
Randomized Dynamic Mode Decomposition

N. Benjamin Erichson† ¶, Lionel Mathelin‡ † , J. Nathan Kutz† , and Steven L. Brunton§

Abstract. This paper presents a randomized algorithm for computing the near-optimal low-rank dynamic
mode decomposition (DMD). Randomized algorithms are emerging techniques to compute low-rank
matrix approximations at a fraction of the cost of deterministic algorithms, easing the computational
challenges arising in the area of ‘big data’. The idea is to derive a small matrix from the high-
dimensional data, which is then used to efficiently compute the dynamic modes and eigenvalues. The
algorithm is presented in a modular probabilistic framework, and the approximation quality can
be controlled via oversampling and power iterations. The effectiveness of the resulting randomized
DMD algorithm is demonstrated on several benchmark examples of increasing complexity, providing
an accurate and efficient approach to extract spatiotemporal coherent structures from big data in
a framework that scales with the intrinsic rank of the data, rather than the ambient measurement
dimension. For this work we assume that the dynamics of the problem under consideration is evolving
on a low-dimensional subspace that is well characterized by a fast decaying singular value spectrum.
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1. Introduction. Extracting dominant coherent structures and modal expansions from
high-dimensional data is a cornerstone of computational science and engineering [62]. The
dynamic mode decomposition (DMD) is a leading data-driven algorithm to extract spatiotem-
poral coherent structures from high-dimensional data sets [59, 68, 38]. DMD originated in the
fluid dynamics community [59, 55], where the identification of coherent structures, or modes,
is often an important step in building models for prediction, estimation, and control [9, 62]. In
contrast to the classic proper orthogonal decomposition (POD) [4, 35], which orders modes
based on how much energy or variance of the flow they capture, DMD identifies spatially
correlated modes that oscillate at a fixed frequency in time, possibly with an exponentially
growing or decaying envelope. Thus, DMD combines the advantageous features of POD in
space and the Fourier transform in time [38].

With rapidly increasing volumes of measurement data from simulations and experiments,
modal extraction algorithms such as DMD may become prohibitively expensive, especially
for online or real-time analysis. Even though DMD is based on an efficient singular value
decomposition (SVD), computations scale with the dimension of the measurements, rather
than with the intrinsic dimension of the data. With increasingly vast measurements, it is
often the case that the intrinsic rank of the data does not increase appreciably, even as the
dimension of the ambient measurements grows. Indeed, many high-dimensional systems exhibit
low-dimensional patterns and coherent structures, which is one of the driving perspectives in
both POD and DMD analysis.
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In this work, we develop a computationally effective strategy to compute the DMD using
randomized linear algebra, which scales with the intrinsic rank of the dynamics, rather than
with the measurement dimension. More concretely, we embed the DMD in a probabilistic
framework by following the seminal work of Halko et al. [29]. The main concept is depicted in
Figure 1. Numerical experiments show that our randomized algorithm achieves considerable
speedups over previously proposed algorithms for computing the DMD such as the compressed
DMD algorithm [10]. Further, the approximation error can be controlled via oversampling
and additional power iterations. This allows the user to choose the optimal trade-off between
computational time and accuracy. Importantly, we also demonstrate the ability to handle data
which are too big to fit into fast memory by using a blocked matrix scheme.

1.1. Related Work. Efforts to address the computational challenges of DMD can be traced
back to the original paper by Schmid [59]. It was recognized that DMD could be computed in
a lower dimensional space and then used to reconstruct the dominant modes and dynamics in
the original high-dimensional space. This philosophy has been adopted in several strategies to
determine the low-dimensional subspace, as shown in Fig. 2. Since then, efficient parallelized
algorithms have been proposed for computations at scale [57].

In [59], the high-dimensional data are projected onto the linear span of the associated POD
modes, enabling an inexpensive low-dimensional DMD. The high-dimensional DMD modes
have the same temporal dynamics as the low-dimensional modes and are obtained via lifting
with the POD modes. However, computing the POD modes may be expensive and strategies
have been developed to alleviate this cost. An algorithm utilizing the randomized singular
value decomposition (rSVD) was presented in [22] and [5, 6]. While this approach is reliable
and robust to noise, only the computation of the SVD is accelerated, so that subsequent
computational steps involved in the DMD algorithm remain expensive. The paper by Bistrian
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Figure 1: Conceptual architecture of the randomized dynamic mode decomposition (rDMD).
First, small matrices are derived from the high-dimensional input data. The low-dimensional
snapshot matrices BL and BR are then used to compute the approximate dynamic modes
W̃B, and eigenvalues Λ. Finally, the near-optimal modes W may be recovered.
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and Navon [5] has other advantages, including identifying the most influential DMD modes
and guarantees that the low-order model satisfies the boundary conditions of the full model.

As an alternative to using POD modes, a low-dimensional approximation of the data
can be obtained by random projections [10]. This is justified by the Johnson-Lindenstrauss
lemma [36, 23] which provides statistical guarantees on the preservation of the distances
between the data when projected into the low-dimensional space. This approach avoids the
cost of computing POD modes and has favorable statistical error bounds.

In contrast with these projection-based approaches, alternative strategies for reducing the
dimension of the data involve computations with subsampled snapshots. In this case, the
reduction of the computational cost comes from the fact that only a subset of the data is
used to derive the DMD and the full data is never processed by the algorithm. DMD is then
determined from a sketch-sampled database. Variants of this approach differ in the sampling
strategy; for example, [10] and [20] develop the compressed dynamic mode decomposition,
which involves forming a small data matrix by randomly projecting the high-dimensional
row-space of a larger data matrix. This approach has been successful in computational fluid
dynamics and video processing applications, where the data have relatively low noise. However,
this is a suboptimal strategy, which leads to a large variance in the performance due to poor
statistical guarantees in the resulting sketched data matrix. Clustering techniques can be
employed to select a relevant subset of the data [28]. Further alternatives derive from algebraic
considerations, such as the maximization of the volume of the submatrix extracted from the
data (e.g., Q-DEIM [18, 45]) or rely on energy-based arguments such as leverage-score and
length-squared samplings [24, 44, 16].

