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EXISTENCE AND STABILITY OF SCHRODINGER SOLITONS ON
NONCOMPACT MANIFOLDS

DAVID BORTHWICK, ROLAND DONNINGER, ENNO LENZMANN, AND JEREMY L. MARZUOLA

ABSTRACT. We consider the focusing nonlinear Schrédinger equation on a large class of
rotationally symmetric, noncompact manifolds. We prove the existence of a solitary wave
by perturbing off the flat Euclidean case. Furthermore, we study the stability of the solitary
wave under radial perturbations by analyzing spectral properties of the associated linearized
operator. Finally, in the L2-critical case, by considering the Vakhitov-Kolokolov criterion
(see also results of Grillakis-Shatah-Strauss), we provide numerical evidence showing that
the introduction of a nontrivial geometry destabilizes the solitary wave in a wide variety
of cases, regardless of the curvature of the manifold. In particular, the parameters of the
metric corresponding to standard hyperbolic space will lead to instability consistent with
the blow-up results of Banica-Duyckaerts (2015). We also provide numerical evidence for
geometries under which it would be possible for the Vakhitov-Kolokolov condition to suggest
stability, provided certain spectral properties hold in these spaces.

1. INTRODUCTION

The focusing nonlinear Schrodinger equation

i0wu(t, x) + Agu(t, r) +u(t, z)|u(t,z)[P"' =0, p>1, (1.1)
for an unknown u : R xR? — C, is a prototypical dispersive partial differential equation that
arises in various situations in physics, e.g., in nonlinear optics or as an effective equation in
many particle quantum mechanics. We refer the reader to the standard monograph [66] for
the general background. It is a classical result that in the parameter range 1 < p < 1+ ﬁ
(d > 2, no upper bound if d = 2), Eq. ([ILT) possesses solitary waves or solitons, i.e., solutions
of the form N

ul(t,z) = €' Qpay(z), a>0, (1.2)

where the profile function Qga, € H L(R?) is radial, smooth, positive, and exponentially
decaying, see [22| [65, 23], [33, 34} [7, [9]. Note that Qga, satisfies the elliptic equation

- AQRd,a + a2QRd,a - QRd,a|QRd,a|p_l = 0. (13)
The upper bound p =1+ ﬁ has an interpretation in terms of scaling. Observe that if u is
a solution to Eq. (1), then so is the rescaled function

u(t, x) == A Tu(t /N2, 2 /A

for any A > 0. When measured in homogeneous Sobolev spaces, the rescaled solution satisfies
d_g 2
lun(t, M gsay = X277 (/X% ) s oy
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and thus, if p =1+ ﬁ, the H L(R%)-norm is invariant under the scaling. This is called the
energy-critical case. Similarly, p = 1 + % is called the mass-critical or L?-critical case as
it leaves the L?(R%)-norm invariant. The scaling symmetry also shows that it is enough to
consider v = 1 in Eq. (L.2)), and in this case, the solution u} is unique |22} 511, 47] and called
the ground state.

The ground state has a variational characterization which is closely related to stability
properties. More precisely, this refers to the notion of orbital stability. Roughly speaking, uj
is orbitally stable if any solution u that starts out close to uj stays close to uj for all times,
modulo symmetries of the equation. It is known that the ground state uj is orbitally stable
in the L?-subcritical case p < 14 2 and unstable otherwise [8| (15}, 70} 61, [72] 136} 135, 37].

The stronger notion of asymptotic stability of uj refers to the property that all solutions
u starting out sufficiently close to uj converge to uj as ¢ — 0o, modulo symmetries of the
equation. Proving asymptotic stability is challenging as it presupposes a detailed knowledge
of the spectrum of the nonself-adjoint operator that arises upon linearization of the equation
at the ground state. Unfortunately, the mathematical understanding of this operator is still
unsatisfactory and one has to rely in part on numerical evidence. Consequently, asymptotic
stability is known only in special cases or under suitable spectral assumptions, see e.g. [63),

64, 13, 657, 25, 26], [14], 55 291 (9] Bl 28, 6], 52] for an incomplete selection of available results.

1.1. Main results. In the present paper we change the geometry and investigate the exis-
tence of solitary waves and their spectral stability for Schrodinger equations on manifolds.
More precisely, let M4 = (0, 00) x 4 S, d > 2, be a warped product manifold with warping
function A : R — R and S%! equipped with the standard round metric, see e.g. [56]. For
the sake of concreteness, we use the stereographic projection ¢ : Rt — S,

- 2y |ylP—1
v "(\y\2+1’|y2|+1 ’

to parametrize the sphere. Then we have

00 (y) Ot (y) =

4
(lyl*+1)?
and the components g;; of the Riemannian metric on the warped product M? are given by

4A(r)?
. , = 010 . S —
9ix(r,y) 1591k (Jy]2+1)?
for j,k € {1,2,...,d}. We also remark that the sectional curvatures of M? are given by
A"(r) 1—A(r)?
_ K(Oa el SV
A(’/’) 5 ( Yo yb)(ra y) A(T)2
for a,b € {1,2,...,d — 1}, see [56].

Hypothesis 1.1. We make the following assumptions on the warping function A.
e A:R — R is smooth and odd with A'(0) = 1.
o A(r) Z r for allr > 0.
o There exists a constant Vo4 € R such that
d—1A"(r) (d—-1)(d-3)[A(r)? 1
2 A(r) 4 {A(r)z o2
2

5ab

5yk(1 — 51j51k>

K(ar’aya)(ra y) = (1 - 5ab)a

} — Voull + O((r) )]



for all r > 0.

Remark 1.2. A classical example covered by Hypothesis [1lis A(r) = sinh(r) so that M? is
the hyperbolic space.

As usual, we denote by (g7%) the matrix inverse of (g;;) and det g is the determinant of
the latter matrix. Explicitly, we have

Vi =400 ()

ly[2 +1

and for the inner product (-|)2qyay on L?(M?) we obtain the expression

e 9 d—1
odoe = [ [ sogan () v

Furthermore, the Laplace-Beltrami operator Aya on M? is given by

1 )
Aus 1= ——0; (v/det g "0 )
Md \/W 7 etgyg k
where 0 = 0, and 0; = 0y for j = 2,3,...,d. We consider the focusing nonlinear
Schrodinger equation
idpu(t, ) + Aygau(t, -) +ult,-)|u(t,)[""1 =0 (1.4)

on M for a function u : R x M¢ — C. Our first result concerns the existence of solitary
waves or solitons.

Theorem 1.3 (Existence of solitary waves). Assume Hypothesis L1 and 1 < p < 1+ 7%
(no upper bound in the case d = 2). Then there exists an oy > 0 such that for any a > «p,
there exists a real-valued function Qya, € C*(MY) for which u}, : R x M¢ — C, given by

* ia?
Ua(t, r, y) =€ tQMd,a (Ir7 y)7
is a solution to FEq. (L4) for allt € R. More precisely, we have

d—1
r

Qusalrin) =77 (575)  [Quualarer) + pufaren)].

where po, € C*(R?) satisfies ||pal g2y + ||pallpe@ey S @t for all o« > ag. In particular,
Qe o 8 Tadial.

Remark 1.4. The soliton profile on the manifold is a perturbation of the Euclidean profile.
The heuristic behind this fact is that for large o the soliton is supposed to concentrate near
the origin and one expects the curvature to become negligible. This effect is quantified in
Theorem [L3]

We continue by investigating the linear stability of the solitary wave from Theorem [1.3]
By plugging the ansatz u(t,r,y) = €ia2t[QMd7a(7", y) + w(t,r,y)] into Eq. (IL4]), one obtains,
upon dropping the nonlinear terms, the evolution equation

0 (forts ) = B (s’ (15)
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with the operator

~ 0 L
Lyid o = ~ Moo=
M <_£Md,a,+ 0 )

ZM[d’(L_ = —Apa +a? — |QMd,a‘p_1

~ 2 -1
ﬁMd,a,—l— = —Aye + _p|QMd,a|p :

where

Evidently, the linear stability of u} is encoded in the spectral properties of (a closed realiza-

tion of) the operator Ly ,. We restrict our attention to the radial case and consider Ly ,
on the space L2 ;(M? C?) with domain

rad
D(Lyeo) = {(f1, f2) € CZ(M*,C?) : fu, f, radial}.
Accordingly, we equip the scalar operators ZMd7a7:|: with the domains
D(Lygioz) = {f € CZ(M?) : f radial}.
Theorem 1.5 (Structure of the spectrum of the linearized operator). Assume Hypothesis

Tlandl <p< 1+$ (no upper bound in the case d = 2). There exists an ag > 0 such that

for any o > o, the operator EMd’a : D(ZMd’a) C L2 (M4, C?) — L2 ,(M? C?) is closable.
Its closure Ly o has the following properties:

The spectrum of Ly, ts a subset of R UiR.
If X € 0(Lyga ) then =\ € o(Lypa,).
The essential spectrUWﬂ of Ly o s given by

Oe(Lygin) ={2 € C:Rez =0,|Imz| > a® + Vo 4}

The set 0(Lyga o) \Oe(Lid o) @5 free of accumulation points and consists of eigenvalues
with finite algebraic multiplicities.
We have 0 € 0p(Lya o) and

ker Ly o, = <<QN(;¢ )> )

For p # 1+ % we obtain a very clear picture concerning the linear stability which is
analogous to the Euclidean situation.

