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Asymptotics of the gradient of solutions to the

perfect conductivity problem

HaiGang Li∗ YanYan Li† and ZhuoLun Yang‡

Abstract

In the perfect conductivity problem of composite material, the gradient of so-

lutions can be arbitrarily large when two inclusions are located very close. To

characterize the singular behavior of the gradient in the narrow region between two

inclusions, we capture the leading term of the gradient and give a fairly sharp de-

scription of such asymptotics.

1 Introduction and main results

It is important from an engineering point of view to study gradient estimates for solutions

to a class of elliptic equations of divergence form with piecewise constant coefficients,

which models the conductivity problem of a composite material, frequently consisting

of inclusions and background media. When the conductivity of inclusions degenerates

to be infinity, we call it a perfect conductivity problem. It is known that the electric

field, expressed as the gradient, in the the narrow region between inclusions may become

arbitrarily large when the distance between two inclusions tends to zero. In this paper we

characterize such blow-up rates of the gradient with respect to the distance and establish

its asymptotic formula in dimensions two and three, two physically relevant dimensions,

for two adjacent general convex inclusions.

Before stating our results, we first describe the nature of our domains. Let Ω ⊂ Rn,

n = 2, 3, be a bounded open set with C2 boundary, and let D∗
1

and D∗
2

be two open sets

whose closure belonging toΩ, touching at the origin with the inner normal of ∂D∗1 being

the positive xn-axis. We write variable x as (x′, xn). Translating D∗
1

and D∗
2

by ε
2

along

xn-axis, we obtain

Dε1 := D∗1 + (0′,
ε

2
), and Dε2 := D∗2 − (0′,

ε

2
).
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When there is no possibility of confusion, we drop the superscripts ε and denote D1 :=

Dε
1

and D2 := Dε
2
.

The conductivity problem can be modeled by the following boundary value problem

of the scalar equation with piecewise constant coefficients


div

(
ak(x)∇uk

)
= 0 in Ω,

uk = ϕ(x) on ∂Ω,
(1.1)

where ϕ ∈ C2(∂Ω) is given, and

ak(x) =


k ∈ [0, 1) ∪ (1,∞] in D1 ∪ D2,

1 in Ω̃ := Ω \ D1 ∪ D2.

When k is away from 0 and ∞, the gradient of the solution of (1.1), ∇uk, is bounded

by a constant, independent of the distance ε. Babuška, Andersson, Smith, and Levin [6]

computationally analyzed the damage and fracture in fiber composite materials where

the Lamé system is used. They observed numerically that |∇uk| remains bounded when

the distance ε tends to zero. Bonnetier and Vogelius [14] proved that |∇uk| remains

bounded for touching disks D1 and D2 in dimension n = 2. The bound depends on the

value of k. Li and Vogelius [27] extended the result to general divergence form second

order elliptic equations with piecewise Hölder continuous coefficients in all dimensions,

and they proved that |∇uk| remains bounded as ε → 0. They also established stronger,

ε-independent, C1,α estimates for solutions in the closure of each of the regions D1, D2

and Ω̃. This extension covers domains D1 and D2 of arbitrary smooth shapes. Li and

Nirenberg [26] extended the results in [27] to general divergence form second order

elliptic systems including systems of elasticity.

In this paper, we consider the perfect conductivity problem when k = +∞. It was

proved by Ammari, Kang and Lim [1] and Ammari, Kang, H. Lee, J. Lee and Lim [4]

that, when D1 and D2 are disks of comparable radii embedded in Ω = R2, the blow-up

rate of the gradient of the solution to the perfect conductivity problem is ε−1/2 as ε goes to

zero; with the lower bound given in [1] and the upper bound given in [4]. Yun in [31, 32]

generalized the above mentioned result by establishing the same lower bound, ε−1/2, for

two strictly convex subdomains in R2. More finer results in this line, see [5, 28]. Bao, Li

and Yin [7] introduced a linear functional Qε[ϕ] and obtained the optimal bounds

ρn(ε)|Qε[ϕ]|
Cε

≤ ‖∇u‖L∞(Ω̃) ≤
Cρn(ε)|Qε[ϕ]|

ε
+C‖ϕ‖C2(∂Ω),

where C is independent of ε or ϕ, and

ρn(ε) =



√
ε, for n = 2;

| log ε|−1, for n = 3;

1, for n ≥ 4.

It may happen that for some ϕ, |Qε[ϕ]| has positive lower and upper bounds independent

of ε. It may also happen that for some ϕ . 0 (independent of ε), Qε[ϕ] = 0. A similar
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result for p-Laplace equation was investigated by Gorb and Novikov [18]. In particular,

for p = 2, they proved that

lim
ε→0

ε ‖∇u‖L∞(Ω̃)

ρn(ε)
=
Ro

Co

, for n = 2, 3,

where Ro is a constant multiple of Qε[ϕ], Co is an explicitly computable constant. The

rate at which the L∞ norm of the gradient of a special solution for two identical circular

inclusions in R2 has been shown in [22] to be ε−1/2, see also [15, 30].

After knowing the blow-up rate of |∇u| with respect to ε, it is desirous and important

from the viewpoint of practical applications in engineering to capture such blow-up.

Recently, Kang, Lim and Yun [20] characterize asymptotically the singular part of the

solution for two adjacent circular inclusions B1 and B2 in R2 of radius r1 and r2 with ε

apart,

u(x) =
2r1r2

r1 + r2

(~n · ∇H)( p)
(

ln |x − p1| − ln |x − p2|
)
+ g(x),

for x ∈ R2 \ (B1 ∪ B2), where H is a given entire harmonic function in R2, p1 ∈ B1 and

p2 ∈ B2 are the fixed point of R1R2 and R2R1 respectively, R j is the reflection with respect

to ∂B j, j = 1, 2, ~n is the unit vector in the direction of p2 − p1, and p is the middle point

of the shortest line segment connecting ∂B1 and ∂B2, and |∇g(x)| is bounded independent

of ε on any bounded subset of R2 \ (B1 ∪ B2). Then

∇u(x) =
2r1r2

r1 + r2

(~n · ∇H)( p)
( 1

|x − p1|
− 1

|x − p2|
)
+ ∇g(x).

In R3, an analogous estimate is obtained by Kang, Lim, and Yun in [21] in the narrow

region between two balls with the same radius r and when

√
x2

1
+ x2

2
≤ r| log ε|−2. Am-

mari, Ciraolo, Kang, Lee, Yun [2] extended the result in [20] to the case that inclusions

D1 and D2 are strictly convex domains in R2. For two adjacent spherical inclusions in

R
3, it was studied by Kang, Lim and Yun [21]. Bonnetier and Triki [13] derived the

asymptotics of the eigenvalues of the Poincaré variational problem as the distance be-

tween the inclusions tends to zero. The gradient estimates for Lamé system with partially

infinite coefficients were recently obtained in [9, 10, 11]. For more related works, see

[3, 8, 12, 16, 17, 24, 25, 29] and the references therein.

In this paper, we obtain estimates for perfect conductivity problems in bounded do-

mains inRn, n = 2, 3, analogous to [20, 21] in the whole space. Our estimates in bounded

domains in R3 improve those in [21] with a higher order asymptotic expansion. One of

the main ingredients in achieving these is an asymptotic expansion of the Dirichlet en-

ergy of the harmonic function vi in Ω̃ satisfying vi = 1 on ∂Di, and vi = 0 on ∂Ω̃ \ ∂Di,

defined by the following


∆vi = 0 in Ω̃,

vi = δi j on ∂D j, i, j = 1, 2,

vi = 0 on ∂Ω.

(1.2)

Our method in deriving the asymptotics of the gradients are very different from that in

[2, 20, 21].
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We assume that near the origin, ∂D∗i are respectively the graph of two C2 functions

h1 and h2, and for some R0, κ > 0,

h1(x′) > h2(x′), for 0 < |x′| < R0,

h1(0′) = h2(0′) = 0, ∇x′h1(0′) = ∇x′h2(0′) = 0, (1.3)

∇2
x′(h1(0′) − h2(0′)) ≥ κI, (1.4)

where I denotes the (n − 1) × (n − 1) identity matrix.

Here is the above mentioned ingredient, which has its independent interest.

Theorem 1.1. Assume the above with n = 2, 3, ∂D∗i and ∂Ω are of Ck,1, k ≥ 3. Let

vi ∈ H1(Ω̃) be the solution of (1.2), i = 1, 2. There exist ε-independent constants Mi,

i = 1, 2, and C, such that

∣∣∣∣∣
∫

Ω̃

|∇vi|2 −
( κn
ρn(ε)

+ Mi

) ∣∣∣∣∣ ≤


Cε
1
4
− 1

2k , if n = 2,

Cε
1
2
− 1

2k | log ε|, if n = 3,
i = 1, 2,

where κ2 =
√

2π√
λ1

, κ3 =
2π√
λ1λ2

, and λ1 and λ2 are the eigenvalues of ∇2
x′(h1 − h2)(0′).

Consider the perfect conductivity problem in the bounded domain Ω:



∆u = 0 in Ω̃,

∇u = 0 on Di, i = 1, 2,

u|+ = u|− on ∂Di, i = 1, 2,∫
∂Di

∂u
∂ν−
= 0 i = 1, 2,

u = ϕ(x) on ∂Ω,

(1.5)

where ϕ ∈ C0(∂Ω), and for x ∈ ∂Di

∂u

∂ν−
(x) := lim

t→0+

u(x) − u(x + tν)

t
.