1.2. Assumptions, Limitations, Applications, and Extensions. Within a short time,
DMD has become a workhorse algorithm for extracting dominant low-dimensional oscil-
lating patterns from high-dimensional data. One key benefit of DMD is that it is equally
valid for experimental and numerical data, as it does not rely on knowledge of the governing
equations. Although it may not be stated explicitly, it is often assumed that the data are
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Figure 2: Sketching techniques for high-dimensional data; this work uses random projections.
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periodic or quasi-periodic in nature. DMD typically fails for data that is non-stationary or that
exhibits broadband or intermittent phenomena. DMD is also quite sensitive to noise [19, 14],
although several algorithms exist to de-bias DMD results in the presence of noisy data [14, 34].
Although not a limitation, most applications of DMD involve high-dimensional systems that
evolve on a low-dimensional attractor, in which case the singular value decomposition is used
to determine the subspace. Despite the assumptions and limitations above, DMD has been
widely applied on a variety of systems in fluid mechanics [55, 58, 42, 60, 2], epidemiology [51],
neuroscience [7], video modeling [21, 22, 40], robotics [3], and plasma physics [65]. Much
of the success of DMD relates to its simple formulation in terms of linear algebra. The
simplicity of DMD has enabled several extensions, including for control [50], multiresolution
analysis [39], recursive orthogonalization of modes for Galerkin projection [48], the use of
time-delay coordinates [68, 1, 13], sparse identification of dynamic regimes [37], Bayesian
formulations [64].

Many of the applications and extensions above fundamentally rely on the dynamics evolving
on a low-dimensional subspace that is well characterized by a fast decaying singular value
spectrum. Although this is not a fundamental limitation of DMD, it is often a basic assumption,
and we rely on this low-rank structure here.

1.3. Contribution of the Present Work. This work presents a randomized DMD algorithm
that enables the accurate and efficient extraction of spatiotemporal coherent structures from
high-dimensional data. The algorithm scales with the intrinsic rank of the dynamics, which
are assumed to be low-dimensional, rather than the ambient measurement dimension. We
demonstrate the effectiveness of this algorithm on two data sets of increasing complexity,
namely the canonical fluid flow past a circular cylinder and the high-dimensional sea-surface
temperature dataset. Moreover, we show that is possible to control the accuracy of the
algorithm via oversampling and power iterations. In order to promote reproducible research,
our open-source code is available at https://github.com/erichson/ristretto.

The remainder of the paper is organized as follows. Section 2 presents notation and
background concepts used throughout the paper. Section 3 outlines the probabilistic framework
used to compute the randomized DMD, which is presented in Sec. 4. Section 5 provides
numerical results to demonstrate the performance of the randomized DMD algorithm. Final
remarks and an outlook are given in Sec. 6.

2. Technical Preliminaries. We now establish notation and provide a brief overview of
the singular value decomposition (SVD) and the dynamic mode decomposition (DMD).

2.1. Notation. Vectors in Rn and Cn are denoted as bold lowercase letters
x = [x1, x2, ..., xn]. Both real Rn×m and complex Cn×m matrices are denoted by bold capitals
X, and its entry at the i-th row and j-th column is denoted as X(i, j). The Hermitian transpose
of a matrix is denoted as X∗. The spectral or operator norm of a matrix is defined as the
largest singular value σmax(X) of the matrix X, i.e., the square root of the largest eigenvalue
λmax of the positive-semidefinite matrix X∗X:

‖X‖2 =
√
λmax(X∗X) = σmax(X).

https://github.com/erichson/ristretto
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The Frobenius norm of a matrix X is the positive square root of the sum of the absolute
squares of its elements, which is equal to the positive square root of the trace of X∗X

‖X‖F =

√√√√ n∑
i=1

m∑
j=1

|X(i, j)|2 =
√

trace(X∗X).

The relative reconstruction error is ‖X − X̂‖F /‖X‖F , where X̂ is an approximation to the
matrix X. The column space (range) of X is denoted col(X) and the row space is row(X).

2.2. The Singular Value Decomposition. Given an n×m matrix X, the ‘economic’
singular value decomposition (SVD) produces the factorization

(2.1) X = UΣV∗ =
r∑
i

uiσiv
∗
i ,

where U = [u1, ...,ur] ∈ Rn×r and V = [v1, ...,vr] ∈ Rm×r are orthonormal, Σ ∈ Rr×r is
diagonal, and r = min(m,n). The left singular vectors in U provide a basis for the column
space of X, and the right singular vectors in V form a basis for the row space of X. Σ contains
the corresponding nonnegative singular values σ1 ≥ ... ≥ σr ≥ 0. Often, only the k dominant
singular vectors and values are of interest, resulting in the low-rank SVD:

Xk = UkΣkV
∗
k = [u1, . . . ,uk]diag(σ1, . . . , σk)[v1, . . . ,vk]

∗ =
k∑
i

uiσiv
∗
i .

The Moore-Penrose Pseudoinverse. Given the singular value decomposition X = UΣV∗,
the pseudoinverse X† is computed as

(2.2) X† := VΣ†U∗ =

r∑
i

viσ
†
iu
∗
i ,

where Σ† is here understood as

Σ† = diag
(
σ†i

)
, σ†i =

{
σ−1i if σi > 0,
0 otherwise,

∀ i.

We use the Moore-Penrose pseudoinverse in the following to provide a least squares solution to
a system of linear equations.

2.3. Dynamic Mode Decomposition. DMD is a dimensionality reduction technique, origi-
nally introduced in the field of fluid dynamics [59, 55, 38]. The method extracts spatiotemporal
coherent structures from an ordered time series of snapshots x0,x1, ...,xm ∈ Rn, separated in
time by a constant step ∆t. Specifically, the aim is to find the eigenvectors and eigenvalues of
the time-independent linear operator A : Rn → Rn that best approximates the map from a
given snapshot xj to the subsequent snapshot xj+1 as

(2.3) xj+1 ≈ Axj .
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Following [68], the deterministic DMD algorithm proceeds by first separating the snapshot
sequence x0,x1, ...,xm into two overlapping sets of data

XL=

x0 x1 · · · xm−1

 , XR=

x1 x2 · · · xm

 .(2.4)

XL ∈ Rn×m and XR ∈ Rn×m are called the left and right snapshot sequences. Equation (2.3)
can then be reformulated in matrix notation as

(2.5) XR ≈ AXL.