Theorem 1.6 (Spectral stability in the noncritical case). Assume Hypothesis[11] and 1 <
p<1+4 ﬁ (no upper bound in the case d = 2). Then there exists an o > 0 such that for
all a > «g the following holds.

e [fp#1+ %, the algebraic multiplicity of 0 € 0,(Lya ) equals 2.
o [fp<1+ %, there are no positive eigenvalues of Lyya .

o Ifp>1+ %, there exists precisely one positive eigenvalue Ao € 0p(Lyga ) and the
eigenvalues £\, € 0p(Lyga o) are simple.

IThere are various (in general inequivalent) definitions of the essential spectrum of a closed operator. For
us, the essential spectrum is the part of the spectrum that is invariant under relatively compact perturbations,
see Definition [.T] and Remark below.
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In the critical case p = 1+§, the stability of the solitary wave is more involved and depends
on finer properties of the underlying geometry. The corresponding condition is formulated

in terms of 51@7% +» where Ly, 4 is the closure of Lya 4 4.

Theorem 1.7 (Spectral stability in the critical case). Assume Hypothesis[I1 and 1 < p <
1+ ﬁ (no upper bound in the case d = 2). Then there exists an ag > 0 such that for all

a > ag the operator Ly g = D(Lypan) C LA(M?) — L2 (M?) is essentially self-adjoint

rad rad
and its closure Ly, 4 is bounded invertible. If p =1+ % then for all a > «q the following

holds:
) ]f(ﬁg,ﬂﬁ N +QMd7a|QMd7a)L2(Md) > 0 then Ly, has precisely one positive eigenvalue A,
and the eigenvalues £\, € 0,(Lya ) are simple.
o [f (‘CI\_/Hlloe +QMd7a|QMd’a)L2(Md) < 0 then Ly, has no positive eigenvalues.

Remark 1.8. If 0,Qyea, is sufficiently smooth and belongs to the domain of Ly, ;, the
(in)stability condition in Theorem [[.7] can be simplified. Indeed, by differentiating

—Appa Qypa o + a2QMd,a — QMd,a|QMd,a|p_l =0
with respect to a we find
LMd7a’+8aQMd’a = —2OéQMd7a
and thus,

(EM;OZ,_,_QM%Q{‘QMd,a)LQ(Md) = _i(&xQMd,a‘QMd,a)Lz(Md) = _ﬁﬁaHQMd,aHiz(Md)‘

Remark 1.9. Theorem [L7raises the intriguing question of whether it is possible to “stabilize”
the borderline unstable soliton in Euclidean space by changing the background geometry.
Unfortunately, we cannot answer this question in the affirmative as we are unable to provide
a sufficient criterion for stability in the critical case. This appears to be challenging, as
it requires a good understanding of eigenvalues and resonances on the imaginary axis, a
question which is still largely open even in the purely Euclidean setting. However, Theorem
[ 7 provides a sufficient criterion for (linear) instability. Using this, we provide numerical
evidence that there exists a large class of negatively curved manifolds such that the soliton
becomes (linearly) unstable, see Section [6l This fits well with the blow-up instability for the
L? critical (and super-critical) nonlinear Schrodinger equation on the hyperbolic space H?
computed via virial identities in [4]. Blow-up was also established in [I2] in the L? critical
setting with a Riemannian manifold that is locally like H? and asymptotically like R?.

1.2. Further related results. Unfortunately, there is still no general satisfactory under-
standing of the linearized operator even in the Euclidean case, and as a consequence, this
classical problem remains a topic of contemporary research. For instance, see [30] for an
analysis of embedded eigenvalues in the essential spectrum and [I6] for a modern account of
the general theory and new numerical results. Furthermore, decay properties of eigenfunc-
tions are investigated in [42]. The paper [59] is concerned with asymptotic stability but also
contains a thorough analysis of the linearized operator. In [24], a novel computer-assisted
method is introduced to prove the absence of eigenvalues in the essential spectral gap. In
addition, in [50], the authors give a numerically assisted proof for the absence of embedded
eigenvalues in a variety of settings on R%. In the case of potential perturbations, stability

analysis in both the small and large mass limits have been studied through both dispersive
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techniques as well as bifurcation theory on R for a range of nonlinearities in many works, for
a small sampling see e.g. [69, 27, 39 45], 44, 49| [54] 53] and the references captured within.

Needless to say, the literature on Schrodinger equations on manifolds is vast and we just
mention some closely related recent works. There is a number of papers devoted to the
study of the focusing nonlinear Schrodinger equation on hyperbolic space. A recurring
theme, compare Remark [[.9] is the question whether the negative curvature may improve
the situation compared to the Euclidean case and stabilize the evolution, see, e.g., [2| [, 4].
Spectral properties in hyperbolic space are studied in [10] and the existence of ground states
on noncompact manifolds is investigated in, e.g., [2I| 67, 20]. See also the recent works
[18, 19, 7] for advances on the spectral measure for asymptotically hyperbolic manifolds,
the analysis of which is required for good dispersive estimates that can lead to results on
asymptotic stability when understood with perturbations and for the linearized operator.

The literature on spectral measures for the asymptotically Euclidean and conic cases is quite
vast, but see [48] [11], 40] and references therein.

2. PRELIMINARY TRANSFORMATIONS

We proceed by transforming the radial case of Eq. (IL4)) to a standard nonlinear Schrédinger
equation on R? with a potential. This is a well-known reduction, see e.g. [3, 21].

2.1. The Laplace-Beltrami operator. The Laplace-Beltrami operator Ay is given by

1 .
— . Jk
Apga f detgaj < det g g akf> )

We now assume that f(r,y) = f(r), i.e., we restrict ourselves to the radial case. Then,

AMd.f(r) = War <\/ detg r, y a .f ) #87’ [A(r)d_larf(r)}
_ |92 _ Al(r) ,
= ez + @05 0a) 10

= ARF(r).

Obviously, A is formally self-adjoint on L2, (0, 00). Eq. (L) for radial functions reduces
to

i0u(t, ) + Andu(t, ) +at, )|a(t, )Pt =0 (2.1)
for u: R x (0,00) — C.

2.2. Conjugation to Euclidean. In order to perturb off the Euclidean case, we would
like to compare the Laplace-Beltrami operator Ay to the ordinary Laplace operator on R,
henceforth denoted by Aga. The restriction of the Euclidean operator to radial functions
yields the operator
d—1
Arad =P+ —0,,
r
acting on Lﬁ|d,1(0, o0). To compare the two operators, we need to conjugate by the unitary

map that relates the radial function spaces.
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Let U, : L? e 1(0,00) = LAd 1(0,00) be defined by

d—1

r 2
wf)=(405) " 10
so that ||Udf||L2 (000) = IIfllze 2 11 (0.00)" Now we consider the operator U; AU, on

LH(H(O, 00). EXphCltly, we have

s = (- 1140 @009 K0P 0= 00-9) )

By setting

a1
~ ~ r .
) =t (0.9) ) = (515 ) e
for a function v : R x (0,00) — C, Eq. (Z1)) can now be written as

i00(t, ) + U AU (t, ) + (¢, ) UL, )P~ = 0.

In fact, we find it more convenient to formulate this equation in terms of the auxiliary
function v : R x RY — C, given by v(t,z) := 0(t, |z|). This yields

i0(t, ") + Agav(t, ) — Viu(t, ) + wapv(t, Yot )Pt =0, (2.2)

%W”:<A%J

d—1A"(|x|)  (d—1)(d—3) A(|z])* (d—1)(d—3)

2 A(l]) 4 A|])? dzf*
We keep in mind that v(t, ) is radial. Note that Eq. (2:2]) resembles a standard nonlinear
Schrodinger equation on Euclidean space with a potential V.

To look for solitons, we plug the ansatz v(t, z) = €' R, () into BEq. Z2) with R, radial.
This yields the elliptic equation

AgaRy — Ry — VaRy + 0apRa| RaP~H = 0. (2.3)

with

(d=1)(p—1)
2

and

V() :=

In terms of the rescaled profile R, defined by R, (z) = a1 Ro(az), Eq. [Z3) reads
AgaRo(z) — Ra(2) — a~2Vy(a™2) Ra(@) + pa, (0" 2)F, (ﬁa(x)) —0,  (2.4)

where F),(s) := s|s|P~!. We intend to solve Eq. (24]) by perturbing off the Euclidean situation
and hence insert the ansatz R, () = Qra(z) + p(z) into Eq. ([2.4)), where Qga := Qga;. In

view of Eq. (L3]), we obtain
—Aap(z) =qa () F(Qra(2))p(x) + [ga () — LN (p)(2)
+a V(0™ 2)Qra(@) + ga (%) Fp(Qpa(2)),

7
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where
Aap(x) = —Agap(z) + p(x) — F)(Qga(2))p(x) + a*Vy(a™ z)p(),
Go(7) =1 — @g,(a '),
N(p)(x) := Fp(Qra(x) + p(x)) — Fp(Qra(z)) — F(Qra(2))p(x).

