bε(P

∗)}, by choosing a sufficiently small λ. This completes
the proof. �

Remark 3.6. The full-rank condition on B is required to satisfy the matching con-
dition, which is a common assumption in nonlinear gain assignment and robust
control literature [JTP94, PW96, Isi99, LJH14]. To relax this assumption in the
case of unmatched disturbance, one way is to study cascaded systems with full
rank input matrices via recursive backstepping [KKK95], or a combination of the
backstepping and small-gain approaches [LJH14].

The following corollary is a direct extension of theorem 3.4, parts (iii) and (iv),
and corollary 3.6, and thus its proof is omitted.

Corollary 3.7. Given Q0 = QT
0 > 0, R0 = RT

0 > 0, and λ > 0, define Q = λQ0

and R = o(λ)R0. Suppose B has full rank.

For any γ > 0, if system eq. (12) satisfies the conditions in theorem 3.4, part
(iii), then there exist λ > 0, such that (P∆,M) is asymptotically stable at
(P ∗,M∗).

(i)

For any γ > 0 and ε > 0, if ∆ satisfies the definition in theorem 3.4, part
(iv), then there exists λ > 0, such that P∆ is asymptotically stable at P ∗ in
the mean square sense.

(ii)

3.2. Robust VI algorithm. In this subsection, we formally introduce the robust
VI (algorithm 2) based on the theoretical results in Section 3.1. Note that different
from algorithm 1, algorithm 2 includes both a deterministic perturbation term ∆k

and a stochastic noise term Wk in the updating equation of Pk.
The following theorem shows that algorithm 2 inherits the robustness property

from eq. (11).

Theorem 3.8. Denote a complete probability space (Ω,F ,P) equipped with a filtra-
tion {Fk}k∈Z+ . Suppose Q > 0, Wk is Fk-adapted, hk is a sequence satisfying the
conditions in Section 2.2, and

∑∞
k=0 hkWk converges with probability one. Given

{Pk}∞k=0 defined in algorithm 2, we have with probability one that,
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there exist δ0 > 0, N ≥ 0, and a compact set S0 ⊂ Sn+ with nonempty interior

and P ∗ ∈ S0, such that if |∆k| < δ0(1 + |Pk|), then {Pk}∞k=N ⊂ S0.
(i)

if limk→∞ ∆k = 0 uniformly on any compact set in Sn, then limk→∞ Pk =

P ∗.

(ii)

if ∆k := ∆(Pk,Mk) is the output to the following updating equation:

Mk+1 =Mk + hkf(Mk, Pk) + Zk,(17)

where {Mk}∞k=0 is bounded in Bε0(M
∗) under a projection term Zk, then

there exists γ > 0, such that if the conditions in part (iii) of theorem 3.4 are
satisfied, we have limk→∞(Pk,Mk) = (P ∗,M∗) locally.

(iii)

Proof. Before proving the part (i), we denote an operator R : Sn → Sn, such that

R(P ) = ATP + PA− PBR−1BTP +Q.

Suppose P0 6= P ∗. By lemma 3.2, we know there exists a smooth Lyapunov
function V : RA → R+, where RA ⊂ Sn is the region of attraction of P ∗, such that

〈∂xV(P ),R(P )〉F < 0, V(P ) > 0, ∀P ∈ RA \ {P ∗},
lim

P→∂RA

V(P ) =∞, 〈∂xV(P ∗),R(P ∗)〉F = 0, V(P ∗) = 0.

Note that V defined here is different from the Lyapunov function used in the proof
of proposition 3.3. As a result, {P : V(P ) ≤ C} is a compact subset of RA, for
all C > 0. Then, there exist C0 > 0 and C1 > 0, such that C0 < V(P0) < C1.
Furthermore, we can find a sufficiently small constant εδ > 0, such that for all
|ζ| < εδ,

sup
{P :C0≤V(P )≤C1}

{〈∂xV(P ), (R(P ) + ζ)〉F } = −δ,(18)

for some δ > 0.
By contradiction, suppose {Pk}∞k=0 is unbounded. Then, there exists an up-

crossing interval [C2, C3], with V(P0) < C2 < C3 < C1, such that {V(Pk)}∞k=0

crosses this interval from below infinitely many times.
From the conditions on Wk, we know there exists E ∈ F with P(E) = 1, such

that for all ω ∈ E, {Wk(ω)}∞k=0 is bounded. Fixing ω ∈ E, we can define two
subsequences {Pkj

}, {Pk′
j
} ⊂ {Pk}, such that

V(Pkj−1) < C2 ≤ V(Pm) < C3 < V(Pk′
j
), ∀kj ≤ m < k′j .(19)

Choose a sufficiently small ε > 0, such that for any P ∈ {Pkj
}, Bε(P ) ⊂ {P ∈ Sn+ :

V(P ) < C1}. Suppose q is sufficiently large. Then, for any j ∈ Z+,

ε < |PLε(j) − Pkj
| =

∣

∣

∣

∣

∣

∣

Lε(j)−1
∑

i=kj

hi(R(Pi) + ∆i +Wi)

∣

∣

∣

∣

∣

∣

≤
Lε(j)−1
∑

i=kj

hi(|R(Pi)|+ |∆i|+ |Wi|) ≤ εC
Lε(j)−1
∑

i=kj

hi,(20)

where Lε(j) = inf{i ≥ kj : |Pi − Pkj
| > ε}, and εC > 0 is a constant independent

of j.
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Then, by eq. (18) and the assumption on Wk, one has

V(PLε(j))− V(Pkj
)

=

∫ 1

0

〈∂xV(Pkj
+ t(PLε(j) − Pkj

)), (PLε(j) − Pkj
)〉F dt

=〈∂xV(Pkj
), (PLε(j) − Pkj

)〉F

+

∫ 1

0

∫ 1

0

〈 d
ds
∂xV(Pkj

+ st(PLε(j) − Pkj
)), (PLε(j) − Pkj

)〉Fdsdt

=

Lε(j)−1
∑

i=kj

hi〈∂xV(Pkj
), (R(Pkj

) + ∆̄i,j)〉F + 〈∂xV(Pkj
),

Lε(j)−1
∑

i=kj

hiWi〉F

+

∫ 1

0

∫ 1

0

〈 d
ds
∂xV(Pkj

+ st(PLε(j) − Pkj
)), (PLε(j) − Pkj

)〉Fdsdt,

where ∆̄i,j = ∆i + R(Pi) − R(Pkj
). Note that limj→∞ |PLε(j) − Pkj

| = ε, as
limk→∞ hk = 0. Then, since Pkj

is bounded,

lim
j→∞

∣

∣

∣

∣

∫ 1

0

∫ 1

0

〈 d
ds
∂xV(Pkj

+ st(PLε(j) − Pkj
)), (PLε(j) − Pkj

)〉F dsdt
∣

∣

∣

∣

= O(ε2).

Since limj→∞

∑Lε(j)−1
i=kj

hiWi = 0, there exists a sufficiently large j̄, such that for all

j > j̄, by choosing sufficiently small ε and δ0, we have |∆̄i,j | < εδ, and by eq. (18)
and eq. (20) it follows that

V(PLε(j))− V(Pkj
) ≤ 〈∂xV(Pkj

),

Lε(j)−1
∑

i=kj

hiWi〉F − δ
Lε(j)−1
∑

i=kj

hi +O(ε2)

≤ 〈∂xV(Pkj
),

Lε(j)−1
∑

i=kj

hiWi〉F − δε/εC +O(ε2) < 0.