Many variants of the DMD have been proposed since its introduction, as discussed in [38].
Here, we discuss the exact DMD formulation of Tu et al. [68].

2.3.1. Non-Projected DMD. In order to find an estimate for the linear map A, the
following least-squares problem can be formulated

(2.6) Â = arg min
A

‖XR −AXL‖2F .

The estimator for the best-fit linear map is given in closed form as

(2.7) Â := XRX†L,

where X† denotes the pseudoinverse from Eq. (2.2). The DMD modes are the eigenvectors of
Â ∈ Rn×n.

2.3.2. Projected DMD. If the data are high-dimensional (i.e., n is large), the linear
map Â in Eq. (2.7) may be intractable to evaluate and analyze directly. Instead, a rank-
reduced approximation of the linear map is determined by projecting it onto a k-dimensional
subspace, k ≤ min (n,m). We denote XL = UΣV∗ the singular value decomposition of XL.
The projected map onto the class of rank-k linear operators can be obtained by pre- and
postmultiplying Eq. (2.7) with Pk ∈ Rn×k and Tk ∈ Rn×k:

(2.8) Ã := P∗kÂTk = P∗kXRX†LTk = P∗kXRVΣ†U∗Tk,

where Ã ∈ Rk×k is the projected map, i.e., a low-dimensional system matrix.
The projected DMD [59] relies on the hypothesis that the columns of AXL are in the linear

span of XL. Within this approximation, projection matrices P and T are chosen such that
they span a subspace of the column space of XL. A convenient choice is given by the dominant
(i.e., associated with the largest singular values) left singular vectors Uk of XL (i.e., POD
modes) so that Pk = Tk = Uk, U∗kUk = Ik, with k ≤ rank (XL), and

(2.9) Ã = U∗kXRVkΣ
−1
k ,

since U∗Uk =

[
Ik
0

]
.
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Note that when we use the POD modes U, one can interpret ÂUk as the shifted spatial
POD modes over one time step ∆t. Now, by premultiplying ÂUk with U∗k, one obtains

a projected map Ã = U∗kÂUk which encodes the cross-correlation of the POD modes Uk

with the time-shifted spatial POD modes. It thus becomes obvious that the DMD encodes
more information about the temporal evolution of the system under consideration than the
time-averaged POD modes [59].

Low-dimensional projection is a form of spectral filtering which has the positive effect of
dampening the influence of noise [32, 26]. This effect is illustrated in Figure 3, which shows
the non-projected linear map in absence and presence of white noise. The projected linear
map avoids the amplification of noise and acts as a hard-threshold regularizer. The difficulty
is to choose the rank providing a good trade-off between suppressing the noise and retaining
the useful information. In practice, the optimal hard-threshold [25] provides a good heuristic
to determine the rank k.

Once the linear map Ã is approximated, its eigendecomposition is computed

(2.10) ÃW̃ = W̃Λ,

where the columns of W̃ ∈ Ck×k are eigenvectors of Ã, and Λ ∈ Ck×k is a diagonal matrix
containing the corresponding eigenvalues λj . Eigenvalues of Ã are eigenvalues of Â and one
may recover DMD modes as the columns of Wk, [68]:

(2.11) Wk := XRVkΣ
−1
k W̃.

In both the projected and the non-projected formulation, a singular value decomposition
of XL is involved. This is computationally demanding, and the resources required to compute
DMD can be tremendous for large data matrices.
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(a) Non-projected linear map in
the absence of white noise.
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(c) Projected linear map in the
presence of white noise.

Figure 3: Illustration of the non-projected and projected map for toy data in the absence and
presence of white noise. The regularization effect of the projected map reduces the influence of
noise, while preserving the dominant information.
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2.4. A Note on Regularization. The projected algorithm described above relies on the
truncated singular value decomposition (TSVD), also referred to as pseudo-inverse filter, to
solve the unconstrained least-squares problem in Eq. (2.6). Indeed, Figure 3 illustrates that
the low-rank approximation introduces an effective regularization effect. This warrants an
extended discussion on regularization, following the work by Hansen [30, 31, 32, 33].

In DMD, we often experience a linear system of equations XR = AXL where XL or XR

is ill-conditioned, i.e., the ratio between the largest and smallest singular value is large, so
that the pseudo-inverse may magnify small errors. In this situation, regularization becomes
crucial for computing an accurate estimate of A, since a small perturbation in XR or XL may
result in a large perturbation in the solution. Tikhonov-Phillips regularization [66, 49], also
known as ridge regression in the statistical literature, is one of the most popular regularization
techniques. The regularized least squares problem becomes

(2.12) Â = arg min
A

∥∥XR −AXL‖2F + λ2‖A
∥∥2
F
.

More concisely, this can be expressed as the following augmented least-squares problem

(2.13) Â = arg min
A

∥∥∥∥[XR

0

]
−A

[
XL

λI

]∥∥∥∥2
F

.

The estimator for the map A takes advantage of the regularized inverse

(2.14) X†λ := [X∗X + λ2I]−1X∗ = VΣ+
λU∗ with Σ+

λ := diag

(
σ1

σ21 + λ2
, ...,

σr
σ2r + λ2

)
where the additional regularization (controlled via the tuning parameter λ) improves the
conditioning of the problem. This form of regularization can also be seen as a smooth filter that
attenuates the parts of the solution corresponding to the small singular values. Specifically,
the filter f takes the form [30]

(2.15) fi =
σ2i

σ2i + λ2
, i = 1, 2, ..., r.