3. EXISTENCE OF A SOLITON

In this section we show that Eq. (Z3]) has a solution p = p,, provided a > 1 is sufficiently
large. This way, we obtain a soliton solution

vi(t,7) == a1 [Qra(az) + pa(0)]
to Eq. (22).

3.1. Analysis of the linear operator. Initially, we define the operator A, as a classical
differential operator acting on C°(R%). Recall that Qs € C*®°(RY), Qra > 0, and V; €
C>(R%) by Hypothesis LIl As a consequence, A, is a continuous map from D(R?) to
D(RY). Furthermore, A, is formally self-adjoint on L?(R%) and thus, A, extends to D’(R%)
by

Aau(p) = u(Axp)

for u € D'(R?) and ¢ € D(RY). In the limit a — oo, A, formally reduces to £, given by
Lif(x) =—Agaf(z)+ f(2) = I} (Qra(2)) f(2).

This is a well-known operator in the Euclidean setting that occurs in the linearization about
solitary waves.

Note that both A, and £, map radial distributions to radial distributions since Qra and
Vy are radial. Consequently, A, and £, may be viewed as unbounded operators on L2 4(IR?).

rad
Lemma 3.1. The operator £, : H?,(R?) C L2 (R?) — L2 (R?) is self-adjoint. Further-

more, L is invertible and we have the smoothing estimate
15 gl m2eey S 9l 2ray
for all g € L% 4(RY).

rad

Proof. By the exponential decay of Qra and [68], p. 258, Theorem 10.2, we see that £, is

self-adjoint with domain H2  (RY) and essential spectrum o.(L,) = [1,00). Consequently,

0 ¢ o(L) follows from [I6], Lemma 2.1. Thus, it remains to prove the smoothing estimate.
To this end, let Lo : H24(RY) C L2 ((RY) — L2 (RY) be given by Lof = —Agaf + f. For
f € S(RY) we have

FLof(€) = F(=Apaf + f)(&) = (4m®E]* + 1) Ff(€),
where F denotes the Fourier transform
Ff&) = / e 2T f (1) d.
R4
Thus, on the Fourier side, the equation Lyf = g reads

(1+ 47T2|€|2)J';f(€) = Fy(&).



Consequently, by Plancherel,

1£5 gl 2 eay = I1f 2y 2= € F Fllzay = |2 (1 +47°] - )7 Fg| o gay S 1F 9l z2mey
~ |9l z2(ra

for g € S(R?). By approximation, this bound holds for all g € L2 (R?). Let B : L2 ((RY) —
L2

2 a(R?) be given by Bf(z) = —F)(Qga(z)) f(x). By definition, we have the identity

L, = (1+BLy")Lo,
and this shows that £,£;"' is a bounded operator on L2 (R?). By the open mapping
theorem, its inverse Eoﬁjrl is also bounded. Consequently, the smoothing property of £;*
implies the bound

1L 9l ey = |1£6 LoLT gl m2wey S 11LoL7 gl 2wy S 119l L2ra)
for all g € L2 4(R?). O

rad

Lemma 3.2. There exists an ag > 0 such that, for any o > «g, the operator A, : H2 4 (R?) C
L2 (RY) — L2 ,(RY) is self-adjoint and invertible. Furthermore, we have the smoothing

rad rad
estimate

IAZ fll a2y S I f 1l z2ray
for all f € L2 ((R?) and all o > oy.

rad

Proof. For any a > 0 we define a bounded operator B, on L2 ;(R%) by setting

Bof(z) := —Vyla™tz)f(x).

Since V; € L®(R%) by Hypothesis [T, we infer ||Ba f||z2ra) S |1 r2@a) for all o > 0. Con-
sequently, a Neumann series argument shows the existence of the operator (1 — oszanrl)_l
with the bound

|(1 — a_QBaﬁfrl)_lfHLz(Rd) S 1l 22y

for all & > «ap, provided o > 0 is sufficiently large. Thus, from the identity A, = (1 —
a_QBaﬁjrl)EJr, we obtain the existence of the operator

Al =L (1—a?B LN
with the bound
A Pl S 1E5 01— 0 2Bul s e S 11— 0 2Buls) ™ page
S fllzeway

for all f € L2 ,(R?) and o > ay. O

rad

As a consequence of Lemma B.2] we can now reformulate Eq. (Z3]) as the fixed point
problem

p=—A" [4aF)(Qra(-)p + (¢a — DN (p) + o Va(a ' () Qra + ¢ Fp(Qra(-))] . (3.1)
9



3.2. Refined bounds for A;!. Next, we prove an L*° bound for A7!, again by first proving
the corresponding result for Ejrl.

Lemma 3.3. We have the bound
1£5 gl ooy S M9l z2may + 1191 ooy
for all g € L2 J(RY) N L®(RY) N C(RY).
Proof. By Sobolev embedding and Lemma [3.T] the result is immediate in the case d = 2, i.e.,
I£3 gl o2y S NLT gl b2y S N9llrae).

Thus, we may restrict ourselves to d > 3. Since all functions are radial, problems occur only
at the origin. Indeed, by the one-dimensional Sobolev embedding and Lemma B} we have

||£Ilg||Loo(Rd\Bd) S ||£Ilg||H1(Rd) S gl z2ray
for all g € L2 4(R?). Consequently, it suffices to prove the estimate
||'C-|_-lg||L°°(IB%d) S l9ll2@ey + [191] oo (mey

for all g € Lrad(Rd) N L>®(RY) N C(RY).
Let f = £:'g. Then f € H2,4(RY), and by the radial Sobolev embedding we infer that
feC@®R\ {0}) N LL_(RY). The equation L, f = g implies Agaf* = h* in D'(R?) with
h(x) = —g(z) + f(z) = F}(Qra(2)) f (),

see Definition [A2 for the notation. Evidently, h € C(R?\ {0}) N LL (R?) and thus, Lemma
[A3 shows that the function f(r) := =" f(re;) belongs to C2(0,00) and satisfies

7o) - I Foy )+ B Quatre) T = T gre) (32
for all r > 0. Now we consider the homogeneous version of Eq. (82, i.e.,
" (d—1)(d—3) :
¢(r) = = 9(r) = &(r) + F(Qra(re))o(r) = 0. (3.3)
Eq. 3) has a fundamental system {¢g, ¢oo} with the asymptotic behavior
[go(r)] = 7% for 7 € [0,1], |po(r)| = " for r > 1,
|0 (r)\: forre[o 1], o4 (r)| ~ " for r > 1,
|Goo(r)| =7 = forr € (0,1], | oo ()| = 7" for r > 1,
@ (r)] = 7% for 7 € (0,1], |3 (r)| ~ e for r > 1,

and we may normalize so that W (¢g, ¢oo) = 1, see Lemma [B.1] below. Consequently, the
variation of constants formula yields the existence of constants a,b € C such that

7(r) = ado(r) + bwa(r) — do(r / boc ()57 g(s01)ds — buo(r / d0(s)5°7 g se1)ds,



and f € H! ;(R?) implies that @ = b = 0. Furthermore, we have the bounds

[e'¢) 1 [e'¢)
ontr)] [ Jon0)5"F gtsen| s £ 7T gl | [ 555 T s [Tt
r 0 1

d—1
Sz |glloeme

and

| oo (7)

)s o g sel)‘ ds < 7’_d23||g||Loo(Rd)/ s 1ds
0

d+3
S 77 gl ey

for all r € (0, 1]. Consequently,

_d-1
[f(re))| = [r= = f(r)| S llgllpeeray
for all € (0, 1], which implies the desired bound
1L 9l Lo gay = 1 f | oo may S 19l o ey

U

By a simple perturbative argument, we obtain an analogous L* bound for the operator

AL
Corollary 3.4. There exists an oy > 0 such that

||A;19||L00(Rd) S 19l c2@ay + [[9]] oo may
for all g € L% 4(RY) N L®(RY) N C(RY) and o > «.
Proof. Let X := L2 (R%) N L>(R?%) N C(RY) and write

191l == llgll2@ay + |9l oo ma)-
As in the proof of Lemma B.2], we set
Bag(x) == —Va(a™ w)g(x).

Note that ||Bagllx S |lgllx for all ¢ € X and a > 0 by Hypothesis [LTl Consequently, the
operator (1 —a™2B,) : X — X is bounded invertible on X for any a > aq by a Neumann
series argument, provided «y is sufficiently large. Furthermore,

11— a™Ba) gllx < llgllx

for all g € X and a > ag. By Lemmas B.1] and B3] we have || £1'g|lx < |lg|/x for all g € X,
and thus,

IS gll ooy < 1A gllx = I£31(1 — a7 BaL3) T gllx S N1 — a7 Balh) gllx < llgllx
S Ngllzamay + gl poeray

for all g € X and a > «p, as desired. O
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3.3. Bounds on the right-hand side of Eq. ([B1]). Next, we provide suitable estimates
for the terms appearing on the right-hand side of Eq. ([B.1]).