This implies that for a large enough k, if Pk ∈ {Pkj
}, then there exists k′ > k, such

that V(Pk′ ) < C2, and Pi stays in a ε-neighborhood of Pk for k ≤ i ≤ k′. Thus, Pk

is bounded, and the proof of part (i) is concluded by contradiction.
Now, we prove part (ii). First, rewrite the updating equation in algorithm 2 as

Pk+1 = Pk + hk(R(Pk) + ∆k +Wk) + Zk, k ≥ N, Pk ∈ S0,

where N is chosen as in part (i), and the projection term Zk is defined as

Zk =

{

P0 − Pk+1/2, if Pk+1/2 6∈ S0,
0, otherwise.

Define the following continuous-time interpolation:

P 0(t) =

{

P0, t ≤ 0,

Pk, t ∈ [tk, tk+1),
∆0(t) =

{

∆0, t ≤ 0,

∆k, t ∈ [tk, tk+1),

where t0 = 0 and tk =
∑k−1

i=0 hi, for k ≥ 1. Define the shifted process P k(t) =

P 0(tk + t) and ∆k(t) = ∆0(tk + t), for all t ∈ R.
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Then, we have for all k ≥ N and t ≥ 0 that

P k(t) = Pk +

m(t+tk)−1
∑

i=k

hi(R(Pi) + ∆i) +W k(t) + Zk(t)

= Pk +Hk(t) + ek(t) +W k(t) + Zk(t),(21)

where

Hk(t) =

∫ t

0

(R(P k(s)) + ∆k(s))ds, Zk(t) =

m(t+tk)−1
∑

i=k

Zi,

W k(t) =

m(t+tk)−1
∑

i=k

hiWi, m(t) =

{

j, 0 ≤ tj ≤ t < tj+1,

0, t < 0,

ek(t) is due to replacing the second term on the right-hand side of the first equality in

eq. (21) with Hk(t). By convention, the above definition assumes
∑m(t+tk)−1

i=k ∗ = 0,

when 0 ≤ t < hk. Note that for all ω ∈ E, W k(·, ω) converges to 0 uniformly on
any finite time interval.

Fixing T > 0 and following the proof of [BJ16b, Theorem 3.3], we can show that
{Hk(·)}∞k=N , {Zk(·)}∞k=N , and {ek(·)}∞k=N are all relatively compact inD([0, T ],Sn),
where D([0, T ],Sn) denotes the space of functions from [0, T ] to Sn, that are right-
continuous with left-hand limits, equipped with the Skorokhod topology [Sko56].
Following the procedure in the proof of [ABB02, Lemma 3.4], one can show that
the limit of {Zk(·)}∞k=N is identically 0. Then, the limit of {Pk,∆k} satisfies

Ṗ = R(P ) + ∆,

where ∆ converges to 0 by its definition. By part (i), we know {Pk}∞k=N remains in
the region of attraction of P ∗. Thus, part (ii) is established by theorem 3.4, part
(ii) and the Part 2 of the proof of [KY03, Theorem 5.2.1].

To prove part (iii), we note from the part (iii) of theorem 3.4 that the following
coupled system is asymptotically stable at (P ∗,M∗):

Ṗ = R(P ) + ∆(P,M),

Ṁ = f(M,P ).

Moreover, by defining V̄(P,M) = V̄ (P−P ∗,M−M∗), where the Lyapunov function
V̄ is defined in the proof of theorem 3.4, we also have

〈∂x1 V̄(P,M), (R(P ) + ∆+ ζ)〉F + 〈∂x2 V̄(P,M), f(M,P )〉F < 0,

for all (P,M) in a small neighborhood of (P ∗,M∗) with (P,M) 6= (P ∗,M∗). Since
Mk is bounded, ∆k is bounded for all bounded Pk. Now, following the steps in
part (i), we have (Pk,Mk) is bounded, provided P0 stays in a small neighborhood
of P ∗, and ε0 is small enough. Applying the analysis in part (ii), we know (Pk,Mk)
converges to the solution to the above coupled ODE. By the part (iii) of theorem 3.4,
this completes the proof. �

Remark 3.7. The first two parts of theorem 3.8 focus on handling static uncer-
tainties represented by either a bounded external disturbance input or a bounded
function of Pk. The third part of theorem 3.8 deals with dynamic uncertainty, and
hence is more suitable for developing decentralized VI algorithms.
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The following corollary is a direct extension of corollary 3.7, part (i) and theo-
rem 3.8, part (iii), and thus its proof is omitted:

Corollary 3.9. Given Q0 = QT
0 > 0, R0 = RT

0 > 0, and λ > 0, denote Q = λQ0

and R = o(λ)R0. Suppose B has full rank. For any γ > 0, if the conditions
in the part (iii) of theorem 3.4 are satisfied, then there exist λ > 0, such that
limk→∞(Pk,Mk) = (P ∗,M∗) locally, where Mk is defined in eq. (17).

Remark 3.8. The boundedness of Mk can be relaxed, by extending the projection
term in eq. (17) to the adaptive boundary case as in algorithm 2. The conclusions
of theorem 3.8 and corollary 3.9 still hold, under minor changes of the proof.

The following corollary plays an important role in developing adaptive optimal
control methods on the basis of the proposed robust VI framework.

Corollary 3.10. Denote a complete probability space (Ω,F ,P) equipped with a
filtration {Fk}k∈Z+ . Consider algorithm 2 with Wk = σ(Pk)vk, ∆k = ∆k(Pk),
and

∑∞
k=0 h

2
k < ∞, where limk→∞ ∆k = 0 uniformly on any compact set, σi are

continuous, and vk is a Fk-adapted martingale difference with finite variance. Then,
limk→∞ Pk = P ∗ with probability one.

Proof. We only need to show that Pk is bounded. Then, the convergence is proved
by the part (ii) of theorem 3.8.

Again, by contradiction, suppose {Pk}∞k=0 is unbounded. Following the analysis
in the proof of theorem 3.8, part (i), we still have

ε < |PLε(j) − Pkj
| =

∣

∣

∣

∣

∣

∣

Lε(j)−1
∑

i=kj

hi(R(Pi) + ∆i(Pi) + σi(Pi)vi)

∣

∣

∣

∣

∣

∣

≤ εC
Lε(j)−1
∑

i=kj

hi,

for some εC > 0, where ε, kj , and Lε(j) follow the same definitions in the proof
of part (i) of theorem 3.8. Since limk→∞ ∆k = 0 uniformly on any compact set,
supi∈[kj ,Lε(j)] |∆i(Pi)| can be made arbitrarily small, by choosing a large enough j.

Then, there exists a sufficiently large j̄, such that for all j > j̄,

V (PLε(j))− V (Pkj
) ≤ 〈∂xV (Pkj

),

Lε(j)−1
∑

i=kj

hiσi(Pi)vi〉F − δε/εC +O(ε2).(22)

Now, define a sequence {Mk}, such that

Mk =
∑

i∈∪j∈{j∈Z+:k′
j
≤k}[kj ,Lε(j)−1]∩Z+

hiσi(Pi)vi,

where k′j is defined in eq. (19). Obviously, {Mk} is a martingale with respect to

{Fk}, and E(|Mk|2) is bounded, since Pi is bounded,
∑∞

k=0 h
2
k < ∞, and vi has

finite variance. By the martingale convergence theorem [Ste01, Theorem 2.6], Mk

converges with probability one, and thus limj→∞

∑Lε(j)−1
i=kj

hiσi(Pi)vi = 0. This,

together with eq. (22), shows that Pk is bounded with probability one. �

4. Applications to adaptive/stochastic/decentralized optimal
control

In this section, we provide four applications of the above robust VI method in
solving adaptive optimal control problems that appear intractable using traditional
DP methods.
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4.1. VI in the presence of modeling errors. Solving optimal control problems
using algorithm 2 requires precise knowledge of system matrices. In practice, these
system parameters may not be directly available, and are often estimated from
measurement data subject to stochastic noise. In this subsection, we investigate
the convergence of eq. (4) under estimated model parameters.