The Tikhonov-Phillips regularization scheme is closely related to the TSVD and the Wiener
filter. Indeed, the TSVD is known to be a method for regularizing ill-posed linear least-squares
problems, which often produces very similar results [69]. More concretely, regularization via
the TSVD can be seen as a hard-threshold filter, which takes the form

(2.16) fi =

{
1, σi ≥ σk
0, σi < σk

.

Here, k controls how much smoothing (or low-pass filtering) is introduced, i.e., increasing
k includes more terms in the SVD expansion; thus components with higher frequencies are
included. See [32] for further details. As a consequence of the regularization effect introduced
by TSVD, the DMD algorithm requires a careful choice of the target-rank k to compute a
meaningful low-rank DMD approximation. Indeed, the solutions (i.e., the computed DMD
modes and eigenvalues) may be sensitive to the amount of regularization which is controlled
via k. In practice, one can treat the parameter k as a tuning-parameter and find the optimal
value via cross-validation.
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3. Randomized Methods for Linear Algebra. With rapidly increasing volumes of mea-
surement data from simulations and experiments, deterministic modal extraction algorithms
may become prohibitively expensive. Fortunately, a wide range of applications produce data
which feature low-rank structure, i.e., the rank of the data matrix, given by the number
of independent columns or rows, is much smaller than the ambient dimension of the data
space. In other words, the data feature a large amount of redundant information. In this
case, randomized methods allow one to efficiently produce familiar decompositions from linear
algebra. These so-called randomized numerical methods have the potential to transform
computational linear algebra, providing accurate matrix decompositions at a fraction of the
cost of deterministic methods. Indeed, over the past two decades, probabilistic algorithms
have been prominent for computing low-rank matrix approximations, as described in a number
of excellent surveys [29, 44, 16, 8]. The idea is to use randomness as a computational strategy
to find a smaller representation, often denoted as sketch. This sketch can be used to compute
an approximate low-rank factorization for the high-dimensional data matrix X ∈ Rn×m.

Broadly, these techniques can be divided into random sampling and random projection-
based approaches. The former class of techniques carefully samples and rescales some ‘in-
teresting’ rows or columns to form a sketch. For instance, we can sample rows by relying
on energy-based arguments such as leverage-scores and length-squared samplings [24, 44, 16].
The second class of random projection techniques relies on favorable properties of random
matrices and forms the sketch as a randomly weighted linear combination of the columns
or rows. Computationally efficient strategies to form such a sketch include the subsampled
randomized Hadamard transform [56, 67] and the CountSketch [72]. Choosing between the
different sampling and random projection strategies depends on the particular application. In
general, sampling is more computational efficient, while random projections preserve more of
the information in the data.

3.1. Probabilistic Framework. One of the most effective off-the-shelf methods to form a
sketch is the probabilistic framework proposed in the seminal work by Halko et al. [29]:

• Stage A: Given a desired target-rank k, find a near-optimal orthonormal basis Q ∈
Rn×k for the range of the input matrix X.
• Stage B: Given the near-optimal basis Q, project the input matrix onto the low-

dimensional space, resulting in B ∈ Rk×m. This smaller matrix can then be used to
compute a near-optimal low-rank approximation.

3.1.1. Stage A: Computing a Near-Optimal Basis. The first stage is used to approximate
the range of the input matrix. Given a target rank k � min(m,n), the aim is to compute a
near-optimal basis Q ∈ Rn×k for the input matrix X ∈ Rn×m such that

(3.1) X ≈ QQ∗X.

Specifically, the range of the high-dimensional input matrix is sampled using the concept of
random projections. Thus a basis is efficiently computed as

(3.2) Y = XΩ,

where Ω ∈ Rm×k denotes a random test matrix drawn from the normal Gaussian distribution.
However, the cost of dense matrix multiplications can be prohibitive. The time complexity
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is order O(nmk). To improve this scaling, more sophisticated random test matrices, such as
the subsampled randomized Hadamard transform, have been proposed [56, 67]. Indeed, the
time complexity can be reduced to O(nm · log(k)) by using a structured random test matrix
to sample the range of the input matrix.

The orthonormal basis Q ∈ Rn×k is obtained via the QR-decomposition Y = QR.

3.1.2. Stage B: Computing a Low-Dimensional Matrix. We now derive a smaller matrix
B from the high-dimensional input matrix X. Specifically, given the near-optimal basis Q, the
matrix X is projected onto the low-dimensional space

(3.3) B = Q∗X,

which yields the smaller matrix B ∈ Rk×m. This process preserves the geometric structure in a
Euclidean sense, so that angles between vectors and their lengths are preserved. It follows that

(3.4) X ≈ QB.

3.1.3. Oversampling. In theory, if the matrix X has exact rank k, the sampled matrix Y
spans a basis for the column space, with high probability. In practice, however, it is common
that the truncated singular values {σi}i≥k+1 are nonzero. Thus, it helps to construct a slightly
larger test matrix in order to obtain an improved basis. Thus, we compute Y using an
Ω ∈ Rm×l test matrix instead, where l = k + p. Thus, the oversampling parameter p denotes
the number of additional samples. In most situations small values p = {5, 10} are sufficient to
obtain a good basis that is comparable to the best possible basis [29].

3.1.4. Power Iteration Scheme. A second strategy to improve the performance is the
concept of power iterations [54, 27]. In particular, a slowly decaying singular value spectrum
of the input matrix can seriously affect the quality of the approximated basis matrix Q. Thus,
the method of power iterations is used to preprocess the input matrix in order to promote a
faster decaying spectrum. The sampling matrix Y is obtained as

(3.5) Y =
(
(XX∗)qX

)
Ω

where q is an integer specifying the number of power iterations. With X = UΣV∗, one
has X(q) := (XX∗)qX = UΣ2q+1V∗. Hence, for q > 0, the preprocessed matrix X(q) has a
relatively fast decay of singular values compared to the input matrix X. The drawback of
this method is that additional passes over the input matrix are required. However, as few as
q = {1, 2} power iterations can considerably improve the approximation quality, even when
the singular values of the input matrix decay slowly.

Algorithm 3.1 describes this overall procedure for the randomized QB decomposition.