Here and throughout this paper ν is the outward unit normal to the domain and the

subscript ± indicates the limit from outside and inside the domain, respectively. u is the

weak limit of uk ∈ H1(Ω), the solution of (1.1), as k → +∞. The existence, uniqueness

and regularity of solutions to (1.5) can be found in the appendix of [7].

We rewrite (1.5) as 

∆u = 0 in Ω̃,

u = Ci on ∂Di, i = 1, 2,∫
∂Di

∂u
∂ν− = 0 i = 1, 2,

u = ϕ(x) on ∂Ω,

(1.6)

where C1 and C2 are constants uniquely determined by the third line. As in [7], we

decompose the solution u of (1.6) as follows

u(x) = C1v1(x) + C2v2(x) + v0(x), in Ω̃, (1.7)
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where v1, v2 are defined by (1.2) and v0 is the solution of


∆v0 = 0 in Ω̃,

v0 = 0 on ∂D1 ∪ ∂D2,

v0 = ϕ(x) on ∂Ω.

For 0 ≤ r ≤ R0, let

Ωr :=

{
(x′, xn) ∈ Rn

∣∣∣ − ε
2
+ h2(x′) < xn <

ε

2
+ h1(x′), |x′| < r

}
.

In order to obtain the asymptotic expansion of v1, we introduce an auxiliary function

ū ∈ Ck,1(Ω̃) , such that ū = 1 on ∂D1, ū = 0 on ∂D2 ∪ ∂Ω,

ū(x) =
xn − h2(x′) + ε

2

ε + h1(x′) − h2(x′)
, in ΩR0

, (1.8)

and

‖ū‖Ck,1(Rn\ΩR0
) ≤ C. (1.9)

Similarly, we can study the asymptotic expansion of v2 through an auxiliary function

ũ := 1 − ū in ΩR0
, with ‖ũ‖Ck,1(Rn\ΩR0

) ≤ C. Recalling the assumption (1.3) and (1.4), a

direct computation yields

|∂x′ ū(x)| ≤ C|x′|
ε + |x′|2 , ∂xn

ū(x) =
1

ε + h1(x′) − h2(x′)
, x ∈ ΩR0

. (1.10)

Now define a linear functional Q and a constant Θ as follows:

Q[ϕ] :=

∫

∂D∗
1

∂v∗0
∂ν−

∫

∂Ω

∂v∗2
∂ν
−

∫

∂D∗
2

∂v∗0
∂ν−

∫

∂Ω

∂v∗1
∂ν
, (1.11)

and

Θ := −κn
∫

∂Ω

∂(v∗
1
+ v∗

2
)

∂ν
= κn

∫

Ω̃∗

∣∣∣∇(v∗1 + v∗2)
∣∣∣2, (1.12)

where κ2 =
√

2π√
λ1

, κ3 =
2π√
λ1λ2

, and for x ∈ ∂Ω

∂u

∂ν
(x) := lim

t→0+

u(x) − u(x − tν)

t
.

Note that Θ/κn is the condenser capacity of ∂D∗
1
∪ ∂D∗

2
relative to ∂Ω. Here v∗

1
, v∗

2
and v∗

0

are defined, respectively, by


∆v∗
i
= 0 in Ω̃∗ := Ω \ D∗

1
∪ D∗

2
,

v∗i = δi j on ∂D∗j \ {0},
v∗

i
= 0 on ∂Ω,

i = 1, 2, and



∆v∗
0
= 0 in Ω̃∗,

v∗0 = 0 on ∂D∗1 ∪ ∂D∗2,
v∗

0
= ϕ(x) on ∂Ω.

(1.13)

The well-definedness and the boundedness that 0 ≤ v∗1, v
∗
2 ≤ 1 can be seen from lemma

3.1 of [7] and above that.

We have the asymptotic expression of ∇u in the narrow region between D1 and D2

as follows:
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Theorem 1.2. Let Ω,D∗1,D
∗
2 be defined as the above. For ϕ ∈ C0(∂Ω), let u ∈ H1(Ω) ∩

C1(Ω \ (D1 ∪ D2)) be the solution to (1.5). Then

(i) if n = 2, ∂D∗i and ∂Ω are of C3,1,

∇u =
Q[ϕ]

√
ε

Θ
∇ū + O(1)‖ϕ‖C0(∂Ω), in Ω̃; (1.14)

(ii) if n = 3, ∂D∗
i

and ∂Ω are of Ck,1, k ≥ 3, there exists a positive ε−independent

constant M̃, such that

∇u =
Q[ϕ]

Θ


1

| log ε| − M̃
+ O(1)ε

1
2
− 1

2k | log ε|−1

∇ū + O(1)‖ϕ‖C0(∂Ω), in Ω̃,

(1.15)

where O(1) denotes some quantity satisfying |O(1)| ≤ C for some ε−independent con-

stant C.

The rest of this paper is organized as follows. In section 2, we first reduce the proof

of Theorem 1.2 to Proposition 2.1 and Proposition 2.2 below, one for the estimates of

‖∇(v1 − ū)‖L∞(Ω̃), the other for the estimate of C1 −C2, then prove them in Subsection 2.2

and Subsection 2.3, respectively. Finally, we give the proof of Theorem 1.1 in Section 3.

Acknowledgements. The research of H.G. Li is partially supported by NSFC (1157

1042), (11631002) and Fok Ying Tung Education Foundation (151003). H.G. Li would

like to thank Professor Jiguang Bao for his suggestions and constant encouragement to

this work. The research of Y.Y. Li is partially supported by NSF grant DMS-1501004.

We thank the referees for helpful suggestions which improve the exposition.

2 The proof of Theorem 1.2

2.1 The strategy to prove Theorem 1.2

This section is devoted to the proof of Theorem 1.2. We make use of the energy method

to single out the singular term of ∇u. We only need to prove (1.14) and (1.15) with

‖ϕ‖C0(∂Ω) replaced by ‖ϕ‖C2(∂Ω). Indeed, since uk in (1.1) satisfies ‖uk‖L∞(Ω) ≤ ‖ϕ‖C0(∂Ω),

we have by the convergence of uk to u (see Appendix in [7]), ‖u‖L∞(Ω) ≤ ‖ϕ‖C0(∂Ω). Taking

a slightly smaller domain Ω1 ⊂⊂ Ω, then ϕ1 := u
∣∣∣
∂Ω1

satisfies ‖ϕ1‖C2(∂Ω1) ≤ C‖u‖L∞(Ω) ≤
C‖ϕ‖C0(∂Ω) in view of interior derivative estimates for harmonic functions. The desired

identity (1.14) follows by working with u, Ω1 and ϕ1. Without loss of generality, we

assume that ‖ϕ‖C2(∂Ω) = 1, by considering u/‖ϕ‖C2(∂Ω) if ‖ϕ‖C2(∂Ω) > 0. If ϕ
∣∣∣
∂Ω
= 0 then

u ≡ 0.

From (1.7), we have

∇u = (C1 − C2)∇v1 + C2∇(v1 + v2) + ∇v0.
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Noting that u = Ci on ∂Di and ‖u‖H1(Ω̃) ≤ C (independent of ε), using the trace embed-

ding theorem, we have

|C1| + |C2| ≤ C. (2.1)

Since ∆v0 = 0 in Ω̃ with v0 = 0 on ∂D1 ∪ ∂D2, and ∆(v1 + v2 − 1) = 0 in Ω̃ with

v1 + v2 − 1 = 0 on ∂D1 ∪ ∂D2, it follows from lemma 2.3 in [7] (or theorem 1.1 in [23])

and the standard elliptic theory that

∥∥∥∇v0

∥∥∥
L∞(Ω̃)

≤ C, and
∥∥∥∇(v1 + v2)

∥∥∥
L∞(Ω̃)

≤ C. (2.2)

Recalling the definition of ū inΩR0
, (1.8), we first prove that the L∞ norm of ∇(v1− ū)

is bounded.

Proposition 2.1. Under the assumptions of Theorem 1.1, let v1 ∈ H1(Ω̃) be the weak

solution of (1.2). Then

‖∇(v1 − ū)‖L∞(Ω̃) ≤ C. (2.3)

Consequently,
1

C(ε + |x′|2)
≤ |∇v1(x)| ≤ C

ε + |x′|2 , x ∈ ΩR0
, (2.4)

and

‖∇v1‖L∞(Ω̃\ΩR0
) ≤ C. (2.5)

The proof will be given in Section 2.2.

On the other hand, from the third line of (1.6) and (1.7), the constants C1 and C2 are

determined by the following linear system



C1

∫

∂D1

∂v1

∂ν−
+ C2

∫

∂D1

∂v2

∂ν−
+

∫

∂D1

∂v0

∂ν−
= 0,

C1

∫

∂D2

∂v1

∂ν−
+ C2

∫

∂D2

∂v2

∂ν−
+

∫

∂D2

∂v0

∂ν−
= 0.

(2.6)

Similarly, as in [7], we denote

ai j :=

∫

∂D1

∂v1

∂ν−
, bi := −

∫

∂Di

∂v0

∂ν−
, i, j = 1, 2.

Then (2.6) can be written as


a11C1 + a12C2 = b1,

a21C1 + a22C2 = b2.