Suppose the system matrix A is not known a priori, and is approximated by a

time series {Â(t)}t∈R+ , where Â(t) = A +
∑N

i=1 ∆ivi(t), N > 0, ∆i ∈ R
n×n are

constants, and vi denote independent continuous-time Gaussian white noises.
Instead of eq. (4), let us consider the following equation:

Ṗ = ÂTP + PÂ− PBR−1BTP +Q

= R(P ) +
N
∑

i=1

(∆T
i P + P∆i)vi

= R(P ) +
N
∑

i=1

(∆T
i P̃ + P̃∆i)vi +

N
∑

i=1

(∆T
i P

∗ + P ∗∆i)vi.(23)

Since ∆i are constants, there exists a constant γ > 0, such that
∑N

i=1 |∆T
i P +

P∆i|2 < γ|P |2. By theorem 3.4, part (iv), if γ is sufficiently small, then we can
find a pair (Q,R) under which there exists a smooth Lyapunov function V satisfying

LV (P̃ ) ≤ −C1|P̃ |2 + γC2|P̃ |2 + γC2|P ∗|2

≤ −C3|P̃ |2 + γC2|P ∗|2, ∀P ∈ {P ∈ Sn+ : P ∈ Bε(P
∗)},

for some constants ε > 0 and Ci > 0, i = 1, 2, 3. Moreover, the noise-to-state
stability gain [KD98] can be made arbitrarily small by choosing Q and R properly,
if B has full rank.

The above inequality shows that the DMRE under noisy measurement of A
is either locally or semi-globally (in Sn+) practically stable, with probability one.
Indeed, due to the additive noise in eq. (23), limt→∞ P (t) follows a steady state
distribution.

To improve the convergence result, lets consider the following DMRE:

Ṗ =

(

1

t

∫ t

0

Âds

)T

P + P

(

1

t

∫ t

0

Âds

)

− PBR−1BTP +Q.(24)

By definition,

1

t

∫ t

0

Âds = A+
N
∑

i=1

∆i
1

t

∫ t

0

vi(s)ds = A+
N
∑

i=1

1

t
∆iwi(t),

where wi are independent Brownian motions [Ste01, Chapter 3], and the last equal-
ity comes from the fact that vi are independent Gaussian white noises. By the
strong law of large number [Ste01, Appendix I], limt→∞

1
twi(t) = 0 with probabil-

ity one.

Theorem 4.1. Denote a complete probability space (Ω,F ,P) equipped with a filtra-
tion {Ft}t≥0. Suppose (w1(t), w2(t), · · · , wN (t)) is Ft-adapted. For any P (0) ∈ Sn+,
we have limt→∞ P (t) = P ∗ with probability one, where P (t) is defined by eq. (24).
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Proof. By the definition of wi, we know there exists E ∈ F with P(E) = 1, such

that for any ω ∈ E, limt→∞
1
t

∑N
i=1 ∆iwi(ω, t) = 0. Now, fix a ω ∈ E, and denote

1
t

∑N
i=1 ∆iwi(ω, t) := ∆(t).

Define

˙̂
P = (A−BK∗)T P̂ + P̂ (A−BK∗) +K∗RK∗ +Q+∆T P̂ + P̂∆, P̂ (0) = P (0).

Since limt→∞ ∆(t) = 0, we can easily show that P̂ is globally asymptotically stable
at P ∗ on Sn, by using the same Lyapunov function given in the proof of proposi-
tion 3.3. On the other hand, we have from eq. (24) that

0 ≤ xT (−t)P (t)x(−t) = inf
u

{

xT (0)P (0)x(0) +

∫ 0

−t

(xTQx+ uTRu)ds

}

≤ (x∗(0))TP (0)x∗(0) +

∫ 0

−t

(x∗)T (Q+ (K∗)TRK∗)x∗ds = xT (−t)P̂ (t)x(−t),

where x is the solution to the following system:

ẋ = (A+∆)x+Bu.

Thus, P (t) is bounded and stays in the region of attraction of P ∗, for each given
ω ∈ E. The proof is then concluded following the similar analysis in the proof of
theorem 3.4, part (ii). �

In practice, instead of having vi(t), we usually have discrete-time white noise se-
quences {vi(k)}∞k=0 sampled from the continuous-time series, with constant variance
σ2
i . In this case, eq. (23) and eq. (24) can be numerically approximated by

Pk+1 = Pk + hk(Â
T
k Pk + PkÂk − PkBR

−1BTPk +Q),

Pk+1 = Pk + hk





(

1

k

k
∑

i=0

Âi

)T

Pk + Pk

(

1

k

k
∑

i=0

Âi

)

− PkBR
−1BTPk +Q



 ,

respectively, where P0 = P (0), Âk = A+
∑N

i=1 ∆ivi(k), and hk > 0 is the step size.

By the property of Gaussian white noise, we have limh→0

∑⌊t/h⌋
k=0

√
hvi(k) = σiwi(t).

Then the convergence of Pk can also be obtained.

Remark 4.1. Note that the system input matrix B can also be replaced by a time
series B̂(t) in the above analysis.

4.2. VI-based ADP for linear continuous-time systems. ADP aims at solv-
ing the optimal control problem in real-time using the online input-state or input-
output information. However, in traditional PI-based ADP methodologies, a matrix
inverse is calculated in each learning iteration, which may induce a heavy compu-
tational burden in real world applications. Here, we solve this problem from the
perspective of robust DP. This result is especially useful for high-order systems
where solving matrix inverse online is not practical.

For all x ∈ R
n and P ∈ Sn, taking the derivative along the solutions of system

eq. (1), one has

d

dt
x̄T vech(P ) =

d

dt
(xTPx) = (Ax+Bu)TPx+ xTP (Ax+Bu) = z̄T θ(P ),(25)
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where z = [xT , uT ]T ,

θ(P ) = vech

([

PA+ATP PB
BTP 0

])

,

and for any ξ ∈ R
q, q ∈ Z+ \ {0},

ξ̄ = [ξ21 , 2ξ1ξ2, · · · , 2ξ1ξq, ξ22 , 2ξ2ξ3, · · · , 2ξq−1ξq, ξ
2
q ]

T .

Note that once θ(P ) is obtained, we can define two linear transformations TA and
TB, such that

ATP + PA = TA(θ(P )), R−1BTP = TB(θ(P )).

To provide an online implementation of algorithm 1, we need to solve ATP +PA
and R−1BTP from eq. (25) using online data only. First, define an arbitrary time
sequence 0 ≤ t1 < t2 < · · · < tl+1 <∞. Consider the following linear equation:

ψT
j (z)θ(P ) = φTj (x)vech(P ), ∀j ≥ 0,(26)

where

φj(x) = x̄(tj+1)− x̄(tj), ψj(z) =

∫ tj+1

tj

z̄dt.

Now, by means of the RLS [Hay14, Chapter 10], one can define a sequence
{θk}lk=0 to approximate θ(P ). To be specific, θk is updated by the following two
equations:

Σk = Σk−1 −
Σk−1ψkψ

T
k Σk−1

1 + ψT
k Σk−1ψk

,

θk = θk−1 +Σkψkφ
T
k vech(P )− Σkψkψ

T
k θk−1,(27)

where θ0 = 0, and Σ0 = λ−1Iq for q = 1
2 ((n+m)2 + n+m) and some λ > 0.

Assumption 4.1. There exist l0 > 0 and α > 0, such that

1

l

l
∑

j=1

ψj(z)ψ
T
j (z) > αI(28)

for all l > l0.

If assumption 4.1 is satisfied, then we have from eq. (27) that

θl =





l
∑

j=1

ψjψ
T
j + λIq





−1
l
∑

j=1

ψjφ
T
j vech(P )

=





1

l

l
∑

j=1

ψjψ
T
j +

λ

l
Iq





−1

1

l

l
∑

j=1

ψjφ
T
j vech(P ),

and thus

lim
l→∞

θl = θ(P ).