Remark 3.1. A direct implementation of the power iteration scheme, as outlined in Sec-
tion 3.1.4, is numerically unstable due to round-off errors. Instead, the sampling matrix Y is
orthogonalized between each computational step to improve the stability [29].

Remark 3.2. As default values for the oversampling and power iteration parameter, we
suggest p = 10, and q = 2.
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Algorithm 3.1 Randomized QB decomposition.
Given a matrix X ∈ Rn×m and a target rank k � min(m,n), the basis matrix Q ∈ Rn×k with
orthonormal columns and the smaller matrix B ∈ Rk×m are computed. The approximation
quality can be controlled via oversampling p and the computation of q power iterations.

(1) l = k + p Slight oversampling.

(2) Ω = rand(m, l) Generate random test matrix.

(3) Y = XΩ Compute sampling matrix.

(4) for j = 1, . . . , q Power iterations (optional).

(5) [Q,∼] = qr(Y)

(6) [Z,∼] = qr(X∗Q)

(7) Y = XZ

(8) end for

(9) [Q,∼] = qr(Y) Orthonormalize sampling matrix.

(10) B = Q∗X Project input matrix to smaller space.

3.1.5. Theoretical Performance. Both the concept of oversampling and the power itera-
tion scheme provide control over the quality of the low-rank approximation. The average-case
error behavior is described in the probabilistic framework as [46]:

EµQ ‖X−QQ∗X‖F ≤

[
1 +

√
k

p− 1
+
e
√
l

p
·
√

min(m,n)− k

] 1
2q+1

σk+1(X),

with e ≡ exp (1), EµQ the expectation operator over the probability measure of Q and σk+1(X)
the (k + 1)-th element of the decreasing sequence of singular values of X. Here it is assumed
that p ≥ 2. Thus, both oversampling and the computation of additional power iterations drive
the approximation error down.

3.1.6. Computational Considerations. The steps involved in computing the approximate
basis Q and the low-dimensional matrix B are simple to implement, and embarrassingly
parallelizable. Thus, randomized algorithms can benefit from modern computational architec-
tures, and they are particularly suitable for GPU-accelerated computing. Another favorable
computational aspect is that only two passes over the input matrix are required in order
to obtain the low-dimensional matrix. Pass efficiency is a crucial aspect when dealing with
massive data matrices which are too large to fit into fast memory, since reading data from the
hard disk is prohibitively slow and often constitutes the actual bottleneck.

3.2. Blocked Randomized Algorithm. When dealing with massive fluid flows that are too
large to read into fast memory, the extension to sequential, distributed, and parallel computing
might be inevitable [57]. In particular, it might be necessary to distribute the data across
processors which have no access to a shared memory to exchange information. To address
this limitation, Martinsson and Voronin [47] proposed a blocked scheme to compute the QB
decomposition on smaller blocks of the data. The basic idea is that a given high-dimensional
sequence of snapshots x0,x1, ...,xm ∈ Rn is subdivided into b smaller blocks along the rows.
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The submatrices can then be processed in b independent streams of calculations. Here, b is
assumed to be a power of two, and zero padding can be used in order to divide the data into
blocks of the same size. This scheme constructs the smaller matrix B in a hierarchical fashion,
for more details see [70].

In the following, we describe a modified and simple scheme that is well suited for practical
applications such as computing the dynamic mode decomposition for large-scale fluid flows.
Unlike [47, 70], which discuss a fixed-precision approximation, we focus on a fixed-rank
approximation problem. Further, our motivation is that it is often unnecessary to use the full
hierarchical scheme if the desired target rank k is relatively small. By small we mean that we
can fit a matrix of dimension (b · k)×m into fast memory. To be more precise, suppose again
that we are given an input matrix X with n rows and m columns. We partition X along the
rows into b blocks Xi of dimension n/b×m. To illustrate the scheme we set b = 4 so that

(3.6) X =


X1

X2

X3

X4

 .
Next, we approximate each block Xi by a fix rank-k approximation, using the QB decomposition
described in Algorithm 3.1, which yields

(3.7) X ≈


Q1B1

Q2B2

Q3B3

Q4B4

 = diag (Q1,Q2,Q3,Q4)


B1

B2

B3

B4

 .
We can then collect all matrices Bi ∈ Rk×m and stack them together as

(3.8) K =
[
B∗1 B∗2 B∗3 B∗4

]∗
.

Subsequently, we compute the QB decomposition of K ∈ R(b·k)×m and obtain

(3.9) K ≈ Q̂B.

The small matrix B ∈ Rk×m can then be used to compute the randomized dynamic mode
decomposition as described below. The basis matrix Q ∈ Rn×k can be formed as

(3.10) Q = diag (Q1,Q2,Q3,Q4) Q̂.

In practice, we choose the target-rank l for the approximation slightly larger than k, i.e.,
l = k + p.

4. Randomized Dynamic Mode Decomposition. In many cases, even with increased
measurement resolution, the data may have dominant coherent structures that define a low-
dimensional attractor [35]; in fact, the presence of these structures was the original motivation
for methods such as DMD. Hence, it seems natural to use randomized methods for linear
algebra to accelerate the computation of the approximate low-rank DMD.
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4.1. Problem Formulation Revisited. We start our discussion by formulating the following
least-squares problem to find an estimate ÂB for the projected linear map Ã ∈ Rl×l in terms
of the projected snapshot sequences BL := P∗XL ∈ Rl×m and BR := P∗XR ∈ Rl×m:

(4.1) ÂB := arg min
AB

‖BR −ABBL‖2F ,

where P ∈ Rn×l is a projection matrix discussed below. Recall that l = k+ p, where k denotes
the desired target rank, and p is the oversampling parameter. Here we make the assumption
that col(P) ≈ col(XL) as well as col(P) ≈ col(XR).

The question remains how to construct P in order to quickly compute BL and BR. The
dominant left singular vectors of XR provide a good choice; however, the computational
demands to compute the deterministic SVD may be prohibitive for large data sets. Next, we
discuss randomized methods to compute DMD.