By using Cramer’s rule, we have

C1 =

∣∣∣∣∣∣
b1 a12

b2 a22

∣∣∣∣∣∣
∣∣∣∣∣∣
a11 a12

a21 a22

∣∣∣∣∣∣

, C2 =

∣∣∣∣∣∣
a11 b1

a21 b2

∣∣∣∣∣∣
∣∣∣∣∣∣
a11 a12

a21 a22

∣∣∣∣∣∣

, and C1 −C2 =

∣∣∣∣∣∣
b1 a11 + a12

b2 a21 + a22

∣∣∣∣∣∣
∣∣∣∣∣∣
a11 a12

a21 a22

∣∣∣∣∣∣

.
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By the Green’s formula, it is easy to see that a12 = a21, and

a11 + a12 = a11 + a21 = −
∫

∂Ω

∂v1

∂ν
, a21 + a22 = a12 + a22 = −

∫

∂Ω

∂v2

∂ν
.

In view of ∣∣∣∣∣∣
a11 a12

a21 a22

∣∣∣∣∣∣ =
∣∣∣∣∣∣
a11 a11 + a12

a21 a21 + a22

∣∣∣∣∣∣ ,

and denoting

Qε[ϕ] :=

∫

∂D1

∂v0

∂ν−

∫

∂Ω

∂v2

∂ν
−

∫

∂D2

∂v0

∂ν−

∫

∂Ω

∂v1

∂ν
, (2.7)

and

Θε := −
(
ρn(ε)

∫

∂D1

∂v1

∂ν−

) ∫

∂Ω

∂v2

∂ν
+

(
ρn(ε)

∫

∂D1

∂v2

∂ν−

) ∫

∂Ω

∂v1

∂ν
, (2.8)

we have

C1 − C2 = ρn(ε)
Qε[ϕ]

Θε
.

The following asymptotic expansion of
Qε[ϕ]

Θε
in term of ρn(ε) is an essential part in the

proof of Theorem 1.2.

Proposition 2.2. Under the same assumptions of Theorem 1.2, let Qε[ϕ] and Θε be

defined by (2.7) and (2.8), Q[ϕ] and Θ be defined by (1.11) and (1.12), respectively.

Then

Qε[ϕ]

Θε
− Q[ϕ]

Θ
=

Q[ϕ]

Θ

M̃ρn(ε)

1 − M̃ρn(ε)
+ En(ε)ρn(ε), n = 2, 3,

where M̃ is an ε−independent constant, and

En(ε) =


O

(
ε

1
12

)
, if n = 2,

O
(
ε

1
2
− 1

2k | log ε|
)
, if n = 3.

The proof of Proposition 2.2 will be given in Section 2.3. We are now in a position

to prove Theorem 1.2 by using Proposition 2.1 and Proposition 2.2.

Proof of Theorem 1.2. By using (2.1), (2.2) and (2.3),

∇u = (C1 − C2)∇ū + O(1).

It follows from Proposition 2.2 that

C1 −C2

ρn(ε)
− Q[ϕ]

Θ
=

Qε[ϕ]

Θε
− Q[ϕ]

Θ

=
Q[ϕ]

Θ

M̃ρn(ε)

1 − M̃ρn(ε)
+ En(ε)ρn(ε).
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So that

C1 −C2 =ρn(ε)


Q[ϕ]

Θ
+

Q[ϕ]

Θ

M̃ρn(ε)

1 − M̃ρn(ε)
+ En(ε)ρn(ε)



=
Q[ϕ]

Θ
ρn(ε)

1 +
M̃ρn(ε)

1 − M̃ρn(ε)
+ En(ε)ρn(ε)



=
Q[ϕ]

Θ
ρn(ε)

(
1

1 − M̃ρn(ε)
+ En(ε)ρn(ε)

)
.

Thus,

∇u(x) =(C1 − C2)∇ū(x) + O(1)

=
Q[ϕ]

Θ
ρn(ε)

(
1

1 − M̃ρn(ε)
+ En(ε)ρn(ε)

)
∇ū(x) + O(1).

Theorem 1.2 follows easily from the above and Proposition 2.1. �

2.2 Proof of Proposition 2.1

Proof of Proposition 2.1. We denote

w := v1 − ū.

By the definition of v1 in (1.2), and the fact that v1 = ū on ∂D1 ∪ ∂D2 ∪ ∂Ω, we have


−∆w = ∆ū in Ω̃,

w = 0 on ∂Ω̃.
(2.9)

Recalling the definition of ū, (1.8) and (1.9),

‖ū‖Ck,1(Ω̃\ΩR0/2
) ≤ C. (2.10)

By standard elliptic theories, we know that

|w| + |∇w| +
∣∣∣∇2w

∣∣∣ ≤ C, in Ω̃ \ΩR0
.

Therefore, to show (2.3), we only need to prove

‖∇w‖L∞(ΩR0
) ≤ C.

For (z′, zn) ∈ Ω2R0
, denote

δ(z′) := ε + h1(z′) − h2(z′). (2.11)

The rest of the proof is divided into three steps.

STEP 1. Boundedness of the energy of w in Ω̃:

∫

Ω̃

|∇w|2 ≤ C. (2.12)

9



By the maximum principle, 0 < v1 < 1. Recalling the definition of ū, ū is also

bounded. Hence

‖w‖L∞(Ω̃) ≤ C. (2.13)

A direct computation yields,

|∂xi x j
ū(x)| ≤ C

ε + |x′|2
, |∂xi xn

ū(x)| ≤ C|x′|
(ε + |x′|2)2

, ∂xn xn
ū(x) = 0, for (x′, xn) ∈ ΩR0

.

So that

|∆ū| ≤ C

ε + |x′|2 , x ∈ ΩR0
. (2.14)

Now multiply the equation in (2.9) by w, integrate by parts, and make use of (2.10),

(2.13) and (2.14),

∫

Ω̃

|∇w|2 =
∫

Ω̃

w (∆ū) ≤ ‖w‖L∞(Ω̃)


∫

ΩR0

|∆ū| +C

 ≤ C.

Thus, (2.12) is proved.

STEP 2. Proof of
1

|Ωδ(z′)|

∫

Ωδ(z′)

|∇w|2 dx ≤ C, for n ≥ 2, (2.15)

where

Ωδ(z
′) =

{
x ∈ Rn

∣∣∣∣∣ −
ε

2
+ h2(x′) < xn <

ε

2
+ h1(x′), |x′ − z′| < δ

}
,

and δ := δ(z′) is defined in (2.11).

The proof is in spirit similar to that in [23] and [10, 11], see in particular, the proof

of proposition 3.2 in [10]. For reader’s convenience, we outline the proof here. For

0 < t < s < R0, let η be a smooth cutoff function satisfying η(x′) = 1 if |x′ − z′| < t,

η(x′) = 0 if |x′−z′| > s, 0 ≤ η(x′) ≤ 1 if t ≤ |x′−z′| ≤ s, and |∇x′η(x′)| ≤ 2
s−t

. Multiplying

the equation in (2.9) by wη2 and integrating by parts leads to

∫

Ωt(z′)

|∇w|2 ≤ C

(s − t)2

∫

Ωs(z′)

|w|2 + (s − t)2

∫

Ωs(z′)

|∆ū|2 . (2.16)

Case 1. For
√
ε ≤ |z′| ≤ R0. For 0 < s < 2|z′ |

3
, note that

∫

Ωs(z′)

|w|2 ≤C|z′|4
∫

Ωs(z′)

|∇w|2, if 0 < s <
2|z′|

3
. (2.17)

Substituting it into (2.16) and denoting

F̂(t) :=

∫

Ωt(z′)

|∇w|2,

we have

F̂(t) ≤
(
C0|z′|2
s − t

)2

F̂(s) +C(s − t)2

∫

Ωs(z′)

|∆ū|2 , ∀ 0 < t < s <
2|z′|

3
, (2.18)
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where C0 is a positive universal constant.

Let k =
[

1
4C0 |z′|

]
and ti = δ + 2C0i |z′|2, i = 0, 1, 2, · · · , k. Taking s = ti+1 and t = ti in

(2.18), and in view of (2.14),

∫

Ωti+1
(z′)

|∆ū|2 ≤
∫

|x′−z′ |<ti+1

C

ε + |x′|2
dx′ ≤

Ctn−1
i+1

|z′|2
≤ C(i + 1)n−1|z′|2(n−2). (2.19)

we obtain the iteration formula

F̂(ti) ≤
1

4
F̂(ti+1) + C(i + 1)n−1|z′|2n.

After k iterations, using (2.12),

F̂(t0) ≤ (1/4)kF̂(tk) +C|z′|2n

k∑

l=1

(1/4)l−1ln−1 ≤ C|z′|2n.

This implies that ∫

Ωδ(z′)

|∇w|2 ≤ C|z′|2n.

Case 2. For 0 ≤ |z′| ≤
√
ε. Estimate (2.17) becomes

∫

Ωs(z′)

|w|2 ≤ Cε2

∫

Ωs(z′)

|∇w|2, if 0 < s <
√
ε.

Estimate (2.18) becomes, in view of (2.16),

F̂(t) ≤
(

C1ε

s − t

)2

F̂(s) +C(s − t)2

∫

Ωs(z′)

|∆ū|2 , ∀ 0 < t < s <
√
ε, (2.20)

where C1 is another positive universal constant. Let k =
[

1

4C1

√
ε

]
and ti = δ + 2C1iε,

i = 0, 1, 2, · · · , k. Then by (2.20) with s = ti+1 and t = ti, and using, instead of estimate

(2.19),

∫

Ωti+1
(z′)

|∆ū|2 ≤
∫

|x′−z′|<ti+1

C

ε + |x1|2
dx1 ≤

Ctn−1
i+1

ε
≤ C(i + 1)n−1εn−2, if 0 < s <

√
ε.