Lemma 3.5. We have the bounds

|9a () S 1,
|4a(2) Fy(Qra(@))] S @™,
|07 Va(a ™ 2)Qpa(2)] < a7 (2) ™,
|4a(2) Fp(Qra(2)| S o™ (z) ™,

for all x € R and all o > 1.

Proof. Recall that we assume Hypothesis [LIl For r € [0, @] we have
1 1

o r a
- =1+0(a™),
Ala=lr)  a~lr[l + O(a=2r?)] +0(a™)
and thus,
] (@-)e-1)
x
[ =1|1—- -1 =|1—-—| — < 541
@l =L = pafata)| = 1= () sa
for all || < a2. For |z| > a? we trivially estimate
] (@-)p-1)
a 'z
o <1 — <1,
@l (gils) s

since A(|a~'z|) = |a~'z|. This yields the first statement.
For the second one we recall that F)(Qga(x)) = p|Qpa(z)[P~" decays exponentially as
2| = oo. In particular, |F)(Qga(z))| < (z)~* and thus,

|4a(2) Fo(Qaa(2))] S (a2) 2 S o™

provided |z| > a2. In the case |z| < a2 we use the bound |ga(z)] < o' from above.

~

This proves the second bound, and the fourth bound follows analogously. Finally, the third
estimate is obvious from V; € L*°(R?) and the exponential decay of Qga. O

Next, we provide Lipschitz estimates for the nonlinearity from Eq. (8]).
Lemma 3.6. We have the bound
ING) =N (@) lazgesy S (1 by + 1o + 1ty + gl ) 1 = gl e
for all f,g € H*(R?). Furthermore,
INCE) = N(@limny S (115 + 1l + 19y + gl ) 1 = ey
for all f,g € L™(RY).

Proof. Recall that we assume p € (1, 22) and d > 2. Let N(to,t) := F,(to +t) — Fy(to) —
F)(to)t. Then we have

N(p)(x) = N 1(262]1@ (), p)),



and the fundamental theorem of calculus yields

N(to,t)—Nto, / 8Nt0,S+U(t—S)>d
(3.4)

= (t—s)/o [E!(to + s+ u(t — s)) — F(to)]du.

Now we distinguish the cases p € (1,2] and p > 2. We proceed with the former and note the
elementary estimate

It + 1 1ol | S 8 (35)
for all to,t € R. Since F)(s) = p[s[’~", we obtain from Eq. [B4) the bound

|N(to,t) — N(to,s)| S|t — s /1 s+ u(t —s)[P 'du
< (It ﬂf [s[P71) [t — ]
for all ¢y, t,s € R. Consequently, by Holder’s inequality and Sobolev embedding,
||N(f) - N(9>HL2(Rd S ||\f|p‘1(f - 9>HL2(Rd) + |H9|p_1(f - g)HL?(Rd)
S 1o 1S = 9llzvey + 191720 @ 1f = 91l 2@y
S (I 15atgy + Wty ) 1S = gz
In the case p > 2 (which only occurs if d < 5), we use the bound
[Ito + 2P~ — [t S P + [tol” 2], (3.6)

which yields

|Nm¢w4wm@nsu—ﬂlﬂw+uu—@w4+uw*u+uu—$ww
S ([P A+ [t P72[t] + [sIP~" + [to[P72[s]) [t — s]
for all ¢y, t,s € R. Consequently,
IV = N(@)ll2@ey S NPT = 9l + 11Qrall] g L (f = )2y
Mgl = ) leaqeny + 1Qall 2 9(F — )l seqaer
S 1 ® If = gllzzeray + (|| a@ey [ f = gllpage)
+ 119120 @y 1 = 9l 2oy + 9l sy | f = gllaceey

< (17t + 1Ly + Mol + gl ) 17 = ol e,

by the Sobolev embeddings H?(R?) — L?’(R?) and H%(RY) — L*(RY) (recall that d < 5).
The L bound is immediate from the above. O
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3.4. Existence of the soliton. Now we are ready to prove the existence of the soliton
profile Qa4

Proposition 3.7. There ezists an ag > 0 such that Eq. B1) has a real-valued solution
p = pa € H2 (R NC(RY) for any o > ap. Furthermore, p, satisfies

rad
| pall 2y + || pallLoomey S ot
for all a > .
Proof. Let X := H2 4(R%) N C(R?) with norm
1l x o= 11l 2y + 1| f || poo re)
and set X5 :={f € X : ||f|lx < ¢}. Similarly, we define Y := L?

rad
1flly == 11l 2@ey + 11 fll oo ey
Note that Lemmas [3.2] and Corollary B.4] imply the estimates

1A fllx S Il
NG =N @y S (L x + A+ lallx + glii ) 1 = gllx

forall f,g € X CY and o > «, provided ag > 0 is sufficiently large. In view of Eq. (3.1]),
we define a map K, on X5 by

Kao(f) = =AZ [aaFy(Qra() f + (g0 = DN(f) + a*Va(a™ () Qra + ¢aFy(Qra(-))] -
Then, by Lemma B3]

1Ca(Nlx S Nlaaty(Qra())flly + (e — DN (F)lly
+ a7 Va(a™ ())Qrally + [lgaFp(Qua())lly
S ol + IS + AR +a7 +a™
Sa i+ P+ +a?+at
for all f € Xs5. Thus, K.(f) € X, for all f € X5 and o > «p, provided 6 > 0 is sufficiently
small and «ag > 1 is sufficiently large. Similarly,
1Kal(f) = Kalg)llx
S 4aF5(Qra())(f = 9lly + [(ga = DWN(f) = N(9)lly
S a7 If = gllx + (AR + 1A+ gl + lallx) 11 = allx
S (a0 4 0)If - gllx.
Thus, K, is a contraction on X for all @ > ag, provided § > 0 is small enough and ag > 1 is

large enough. Consequently, the contraction mapping principle yields the existence of a fixed
point p, € X5 C H24(R?) N C(R?) of K, which, by construction, is a solution to Eq. @I).

rad
Finally, for the stated estimate on p,, it suffices to note that

(R%) N L= (R?) with

lpallx = 1Ka(pa)llx S o lpallx + 6 pallx +dllpallx +a7* +a™,

by the above estimate for IC,(f). O
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3.5. Decay and regularity. From now on we denote by p, the solution constructed in
Proposition 3.7 Note that the radiality of p, immediately implies a pointwise decay estimate.
To see this, we recall the classical Strauss estimate.

Lemma 3.8. We have the bound
1154

<
Lo ) 1112 e

for all f € H! ,(RY).

Proof. Tt suffices to prove the bound for real-valued f. First, we assume that f € C>(R%).

Then f is given by f(z) = A(|£L’|) for some f € C>*(R). By the fundamental theorem of
calculus and Cauchy-Schwarz, we obtain

o~

rd_lf(r)Q =— /Too 0s [sd_lf(s)z} ds=—(d—1) /Too sd_zf(s)zds - 2/;0 sd_lj?'(s)f(s)ds

Sl @ IV 2@y S 1F 1 ey
for all » > 0, which implies the desired estimate. By approximation, the bound extends to

all f € HL (RY). O
Lemma [B.§ implies the decay

d—1

lpa(2)] S ()" 2 (3.7)
for all z € RY,

Lemma 3.9. We have p, € C2(R?). In particular, the function Ruo(z) = Qga(x) + pa(z)
satisfies

AgsRo(®) = Ra(@) = 0" 2Vala " 0) Ra(@) + papla"2)F, (Ba(x)) =0
for all x € R?, in the classical sense.
Proof. Let
9a(2) := —[ga(2) F(Qra()) pa() + [da(z) — 1N (pa)(2)
+ a7 Vy(a™ 2)Qra(2) + o) Fp(Qra())].
Then, by Lemma 3.6, we have g, € L2 ;(R?) N L>®(RY) NC(R?) and by construction, Aupf, =

rad

g . Equivalently, Agapf, = h¥ with

ha() = pa(r) = Fy(Qra(2))pa(z) + o *Va(a™ x)pa(w) = ga().
Since pg, ho € C(RY) are radial, the claim follows from Lemma [A4] O
Proof of Theorem[I.3. For o > 0 sufficiently large, let

d—1

5
Qi o(r,Yy) = a1 (AZT)) [Qra(arer) + po(areq)].
By Lemma and Hypothesis I Qua, € C*(M?) and by construction, wj(t,r,y) =

em%QMd,a(r, y) solves Eq. ([IL4]) for all £ € R. The remaining properties follow from Propo-

sition [3.7). 0
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4. SPECTRAL STABILITY OF THE SOLITON
In this section we investigate the linear stability of the soliton
va (@) = @ Ro(w) = a7 T [Qpa(a) + pa (o)

as a solution to the nonlinear Schrédinger equation (Z2). More precisely, we study spectral
properties of the linearized operator £, associated to the soliton v). We will see that the
qualitative behavior is very similar to the Euclidean case.