4.2. Compressed Dynamic Mode Decomposition. Brunton et al. [10] proposed one of
the first algorithms using the idea of matrix sketching to find small matrices BL and BR. The
algorithm proceeds by forming a small number of random linear combinations of the rows of
the left and right snapshot matrices to form the representation

(4.2) BL = SXL, BR = SXR.

with S ∈ Rl×n a random test matrix. As discussed in Section 3, S can be constructed by
drawing its entries from the standard normal distribution. While using a Gaussian random
test matrix has beneficial theoretical properties, the dense matrix multiplication SXL can be
expensive for large dense matrices. Alternatively, S can be chosen to be a random and rescaled
subset of the identity matrix, i.e., B is formed by sampling and rescaling l rows from X with
probability pi. Thus, S is very sparse and is not required to be explicitly constructed and
stored. More concretely, we sample the ith row of X with probability pi and, if sampled, the
row is rescaled by the factor 1/

√
l · pi in order to yield an unbiased estimator [17]. A naive

approach is to sample rows with uniform probability pi = 1/n. Uniform random sampling
may work if the information is evenly distributed across the input data, so that dominant
structures are not spatially localized. Indeed, it was demonstrated in [10] that the dominant
DMD modes and eigenvalues for some low-rank fluid flows can be obtained from a massively
undersampled sketch. However, the variance can be large and the performance may be poor in
the presence of white noise. While not explored by [10], the performance can be improved using
more sophisticated sampling techniques, such as leverage-score sampling [15, 43, 17]. Better
performance is expected when using structured random test matrices such as the subsampled
randomized Hadamard transform [56, 67] or the CountSketch [72]. Both of these methods
enable efficient matrix multiplications, yet they are more computationally demanding than
random sampling.

The shortcoming of the algorithm in [10] is that l depends on the ambient dimension of the
measurement space of the input matrix. Thus, even if the data matrix is low rank, a large l
may be required to compute the approximate DMD. Next, we discuss a randomized algorithm
which depends on the intrinsic rank of the input matrix.
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4.3. An Improved Randomized Scheme. In the following, we present a novel algorithm
to compute the dynamic mode decomposition using the probabilistic framework above. The
proposed algorithm is simple to implement and can fully benefit from modern computational
architectures, e.g., parallelization and multithreading.

Given a sequence of snapshots x0,x1, ...,xm ∈ Rn, we first compute the near-optimal
basis Q ∈ Rn×l using the randomized methods which we have discussed in Section 3. Then,
we project the data onto the low-dimensional space, so that we obtain the low-dimensional
sequence of snapshots

b0,b1, ...,bm := Q∗x0,Q
∗x1, ...,Q

∗xm ∈ Rl.

More concisely, we can express this as

B := Q∗X.

Next, we separate the sequence b0,b1, ...,bm into two overlapping matrices BL ∈ Rl×m and
BR ∈ Rl×m

BL=

b0 b1 · · · bm−1

 , BR=

b1 b2 · · · bm

 .(4.3)

This leads to the following projected least-squares problem

(4.4) ÂB = arg min
AB

‖BR −ABBL‖2F .

Using the pseudoinverse, the estimator for the linear map ÂB ∈ Rl×l is defined as

(4.5) ÂB := BRB†L = BRVΣ−1Ũ∗,

where Ũ ∈ Rl×k and V ∈ Rm×k are the truncated left and right singular vectors of BL. The
diagonal matrix Σ ∈ Rk×k contains the corresponding singular values. If p = 0, then l = k,
and no truncation is needed. Next, ÂB is projected onto the left singular vectors

ÃB = Ũ∗ÂBŨ(4.6a)

= Ũ∗BRVΣ−1.(4.6b)

The DMD modes, containing the spatial information, are then obtained by computing the
eigendecomposition of ÃB ∈ Rk×k

(4.7) ÃBW̃B = W̃BΛ,

where the columns of W̃B ∈ Ck×k are eigenvectors w̃B,j , and Λ ∈ Ck×k is a diagonal matrix
containing the corresponding eigenvalues λj . The high-dimensional DMD modes W ∈ Cn×k
may be recovered as

(4.8) W = QBRVΣ−1W̃B.

The computational steps for a practical implementation are sketched in Algorithm 4.1.
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4.3.1. Derivation. In the following we outline the derivation of Eq. (4.8). Recalling
Eq. (2.7), the estimated transfer operator Â is defined as

(4.9) Â := XRX†L.

Random projections of the data matrix X result in an approximate orthonormal basis Q for
the range of Â, as described in Sec. 3. The sampling strategy is assumed to be efficient enough
so that XL ≈ QQ∗XL and XR ≈ QQ∗XR. Equation (4.9) then becomes

(4.10) Â ≈ (QQ∗XR) (QQ∗XL)† .

Letting BL := Q∗XL and BR := Q∗XR, the projected transfer operator estimate is defined as
in Eq. (4.5), ÂB := BRB†L. Substituting this into Eq. (4.10) leads to

(4.11) Â ≈ QÂBQ∗.

Letting BL = ŨΣV∗ be the SVD of BL, and left- and right-projecting ÂB onto the dominant
k left singular vectors Ũ, yields

(4.12) ÃB := Ũ∗ÂBŨ.

The eigendecomposition is given by ÃBW̃B = W̃BΛ, as in Eq. (4.7).

Let ŴB := BR VΣ−1W̃B. It is simple to verify that this is an eigenvector of ÂB:

ÂBŴB = BR B†LBR VΣ−1W̃B,

= BR VΣ−1ÃBŴB,

= BR VΣ−1W̃BΛ,

= ŴBΛ.

Substituting the eigendecomposition of ÂB in Eq. (4.11) and right-multiplying by QŴB leads
to

(4.13) ÂQŴB ≈ QŴBΛ,

Algorithm 4.1 Randomized Dynamic Mode Decomposition (rDMD).
Given a snapshot matrix X and a target rank k, the near-optimal dominant dynamic modes W
and eigenvalues Λ are computed. The approximation quality can be controlled via oversampling
p and the computation of power iterations q. An implementation in Python is available via
the GIT repository https://github.com/erichson/ristretto.