By eq. (27) and using mathematical induction, we see θk is also linear in P . Hence

one can find a matrix Mk ∈ R
(n(n+1)

2 +mn)×n(n+1)
2 , such that θk =Mkvech(P ), with
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Algorithm 3 Continuous-time VI-based ADP

Choose P0 = PT
0 ≥ 0, Σ0 = λ−1I, and M0 = 0. k, q ← 0.

Apply a measurable locally essentially bounded input u to eq. (1).
loop

Σk ← Σk−1 − Σk−1ψkψ
T
k Σk−1/(1 + ψT

k Σk−1ψk)
Mk ←Mk−1 +Σkψk(φ

T
k − ψT

kMk−1)

θ̂k ←Mkvech(Pk)

Pk+1/2 ← Pk + hk(TA(θ̂k)− T T
B (θ̂k)RTB(θ̂k) +Q)

if Pk+1/2 > 0 and |Pk+1/2 − Pk|/hk < ε̄ then

return Pk as an approximation to P ∗

else if |Pk+1/2| > Bq or Pk+1/2 6> 0 then

Pk+1 ← P0. q ← q + 1.
else

Pk+1 ← Pk+1/2

end if

k ← k + 1
end loop

M0 = 0, for all k = 0, 1, · · · , l. Moreover, since eq. (25) is true for any P ∈ Sn, by
replacing θk in eq. (27) with Mkvech(P ), we must have

Mk =Mk−1 +Σkψkφ
T
k − Σkψkψ

T
kMk−1.(29)

By the convergence of θl, we have

lim
l→∞

Ml = lim
k→∞

Mk =M,

where M satisfies θ(P ) =Mvech(P ) for all P ∈ Sn.
Based on the above analysis, the VI-based ADP algorithm for linear continuous-

time systems is given in algorithm 3.

Theorem 4.2. Under assumption 4.1, we have lim
k→∞

Pk = P ∗ and lim
k→∞

Kk = K∗,

where {Pk}∞k=0 is obtained from algorithm 3, and Kk = TB(θ̂k).

Proof. Noting that

θ(Pk) =Mvech(Pk) = θ̂k + (M −Mk)vech(Pk),

we have

TA(θ̂k) = ATPk + PkA+∆1,k(Pk),

TB(θ̂k) = R−1BTPk +∆2,k(Pk),

for some linear functions ∆1,k and ∆2,k. Thus, algorithm 3 is essentially a special
case of algorithm 2 with

∆k = ∆1,k(Pk) + ∆T
2,k(Pk)R∆2,k(Pk) + ∆T

2,k(Pk)B
TPk + PkB∆2,k(Pk).

Since limk→∞Mk =M under assumption 4.1, both ∆1,k and ∆2,k converge to zero
over any compact set. Then, the convergence of Pk to P ∗ is proved by theorem 3.8,
part (ii). Following the definition, we then easily have limk→∞Kk = K∗. This
completes the proof. �
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Remark 4.2. Since the RLS scheme is also robust to stochastic noise [Hay14, Chap-
ter 10], it is possible to extend algorithm 3 to the stochastic optimal control frame-
work.

4.3. Stochastic ADP for ergodic control problems. In this subsection, we
develop an ADP algorithm to solve the ergodic control problem [Bor06] for linear
stochastic systems with additive noise.

Consider the following system:

dx = Axdt+Budt+

qx
∑

i=1

σidwx,i,(30)

du = −K0dx +

qu
∑

i=1

σu,idwu,i,(31)

where x, u, A, and B follow the same definitions as in system eq. (1); x(0) is
deterministic; wx,i and wu,i are independent Brownian motions; qx, qu ∈ Z+; σi ∈
R

n are unknown constant vectors;K0 is a known initial input matrix; and σu,i ∈ R
m

are constant vectors.

Remark 4.3.
∑qx

i=1 σidwx,i in eq. (30) represents the additive noise in system eq. (30).
∑qu

i=1 σu,idwu,i in eq. (31) serves as an exploration noise, which has been widely
used in adaptive control literature to guarantee the persistent excitation condition
(PE) [Tao03, Definition 3.2]. Note that besides the Brownian motion, other types
of exploration noises can also be used. For simplicity, we only consider inputs in the
form of eq. (31) here, as in this case system eq. (30) is purely driven by Brownian
motions, and several standard results from SDE theory can be applied directly.

Assumption 4.2. There exists an ergodic stationary probability measure µ on
R

n × R
m for system eq. (30)-eq. (31).

A discrete time version of assumption 4.2 for MDPs has been widely used in
approximate DP and RL literature [Tsi94, TVR97]. See [Won67, Hau71] for con-
ditions under which assumption 4.2 holds.

The objective of ergodic control is to minimize (with probability one)

J (u) = lim sup
T→∞

1

T

∫ T

0

(xTQx+ uTRu)dt,

where Q = QT > 0 and R = RT > 0. It can be shown [Bor06] that infu J (u) =
∑q3

i=1 σ
T
i P

∗σi, with P
∗ and the optimal controller sharing the same definitions as

the ones in Section 2.1 for deterministic systems.
Now, we derive an online ADP algorithm to solve the above ergodic control

problem. Similar to eq. (25), for all x ∈ R
n and P ∈ Sn, by Itô’s lemma [Ste01,

Theorem 8.3], we have along the trajectories of eq. (30) that

d(xTPx) = 2xTP (Ax+Bu)dt+

qx
∑

i=1

σT
i Pσidt+ 2xTP

qx
∑

i=1

σidwx,i

= ψT (x, u)θ(P )dt + 2xTP

qx
∑

i=1

σidwx,i,(32)
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where ψ(x, u) = [x̄T , xT ⊗ uT , 1]T , and

θ(P ) =





vech(PA+ATP )
vec(BTP )
∑qx

i=1 σ
T
i Pσi



 .

Then, multiplying ψ on both sides of eq. (32), we have on any finite time interval
[0, T ] that

1

T

∫ T

0

ψψT dtθ(P ) =
1

T

∫ T

0

ψd(xTPx)− 2

T

∫ T

0

ψxTP

qx
∑

i=1

σidwx,i.(33)

Once θ(P ) is obtained from the equation above, we can use the linear transforma-
tions defined similarly as the ones in Section 4.2 to find ATP + PA and R−1BTP :

ATP + PA = TA(θ(P )), R−1BTP = TB(θ(P )).
In order to solve eq. (33), we impose the following assumption:

Assumption 4.3. µ satisfies
∫

Rn×Rm

ψψT dµ > 0.(34)

Note that system eq. (30)-eq. (31) is a multidimensional Ornstein-Uhlenbeck
process. Then, its stationary probability measure µ is also Gaussian, and thus
(x, u) has finite r-th moment for any r ∈ N+. assumption 4.3 is similar to the PE
condition widely used in adaptive control literature (see remark 4.3 for details).

By a direct extension of Birkhoff’s ergodic theorem [ABG12, Theorem 1.5.18]
and the Itô’s isometry [Ste01, Theorem 6.1], we know3

lim
T→∞

E
P





∥

∥

∥

∥

∥

1

T

∫ T

0

ψψT dt−
∫

Rn×Rm

ψψTdµ

∥

∥

∥

∥

∥

2

2



 = 0,(35)

lim
T→∞

E
P





∥

∥

∥

∥

∥

1

T

∫ T

0

ψd(xTPx)− 1

T

∫ T

0

ψψT dtθ(P )

∥

∥

∥

∥

∥

2

2





= lim
T→∞

4

T 2
E
P





∥

∥

∥

∥

∥

∫ T

0

ψxTP

qx
∑

i=1

σidwx,i

∥

∥

∥

∥

∥

2

2



 = 0.(36)

Choosing a monotone increasing sequence {tk}∞k=0 with t0 > 0 and limk→∞ tk =
∞, we denote

θ̂(P, tk) =

(∫ tk

0

ψψTdt

)−1 ∫ tk

0

ψd(xTPx).