(2.21)

we have

F̂(ti) ≤
1

4
F̂(ti+1) +C(i + 1)n−1εn.

After k iterations, using (2.12),

F̂(t0) ≤ (1/4)kF̂(tk) +C

k∑

l=1

(1/4)l−1ln−1εn ≤ C(1/4)
1

C
√
ε + Cεn ≤ Cεn.

This implies that ∫

Ωδ(z′)

|∇w|2 ≤ Cεn.
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In view of the definition of δ(z′), (2.15) is proved.

STEP 3. Proof of (2.3).

By using the following scaling and translating of variables
{

x′ − z′ = δy′,

xn = δyn,

then Ωδ(z
′) becomes Q1, where

Qr =

{
y ∈ Rn

∣∣∣∣∣ −
ε

2δ
+

1

δ
h2(δy′ + z′) < yn <

ε

2δ
+

1

δ
h1(δy′ + z′), |y′| < r

}
, for r ≤ 1,

and the top and bottom boundaries respectively become

yn = ĥ1(y′) :=
1

δ

(
ε

2
+ h1(δ y′ + z′)

)
, |y′| < 1,

and

yn = ĥ2(y′) :=
1

δ

(
−ε

2
+ h2(δ y′ + z′)

)
, |y′| < 1.

Then

ĥ1(0′) − ĥ2(0′) :=
1

δ

(
ε + h1(z′) − h2(z′)

)
= 1,

and by (1.3),

|∇x′ ĥ1(0′)| + |∇x′ ĥ2(0′)| ≤ C|z′|, |∇2
x′ ĥ1(0′)| + |∇2

x′ ĥ2(0′)| ≤ C.

Since R0 is small, ‖ĥ1‖C1,1((−1,1)n−1) and ‖ĥ2‖C1,1((−1,1)n−1) are small and Q1 is essentially a

unit square (or a unit cylinder for n = 3) as far as applications of the Sobolev embedding

theorem and classical Lp estimates for elliptic equations are concerned. Let

U(y′, yn) := ū(z′ + δy′, δyn), W(y′, yn) := w(z′ + δy′, δyn), y ∈ Q′1,

then by (2.9),

−∆W = ∆U, y ∈ Q1,

where

|∆U | = δ2 |∆ū| .
Since W = 0 on the top and bottom boundaries of Q1, using the Poincaré inequality,

‖W‖H1(Q1) ≤ C ‖∇W‖L2(Q1) .

By W2,p estimates for elliptic equations (see e.g. [19]) and the Sobolev embedding the-

orems, with p > n,

‖∇W‖L∞(Q1/2) ≤ C ‖W‖W2,p(Q1/2) ≤ C
(
‖∇W‖L2(Q1) + ‖∆U‖L∞(Q1)

)
.

It follows from ∇W = δ∇w that

‖∇w‖L∞(Ωδ/2(z′)) ≤ C
(
δ−n/2 ‖∇w‖L2(Ωδ(z′)) + δ ‖∆ū‖L∞(Ωδ(z′))

)
.

Using (2.14), (2.15), and the definition of Ωδ(z
′), Proposition 2.1 is established. �

Remark 2.1. We point out that the estimate involving ∆ū is very crucial in the above

proof, such as (2.19), (2.21) for
∫
Ωti+1

(z′)
|∆ū|2 and δ ‖∆ū‖L∞(Ωδ(z′)), so that it is essentially

important to select an auxiliary function ū to obtain appropriate estimates (2.14).
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2.3 The proof of Proposition 2.2

Since

Qε[ϕ]

Θε
− Q[ϕ]

Θ
=

Qε[ϕ] − Q[ϕ]

Θε
+

Q[ϕ]

Θ

Θ − Θε
Θε

,

it follows that the proof of Proposition 2.2 can be reduced to the establishment of three

Lemmas in the following.

Lemma 2.3. LetΘ andΘε be defined as (1.12) and (2.8), respectively. There exists some

universal constant δ0 > 0 such that

Θ ≥ δ0,

and lim
ε→0
Θε = Θ. Consequently, for sufficiently small ε,

Θε ≥ δ0/2.

Lemma 2.4. Let Θ and Θε be defined as (1.12) and (2.8), respectively. Then

Θ − Θε = ρn(ε)

(
M1

∫

∂Ω

∂(v∗
1
+ v∗

2
)

∂ν
+

( ∫

∂Ω

∂v∗
1

∂ν

)2
)
+ En(ε)ρn(ε), (2.22)

where M1 is the constant determined in Theorem 1.1. Consequently,

Θ − Θε
Θ

= M̃ρn(ε) + En(ε)ρn(ε),

where

M̃ := −M1

κn
+

(α∗1)2

Θ
, α∗i =

∫

∂Ω

∂v∗
i

∂ν
,

which depend only on D∗
1
,D∗

2
and Ω.

Lemma 2.5. Let Q[ϕ] and Qε[ϕ] be defined as (1.11) and (2.7), respectively. Then

Qε[ϕ] − Q[ϕ] =


O(ε3/4), if n = 2;

O(ε| log ε|), if n = 3.
(2.23)

We first prove Proposition 2.2 by using Lemma 2.3–2.5, whose proofs will be given

later.

Proof of Proposition 2.2. By Lemma 2.3-2.5, for n = 2,

Qε[ϕ]

Θε
− Q[ϕ]

Θ
=

Q[ϕ]

Θ

Θ−Θε
Θ

1 − Θ−Θε
Θ

+
Qε[ϕ] − Q[ϕ]

Θε

=
Q[ϕ]

Θ

M̃ρn(ε) + En(ε)ρn(ε)

1 − M̃ρn(ε) − En(ε)ρn(ε)
+ O(ε3/4)

=
Q[ϕ]

Θ

M̃ρn(ε)

1 − M̃ρn(ε)
+ En(ε)ρn(ε).

For n = 3, we only need to replace O(ε3/4) by O(ε| log ε|) in the second line of the above

equalities. The proof of Proposition 2.2 is completed. �
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2.4 Proof of Lemma 2.3

Proof of Lemma 2.3. By the definition of v∗
1

and v∗
2
, (1.13), we have



∆(v∗1 + v∗2) = 0 in Ω̃∗,

v∗
1
+ v∗

2
= 1 on ∂D∗

1
∪ ∂D∗

2
,

v∗1 + v∗2 = 0 on ∂Ω.

By using the Hopf Lemma, we have

∂(v∗
1
+ v∗

2
)

∂ν
< 0, on ∂Ω.

Since 0 < v∗1 + v∗2 < 1 in Ω̃∗ and v∗1 + v∗2 = 1 on ∂D∗1 ∪ ∂D∗2, the boundary gradient

estimates of a harmonic function implies that there exists a ball B(x̄, 2r̄) ⊂ Ω̃, such that

v∗
1
+ v∗

2
> 1/2 in B(x̄, 2r̄), where r̄ is independent of ε. Let ρ ∈ C2(Ω \ B(x̄, r̄)) be the

solution to 
∆ρ = 0 in Ω \ B(x̄, r̄)),

ρ = 1/2 on ∂B(x̄, r̄), ρ = 0 on ∂Ω.

By the maximum principle, 0 < ρ < 1/2 in Ω̃∗ \ B(x̄, r̄)). Using the Hopf Lemma again,

∂ρ

∂ν
≤ − 1

C
, on ∂Ω.

On the other hand, since ρ ≤ v∗
1
+ v∗

2
on the boundary of Ω̃∗ \ B(x̄, 2r̄)), it follows from

the maximum principle that 0 < ρ ≤ v∗
1
+ v∗

2
in Ω̃∗ \ B(x̄, 2r̄)). In view of ρ = v∗

1
+ v∗

2
= 0

on ∂Ω,
∂ρ

∂ν
≥
∂(v∗

1
+ v∗

2
)

∂ν
, on ∂Ω.

Thus, ∫

∂Ω

∂(v∗1 + v∗2)

∂ν
≤ − 1

C
|∂Ω|.

This implies that

Θ ≥ 1

C
.

Therefore, using
∫
∂Ω

∂vi

∂ν
→

∫
∂Ω

∂v∗
i

∂ν
, i = 1, 2, as ε → 0, see [7], there exists some positive

constant δ0 such that Θ ≥ δ0, and Θε ≥ δ0/2 for sufficiently small ε. �

2.5 Proof of Lemma 2.4

In the following Lemmas for vi and v∗i , i = 1, 2, we only give the proofs for case i = 1,

since the case i = 2 is the same.

Lemma 2.6. Let vi and v∗
i

be defined as (1.2) and (1.13), respectively. Then

‖vi − v∗i ‖
L∞

(
Ω\

(
(D1∪D∗

1
)∪(D2∪D∗

2
)∪Ω

ε1/4

)) ≤ Cε1/2, i = 1, 2. (2.24)
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Proof. We will first consider the difference v1−v∗1 on the boundary ofΩ\(D1∪D2∪D∗1∪
D∗

2
∪ Ωε1/2−β), where 0 < β < 1/2 (small, to be determined later), then use the maximum

principle and boundary estimates for elliptic equations to obtain (2.24).