4.1. The linearized operator. The notion of spectral stability derives from spectral prop-
erties of the operator that is obtained by linearizing Eq. ([22) at the soliton v). More
precisely, we insert the ansatz

ot x) = vi(t, @) + e tw(t, o) = e [Ro(x) + w(t, z)]
into Eq. ([2.2]). This yields
i0yw(t, ) + Agaw(t, ) — o?w(t,-) — Vaw(t, )
+ QapFy (Ra() + w(t, ) — papkp(Ra(-) = 0,
where we have used Eq. ([Z3)), i.e.,
ApiRy — 0®Ry — VyRy = —pa By (Ra(4)).
Now note that for all ag,a,b € R,

(4.1)

p—1
2

lag + a + b’ = (af + 2apa + a® + b?)
— |agP™" + 21 (a2) "7 "' (2a0a + a® + b) + Ny (ag, a, b)
= |ao/P~" + (p — Daglao|P*a + Ny(ag, a, b),
where Ni(ag,a,b) and Ny(ag,a,b) are quadratic in a and b. Hence,
F,(ap+ a+ib) = (ag + a + ib)|ag + a + ib|" !
= aplao" " + plag/’~"a + ila["~'b + N(ao, a, b),
where N (ao, a,b) is quadratic in a and b. This yields
F,(Ry(z) +w(t,x)) = F, (Ra(x) + Rew(t, z) + i Imw(t, x))
= F)(Ro()) + p|Ro ()P Rew(t, z) + i| Ro () [P~ Imw(t, 2)
+ N (Ro(x), Rew(t, z), Imw(t, x)).
By dropping the nonlinear terms, we obtain from Eq. (A1) the linearized problem
10w (t, -) + Agaw(t, ) — *w(t, ) — Vaw(t, ")
+ ppap| Ba ()P Rew(t, ) + ipap| Ra(-) [P~ Imaw(t, ) = 0.
Finally, we rescale by setting w(t, z) = w(a?t, ax). This yields

10w (t, ) + Aga ,0(t,x) — w(t,x) — a*Vy(a ' 2)w(t, z)
~ p—1 » ~ p—1 - (42)
+ ppaple”0) |[Ral@)| Re(t, o) + ipap(a™s) |[Ru(e)| Imi(t, ) =0
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with Ry(z) = a_ﬁRa(a_lx). Eq. (42) is equivalent to the system
Rew(t, )\ Rew(t, )
O (mw(t, -)) = La (Imw(t, 3 (4.3)
with the spatial differential operator

Lo _
L, = )

p—1

f(@) +a™Va(a™"z) f(x)

where
Lo (@) = =Baaf (@) + (2) = papla™e) | Ral2)

Lot f(@) = =B (@) + F(2) = ppapla™ ) |[Ral@)| f(2) +a™Vala™2) f(a).

Consequently, (linear) stability properties of the soliton v} are encoded in the spectrum of
the operator £, which we consider on the space L? ;(R? C?). This is a natural choice since

the operators L, + are self-adjoint on L2 (R?). Formally at least, in the limit o — oo, £,
reduces to its well-known Euclidean counterpart £, given by

0 L_
e=( e 5)
L_f(z) = —Apaf(z) + f(z) = |Qra(z)["" f(z)
L. f(x) =—Agaf(z) + f(z) — p|Qpalz)"" f(2).

This suggests a perturbative spectral analysis, based on the Euclidean situation.

and

4.2. Spectral properties in the Euclidean case. Our base case will be the Euclidean
operator £ which was extensively studied in the literature, see e.g. [70) [71] 35, 16]. Nev-
ertheless, there are still a number of substantial questions that remain unanswered. We
summarize some of the known results but restrict ourselves to the radial case. Since we will
be dealing with spectra of nonself-adjoint operators, there are some ambiguities that need
to be clarified first.

Definition 4.1. Let T be a closed operator on a Banach space X. We define the essential
spectrum o.(T) of T' by
0(T):= () o(T+K),
Kek(X)
where K(X) denotes the set of all compact operators on X. Furthermore, 0,(7) is the set
of all eigenvalues of T'.

Remark 4.2. There are other meaningful definitions of essential spectra for nonself-adjoint
operators in the literature, see e.g. [38, B2, [42] for a discussion on this. The choice we made
is the largest possible that is invariant under relatively compact perturbations. However, for
the particular class of operators we will be concerned with, all the usual definitions turn out
to be equivalent, see [42].

Theorem 4.3 ([70, [71, 35, [16, 59]). The operator £ : H24 (R4, C?) C L2, (RYC?) —

rad
L? (R C?) is closed and has the following properties:
17



o The spectrum o(L) is a subset of RUR.

o [fA\e€ (L) then —\ € o(L).

e The essential spectrum of L is given by
0(L)={2z€C:Rez=0,|Imz| > 1}.

o The set (L) \ 0.(L) is free of accumulation points and consists of eigenvalues with
finite algebraic multiplicities.

o We have 0 € 0,(L) and
wre= (),

e For the kernels of powers of L we have

2 ifp#l+?
4 ifp=1+73

In particular, the algebraic multiplicity of the eigenvalue 0 € o,(L) equals 4 in the
L?-critical case p =1+ % and 2 otherwise.

e In the L*-subcritical case p < 1 + %, L has no positive eigenvalues. In the L*-
supercritical case p > 1+ %, L has precisely one positive eigenvalue A and the eigen-
values £\ are simple.

dim ker(£?) = dim ker(£?) = {

Remark 4.4. The picture one has in mind is as follows. Starting from the supercritical case
p>1+ %, the two nonzero real eigenvalues move towards the origin as p decreases. Precisely
when p = 1 + %, the two eigenvalues merge and the algebraic multiplicity of 0 € o,(L)
increases by two. If one decreases p further into the subcritical regime p < 1 + %, a pair
of purely imaginary eigenvalues emerges from 0. In particular, the ground state is linearly
stable in the subcritical case and unstable in the supercritical case. These linear stability
properties are reflected in the nonlinear theory. Indeed, in the subcritical case the ground
state is orbitally stable and in the supercritical case it is unstable. The critical case p = 1 —I—%
is more delicate as there is spectral stability (that is to say, no spectrum away from the
imaginary axis) but quite strong instability in the nonlinear theory.

Remark 4.5. Important issues that remain unsolved concern the existence of eigenvalues
and /or resonances embedded in the essential spectrum and the “gap property”. The latter
refers to the absence of eigenvalues on the imaginary axis between 0 and 7 in the supercritical
case. These spectral properties are important for the (nonlinear) asymptotic stability theory
of the ground state. Some of them have been verified numerically or even proved rigorously
in special cases, see e.g. [31), 146} [16, 24], but there is no systematic theoretical understanding
so far.

4.3. Spectral properties in the curved geometry. To begin, we show that the structural
properties of the spectrum in the curved case are the same as in the Euclidean case. An

important prerequisite is the nonnegativity of £, _, which we establish first.
Proposition 4.6. There exists an ag > 0 such that, for all « > g, L, : H2,(R?Y) C
L2 (RY) — L2 (R?) is self-adjoint with the following properties:

rad rad
e The essential spectrum of L, — is given by o.(La—) = [1 + Voaa ™2, 00).
o We have 0 € 0,(Ly—) and ker L, = (Qra + pa)-

18



e The operator L, satisfies
(Lo F1F) p2ay 2 1F 172 ra)
for all f € (Qra + pa)™ N H2(RY) and all o > a.

Proof. We define L, o : H24(RY) C L2 4(RY) — L2 ,(RY) by Loof = —Agaf+(1+Voaa2)f
and set

Wa(@) 1= —pap(a”2) |Qra(z) + pa(@)"™ +a7* [Vala™"2) = Vo] -
Then we have L, _f = L, of + Waf. By Fourier analysis it follows that

0(Lap) =0e(Lap) =[1+ Vo,da_z, 00).

Furthermore, by Hypothesis [T Lemma Bl Proposition B.7, and Lemma [B.8 we have
W, € L*(R%) N C(R?) and
lim W,(z) =0.

|z| =00

Consequently, f +— W,f : L2 (RY) — L2 (R?) is bounded and the Kato-Rellich theorem
(see e.g. [68], p. 159, Theorem 6.4) shows that £, _ is self-adjoint. In particular, o(L, ) C R.
Furthermore, by [68], p. 258, Theorem 10.2, the operator f + W, f : L2 ,(R?) — L2 (R?) is
relatively compact with respect to £, and Weyl’s theorem (see e.g. [68], p. 171, Theorem
6.19) implies that (L, ) = [1+ Voaa~2,00). As a consequence, (L, )\ 0.(La, ) consists
of isolated eigenvalues only. The same is true for the limiting operator £_, i.e., 0(L_)\o(L_)
consists of isolated eigenvalues only, where o.(L_) = [1, 00).

Next, we show that there exists a constant g > 0 such that

(=00, —p) C p(La,-) (4.4)

for all @ > . To this end we use the resolvent bound [[(A—Loa) || z2re) < [A]7, valid for
all A < 0, which is a consequence of the self-adjointness of £, o and 0(L,) C [14Vp a2, 00).
Furthermore, we note that the operator B, f := W, f satisfies

1Baflr2@a) < [Wall ooy | fll 2gay S 1 Wl c2ray

for all @ > ap and f € L2, (RY). Consequently, if u > 0 is sufficiently large, the operator
1 — Bo(A — L4o)" ! is invertible for all A < —u by a Neumann series argument and the
identity,

A=Lo-=[1=Boa(A=Lao) "] (A= Layp),
proves ({.4).