Note from eq. (34) and eq. (35) that t0 is a stopping time, and t0 < ∞ with

probability one, such that
∫ tk
0 ψψT dt is invertible for all k ≥ 0.

For simplicity, denote θ̂k = θ̂(Pk, tk). The VI-based ADP algorithm for the
ergodic control problem is given in algorithm 4.

3‖·‖2 denotes the matrix 2-norm. EP is the expectation on a probability space (Ω,F ,P), where
Ω is a sample space, F is a σ-field of Borel sets of Ω, and P is a stationary distribution of (x, u)
such that

∫
Ω
f(x(ω), u(ω))dP(ω) =

∫
Rn×Rm f(x, u)dµ(x, u) for all measurable f .
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Algorithm 4 Online robust optimal control design for ergodic control

Choose P0 = PT
0 ≥ 0. k, q ← 0. Pick an input u in form of eq. (31).

loop

θ̂k =
(

∫ tk
0 ψψT dt

)−1
∫ tk
0 ψd(xTPkx).

Pk+1/2 ← Pk + hk(TA(θ̂k)− T T
B (θ̂k)RTB(θ̂k) +Q)

if Pk+1/2 > 0 and |Pk+1/2 − Pk|/hk < ε̄ then

return Pk as an approximation to P ∗

else if |Pk+1/2| > Bq or Pk+1/2 6> 0 then

Pk+1 ← P0. q ← q + 1.
else

Pk+1 ← Pk+1/2

end if

k ← k + 1
end loop

Theorem 4.3. Under assumption 4.2 and assumption 4.3, we have lim
k→∞

Pk = P ∗

and lim
k→∞

Kk = K∗ with probability one, where {Pk}∞k=0 is obtained from algorithm 4,

and Kk = TB(θ̂k).

Proof. First denote

∆k(P ) := θ̂(P, tk)− θ(P ) = 2

(∫ tk

0

ψψT dt

)−1 ∫ tk

0

ψxTP

qx
∑

i=1

σidwx,i.

Then, by eq. (35) and eq. (36), we have

lim
k→∞

E
P
[

‖∆k(P )‖22
]

= 0.

Since the above formulation is true for any real symmetric P , we know for any
P ∈ Sn, ∆k(P ) is a martingale (element wise), and converges to 0 as k goes to
infinite, in the mean square sense.

By Burkholder-Davis-Gundy inequality [BDG72, Theorem 1.1], we have

E
P

[

|∆i,j
k (P )|4

]

≤ CEP
[

[∆i,j(P )]2k
]

for some constant C > 0, where ∆i,j
k is the (i, j)-th element of ∆k, and [·] denotes

the quadratic variation [Ste01, Section 8.6]. By Birkhoff’s ergodic theorem and the
fact that (x, u) has finite r-th moment for any r ∈ N+, limk→∞[∆i,j(P )]k = 0 with
probability one. Hence limk→∞ E

P
[

[∆i,j(P )]2k
]

= 0. This implies that the variance

of ∆T
k ∆k is bounded.

Now, the updating equation in algorithm 4 is equivalent to

Pk+1/2 ← Pk + hk(R(Pk) + ∆1,k(Pk) + ∆2,k(Pk)),

where ∆1,k(Pk) is a zero-mean stochastic noise with finite variance for each k, and
∆2,k(·) is deterministic and decreases to 0 as k goes to infinity. The proof is then
completed by corollary 3.10. �
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Remark 4.4. It is possible to extend the results in this section to systems with both
multiplicative and additive noises:

dx = Axdt +Budt+

qx
∑

i=1

σidwx,i +

q1
∑

i=1

Fixdw1,i +

q2
∑

i=1

Giudw2,i,

where Fi and Gi are constant matrices. In this case, the ARE is given as

ATP ∗ + P ∗A+

q1
∑

i=1

FT
i P

∗Fi − P ∗B

(

R+

q2
∑

i=1

GT
i P

∗Gi

)−1

BTP ∗ +Q = 0.

The convergence of VI in this case is guaranteed using results in [BJ16b, Theorem
3.3] and [ARCMZ01]. The robust VI and ADP algorithms similar to algorithm 2
and algorithm 4 can be derived following the analysis given before.

4.4. Decentralized VI. In previous sections, we have studied different types of
optimal control problems for continuous-time linear systems. A common feature in
these results is that the optimal controller and value function can be obtained by
solving a single ARE. However, in some applications, including the non-zero-sum
differential game and the robust ADP, the optimal solution is solved from a group
of cascaded or coupled AREs/HJB equations. Here, we present a decentralized VI
framework for continuous-time linear systems based on the robust VI proposed in
Section 3.

For simplicity, let us consider a network of two agents, with each agent i, i = 1, 2,
aiming at solve a linear optimal control problem (see Section 2.1) defined by four
matrices (Ai, Bi, Qi, Ri). Obviously, if (A1, B1, Q1, R1) and (A2, B2, Q2, R2) are not
dependent on each other, then each agent can solve its own optimal control problem
without communicating with the other one. However, assume now agent i’s system
information (Ai, Bi, Qi, Ri) depends on agent j’s (j 6= i) optimal solution (P ∗

j ,K
∗
j )

through a nonlinear relationship ∆i(·), and for security reason the two agents cannot
exchange their system information (Ai, Bi, Qi, Ri), i = 1, 2, to each other, then
it is no longer a trivial task how to solve (P ∗

i ,K
∗
i ) in a decentralized manner.

Reformulating this problem mathematically, we focus on solving the following two
coupled AREs:

0 = AT
1 P

∗
1 + P ∗

1A1 − P ∗
1B1R

−1
1 BT

1 P
∗
1 +Q1 +∆1(P

∗
1 , P

∗
2 ),

0 = AT
2 P

∗
2 + P ∗

2A2 − P ∗
2B2R

−1
2 BT

2 P
∗
2 +Q2 +∆2(P

∗
2 , P

∗
1 ),

where (Ai, Bi, Qi, Ri) ∈ R
ni×ni ×R

ni×mi ×Sni

+ ×Smi

+ , ∆1 = ∆T
1 and ∆2 = ∆T

2 are
two continuous nonlinear functions.

Assumption 4.4. There exist four polynomials γi,j ∈ K, i, j = 1, 2, such that4

|∆̃1(P1, P2)| ≤ γ1,1(|P̃1|) + γ1,2(|P̃2|),
|∆̃2(P2, P1)| ≤ γ2,2(|P̃2|) + γ2,1(|P̃1|),

where ∆̃1(P1, P2) = ∆1(P1, P2)−∆1(P
∗
1 , P

∗
2 ), ∆̃2(P2, P1) = ∆2(P2, P1)−∆2(P

∗
2 , P

∗
1 ),

P̃1 = P1 − P ∗
1 , and P̃2 = P2 − P ∗

2 .

4A function γ : R+ → R+ is of class K, if it is continuous, strictly increasing, and γ(0) = 0.
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Remark 4.5. assumption 4.4 holds widely in different control problems. For exam-
ple, in two-player non-zero-sum differential games, we have A1 = A2 and

∆i(Pi, Pj) = PjBjR
−1
j RijR

−1
j BT

j Pj − PjBjR
−1
j BT

j Pi − PiBjR
−1
j BT

j Pj ,

where i 6= j and Rij = RT
ij > 0. Also, in the robust ADP design for systems with

unmatched disturbances [JJ17, Chapter 5.1.1.2], we have ∆1 = 0 and

∆2(P2, P1) = P2R
−1
1 BT

1 P1B1 +BT
1 P1B1R

−1
1 P2.