STEP 1. First consider the parts on the boundary ∂(D1 ∪ D∗1). It can be divided into

two parts: (a) ∂D∗
1
\ D1 and (b) ∂D1 \ D∗

1
.

(a) For x ∈ ∂D∗
1
\ D1, we introduce a cylinder

Cr :=

{
x ∈ Rn

∣∣∣ |x′| < r, − ε
2
+ 2 min

|x′ |=r
h2(x′) ≤ xn ≤

ε

2
+ 2 max

|x′ |=r
h1(x′)

}
,

for r ≤ R0.

(a1) For x ∈ ∂D∗
1
∩ (CR0

\Cε1/2−β), by mean value theorem and estimate (2.4), we have,

for some θε ∈ (0, 1)

|v1(x) − v∗1(x)| = |v1(x) − 1| =
∣∣∣∣∣v1(x′, h1(x′)) − v1(x′,

ε

2
+ h1(x′))

∣∣∣∣∣

=

∣∣∣∣∣∂xn
v1(x′,

θεε

2
+ h1(x′))

∣∣∣∣∣ ·
ε

2

≤ C

ε + |x′|2 ·
ε

2
≤ Cε

ε1−2β
= Cε2β.

(a2) For x ∈ ∂D∗
1
∩ (Ω̃ \ΩR0

), there exists yε ∈ ∂D1∩ Ω̃ \ΩR0/2 such that |x− yε | < Cε

(note that v1(yε) = 1). By (2.5), then for some θε ∈ (0, 1)

|v1(x) − v∗1(x)| = |v1(x) − 1| = |v1(x) − v1(yε)| ≤ |∇v1((1 − θε)x + θεyε)||x − yε| ≤ Cε.

(b) For x ∈ ∂D1 \ D∗1, since 0 < v1 < 1 in Ω̃ and ∆v1 = 0 in Ω̃, it follows from the

boundary estimates of harmonic function that there exists yx ∈ Ω̃, |yx− x| ≤ Cε such that

v1(yx) = v∗
1
(x). Using (2.5) again,

|v1(x) − v∗1(x)| = |v1(x) − v1(yx)| ≤ ‖∇v1‖L∞(Ω̃\ΩR0
)|x − yx| ≤ Cε.

Therefore,

|v1(x) − v∗1(x)| ≤ Cε

ε1−2β
= Cε2β, for x ∈ ∂(D1 ∪ D∗1) \ Cε1/2−β . (2.25)

Similarly, we have

|v1(x) − v∗1(x)| ≤ Cε2β, for x ∈ ∂(D2 ∪ D∗2) \ Cε1/2−β. (2.26)

STEP 2. Now consider the line segments (or the cylindrical shaped surface in di-

mension n = 3) between ∂D∗
1

and ∂D∗
2
, S 1/2−β :=

{
(x′, xn)

∣∣∣ |x′| = ε1/2−β, h2(x′) ≤ xn ≤
h1(x′)

}
. By using Propostion 2.1 and the fact that (v1 − ū) = 0 on ∂D2, we have, for

x ∈ S 1/2−β,

|(v1 − ū)(x)| ≤ ‖∇(v1 − ū)‖L∞(S β)
|ε + h1(x′) − h2(x′)| ≤ C(ε + |x′|2) ≤ Cε1−2β. (2.27)
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Similarly, we define ū∗, such that ū∗ = 1 on ∂D∗1 \ {0}, ū∗ = 0 on ∂D∗2 ∪ ∂Ω,

ū∗ =
xn − h2(x′)

h1(x′) − h2(x′)
in Ω∗R0

:=
{
(x′, xn)

∣∣∣ h2(x′) ≤ xn ≤ h1(x′), |x′| ≤ R0

}
,

and ‖ū∗‖Ck,1(Ω̃∗\Ω∗
R0

) ≤ C. It is easy to see that

ū∗ = lim
ε→0

ū, in Ck(Ω∗R0
\ {0}),

and

|∂x′ ū
∗(x)| ≤ C

|x′|
, ∂xn

ū∗(x) =
1

h1(x′) − h2(x′)
, x ∈ Ω∗R0

\ {0}. (2.28)

By the proof of Proposition 2.1, we also have

∥∥∥∇(v∗1 − ū∗)
∥∥∥

L∞(Ω̃∗)
≤ C. (2.29)

Therefore, using (v∗
1
− ū∗) = 0 on ∂D∗

2
, we have, for x ∈ S 1/2−β,

|(v∗1 − ū∗)(x)| ≤
∥∥∥∇(v∗1 − ū∗)

∥∥∥
L∞(S 1/2−β)

|h1(x′) − h2(x′)| ≤ C|x′|2 ≤ Cε1−2β. (2.30)

Finally, by the definitions of ū and ū∗, for x ∈ S 1/2−β,

|(ū − ū∗)(x)|

≤
∣∣∣∣∣ū(x′, h2(x′)) − ū(x′,−ε

2
+ h2(x′))

∣∣∣∣∣ +
∥∥∥∂xn

(ū − ū∗)
∥∥∥

L∞(S 1/2−β)
|h1(x′) − h2(x′)|

≤
∣∣∣∣∣∂xn

ū(x′,−θεε
2
+ h2(x′))

∣∣∣∣∣ ·
ε

2
+C

(
1

h1(x′) − h2(x′)
− 1

ε + h1(x′) − h2(x′)

)
|x′|2

≤ Cε

ε + |x′|2
+

Cε

|x′|2(ε + |x′|2)
|x′|2 ≤ Cε2β. (2.31)

Taking β = 1/4, by (2.27), (2.30) and (2.31), we have, for x ∈ S 1/4,

|(v1 − v∗1)(x)| ≤ |(v1 − ū)(x)| + |(ū − ū∗)(x)| + |(ū∗ − v∗1)(x)| ≤ Cε1/2.

Combining with (2.25), (2.26) for β = 1/4, recalling v1 − v∗
1
≡ 0 on ∂Ω, and using

maximum principle, we obtain (2.24). �

Outside of ΩR0
, we have the following improvement of Lemma 2.6.

Lemma 2.7. Let vi and v∗
i

be defined as (1.2) and (1.13), respectively. Then

‖vi − v∗i ‖
L∞

(
Ω\

(
D1∪D∗

1
∪D2∪D∗

2
∪ΩR0

)) ≤


Cε3/4, if n = 2;

Cε| log ε|, if n = 3,
i = 1, 2. (2.32)
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Proof. Let k1 be 2−k1−1 ≤ ε1/4 ≤ 2−k1 , and k0 be 2−k0−1 ≤ R0/2 ≤ 2−k0 , since R0 < 1.

Since for sufficiently small ε, ∂(Di ∪ D∗
i
) ∩ CR0/2 = ∂D

∗
i
∩ CR0/2, we denote

Ek
i := (C2−k \ C2−k−1) ∩ ∂D∗i , for k0 ≤ k ≤ k1, i = 1, 2.

Then

∪k1

k=k0
Ek

i =
(CR0/2 \ Cε1/4

) ∩ ∂D∗i , i = 1, 2.

It follows from (2.25) that

|v1(x) − v∗1(x)| ≤ Cε · 22k, x ∈ Ek
i , for k0 ≤ k ≤ k1, i = 1, 2. (2.33)

For each Ek
i
, we will construct a positive harmonic function ξk

i
as below. We will use

ξi :=

k1∑

k=k0

ξk
i

as one of the few harmonic functions to bound ±(v1 − v∗1) on ∂(Di ∪ D∗i ) from above in

the following. Let ξ̃k
i

be the solution of



∆ξ̃k
i
= 0, in Rn \ D∗

i
,

ξ̃k
i
= 1, on Ek

i
, ξ̃k

i
= 0, on ∂D∗

i
\ Ek

i
,

ξ̃k
i
∈ L∞(Rn \ D∗i ), if n = 2,

ξ̃k
i
→ 0 as |x| → ∞, if n = 3.

By the representation formula for the solution of the above boundary value problem

using Green’s function, we have

ξ̃k
i (x) =

∫

Ek
i

∂Gi

∂ν−
(x, y)dS (y),

where Gi(x, y) is the Green’s function for the domain Rn \ Di which satisfies

|∇yGi(x, y)| ≤ C if y ∈ Ek
i and x ∈ Ω̃∗ ∩ ∂CR0

, ∀ k0 ≤ k ≤ k1. (2.34)

In view of (2.33), we take

ξk
i := Cε · 22kξ̃k

i (x)

and use

ξi(x) =

k1∑

k=k0

ξk
i , i = 1, 2,

to bound ±(v1 − v∗
1
) on

(CR0/2 \ Cε1/4
) ∩ ∂D∗

i
from above.

Let Br denote the ball of radius r centered at the origin in Rn. Now due to (2.24),

|(v1−v∗1)(x)| ≤ Cε1/2 at Ω̃∗∩∂B2ε1/4 , we will construct another auxiliary function to bound

±(v1 − v∗
1
) on Ω̃∗ ∩ ∂B2ε1/4 from above. Define

Σδ :=
{
(x1, x2, · · · , xn) ∈ ∂B1

∣∣∣|xn| < δ
}
.
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Let uδ be the solution of 

∆uδ = 0, in B1 ⊂ Rn,

uδ(x) = 1, on ΣC0δ,

uδ(x) = 0, on ∂B1 \ ΣC0δ,

where C0 is a constant such that
∑n

i=1 λi ≤ C0. From the Green’s representation, we have

uδ(x) =
1 − |x|2
nα(n)

∫

ΣC0δ

1

|x − y|n−2
dS y,

where α(n) = |B1|. Then for |x| ≤ 3
4
,

0 < uδ(x) ≤ C

∫

∂B1∩{|xn |<C0δ}
dS y ≤ Cδ.