Now we turn to the computation of ker £, . Obviously, 0 € 0,(L, ) since Ea = Qpa +
Pa € H24(R?) N C?(R?) by Lemma B9 and

p—1

R, (x) + oz_zvd(oz_lx)ﬁa(cc)

Lo Bo(2) = —AgaRa(@) + Ro(z) — papla'2) ‘Ra(x)
= 0.

In particular, (R,) C ker(L, ). To prove the reverse inclusion, suppose f € HZ,(R%)\ {0}

satisfies £, _f = 0. By the one-dimensional Sobolev embedding we have f € C(R?\ {0})
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and thus, W, f € L2 ,(R?) N C(R?\ {0}). Consequently, Lemma [A3] implies that Flr) =
re " f(rey) belongs to C2(0, 00) and satisfies

(@-1)(@d-3) 7 . .

') = ) = [+ Voaa 1 f(r) = Wa(ren) fr)
for all » > 0. According to Lemma B there exist constants a,b € C such that f(r) =
d—3
ago(r) + b (r), where [go(r)| = r2, [¢4(r)| = 73", and
r2|logr| d=2 r~z|logr| d=2

|¢o<r>|_{r_3 e |wo<>|_{rd7 o
for r € (0,3]. Since f € H}4(R%), we must have b = 0 and this shows that the kernel of
L, is one-dimensional. Consequently, ker £, _ = <§a>, as claimed.

Now we define an operator C, : L2 (R?) — Lrad(]Rd) such that £,_ = L_ +C,, i.e.,

Cof(x) = Lo f(z) — L_f(2)
= —0ap(a'2) |Qra(@) + pa(@)”™" f(2) + |Qpa(x) P~ f(2) + o Va(a x) f ()
=: Ua () f(2).
We have
)| S [1Qra(2) + pa(@)"™" = |Qa(@)P™"| + 4o ()] |Qra(2) + palz)"™
+a V(o t2)|
S pal@) P+ |pa(@)] + o () Fy(Qra(2))| + |ga ()| pa(@) [P + a2
< a P p gt 4 a2

for all # € R? by Lemma and Proposition Bl Here we have used the elementary
estimates (3.5) and (3.6) from the proof of Lemma B.6. Consequently, ||Uy||po®a) — 0 as
a — oo and this shows that the operator C, converges to 0 in norm as a — co. Recall
that £_ is nonnegative. This is a consequence of Qgra > 0, L_Qra = 0, and the Sturm
oscillation theorem. Let dy := dist(0,0(£_) \ {0}). Since 0 is an isolated eigenvalue of £_,
we have dy > 0. Let v : [0,27] — C be a simple, closed, smooth curve that encircles the
interval [—1 — y, 1do] and such that ~(¢) N [3dy, 00) = 0 for all ¢ € [0,27]. By construction,
v(t) € p(L-) for all t € [0, 27] and thus, the spectral projection
1

2mi ),
is well defined. By the self-adjointness of £_, we have rg’P = ker £L_ = (Qga) since 0 is the
only spectral point of £_ inside of 7. Recall that C, — 0 in norm as a — oo and thus,

v(t) € p(Ly—) for all t € [0,27] and o > ayp, provided ag > 0 is sufficiently large. This
follows immediately from the identity

2—Lo =[1-Colz—=L ) (z— L),
valid for all z € p(L£_). Thus, the spectral projection

Pa = L (Z - La’_>_1d2

271 .
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is well defined, and we have P, — P in norm as o — oo. Consequently, by [43], p. 34,
Lemma 4.10, it follows that dimrgP, = dimrgP = 1 for all @ > «y. Since 0 € 0,(L,, ),

we conclude that 0 is the only spectral point of £, _ in the interval [—1 — p, ido]- Finally,
with (@), we infer that (—oo, 1do] N o (La,—) = {0} for all @ > ap. In particular, £, _ is

nonnegative, and this finishes the proof. O
We also note the following simple observation concerning the operator £, .

Lemma 4.7. The operator L, = H24(RY) C L2 (RY) — L2 (RY) is self-adjoint and
invertible.

Proof. We write L+ = L4 + B, with B, f(z) = W,(x)f(x) and

Wa(@) = =p [pap(a™'2) |Qra(@) + pa(@)["" — |Qra(@)"~] + o *Va(a™"2).
We have [[Wq||peray — 0 as o — oo (cf. the proof of Proposition B.6) and thus, B, is a
bounded symmetric operator on L2 (R?) that converges to 0 in norm as a — oco. Con-

sequently, the Kato-Rellich theorem implies that £, . is self-adjoint. Since 0 € p(Ly), it
follows from the identity

Lo+ =[1+BLNLS,

and a Neumann series argument, that £, ; is invertible for all & > ag, provided agy > 0 is
sufficiently large. O

Based on the results on £, 1, we can now establish some basic structural properties con-
cerning the spectrum of £,.

Lemma 4.8. There exists an o > 0 such that for all « > «q the operator L, : H2 4(RY,C?) C
L2 (R4, C?) — L2 (R4, C?) is closed and the following holds:

e The spectrum of L, is a subset of R U 1R.

o If A€ o(L,) then =\ € o(L,).

e The essential spectrum of L. is given by

0e(Ly) ={2€C:Rez=0,|Imz| > 1+ Vo,doé_z}.

e There exists a > 0 (independent of a) such that (—oo, —p) U (p, 00) C p(La)-
o The set 0(Ly)\0e(Ly) is free of accumulation points and consists of eigenvalues with

finite algebraic multiplicities.
e We have 0 € 0,(L,) and

0
ker L, = <(QRd +Pa)>'

Proof. First of all, £, 1 are self-adjoint and hence closed. This implies the closedness of L,.
Now consider the unitary operator U : L*(R¢, C%) — L?(R?, C?) given by

)

and set H, =1 UL U". Explicitly, we have
. o L (Lo +Loy —Lo-+Lax
Ho =1 ULU™ = ~ (ﬁa,— Los Lo — Loy

= Hoo +H.,
2 ) 0. 7t 7Tta
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where
—ARd + 1+ %76504_2 0
0 ARd —-1- %76504_2 ’

Ua Wa .fl
_Wa _Ua f2 '

Ua(2) 1= 2 gp(a712) |Quale) + pa(@)P™ + a2 [Vaa™2) — Vo,
Wale) i= ~ 2 pup(a'2) |Qaa(2) + pala) P
Evidently, H, , is self-adjoint, and
0(Hoo) = 0e(Hon) = (=00, =1 — Vo ga 2 U [1 + Vg ga 2, 00).
Furthermore, M/, is bounded, and U,, W, € L*(R?%) N C(RY) with
lim U,(x) = ‘xl‘iinoo Wa(z) =0

|z| =00
by Hypothesis [T Proposition B7, and Lemma B8 By [68], p. 201, Lemma 7.21, we see
that H/,(z—Ho) " is compact for any z € p(Hoa). In other words, H,, is relatively compact
with respect to Ho . Consequently, by [58], p. 173, Theorem 7.28,

O-e(%a) - Ue(HO,a + %;) - Ue(HO,a) - (—OO, -1 ‘/E),da_2] U [1 + ‘/O,da_2a OO),

and, since H,, is unitarily equivalent to iL,, the statement on o.(L,) follows.
From the identity

z2—Hy = [1 —H. (2 — 7—[0@)_1} (z —Hoa), 2 € p(Hoa),

we infer that z —H,, is invertible for z € p(Hg.) if and only if 1 —H/ (2 —Hg )" is invertible.
By the self-adjointness of #y o we have the bound ||(z—Ho,a) ' 2rac2) < | Im z|~" and thus,
2z — H, is certainly invertible for all z sufficiently far away from the real axis. Furthermore,
|H. | r2®ac2y) S 1 for all @ > ag, and thus, there exists a j > 0 such that

{z€C:Rez=0,|Imz| > u} C p(Ha)

for all & > . Consequently, the analytic Fredholm theorem (see e.g. [62], p. 194, Theorem
3.14.3) applied to H/ (2 — Ho.o) " shows that o(H,) \ 0e(H,) consists of isolated eigenvalues
of finite algebraic multiplicities which do not accumulate at any point outside of o.(H,).