(1) [Q,B] = rqb(X, p, q) Randomized QB decomposition (Alg. 3.1).

(2) B→ {BL,BR} Left/right low-dimensional snapshot matrix.

(3) [Ũ,Σ,V] = svd(BL, k) Truncated SVD.

(4) ÃB = Ũ∗BRVΣ−1 Least squares fit.

(5) [W̃B,Λ] = eig(ÃB) Eigenvalue decomposition.

(6) W← QBRVΣ−1W̃B Recover high-dimensional DMD modes W.
.

https://github.com/erichson/ristretto
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so that identification with ÂW = WΛ̃ verifies the claim in Eq. (4.8) on the eigendecomposition
of Â:

W ≈ QBR VΣ−1W̃B, Λ̃ ≈ Λ.

5. Numerical Results. In the following we present numerical results demonstrating the
performance of the randomized dynamic mode decomposition (rDMD). First, we provide some
visual results for a flow behind a cylinder and climate data. Then, we evaluate and compare
the computational time and accuracy of randomized algorithm to the deterministic algorithm.

All computations are performed using Amazon Web Services (AWS). We use a G3 instance
with 16 Xeon E5-2686 CPUs and 1 NVIDIA Tesla M60 GPU. The underlying numerical linear
algebra routines are accelerated using the Intel Math Kernel Library (MKL).

5.1. Fluid Flow Behind a Cylinder. As a canonical example, we consider the fluid flow
behind a cylinder at Reynolds number Re = 100. The data consist of a sequence of 151
snapshots of fluid vorticity fields on a 449× 199 grid1, computed using the immersed boundary
projection method [63, 12]. The flow features a periodically shedding wake structure and
the resulting dataset is low rank. While this data set poses no computational challenge, it
demonstrates the accuracy and quality of the randomized approximation on an example that
builds intuition. Flattening and concatenating the snapshots horizontally yields a matrix of
dimension X ∈ R89,351×151, i.e., the columns are the flattened snapshots x ∈ R449×199.

We compute the low-rank DMD approximation using k = 15 as the desired target rank.
Figure 4a shows the DMD eigenvalues. The proposed randomized DMD algorithm (with
p = 10 and q = 0), and the compressed DMD algorithm (with l = 1000) faithfully capture
the eigenvalues. Overall, the randomized algorithm leads to a 6 fold speedup compared to
the deterministic DMD algorithm. Further, if the singular value spectrum is slowly decaying,
the approximation accuracy can be improved by computing additional power iterations q.
To further contextualize the results, Fig. 5 shows the leading six DMD modes in absence of
noise. The randomized algorithm faithfully reveals the coherent structures, while requiring
considerably fewer computational resources.

Next, the analysis is repeated in presence of additive white noise with a signal-to-noise
ratio (SNR) of 10. Figure 4b shows distinct performance of the different algorithms. The
deterministic algorithm performs most accurately, capturing the first eleven eigenvalues. The
randomized DMD algorithm reliably captures the first nine eigenvalues, while the compressed
algorithm only accurately captures seven of the eigenvalues. This is, despite the fact that the
compressed DMD algorithm uses a large sketched snapshot sequence of dimension 1000× 151,
i.e., 1, 000 randomly selected rows out of the 89, 351 rows of the flow data set are used. For
comparison the randomized DMD algorithm provides a more satisfactory approximation using
l = 25 and 2 additional power iterations, i.e., the sketched snapshot sequence is only of
dimension 25 × 151. The results show that the randomized DMD algorithm yields a more
accurate approximation, while allowing for higher compression rates. This is because the
approximation quality of the randomized DMD algorithm depends on the intrinsic rank of the
data and not on the ambient dimensions on the measurement space.

1Data for this example may be downloaded at dmdbook.com/DATA.zip.
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Figure 4: DMD eigenvalues for fluid flow behind a cylinder. Both the compressed and
randomized DMD algorithms capture the eigenvalues in the absence of noise (a). In the
presence of white noise with SNR of 10, rDMD performs better than sampling rows (b).

(a) Deterministic DMD modes. (b) Randomized DMD modes.

Figure 5: Leading dynamic modes extracted from the fluid flow behind a cylinder.

5.2. Sea Surface Data. We now compute the dynamic mode decomposition on the
high-resolution sea surface temperature (SST) data. The SST data are widely studied in
climate science for climate monitoring and prediction, providing an improved understanding
of the interactions between the ocean and the atmosphere [53, 52, 61]. Specifically, the daily
SST measurements are constructed by combining infrared satellite data with observations
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provided by ships and buoys. In order to account and compensate for platform differences
and sensor errors, a bias-adjusted methodology is used to combine the measurements from the
different sources. Finally, the spatially complete SST map is produced via interpolation. A
comprehensive discussion of the data is provided in [52].

The data are provided by the National Oceanic and Atmospheric Administration (NOAA)
via their web site at https://www.esrl.noaa.gov/psd/. Data are available for the years from
1981 to 2018 with a temporal resolution of 1 day and a spatial grid resolution of 0.25◦. In
total, the data consist of m = 13, 149 temporal snapshots which measure the daily temperature
at 1440 × 720 = 1, 036, 800 spatial grid points. Since we omit data over land, the ambient
dimension reduces to n = 691, 150 spatial measurements in our analysis. Concatenating the
reduced data yield a 36GB data matrix of dimension X ∈ R691,150×13,149, which is sufficiently
large to test scaling.

5.2.1. Aggregated (Weekly Mean) Data. The full data set outstrips the available fast
memory required to compute the deterministic DMD. Thus, we perform the analysis on
an aggregated data set first in order to compare the randomized and deterministic DMD
algorithms. Therefore, we compute the weekly mean temperature, which reduces the number

(a) Deterministic DMD modes.

(b) Blocked Randomized DMD modes.
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(c) DMD eigenvalues.