By the Kelvin transformation, let

ũδ(x) :=
1

|x|n−2
uδ

(
x

|x|2

)
, for |x| > 1,

then ũδ(x) = 1 on ΣC0δ,

∆ũδ(x) = 0, ũδ(x) > 0, for |x| > 1,

and as |x| → ∞, ũδ(x) → uδ(0) =
|ΣC0δ

|
|∂B1| if n = 2; ũδ(x) → 0 for n ≥ 3. Furthermore, for

|x| ≥ 4
3
, we have

ũδ(x) ≤ Cδ

|x|n−2
. (2.35)

Take

ξ0 := C̄ε1/2ũδ(x)

(
x

δ

)

with δ = 2ε1/4, where C̄ is the same constant C in (2.24). Because of the choice of C0

and (2.24), we can see

ξ0 = C̄ε1/2 ≥ ±(v1 − v∗1) on Ω̃∗ ∩ ∂B2ε1/4 .

And according to (2.35)

ξ0 ≤ Cε
n+1

4 on Ω̃∗ ∩ ∂CR0
.

Due to ‖∇v1‖L∞(Ω̃\ΩR/2) ≤ C and ‖∇v∗1‖L∞(Ω̃∗\Ω∗
R/2

) ≤ C, we have

±(v1 − v∗1) ≤ Cε, on ∂(D1 ∪ D∗1 ∪ D2 ∪ D∗2) \ CR0/2.

In view of v1 − v∗1 = 0 on ∂Ω and the positivity of ξi, i = 0, 1, 2, we have

±(v1 − v∗1) ≤ ξ0 + ξ1 + ξ2 +Cε, on ∂
(
Ω \ (D1 ∪ D∗1 ∪ D2 ∪ D∗2 ∪ B2ε1/4

))
.

By using the maximum principle in Ω \ (D1 ∪ D∗
1
∪ D2 ∪ D∗

2
∪ B2ε1/4

)
, we have

± (v1 − v∗1) ≤ ξ0 + ξ1 + ξ2 +Cε, in Ω \ (D1 ∪ D∗1 ∪ D2 ∪ D∗2 ∪ B2ε1/4
)
. (2.36)
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Next, in order to prove (2.32), we need to further estimate ξi on Ω̃∗ ∩ ∂CR0
, i = 1, 2.

Making use of (2.34),

ξ̃k
i (x) ≤ C|Ek

i | ≤
C

2(n−1)k
, x ∈ Ω̃∗ ∩ ∂CR0

.

Thus

ξi(x) ≤ C

k1∑

k=k0

ε · 22k C

2(n−1)k
= C

k1∑

k=k0

ε

2(n−3)k
, x ∈ Ω̃∗ ∩ ∂CR0

.

Hence, if n = 2, recalling k1 ∼ 1
4 log 2
| log ε|,

ξi(x) ≤ C

k1∑

k=k0

ε2k ≤ Cε2k1 ≤ Cε3/4, x ∈ Ω̃∗ ∩ ∂CR0
;

if n = 3,

ξi(x) ≤ Cεk1 ≤ Cε| log ε|, x ∈ Ω̃∗ ∩ ∂CR0
.

Combining these estimates above with (2.36), we have, on ∂
(
Ω\(D1 ∪ D∗1 ∪ D2 ∪ D∗2 ∪ΩR0

))
,

±(v1 − v∗1) ≤ ξ0 + ξ1 + ξ2 + Cε ≤


Cε3/4
+ Cε3/4

+ Cε, if n = 2;

Cε +Cε| log ε| + Cε, if n = 3.

By using the maximum principle again,

|v1 − v∗1| ≤


Cε3/4, if n = 2;

Cε| log ε|, if n = 3,
in Ω \

(
D1 ∪ D∗1 ∪ D2 ∪ D∗2 ∪ΩR0

)
.

The proof is completed. �

An immediate consequence of Lemma 2.7 and the boundary estimates for elliptic

equations is as follows:

Lemma 2.8. Let vi and v∗
i

be defined as (1.2) and (1.13), respectively. Then

∣∣∣∣∣∣

∫

∂Ω

∂vi

∂ν
−

∫

∂Ω

∂v∗i
∂ν

∣∣∣∣∣∣ ≤


Cε3/4, if n = 2;

Cε| log ε|, if n = 3,
i = 1, 2. (2.37)

Now we prove Lemma 2.4.

Proof of Lemma 2.4. Since ∫

∂D1

∂v1

∂ν−
=

∫

Ω̃

|∇v1|2,

it follows from Theorem 1.1 that

ρn(ε)

∫

Ω̃

|∇vi|2 − κn = Miρn(ε) + En(ε)ρn(ε), i = 1, 2.
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In view of the definitions of v1 and v2 and the Green’s formula, we obtain the following

identity ∫

∂D1

∂v2

∂ν−
=

∫

∂D2

∂v1

∂ν−
= −

∫

∂D1

∂v1

∂ν−
−

∫

∂Ω

∂v1

∂ν
.

Thus, recalling the definition of Θε, (2.8),

Θε = −
(
ρn(ε)

∫

∂D1

∂v1

∂ν−

) ∫

∂Ω

∂v2

∂ν
+

(
ρn(ε)

∫

∂D1

∂v2

∂ν−

) ∫

∂Ω

∂v1

∂ν

= −
(
ρn(ε)

∫

∂D1

∂v1

∂ν−

) ∫

∂Ω

∂(v1 + v2)

∂ν
− ρn(ε)

(∫

∂Ω

∂v1

∂ν

)2

.

Recalling the definition of Θ, (1.12),

Θ = −κn
∫

∂Ω

∂(v∗
1
+ v∗

2
)

∂ν

and using Lemma 2.8 and Theorem 1.1, we have,

Θ − Θε =
(
ρn(ε)

∫

∂D1

∂v1

∂ν−
− κn

) ∫

∂Ω

∂(v∗1 + v∗2)

∂ν
+ ρn(ε)

(∫

∂Ω

∂v∗1
∂ν

)2

+ O(ε
3
4 )(or O(ε| log ε|))

= (M1ρn(ε) + En(ε)ρn(ε))

∫

∂Ω

∂(v∗
1
+ v∗

2
)

∂ν
+ ρn(ε)

(∫

∂Ω

∂v∗
1

∂ν

)2

+ O(ε
3
4 )(or O(ε| log ε|))

=ρn(ε)

(
M1

∫

∂Ω

∂(v∗1 + v∗2)

∂ν
+

( ∫

∂Ω

∂v∗1
∂ν

)2
)
+ En(ε)ρn(ε).

(2.22) is proved. �

2.6 Proof of Lemma 2.5

To prove (2.23), besides (2.37), we need

Lemma 2.9. Let v0 and v∗0 be defined in (1.2) and (1.13), respectively. Then

∣∣∣∣∣∣

∫

∂Di

∂v0

∂ν−
−

∫

∂D∗
i

∂v∗
0

∂ν−

∣∣∣∣∣∣ ≤ C‖ϕ‖L∞(∂Ω)


ε3/4, if n = 2,

ε| log ε|, if n = 3,
i = 1, 2. (2.38)

Proof. Using the Green’s formula,

∫

∂D1

∂v0

∂ν−
=

∫

∂D1

∂v0

∂ν−
v1 =

∫

∂Ω̃

∂v0

∂ν
v1 =

∫

∂Ω̃

∂v1

∂ν
v0 =

∫

∂Ω

∂v1

∂ν
ϕ,

and ∫

∂D∗
1

∂v∗0
∂ν−
=

∫

∂D∗
1

∂v∗0
∂ν−

v∗1 =

∫

∂Ω

∂v∗1
∂ν
ϕ.

20



So that, by Lemma 2.8,

∣∣∣∣∣∣

∫

∂D1

∂v0

∂ν−
−

∫

∂D∗
1

∂v∗
0

∂ν−

∣∣∣∣∣∣ =
∣∣∣∣∣∣

∫

∂Ω

∂(v1 − v∗1)

∂ν
ϕ

∣∣∣∣∣∣ ≤


Cε3/4, if n = 2,

Cε| log ε|, if n = 3.

This completes the proof, with the assumption ‖ϕ‖C2(∂Ω) = 1. �

Proof of Lemma 2.5. Recall that

Qε[ϕ] =

∫

∂D1

∂v0

∂ν−

∫

∂Ω

∂v2

∂ν
−

∫

∂D2

∂v0

∂ν−

∫

∂Ω

∂v1

∂ν
,

and

Q[ϕ] =

∫

∂D∗
1

∂v∗0
∂ν−

∫

∂Ω

∂v∗2
∂ν
−

∫

∂D∗
2

∂v∗0
∂ν−

∫

∂Ω

∂v∗1
∂ν
.