Next, we turn to the proof that o(L,) C RUR. Since 0.(L,) C iR and o(L,) \ 0c(La)
consists of eigenvalues only, it suffices to prove that ¢,(L,) C R UR. Furthermore, we
may restrict ourselves to nonzero eigenvalues. Let A € 0,(L,) \ {0} with eigenfunction
f = (f1, fo) € H}(R?,C?). The eigenvalue equation (A — L,)f = 0 is equivalent to

{ca,_h — A\,

'Ca,-i-fl = _)\f2
Let P, : L2 (R?) — L2 ,(R%) be the orthogonal projection onto (Qgs + po) and set P :=

1 — P,. Note that we must have Pj fa # 0 because otherwise,
fl = %EQ,—(P{]JCQ + Pi_fé) — %‘Ca,—Pan — O’
22
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by Proposition 6] and from the second equation in (LX) we infer that fo = 0. This is a
contradiction to f = (f1, f2) being an eigenfunction. Note further that P, is the spectral
projection associated to the eigenvalue 0 € o,(L, ) and thus, P, commutes with £, _.
From the first equation in (3] and Proposition .6l we obtain

0 # (LaPy fo| Py fo) r2way = (La— fol f2) 2ray = A(fi] f2) r2(ra)s
and the second equation in ([L3) yields

(ﬁa,+f1|f1)L2(Rd) - _)‘(f2|fl)L2(Rd) - _)‘(fl|f2)L2(Rd)-
Consequently, since (f1]f2)r2@e) 7 0,

(La,— fol f2) 2y (Lo il f1) 2(ra)
>\2 —— s 3 E R7
|(f1]f2) L2mey |2

which implies that A € RUR. From Eq. (4.3]) it is also evident that —\ € 0,(L,).
Finally, by setting A = 0 in Eq. (£.5]), we obtain from Proposition [1.6] and Lemma [4.7] that

B 0
e {(o%,))

In particular, 0 € 0,(L,). O

Now we can show that the linear stability of the soliton in the curved geometry is deter-
mined by the stability of the Euclidean ground state, at least if p # 1 + %.

Lemma 4.9. Ifp # 1+§ then there exists an o > 0 such that for all o > g the following
holds.

o The algebraic multiplicity of 0 € 0,(L,) equals 2.

o [fp<1+ %, there are no positive eigenvalues of L.

e Ifp>1+ %, there exists precisely one positive eigenvalue N, € 0,(L,) and the
eigenvalues £, € 0,(L,) are simple.

Proof. Acoording to Lemma[A.§] there exists a g > 0 such that (—oo, —u) U (1, 00) C p(La,)
for all @ > ap. Let v : [0,1] — C be a simple, closed, smooth curve such that ~(t) € p(L)
for all t € [0,1] and v encircles the interval [—u — 1, + 1] in such a way that only real
eigenvalues of £ lie inside of . This is possible since 0 € 0,(L) is isolated. Let

1
Pi=— [(2— L) dz
2mi ).,
Since L, — L is bounded and converges to 0 in norm as o — oo (see the proofs of Proposition
and Lemma A7), v(t) € p(Ly) for all ¢ € [0,1] and all @ > «, provided ag > 0 is

sufficiently large. Consequently,
1

21 -

Po (2 — L,) 'dz

is well defined, and P, — P in norm as a — oo. This implies

4
2, p<1+a,

dimrg P, = dimrgP =
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by Theorem Suppose now that p < 1 + % and there exists a positive eigenvalue
Ao € 0,(Ly). Then, by Lemma A8 —\, € 0,(L,) and, since 0 € 0,(L,), we must have
dimrg P, > 3. This contradicts dimrg P, = 2 and thus, there can be no positive eigenvalue
of L, in the case p < 1+ %. Ifp>1+ %, there exists a unique positive eigenvalue A € o,(L)
with algebraic multiplicity 1 (Theorem [3]). Let 7 : [0,1] — p(£) C C be a simple, closed,
smooth curve that encircles the interval [%, i+ 1] and such that A is the only spectral point
of £ that lies inside of 7. Set

~ 1
P=— [(z— L) 'dz.
2mi J5
As above,
- 1 .
o = T — A~ d
P 57 i(z L) dz

is well defined for sufficiently large a and dimrg P, = dim rgﬁ = 1. Consequently, there
exists a positive simple eigenvalue A, € 0,(L,) and by Lemma L8 —\, € 0,(L,). Further-
more, by symmetry, —\, € 0,(L,) must be simple, too. Since dimrg P, =4 and 0 € 0,(L,),
there can be no other nonzero eigenvalues in [—u — 1, 1 + 1] as they would have to come in
pairs. Since (u, 00) C p(L,), it follows that there exists a unique simple positive eigenvalue
Ao € 0,(L,). In particular, the algebraic multiplicity of 0 € 0,(L,) must equal 2. d

5. SPECTRAL STABILITY IN THE CRITICAL CASE

In the critical case p =1+ %, the situation is subtle and the stability of the soliton depends
on the fine structure of the geometry.

5.1. Refined properties of £, ;.
Lemma 5.1. There exists an g > 0 such that for all « > g the following holds. We have
ae(‘Ca,+) = [1 + ‘/E],dOé_2, OO)v

L.+ has precisely one negative eigenvalue \), < 0, and this eigenvalue is simple. Further-
more, if f* € H2,(RY)\ {0} is an associated eigenfunction, i.e., Lo fi = N f, then we
have

(f;‘Q]Rd + pa)Lz(Rd) 7& 0.

Proof. As in the proof of Proposition L6, we write L, f = Laoof + Waf, where L, :
H2(RY) C L2 ,(RY) — L2 (R?) is given by Lo of = —Agaf + (1 + Voga™2)f, and

rad rad

Wa(2) == —ppap(a'a) [Qra(z) + pa(2)l”™ + a7 [Vala™'z) — Vou] -

Thus, by repeating the argument from the proof of Proposition L8, we find 0.(La ) =
[14Voaa2, 00), and there exists a p1 > 0 such that (—oo, —u) C p(La, 1) for all « sufficiently
large.

We define C, : L2 4(RY) — L2 (R?) by

Cof(x) = Loy f(x) = Ly f(2)

= [~ppap(a™'2) |Qra() + pa(@)"~" + plQra(@) P! + o Va(a ™ w)] f(x),
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As in the proof of Proposition .6}, we infer that C, — 0 in norm as & — oo. Let v : [0,1] — C
be given by v(t) = —pu + pe®™. Then, by Lemma 7 and the above, y(t) € p(L,, 1) for all
t €[0,1) and all & > «ay, provided o > 0 is sufficiently large. Define the spectral projections

P g [t P [

211 271 5

Then P, — P in norm as o — oo. Furthermore, £, has precisely one simple eigenvalue
inside of v [71l [16], which implies that dimrg P = 1. Consequently, from [43], p. 34, Lemma
4.10, we conclude that dimrgP, = dimrgP = 1 for all @ > «p. In conjunction with
(—o0, —p) C p(Ly+) and the self-adjointness of £, (Lemma A7), this means that £,
has precisely one negative eigenvalue A} < 0, and this eigenvalue is simple.

Let f* € rgP with || f*||;2rae) = 1 and set f; := P, f*. Then f* is an eigenfunction of L,
to the eigenvalue A\* < 0. Furthermore,

Ifa = fllz2@a) = |(Pa = P)f* |l 12@ay = 0

as a — oo and thus, fX # 0 for all & > ay if ap > 0 is sufficiently large. As a consequence, f7
is an eigenfunction of £, 4 with eigenvalue A} and any other eigenfunction to this eigenvalue
is a multiple of fZ. Since A\* is the only negative eigenvalue of L., it follows by Sturm

oscillation theory that f* does not have zeros. In particular, (f*|Qra)r2rae) 7# 0. The fact
that

(falQra + pa)r2may = (f*|Qra)r2(ra)
as a — oo thus implies that (f|Qre + pa)r2mey # 0 for all a > ap, provided ag > 0 is
sufficiently large. O

Lemma 5.2. Let a > 0 be sufficiently large and denote by P+ the orthogonal projection
onto (Qgra + pa)t, i.e.,

(f1Qra + pa)2(re
1Qre + pall72ga
Then the operator PL, Pt : H2 (RY) C L2 ,(RY) — L2 (R?) is self-adjoint, and

UE(Pon_Ea,-i-,Pi_) = [ + Voo™ ,OO).

Puf=1f- (Qra + pa)-

Proof. The proof is based on the standard trick (see e.g. [43], p. 246) of using the decompo-
sition

Plﬁa +7DJ_ = £a+ + (Pl );Ca +7DJ_ + ‘Coc +(PJ_ — 1) = ‘Coc —+ ‘l‘ ’Ca.

Since dimrg(PL — 1) = 1, the operator K, : H24(RY) C L2 ,(R?) — L2 (R?) has finite
rank. The estimate,
(Lo +Pa f1 o) 2z) ((f1Ba) el .
ICaf | 2e) < PN Roll 2y + =N £y Rl 2 e
A A
(f\Plﬁa ‘R, )12 (R4 ||£a,+§a||L2(Rd)
+ = | f |l 2(ray
| Ral 22 (Ray | Rall 22 may

< ||£a,+Ra||L2(Rd)

~

1/ |22y
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for all f € H2 4 (R?), where Ry := Qga + Pa, shows that I, extends to a bounded operator
Koo L2 4 (RY) — L2 (R?) of finite rank. In particular, K, is compact. Furthermore,

rad rad
Ko =PrLor(Pr—1)+ (Pr = 1)Los = PlLos Pt — Log = Ka,

and thus KC, is self-adjoint. By the Kato-Rellich theorem (see e.g. [68], p, 159, Theorem 10.2)
it follows that P L, P is self-adjoint. Weyl’s theorem (see e.g. [68], p. 171, Theorem 6.19),
in conjunction with Lemma [B.1] yields the statement on the essential spectrum. 0

Next, we establish a crucial dichotomy for £, ..