Note that γi,j may depend on P ∗
1 and P ∗

2 .

The following theorem provides a convergence analysis for the coupled DMREs
using small-gain theory.

Theorem 4.4. Under assumption 4.4, there exist ε > 0 and small enough |γi,j |,
i, j = 1, 2, such that given (P1(0), P2(0)) in a ε-neighborhood of (P ∗

1 , P
∗
2 ), we have

limt→∞ P1(t) = P ∗
1 and limt→∞ P2(t) = P ∗

2 , where

Ṗ1 = AT
1 P1 + P1A1 − P1B1R

−1
1 BT

1 P1 +Q1 +∆1(P1, P2),(37)

Ṗ2 = AT
2 P2 + P2A2 − P2B2R

−1
2 BT

2 P2 +Q2 +∆2(P2, P1).(38)

Moreover, if Bi has full rank, the convergence result holds for any γi,j by picking
Qi and Ri properly.

Proof. Following the derivation of eq. (15), there exist ε > 0 and a Lyapunov
function V , such that

V̇ (P̃1, P̃2) ≤ −C1(|P̃1|2 + |P̃2|2) + C2|P̃1||∆̃1|+ C3|P̃2||∆̃2|
≤ −C1(|P̃1|2 + |P̃2|2) + C2|P̃1|

∑

j=1,2

γ1,j(|P̃j |) + C3|P̃2|
∑

j=1,2

γ2,j(|P̃j |)

≤ −C1

2
(|P̃1|2 + |P̃2|2) + C4

∑

i,j=1,2

γ2i,j(|P̃j |), ∀|P̃1| < ε, |P̃2| < ε,

where Ci > 0, i = 1, 2, 3, 4, are constants. Since γi,j are polynomials, the second
term on the right-hand side of the above inequality decrease to 0 at least as fast as
the first term. Hence, eq. (37) and eq. (38) are asymptotically stable at (P ∗

1 , P
∗
2 ),

as long as the gain of γi,j is small enough.
Moreover, if B1 has full rank, we know from corollary 3.6 that eq. (37) can

have an arbitrarily small linear L2 gain from ∆̃1 to P̃1, i.e., C2/C1 can be made
sufficiently small, on any compact sets, by choosing Q1 and R1 properly. If |γ2,2|
is sufficiently small, then for any ε > 0, we can find Q1 and R1, such that

V̇ (P̃1, P̃2) ≤− C1(|P̃1|2 + |P̃2|2) + C2|P̃1|γ1,1(|P̃1|) +
C2

2
|P̃1|2 +

C2

2
γ21,2(|P̃2|)

+
C1

2
|P̃2|2 +

C2
3

2C1
γ22,1(|P̃1|) + C3|P̃2|γ2,2(|P̃2|)

≤− C5(|P̃1|2 + |P̃2|2), ∀|P̃1| < ε, |P̃2| < ε,

for some C5 > 0. This completes the proof. �

Based on theorem 4.4, we develop a coupled VI algorithm in algorithm 5. The
convergence of algorithm 5 is given in the following theorem.
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Algorithm 5 Decentralized value iteration

For the i-th subsystem, choose Pi,0 = PT
i,0 ≥ 0. k ← 0.

loop

Pi,k+1 ← Pi,k +hi,k(A
T
i Pi,k +Pi,kAi−Pi,kBiR

−1
i BT

i Pi,k +Qi+∆i(Pi,k, Pj,k))

if |Pi,k+1 − Pi,k|/hi,k < ε̄ then

return Pi,k as an approximations to P ∗
i

end if

k ← k + 1
end loop

Theorem 4.5. Under assumption 4.4, suppose B1 and B2 have full rank. If
supk{hi,k} is sufficiently small, then given Qi,0 ∈ Sni

+ and Ri,0 ∈ Smi

+ , for any
ε > 0, there exist λi > 0, such that by selecting Qi = λiQi,0 and Ri = o(λi)Ri,0,
we have limk→∞ Pi,k = P ∗

i , where {Pi,k}∞k=0 is obtained from algorithm 5 with
Pi,0 ∈ Sni

+ ∩Bε(P
∗
i ), and i = 1, 2.

Proof. First we show {Pi,k} is bounded in Sni

+ ∩Bε(P
∗
i ). By picking λi sufficiently

small, we know from part (i) of corollary 3.7 that the couple system eq. (37) and
eq. (38) can be made asymptotically stable at (P ∗

1 , P
∗
2 ), with Pi(0) ∈ Sni

+ ∩Bε(P
∗
i );

and also from corollary 3.6 that ε can be made arbitrarily large.
Now, choosing supk{hi,k} sufficiently small, we easily have from part (i) of the-

orem 3.8 that {Pi,k} stays in Sni

+ ∩Bε(P
∗
i ). Then, the proof is completed by part

(iii) of theorem 3.8. �

Remark 4.6. The results presented in this section can be extended in different direc-
tions, such as for large-scale networks with more than two nodes and decentralized
VI under stochastic disturbance.

5. Illustrative practical examples

In this section, we provide three simulation examples to illustrate our robust VI
algorithm.

5.1. Mean-variance portfolio optimization. In this example, we study the
mean-variance portfolio optimization problem [ZL00] using non-zero-sum differ-
ential game theory and the robust VI results obtained in Sections Section 4.1 and
Section 4.4.

Consider the price process of N + 1 assets (or securities) traded continuously in
a market [ZL00]:

dS0

S0
= rdt,

dSi

Si
= bidt+

ni
∑

j=1

σijdwj , i = 1, 2, · · · , N,

where S0 represents the price of a bond, Si, i = 1, · · · , N , represent N stocks, r > 0
is the interest rate, bi > 0 is the appreciation rate, and {σij}ni

j=1 is the volatility of

the i-th stock. An investor’s total wealth at time t, when holding hi(t) shares of
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the i-th asset, is given as

x(t) =
N
∑

i=0

hi(t)Si(t).

Then,

dx =

(

rx +
∑

i

(bi − r)ui
)

dt+
∑

i,j

σijuidwj ,

where ui := hiSi denotes the total market value of the investor’s wealth in the
i-th bond/stock. The design objective here is to find u to a) maximize the average
return; and b) minimize the volatility of x.

Inspired by [ZL00], instead of solving the above portfolio optimization prob-
lem directly, we consider an auxiliary multi-player non-zero-sum differential game
composed with the following cost

Ji(u) = E





∫ ∞

0



Qix̄
2 +

N
∑

j=1

Rij ūiūj



 dt



 , i = 1, · · ·N,(39)

subject to

dx̄ =

(

rx̄ +
∑

i

(bi − r)ūi
)

dt+
∑

i,j

σij ūidwj ,

where x̄ = x − γ, and γ > 0 represents the tradeoff between the two objectives in
the portfolio optimization problem. A larger γ means more weights on the average
return, and a small γ means more weights on the volatility. Note that the first
term in the integrand in eq. (39) is related to the variance of x̄ (and hence x) at the
steady state, and the second term guarantee that the shares for the i-th bond/stock
do not diverge to the infinity.

Since the volatilities of assets are usually difficult to estimate, we borrow the
idea of stochastic robust optimal solution from [BJ16b, Section 5], by choosing
sufficiently small Qi > 0 and Rij > 0 to guarantee the small-gain condition. Then,
the above non-zero-sum differential game can be solved using algorithm 5, with
Ai = r and Bi = bi − r. Based on the desired expected return, γ is chosen as 200.
Once ū∗i := −K∗

i x̄ is obtained, the optimal share of the i-th asset at time t is chosen
as K∗

i (γ− x̄(t)). Totally 20 stocks and one bond are used to construct the portfolio.
The interest rate is chosen as 2.5%, and the appreciation rates are randomly selected
from 0−15%. Suppose the real values of these rates are unknown, and are estimated
online using techniques developed in Section 4.1. After 1000 iterations, all P ∗

i

converge to their optimal values. The prices of the portfolio is shown in fig. 1. Note
that the portfolio constructed using the non-zero-sum differential game approach
has a higher return, while maintaining approximately the same volatility compared
with the uniform allocation of the asset.