Using (2.37) and (2.38), we have

|Qε[ϕ] − Q[ϕ]|

≤
∣∣∣∣∣∣


∫

∂D1

∂v0

∂ν−
−

∫

∂D∗
1

∂v∗
0

∂ν−


∫

∂Ω

∂v2

∂ν

∣∣∣∣∣∣ +
∣∣∣∣∣∣

∫

∂D∗
1

∂v∗
0

∂ν−

(∫

∂Ω

∂v2

∂ν
−

∫

∂Ω

∂v∗
2

∂ν

)∣∣∣∣∣∣

+

∣∣∣∣∣∣


∫

∂D2

∂v0

∂ν−
−

∫

∂D∗
2

∂v∗
0

∂ν−


∫

∂Ω

∂v1

∂ν

∣∣∣∣∣∣ +
∣∣∣∣∣∣

∫

∂D∗
2

∂v∗
0

∂ν−

(∫

∂Ω

∂v1

∂ν
−

∫

∂Ω

∂v∗
1

∂ν

)∣∣∣∣∣∣

≤C‖ϕ‖L∞(∂Ω)


ε3/4, if n = 2,

ε| log ε|, if n = 3.

So (2.23) is proved. �

3 Proof of Theorem 1.1

Using Lemma 2.6, we have

Lemma 3.1. Assume that v1 and v∗
1

are solutions of (1.2) and (1.13), respectively. If

∂D∗1 and ∂D∗2 are of Ck,1, k ≥ 3, then for ε1/4 ≤ |x′| ≤ R0, we have

|∇v1(x)| ≤ C|x′|−2, x ∈ ΩR0
\Ωε1/4 , |∇v∗1(x)| ≤ C|x′|−2, x ∈ Ω∗R0

\Ω∗
ε1/4

; (3.1)

and

|∇(v1 − v∗1)(x)| ≤ Cε1/2(1− 1
k

)|x′|−2, in Ω∗R0
\Ω∗

ε1/4
. (3.2)

Proof. For ε1/4 ≤ |z′| ≤ R0, use the change of variable as before


x′ − z′ = |z′|2y′,

xn = |z′|2yn,

to rescale Ω|z′|+|z′ |2 \Ω|z′| into a nearly unit-size square (or cylinder) Q1, and Ω∗|z′ |+|z′ |2 \Ω
∗
|z′|

into Q∗1. Let

V1(y) = v1(z′ + |z′|2y′, |z′|2yn), in Q1,
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and

V∗1(y) = v∗1(z′ + |z′|2y′, |z′|2yn), in Q∗1.

Since 0 < V1,V
∗
1 < 1, using the standard elliptic estimate, we have

|∇kV1| ≤ C(k), in Q1, and |∇kV∗1 | ≤ C(k), in Q∗1.

By using an interpolation with (2.24), we have

|∇(V1 − V∗1)| ≤ C(k)ε1/2(1− 1
k

), in Q∗1.

Thus, back to v1 − v∗1, we have

|∇(v1 − v∗1)(x)| ≤ Cε1/2(1− 1
k

)|z′|−2, x ∈ Ω∗|z′ |+|z′ |2 \Ω
∗
|z′ |.

(3.2) follows. By the way,

|∇v1(x)| ≤ C|z′|−2, x ∈ Ω|z′ |+|z′ |2 \Ω|z′|, |∇v∗1(x)| ≤ C|z′|−2, x ∈ Ω∗|z′|+|z′ |2 \Ω
∗
|z′ |.

So (3.1) follows. �

Proof of Theorem 1.1. We only prove the case for i = 1 that

ρn(ε)

∫

Ω̃

|∇v1|2 − κn = M1ρn(ε) +


O

(
ε

1
4
− 1

2k

)
ρn(ε), if n = 2,

O
(
ε

1
2
− 1

2k | log ε|
)
ρn(ε), if n = 3.

(3.3)

The case for i = 2 is the same.

STEP 1. For 0 < γ ≤ 1/4, we divide the integral into three parts:

∫

Ω̃

|∇v1|2 =
∫

Ωεγ

|∇v1|2 +
∫

ΩR0
\Ωεγ
|∇v1|2 +

∫

Ω̃\ΩR0

|∇v1|2 =: I + II + III.

(i) For the first term I,
∫

Ωεγ

|∇v1|2 =
∫

Ωεγ

|∇ū|2 + 2

∫

Ωεγ

∇ū · ∇(v1 − ū) +

∫

Ωεγ

|∇(v1 − ū)|2. (3.4)

Recalling (1.10),we have

∫

Ωεγ

|∂x′ ū|2 ≤ C

∫

|x′ |<εγ

|x′|2
ε + |x′|2 dx′ ≤ C

∫

|x′ |<εγ
dx′ = O

(
ε(n−1)γ

)
.

By combining Proposition 2.1, we have

2

∫

Ωεγ

∇ū · ∇(v1 − ū) +

∫

Ωεγ

|∇(v1 − ū)|2 = O
(
ε(n−1)γ

)
.

Hence, it follows from (3.4) that

I =

∫

Ωεγ

|∇v1|2 =
∫

Ωεγ

|∂xn
ū|2 + O

(
ε(n−1)γ

)
=

∫

|x′ |<εγ

dx′

ε + h1(x′) − h2(x′)
+ O

(
ε(n−1)γ

)
.
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(ii) For the second term, we divide it further as follows:

II =

∫

ΩR0
\Ωεγ
|∇v1|2 =

∫

(ΩR0
\Ωεγ )\(Ω∗

R0
\Ω∗
εγ

)

|∇v1|2 +
∫

Ω
∗
R0
\Ω∗
εγ

|∇(v1 − v∗1)|2

+ 2

∫

Ω
∗
R0
\Ω∗
εγ

∇v∗1 · ∇(v1 − v∗1) +

∫

Ω
∗
R0
\Ω∗
εγ

|∇v∗1|2

=:II1 + II2 + II3 + II4.

Noting that the thickness of (ΩR0
\Ωεγ) \ (Ω∗

R0
\ Ω∗εγ) is ε, and using Lemma 3.1,

II1 =

∫

(ΩR0
\Ωεγ )\(Ω∗

R0
\Ω∗
εγ

)

|∇v1|2 ≤ Cε

∫

εγ<|x′ |<R0

dx′

|x′|4
≤ Cε1+(n−5)γ .

For any εγ ≤ |z′| ≤ R0, 0 < γ ≤ 1/4, by Lemma 3.1, if ∂D∗1 and ∂D∗2 are of Ck,1, k ≥ 3,

then we have

II2 =

∫

Ω∗
R0
\Ω∗
εγ

|∇(v1 − v∗1)|2 ≤Cε1− 1
k

∫

Ω∗
R0
\Ω∗
εγ

|x′|−4dx′dxn

≤Cε1− 1
k

∫

εγ<|x′ |<R0

dx′

|x′|2

≤


Cε1− 1
k
−γ, if n = 2,

Cγε1− 1
k | log ε|, if n = 3,

and

|II3| ≤

∣∣∣∣∣∣∣
2

∫

Ω∗
R0
\Ω∗
εγ

∇v∗1 · ∇(v1 − v∗1)

∣∣∣∣∣∣∣
≤


Cε1/2(1− 1

k
)−γ, if n = 2,

Cγε1/2(1− 1
k

)| log ε|, if n = 3.

Now, we use the explicit function ū∗ to approximate ∇v∗
1
. Using (2.28) and (2.29), a

similar argument as in I yields

II4 =

∫

Ω∗
R0
\Ω∗
εγ

|∇v∗1|2 =
∫

Ω∗
R0
\Ω∗
εγ

|∇ū∗|2 + 2

∫

Ω∗
R0
\Ω∗
εγ

∇ū∗ · ∇(v∗1 − ū∗) +

∫

Ω∗
R0
\Ω∗
εγ

|∇(v∗1 − ū∗)|2

=

∫

Ω
∗
R0
\Ω∗
εγ

|∂xn
ū∗|2 + A1 + O(ε(n−1)γ)

=

∫

R0>|x′ |>εγ

dx′

h1(x′) − h2(x′)
+ A1 + O(ε(n−1)γ),

where

A1 :=2

∫

Ω∗
R0

∇ū∗ · ∇(v∗1 − ū∗) +

∫

Ω∗
R0

(
|∇(v∗1 − ū∗)|2 + |∂x′ ū

∗|2
)

is independent of ε.

For 0 < γ ≤ 1/4, ε1+(n−5)γ ≤ ε(n−1)γ, it follows from these estimates above that

II =

∫

R0>|x′ |>εγ

dx′

h1(x′) − h2(x′)
+ A1 + O(ε(n−1)γ) +


O

(
ε1/2(1− 1

k
)−γ

)
, if n = 2,

O
(
ε1/2(1− 1

k
)| log ε|

)
, if n = 3.
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(iii) For term III, since

∆(v1 − v∗1) = 0, in Ω \ (D1 ∪ D∗1 ∪ D2 ∪ D∗2 ∪ΩR0

)
,

and

0 < v1, v
∗
1 < 1, in Ω \

(
D1 ∪ D∗1 ∪ D2 ∪ D∗2 ∪ΩR0

)
,

it follows that provided ∂D∗1, ∂D∗2 and ∂Ω are of Ck,1, k ≥ 3,

|∇k(v1 − v∗1)| ≤ C(k), in Ω \
(
D1 ∪ D∗1 ∪ D2 ∪ D∗2 ∪ΩR0

)
,

where C(k) is independent of ε. By an interpolation inequality with (2.24), we have

|∇(v1 − v∗1)| ≤ Cε1/2(1− 1
k

), in Ω \ (D1 ∪ D∗1 ∪ D2 ∪ D∗2 ∪ΩR0

)
. (3.5)

In view of the boundedness of |∇v1| in (D∗
1
∪D∗

2
)\(D1∪D2∪ΩR0

) and (D1∪D2)\(D∗
1
∪D∗

2
),

and the fact that the volume of (D∗
1
∪D∗

2
) \ (D1 ∪D2 ∪ΩR0

) and (D1 ∪D2) \ (D∗
1
∪D∗

2
) is

less than Cε, and by using (3.5), we have

III =

∫

Ω\
(

D1∪D∗
1
∪D2∪D∗

2
∪ΩR0

) |∇v1|2 + O(ε)

=

∫

Ω\
(

D1∪D∗
1
∪D2∪D∗

2
∪ΩR0

) |∇v∗1|2 + 2

∫

Ω\
(

D1∪D∗
1
∪D2∪D∗

2
∪ΩR0

) ∇v∗1∇(v1 − v∗1)

+

∫

Ω\
(

D1∪D∗
1
∪D2∪D∗

2
∪ΩR0

) |∇(v1 − v∗1)|2 + O(ε)

=

∫

Ω̃∗\Ω∗
R0

|∇v∗1|2 + O
(
ε1/2(1− 1

k
)
)
.