Figure 6: Leading dynamic modes extracted from the aggregated high-resolution sea surface
dataset. No distinct differences can be obtained. Further, the randomized DMD algorithm
captures faithfully the eigenvalues. In contrast, the compressed DMD algorithm provides only
a crude approximation for the eigenvalues.

https://www.esrl.noaa.gov/psd/
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of temporal snapshots to m = 1, 878. Figure 6c shows the corresponding eigenvalues. Unlike
the eigenvalues obtained via the compressed DMD algorithm, the randomized DMD algorithm
provides an accurate approximation for the dominant eigenvalues. Next, Fig. 6a and 6b show
the extracted DMD modes. Indeed, the randomized modes faithfully capture the dominant
coherent structure in the data.

5.2.2. Full Data. The blocked randomized DMD algorithm allows us to extract the DMD
modes from the high-dimensional data set. While the full data set does not fit into fast memory,
it is only required that we can access some of the rows in a sequential manner. Computing
the k = 15 approximation using b = 4 blocks takes about 150 seconds. The resulting modes
are shown in Fig. 7. Here, the leading modes are similar to the modes extracted from the
aggregated data set. However, subsequent modes may provide further insights which are not
revealed by the aggregated data set.

5.3. Computational Performance. Next, we evaluate the computational performance of
the randomized algorithms in terms of both time and accuracy. We measure the accuracy by
computing the relative error of the randomized DMD compared to the approximation produced
by the deterministic DMD algorithm

(5.1) ρ(X̂(DMD), X̂(rDMD)) =
‖X̂(DMD) − X̂(rDMD)‖F

‖X̂(DMD)‖F
,

where X̂ denotes the reconstructed snapshot matrix using either the deterministic or randomized
DMD algorithm. Here, we use a (high-performance) partial SVD algorithm to compute the k
deterministic modes [41].

Figure 7: Leading dynamic modes of the full high-resolution SST dataset.
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Figure 8 summarizes the computational performance, for three different examples, and for
varying target ranks. First, Figure 8 (a) shows the performance for the flow past a cylinder.
The snapshot matrix is tall and skinny. In this setting there is no computational advantage of
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(a) Flow past cylinder (matrix of dimension 89, 351× 151).
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(b) Aggregated sea surface temperature (matrix of dimension 691, 150× 1, 878).
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(c) Turbulent flow (matrix of dimension 65, 536× 15, 000).
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(d) Turbulent flow (matrix of dimension 131, 072× 20, 000).

Figure 8: Average runtimes and errors, over 20 runs, for varying target ranks. Further, the
gained speedup compared to the deterministic algorithm (baseline) is shown.
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the randomized algorithm over the deterministic algorithm. This is because the data matrix is
overall very small and the (deterministic) partial SVD is highly efficient for tall and skinny
matrices. Importantly, we stress that the randomized DMD algorithm provides a very accurate
approximation for the flow past cylinder. That is, because this fluid flow example has a fast
decaying singular value spectrum.

Second, Figure 8 (b) shows the performance for the aggregated SST data. This snapshot
matrix is also tall and skinny, yet its dimensions are substantially larger than those of the
previous example. Here, we start to see the computational benefits of the randomized DMD
algorithm. We gain about a speedup factor of 3-5 for computing the low-rank DMD, while
maintaining a good accuracy. Note that this problem has a more slowly decaying singular
value spectrum and thus the accuracy is poorer than in the previous examples. This example
also demonstrates the performance boost by using a GPU accelerated implementation of the
randomized DMD. Clearly, we can see a significant speedup by a factor of about 10-15 for
computing the top 30 to 60 dynamic modes. Note that we run out of memory for target ranks
larger than k > 150.

Third, Figure 8 (c) and (d) shows the performance for a turbulent flow data set. The fluid
flow was obtained with the model implementation of [11], which is based on the algorithm
presented by [71]. This data set shows the advantages and disadvantages of the randomized
algorithm. Indeed, we see some substantial gains in terms of the computational time, i.e., the
GPU-accelerated algorithms achieve speedups of factors > 300. However, the accuracy is less
satisfactory due to the slowly decaying singular value spectrum of the data. This example
illustrates the limits of the randomized algorithm, i.e., we need to assume that the data set
features low-rank structure and has a reasonably fast decaying singular value spectrum.

The reader might have noticed that the blocked randomized scheme (using 2 blocks)
requires more computational time to compute the approximate DMD. This is because the
data matrices considered in the above examples fit into the fast memory. Hence, there is
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Figure 9: A profile of the memory usage vs runtime of the different DMD algorithms.
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little advantage in using the blocked scheme here. However, the memory requirements are
often more important than the absolute computational time. Figure 9 shows a profile of the
memory usage vs runtime. The blocked randomized DMD algorithm requires only a fraction of
the memory, compared to the deterministic algorithm, to compute the approximate low-rank
dynamic mode decomposition. This can be crucial when carrying out the computations on
mobile platforms, on GPUs (as seen in Figure 8 (c)), or when scaling the computations to very
large applications.

6. Conclusion. Randomness as a computational strategy has recently been shown capable
of efficiently solving many standard problems in linear algebra. The need for highly efficient
algorithms becomes increasingly important in the area of ‘big data’. Here, we have proposed
a novel randomized algorithm for computing the low-rank dynamic mode decomposition.
Specifically, we have shown that DMD can be embedded in the probabilistic framework
formulated by [29]. This framework not only enables computations at scales far larger than
what was previously possible, but it is also modular, flexible, and the error can be controlled.
Hence, it can be also utilized as a framework to embed other innovations around the dynamic
mode decomposition, for instance, see [38] for an overview.

The numerical results show that randomized dynamic mode decomposition (rDMD) has
computational advantages over previously suggested probabilistic algorithms for computing the
dominant dynamic modes and eigenvalues. More importantly, we showed that the algorithm
can be executed using a blocked scheme which is memory efficient. This aspect is crucial in
order to efficiently deal with massive data which are too big to fit into fast memory. Thus, we
believe that the randomized DMD framework will provide a powerful and scalable architecture
for extracting dominant spatiotemporal coherent structures and dynamics from increasingly
large-scale data, for example from epidemiology, neuroscience, and fluid mechanics.
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