5.2. ADP learning for kinematic models. In this example, we use the ADP
method proposed in Section 4.2 to develop an online learning mechanism for a class



28 TAO BIAN AND ZHONG-PING JIANG

0 1 2 3 4 5
t (years)

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7
Pr

ice
 (U

SD
)

Portfolio Optimization
Non-zero-sum game
Uniform

Figure 1. Example 5.1: Portfolio optimization solved from robust VI.

of kinematic models described as follows:

ṗ = v,

mv̇ = f − bv,
τ ḟ = u− f + w,

where p, v, f denote the relative position to the origin, the velocity, and the actuator
force, respectively; u is the control input; m, b, and τ represent the mass, the
viscosity constant, and the time constant, respectively; and w is an exploration noise
used to facilitate the ADP learning. Note that the above system can represent a
large class of practical systems, including human motor system, autonomous vehicle
model, power system, to name a few.

In practice, the state information collected from online data is usually corrupted

by some observation noises. As a result, instead of (p, v, f), we assume only (p̂, v̂, f̂)
is observed and used in the feedback control design and ADP learning:

p̂ = p+ σpwp,

v̂ = v + σvwv,

f̂ = f + σfwf ,

where σp, σv, and σf denote the noise magnitude; and wp, wv, and wf are inde-
pendent random variable and follow standard Gaussian distribution.
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Table 2. Parameters of the Kinematic Model.

Parameters Description Value
m Mass 1kg
b Viscosity constant 1N·s/m
τ Time constant 0.1s
σp Noise magnitude 0.01
σv Noise magnitude 0.02
σf Noise magnitude 0.1

The values of model parameters used in simulation are provided in table 2.
algorithm 3 is applied online, and the control policy is updated in real time after
every 0.02s. The weighting matrices in the cost are chosen as Q = I3 and R = I1.
The initial controller u ≡ 0, i.e., only the exploration noise is injected into the
system at the beginning. The elements in Pk are plotted in fig. 2 for each k. For
comparison purpose, both the optimal solution P ∗ and the near optimal solution
P̂ ∗ learned through ADP are given below:

P ∗ =





7.4044 1.4311 0.1000
1.4311 0.3801 0.0248
0.1000 0.0248 0.0431



 , P̂ ∗ =





7.4560 1.5184 0.1084
1.5184 0.5117 0.0216
0.1084 0.0216 0.0463



 .

Obviously, P ∗ and P̂ ∗ are close to each other. The system trajectories and input
are given in fig. 3. Note that the system achieves the asymptotical stability in mean
square sense.

5.3. ADP for time-series variance minimization. In this example, we use the
ADP method developed in Section 4.3 to study the variance minimization problem
for a class of time-series with unknown parameters. Note that this is a classical
problem which has been studied in both finance and signal-processing community,
and can be easily addressed using the Kalman filter, when the model parameters
are known.

Consider the following time series in continuous-time:
...
S = α3S̈ + α2Ṡ + α1S + σ0v0,

where σ0 and αi, i = 1, 2, 3, are unknown model parameters; and v0 is a Gaussian
white noise that drives the output S. Suppose the system is asymptotically stable
in mean square sense. Our objective here is to minimize the variance of S.

By rewriting the above differential equation in state space form, we have

dx1 = x2dt+ σ1dw1 − σ2w2dt,

dx2 = x3dt+ σ2dw2 − σ3w3dt,

dx3 = α3x3dt+ α2x2dt+ α1x1dt+ σ3dw3 + u+ σ0dw0,

where x1 = S + σ1w1, x2 = Ṡ + σ2w2, x3 = S̈ + σ3w3; w0 = v̇0; wi, i = 0, 1, 2, 3,
are Brownian motions representing the observation noises; σi, i = 1, 2, 3, are un-
known noise magnitudes; and u is the control input. Note that even if u ≡ 0,
Exi, i = 1, 2, 3, can decrease to 0 asymptotically, since we assume the system is
asymptotically stable in mean square sense. However, the variance of xi may be
extremely large due to the presence of σ0v0. To reduce the variance of xi, algo-
rithm 4 is used to develop an ergodic controller. Notice that by the law of large
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Figure 2. Example 5.2: elements of Pk.

numbers,
∫∞

0
widt = 0 for all i. Hence, the two terms σ2w2dt and σ3w3dt have

little influence in the time integration in algorithm 4.
In the simulation, we choose α1 = −4, α2 = −1, α3 = −4, σ0 = 1, σ1 = 0.6,

σ2 = 0.4, and σ3 = 0.5. For illustration purpose, the weighting matrices in the cost
are chosen as Q = 0.1I3 and R = 0.01I1. Pk is updated in real time after every 1s.
The elements in Pk are given in fig. 4. Both the optimal solution P ∗ and the near
optimal solution P̂ ∗ from ADP learning are shown below:

P ∗ =





0.2859 0.1492 0.0110
0.1492 0.3366 0.0539
0.0110 0.0539 0.0206



 , P̂ ∗ =





0.2854 0.1479 0.0106
0.1479 0.3377 0.0529
0.0106 0.0529 0.0262



 .

The system trajectories are given in fig. 5. Note that the controller derived from
algorithm 4 significantly reduces the variance of the output signal.

6. Summary and future work

This paper develops a new framework of robust DP. This novel theory resolves
a long-standing issue in DP theory: how to develop DP algorithms that are robust
to different types of disturbances? Empowered by nonlinear and robust control
theories, robust DP allows us to develop various DP and RL algorithms with guar-
anteed convergence to the optimal solution in the presence of different types of
disturbances, including stochastic noise, external disturbances, and modeling er-
rors such as nonlinear dynamic uncertainties. To be specific, we have conducted an
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Figure 3. Example 5.2: the trajectories of p̂, v̂, f̂ , and u.

innovative input-output gain analysis for the DMRE in Section 3, and applied the
result together with the nonlinear small-gain theory to develop a novel robust VI
algorithm. It has been shown that this new algorithm is robust to different kinds
of internal and external disturbances, and hence is especially useful in solving non-
model-based optimal control problems.

Due to space limitations, we only list a few illustrative applications of our robust
DP method in Section 4. These examples have demonstrated that robust DP
obtained in the present paper is a powerful tool for addressing adaptive optimal
control and DP problems. Last but not least, we point out several additional
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research topics that deserve further investigations in the future on the basis of
robust DP:

• Robust PI. This paper mainly focuses on developing the robust VI. Due to
the popularity of the PI algorithm in real-world decision making applica-
tions, it is important to develop similar robustness analysis results for the
PI.
• Multi-level ADP learning. The convergence of ADP algorithms relies heav-
ily on the well-posedness of the cost functional. However, it may not be
easy to identify such a “qualified” cost in practice. One way of solving
this problem is to update the cost functional at the same time when the
ADP learning is performed. The convergence of this multi-level learning
algorithm can be analyzed using our robust DP framework.
• Neural network-based ADP methods. Robust DP can also play an important
role in analyzing the convergence of nonlinear ADP methods with neural
network approximation. The error induced from neural network approxi-
mation can be regarded as an external input to the robust DP algorithm.
Then the gain analysis can be conducted to quantify the influence of such
approximation error.
• Robust ADP learning under unknown disturbance. Robust ADP aims at de-
veloping a robust adaptive optimal controller for an interconnected system
subject to dynamic uncertainty. A potential drawback of previous robust
ADP algorithms is that the disturbance input must be accessible during
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Figure 5. Example 5.3: the trajectories of xi, i = 1, 2, 3.

the learning process. This restrictive assumption can be removed with the
help of the proposed robust DP methodology.
• DP and ADP methods for delayed systems. The time delay can be handled
as a special type of dynamic uncertainty with the unity gain. Since robust
DP provides a new way of conducting the convergence analysis from a
nonlinear small-gain perspective, it can play a vital role in handling the
adaptive optimal control design with delayed input and state information.
• Parallel and decentralized ADP methods. Section 4.4 has developed a decen-
tralized VI algorithm that is shown especially useful in solving large-scale
DP problems and differential games. Our future work will be directed at
developing the model-free counterpart of algorithm 5, and extending this
result to more general scenarios.
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[Kuč73] Vladimı́r Kučera. A review of the matrix Riccati equation. Kybernetika, 9(1):42–61,
1973.