Now combining (i) (ii) and (iii) and using 0 < γ ≤ 1/4, we obtain

∫

Ω̃

|∇v1|2 =
∫

R0>|x′ |>εγ

dx′

h1(x′) − h2(x′)
+

∫

|x′ |<εγ

dx′

ε + h1(x′) − h2(x′)

+ A2 + O
(
ε(n−1)γ

)
+


O

(
ε1/2(1− 1

k )−γ
)
, if n = 2;

O
(
ε1/2(1− 1

k
)| log ε|

)
, if n = 3,

(3.6)

where

A2 :=

∫

Ω̃∗\Ω∗
R0

|∇v∗1|2 + A1.

STEP 2. After a rotation of the coordinates if necessary, we assume that

h1(x′) − h2(x′) =

n−1∑

j=1

λ j

2
x2

j +

∑

|α|=3

Cαx′α + O(|x′|4), |x′| ≤ R0, (3.7)

where diag(λ1, · · · , λn−1) = ∇2
x′(h1 − h2)(0′), Cα are some constants, α is an (n − 1)-

dimensional multi-index. We call λ1, · · · , λn−1 the relative principal curvatures of ∂D1

and ∂D2.
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To evaluate the first two terms in (3.6), we would like to replace h1(x′) − h2(x′) by

the quadratic polynomial
∑n−1

j=1

λ j

2
x2

j
. First, under the assumption (1.3)–(1.4) and (3.7),

we have
∫

R0>|x′ |>εγ

dx′

h1(x′) − h2(x′)
−

∫

R0>|x′ |>εγ

dx′

∑n−1
j=1

λ j

2
x2

j

=

∫

R0>|x′ |>εγ


1

∑n−1
j=1

λ j

2
x2

j
+

∑
|α|=3 Cαx′α + O(|x′|4)

− 1
∑n−1

j=1

λ j

2
x2

j

 dx′

=

∫

R0>|x′ |>εγ

1
∑n−1

j=1

λ j

2
x2

j



1 +
∑
|α|=3 Cαx′α

∑n−1
j=1

λ j

2
x2

j

+ O(|x′|2)



−1

− 1

 dx′

=

∫

R0>|x′ |>εγ

1
∑n−1

j=1

λ j

2
x2

j



1 −
∑
|α|=3 Cαx′α

∑n−1
j=1

λ j

2
x2

j

+ O(|x′|2)

 − 1

 dx′,

where in last line we use Taylor expansion due to the smallness of R0. Note that
∑
α Cαx′α∑

j(λ j/2)x2
j

is odd and the integrating domain is symmetric, we have
∫

R0>|x′ |>εγ

dx′

h1(x′) − h2(x′)
−

∫

R0>|x′ |>εγ

dx′

∑n−1
j=1

λ j

2
x2

j

=

∫

R0>|x′ |>εγ
O(1) dx′ = C̃ + O

(
ε(n−1)γ

)
,

where C̃ is some constant depending on n,R0, λ j but not ε. Similarly, we have

∫

|x′ |<εγ

dx′

ε + h1(x′) − h2(x′)
−

∫

|x′ |<εγ

dx′

ε +
∑n−1

j=1

λ j

2
x2

j

=

∫

|x′ |<εγ
O(1) dx′ = O

(
ε(n−1)γ

)
.

Therefore, (3.6) becomes
∫

Ω̃

|∇v1|2 =
∫

R0>|x′ |>εγ

dx′

∑n−1
j=1

λ j

2
x2

j

+

∫

|x′ |<εγ

dx′

ε +
∑n−1

j=1

λ j

2
x2

j

+ A3 + O
(
ε(n−1)γ

)
+


O

(
ε1/2(1− 1

k
)−γ

)
, if n = 2;

O
(
ε1/2(1− 1

k
)| log ε|

)
, if n = 3,

(3.8)

where

A3 := A2 + C̃.

STEP 3. Now we deal with the first two explicit terms in (3.8).

(i) For n = 2, we have

2


∫ R0

εγ

dx1

λ1

2
x2

1

+

∫ εγ

0

dx1

ε + λ1

2
x2

1



=2


∫ R0

εγ

dx1

λ1

2
x2

1

−
∫ ∞

εγ

dx1

λ1

2
x2

1

 + 2

∫ ∞

0

dx1

ε + λ1

2
x2

1

+ O
(
ε1/2(1− 1

k
)−γ

)

= − 4

λ1R0

+
1

ρn(ε)

√
2π
√
λ1

+ O
(
ε1/2(1− 1

k
)−γ

)
,
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where we use in second line,
∣∣∣∣∣∣∣

∫ ∞

εγ

1

ε + λ1

2
x2

1

− 1
λ1

2
x2

1

dx1

∣∣∣∣∣∣∣
≤ Cε

∫ ∞

εγ

dx1

x4
1

= O
(
ε1−3γ

)
≤ O

(
ε1/2(1− 1

k
)−γ

)
.

Therefore,

∫

Ω̃

|∇v1|2 =
1

ρn(ε)

√
2π
√
λ1

+ (A3 −
4

λ1R0

) + O
(
ε(n−1)γ

)
+ O

(
ε1/2(1− 1

k
)−γ

)
.

(ii) For n = 3,

∫

εγ<|x′ |<R0

dx′

λ1

2
x2

1
+
λ2

2
x2

2

+

∫

|x′ |<εγ

dx′

ε + λ1

2
x2

1
+
λ2

2
x2

2

=

∫

|x′ |<R0

dx′

ε + λ1

2
x2

1
+
λ2

2
x2

2

+ O
(
ε1/2(1− 1

k
)| log ε|

)
,

(3.9)

where we used that
∣∣∣∣∣∣∣

∫

εγ<|x′ |<R0

1

ε + λ1

2
x2

1
+
λ2

2
x2

2

− 1
λ1

2
x2

1
+
λ2

2
x2

2

dx′

∣∣∣∣∣∣∣
≤Cε

∫

εγ<|x′ |<R0

dx′

|x′|4
= O

(
ε1−2γ

)

≤O
(
ε1/2(1− 1

k
)| log ε|

)
.

Denote R(θ) := R0( 2
λ1

cos2 θ + 2
λ2

sin2 θ)−1/2. After a change of variables, the first term of

(3.9) becomes

∫

|x′ |<R0

dx′

ε + λ1

2
x2

1
+
λ2

2
x2

2

=
2
√
λ1λ2

∫ 2π

0

∫ R(θ)

0

r

ε + r2
drdθ

=
1
√
λ1λ2

∫ 2π

0

ln(ε + r2)

∣∣∣∣∣∣
R(θ)

r=0

dθ

=
1

ρn(ε)

2π
√
λ1λ2

+
1
√
λ1λ2

∫ 2π

0

ln(R(θ)2) + ln(1 +
ε

R(θ)2
) dθ

=
1

ρn(ε)

2π
√
λ1λ2

+
2
√
λ1λ2

∫ 2π

0

ln R(θ) dθ + O(ε),

(3.10)

where we use the fact that R(θ)2 has a positive lower bound that is greater than ε, and the

Taylor expansion of ln(1 + x), for |x| < 1. Combining (3.9) and (3.10), we conclude that

for n = 3,

∫

Ω̃

|∇v1|2 =
1

ρn(ε)

2π
√
λ1λ2

+

(
A3 +

2
√
λ1λ2

∫ 2π

0

ln R(θ) dθ

)

+ O
(
ε(n−1)γ

)
+ O

(
ε1/2(1− 1

k
)| log ε|

)
.
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We now define

κn :=



√
2π√
λ1
, n = 2,

2π√
λ1λ2
, n = 3,

and M1 :=


A3 − 4

λ1R0
, n = 2,

A3 +
2√
λ1λ2

∫ 2π

0
ln R(θ) dθ, n = 3.

Taking γ = 1/4, ε(n−1)γ, ε1/2(1− 1
k

)−γ (or ε1/2(1− 1
k

)| log ε|) are smaller than ε
1
4
− 1

2k (or ε
1
2
− 1

2k | log ε|),
and (3.3) is proved. It is not difficult to prove that M1 is independent of R0. If not, sup-

pose that there exist M1(R0) and M1(R̃0), both independent of ε, such that (3.3) holds,

then

M1(R0) − M1(R̃0) =


O

(
ε

1
4
− 1

2k

)
, if n = 2,

O
(
ε

1
2
− 1

2k | log ε|
)
, if n = 3,

which implies that M1(R0) = M1(R̃0). �
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