[KY03] Harold J. Kushner and G. G. Yin. Stochastic Approximation and Recursive Algo-
rithms and Applications. Springer New York, 2003.

[Lib12] D. Liberzon. Calculus of Variations and Optimal Control Theory: A Concise Intro-
duction. Princeton University Press, Princeton, NJ, 2012.

[Lit15] Michael L. Littman. Reinforcement learning improves behaviour from evaluative feed-
back. Nature, 521(7553):445–451, 05 2015.

[LJH14] Tengfei Liu, Z. P. Jiang, and David J. Hill. Nonlinear Control of Dynamic Networks.
CRC Press, New York, NY, 2014.

[LL13] Frank L. Lewis and Derong Liu. Reinforcement Learning and Approximate Dynamic
Programming for Feedback Control. John Wiley & Sons, Inc., Piscataway, NJ, 2013.

[LXM13] Shiau Hong Lim, Huan Xu, and Shie Mannor. Reinforcement learning in robust
Markov decision processes. In C.J.C. Burges, L. Bottou, M. Welling, Zoubin. Ghahra-
mani, and K.Q. Weinberger, editors, Advances in Neural Information Processing
Systems 26, pages 701–709. Curran Associates, Inc., 2013.

[Mer71] Robert .C Merton. Optimum consumption and portfolio rules in a continuous-time
model. Journal of Economic Theory, 3(4):373 – 413, 1971.

[NEG05] Arnab Nilim and Laurent El Ghaoui. Robust control of Markov decision processes
with uncertain transition matrices. Operations Research, 53(5):780–798, 2017/10/23
2005.

[Pha09] Huyên Pham. Continuous-time Stochastic Control and Optimization with Financial
Applications. Springer-Verlag Berlin Heidelberg, 2009.

[Pow07] Warren B. Powell. Approximate Dynamic Programming: Solving the Curses of Di-
mensionality. John Wiley & Sons, Inc., New York, 2007.

[Put05] Martin L. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic Pro-
gramming. John Wiley & Sons, Inc., Hoboken, NJ, 2005.

[PW96] Laurent Praly and Yuan Wang. Stabilization in spite of matched unmodeled dynam-
ics and an equivalent definition of input-to-state stability. Mathematics of Control,
Signals and Systems, 9(1):1–33, 1996.

[RS80] M. Reed and B. Simon. Methods of Modern Mathematical Physics: Functional anal-
ysis. Academic Press, San Diego, 1980.

[Sas99] Shankar Sastry. Nonlinear Systems: Analysis, Stability, and Control. Springer-
Verlag New York, 1999.



36 TAO BIAN AND ZHONG-PING JIANG

[SB98] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction.
The MIT Press, Cambridge, MA, 1998.

[SBPW04] Jennie Si, Andrew G. Barto, Warren B. Powell, and Donald C. Wunsch, editors.
Handbook of Learning and Approximate Dynamic Programming. Wiley-IEEE Press,
Piscataway, NJ, 2004.

[SBW92] Richard S. Sutton, Andrew G. Barto, and Ronald J. Williams. Reinforcement learn-
ing is direct adaptive optimal control. IEEE Control Systems, 12(2):19–22, April
1992.

[SH69a] A. W. Starr and Yu Chi Ho. Further properties of nonzero-sum differential games.
Journal of Optimization Theory and Applications, 3(4):207–219, 1969.

[SH69b] A. W. Starr and Yu Chi Ho. Nonzero-sum differential games. Journal of Optimization
Theory and Applications, 3(3):184–206, 1969.

[Sko56] A. V. Skorokhod. Limit theorems for stochastic processes. Theory of Probability &
Its Applications, 1(3):261–290, 1956.

[Son98] Eduardo D. Sontag. Mathematical Control Theory: Deterministic Finite Dimen-
sional Systems. Springer New York, 2nd edition, 1998.

[Ste01] J. Michael Steele. Stochastic Calculus and Financial Applications. Springer New
York, 2001.

[Tao03] Gang Tao. Adaptive Control Design and Analysis. Wiley-IEEE Press, 2003.

[Tod05] Emanuel Todorov. Stochastic optimal control and estimation methods adapted to the
noise characteristics of the sensorimotor system. Neural computation, 17(5):1084–
1108, 2005.

[Tsi94] John N. Tsitsiklis. Asynchronous stochastic approximation and Q-learning. Machine
Learning, 16(3):185–202, 1994.

[TVR97] John N. Tsitsiklis and Benjamin Van Roy. An analysis of temporal-difference learning
with function approximation. IEEE Transactions on Automatic Control, 42(5):674–
690, 1997.

[TVR99] John N. Tsitsiklis and Benjamin Van Roy. Optimal stopping of Markov processes:
Hilbert space theory, approximation algorithms, and an application to pricing
high-dimensional financial derivatives. IEEE Transactions on Automatic Control,
44(10):1840–1851, Oct 1999.

[vdS17] Arjan van der Schaft. L2-Gain and Passivity Techniques in Nonlinear Control.
Springer International Publishing, 3rd edition, 2017.

[Wil71] Jacques L. Willems. Least squares stationary optimal control and the algebraic Ric-
cati equation. IEEE Transactions on Automatic Control, 16(6):621–634, 1971.

[Won67] W. Wonham. Optimal stationary control of a linear system with state-dependent
noise. SIAM Journal on Control, 5(3):486–500, 1967.

[Zam66] G. Zames. On the input-output stability of time-varying nonlinear feedback systems
part one: Conditions derived using concepts of loop gain, conicity, and positivity.
IEEE Transactions on Automatic Control, 11(2):228–238, Apr 1966.

[ZL00] Xun Yu Zhou and D. Li. Continuous-time mean-variance portfolio selection: A sto-
chastic LQ framework. Applied Mathematics & Optimization, 42(1):19–33, 2000.

(T. Bian) Bank of America Merrill Lynch, One Bryant Park, New York, NY 10036
E-mail address, T. Bian: tbian@nyu.edu

(Z. P. Jiang) Control and Networks Lab, Department of Electrical and Computer
Engineering, Tandon School of Engineering, New York University, 5 Metrotech Cen-
ter, Brooklyn, NY 11201

E-mail address, Z. P. Jiang: zjiang@nyu.edu


	1. Introduction
	2. Preliminaries
	2.1. System description
	2.2. DMRE and continuous-time VI

	3. Robust DP and VI for continuous-time systems
	3.1. Robust DP and DMRE
	3.2. Robust VI algorithm

	4.  Applications to adaptive/stochastic/decentralized optimal control
	4.1. VI in the presence of modeling errors
	4.2. VI-based ADP for linear continuous-time systems
	4.3. Stochastic ADP for ergodic control problems
	4.4. Decentralized VI

	5. Illustrative practical examples
	5.1. Mean-variance portfolio optimization
	5.2. ADP learning for kinematic models
	5.3. ADP for time-series variance minimization

	6. Summary and future work
	Acknowledgements
	References