Proposition 5.3. Let o > 0 be sufficiently large.

o If (LY (Qratpa)|Qratpa)2may > 0 then there exists an fo € (Qra+pa)NHZ (R?)
such that

(Lot folfa)r2@ey < 0.
o If (‘C;,l-l-(QRd + Pa)|Qra + pa)r2wey < 0 then
(Lot fIf)2@ey =0
for all f € (Qga + pa)* N H2,(RY).
Proof. We first assume that
> 0,

1 D
(£.) R
where R, = Qga + po. Let PL be the orthogonal projection on (R,)*, i.e.,

(f‘é )L2 R4) é .
IR, 172 @y

(R%). Then we have

a)L?(Rd)

Paf=1-

rad

We set f, := Pjﬁ;ﬁréa € (Ry)* N H2

(Lot falfo)we = (EO"J’Piﬁ;,IJréa Piﬁg,i§a> L2(RY)
R -1p (E(Sl—i-é |§ )Lz(Rd) ~
= (Ra /Ca,l—i-Ra> LQ(Rd) - (‘COC,-i—Ra + a> b
HR ||L2(Rd L2(R4)
_ (‘C;,l—l-;RvOl|§a)L2(Rd) ~ E )
| R H%Z(Rd L2(R4)
PN AR i
( ‘ >L2 Rd) (ca,+Ra a) 2 md
HR ||L2 (R4) L2(R9)
> (Lol Rol Ra)? -
- ()C;’l-i_R a) 2 (Rd + - LED ('Ca,+Ra a)
LA®RS HR HLZ(Rd L2(R4)
(Lol Ral Be) oy 1 = |~
< R (ﬁa,-i-Ra a) LZ(Rd)‘
Bl

26



Thus, it suffices to show that (£a7+l§a|]§a) r2mdy < 0. Explicitly, we have

~ ~ ~ p—1
Lot Fa(@) = Lo Falw) = (0= Dgapla™2) | Fal@)| Fal@)
~ p—1
= (= Vgapla™'2) |Fal@)|  Rala)
and thus,
(Lo | ) :—(p—l)/ pusl0™0) |Rul) " e <0
, « @ L2(Rd) R Ny o )

since g, > 0 by Hypothesis [LI In summary, (La 4 folfa)r2@es < 0, as claimed.
Next, we assume that

(ﬁ;ﬁﬁa R <0

a) L2(RY) —
Suppose there exists an fo € (Ra)™ N H24(RY) such that (Lo falfa)r2@e < 0. Consider

the operator P+L, . P. By assumption, we have
05 (Losholfa) , = (LasPlfalPLs) )
,+f f L2(RY) + o f « f f L2(RY)

and thus, by Lemma B2, P L, P must have a negative eigenvalue A, < 0. In other
(RY) such that PrL,+ga = Naga. This

= (PaLasPi fo

L2(R)

words, there exists a nontrivial g, € (R,)* N H2,
means that there exists a ¢, € C such that

ﬁa,-ﬁ-ga = )\aga + CaRa~

We claim that ¢, # 0. To see this, recall that £, ; has a unique negative eigenvalue \} < 0
(which is simple) and if f* is an associated eigenfunction, we have (f*|R.) r2mdy 7 0, see
Lemma 5.1l Suppose now that ¢, = 0. Then g, is an eigenfunction of £, with negative
eigenvalue \,, and thus, A\, = A\ and g, must be a multiple of f*. This, however, contradicts

(9o Ra) r2we) = 0, and the claim ¢, # 0 follows. Note further that A\, # A}, because otherwise
we would arrive at the contradiction

0= (ga}(ﬁa,-i- - )‘Z)fa*)Lz(Rd) - ((’Ca,-i- - )‘Z)ga

Consequently, we have

fa*)LZ(Rd) = Cq (Ea fé)Lz(Rd) 7é 0.

(Lot —Aa) 'Ra = 2 ga.

Furthermore,

((‘Ca,—i- - )\a)_léa RQ)LQ(Rd) = i(ga|§a)L2(Rd) =0.

Now we define a function ¢, : (—00,0] \ {\L} — R by
G0N i= ((Las = N7 Ra

Note that ¢, is differentiable and
30(N) = (Lo =N *Ra

Rq

)L?(Rd)'

R

2

= ((Ea,-l— - A)_léa

(Ea,+ - )‘)_lﬁa)

a) L2(R4) L2(Rd)

>0
L2(RY)

= H(ﬁa,+ — A)_lﬁa
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for all A € (—o0,0] \ {\%}. By assumption,

(0 :(c—lfza §a> <0
(b ( ) o,+ L2(Rd) —
and ¢,(A\o) = 0. Thus, we must have A\, < A} since otherwise, we would arrive at the
contradiction

0
02 ¢a(0) = [ ¢L(A)dA+ ga(Aa) > 0.
)\a \_/0—/
However, A\, < A} is also impossible since it leads to the contradiction

0= ¢a(>‘a) = ((Ea,+ - >‘a>_1§a = <(£a,+ - )‘a)ga

= (Lo =205

> 0,

Rq

) 5.)
L2(R9) L2(RY)

_ . o
S“) L2(R4) +(a - )\O‘)HS‘”HL%R%

where §a = (Lot — )\a)_léa and we have used the fact that £, — A}, is nonnegative, see

Lemma 5l In summary, we see that there cannot exist an f, € (R,)* N H2 (R?) with

(Lot falfa)r2mey < 0, and this finishes the proof. O
1 1

5.2. The auxiliary operator £; L, L. . By Proposition 4.6, £, _ is nonnegative and

1

thus, the square root £ _ is well defined either via the functional calculus for self-adjoint

operators or by the Dunford-Taylor integral, see e.g. [43], p. 281, Theorem 3.35. Furthermore,
1

since £2 _ is self-adjoint, we have
1
ker L5 =ker L, _ = (Qpa + pa)

and rg E%_ = (Qga + pa)* by Proposition As expected from the Euclidean case, the
auxiliary operator E%,_ﬁaﬂrﬁi_ plays a crucial role.
Definition 5.4. Let o > 0 be sufficiently large. We define an operator
T D(Ja) C (Qra+ pa)™ = (Qra + pa)™
by

D(Ja) 1= {f € DILL ) 0 (Qua+ po) + £3f € D(Lay) and Lo L3 f € D(LS )}

and Jof = L2 Lo Ll f.

It is not immediately obvious that 7, is densely defined. Thus, we first establish this fact
using the following simple property of maximally defined products.

Lemma 5.5. Let (X, | -|x), (Y, |lv), and (Z,| - ||z) be Banach spaces. Furthermore, let
A:DA)CY — Z and B:D(B) C X — Y be densely defined linear operators and assume
that B is bounded invertible. Then the maximally defined operatol AB : DAB)C X - Z
is densely defined and D(AB) is a core for B.

2That is to say, D(AB) := {z € D(B) : Bx € D(A)}.
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Proof. Let x € X and € > 0 be arbitrary. Since D(B) is dense in X, we can find an 2’ € D(B)
such that ||z —2'[|x < §. By the density of D(A) in Y, there exists a i € D(A) such that
|Bz" —y|ly < §||B_1||g(lx’y). Set 7 := B~1y. By definition, 7 € D(AB) and
lo = @) x = llz = &'llx + |2" = Zl|x < 5+ | B~ (B2’ — BI)||x
< §+ B s 1B = glly < e
To prove the second assertion, let © € D(B). We have to show that there exists a sequence
(Zn)nen € D(AB) such that x,, — z in X and Bx,, — Bz in Y as n — co. Since D(A) is

dense in Y, there exists a sequence (¥, )nen C D(A) such that y,, — Bz in Y as n — oo. We
set @, := B~ ly,. Then (z,)nen C D(AB) and we have Bz, — Bz in Y as well as

2 — z[|x = | B~ (B, — Ba)||x < |lyn — Bzlly =0
as n — oo. 0
Lemma 5.6. Let o > 0 be sufficiently large. Then the operator [T, is densely defined.

Proof. To begin with, we define an auxiliary operator A, : D(A,) C L2 4(RY) — (Qra+pa)*
by

D(Ay) = {f € D(Las) = H2(RY) : Lo f € DILE )}

1
and Ao f := L Lo f. Since 0 ¢ 0(Lq ) by Lemma BT, Lemma shows that A, is
densely defined. Next, we define another auxiliary operator B, : D(B,) C (Qga + pa)t —
(Qga + pa) ™ by

D(By) = D(L2_) N (Qu + pa)*

and B, f = E%,_ f. Obviously, B, is densely defined and, since ker E%,_ = (Qra + pa), it
follows that B, is injective. Furthermore, by the self-adjointness of Ei,_, rg E%,_ = (Qpa +
po)® and thus, for any g € (Qra + pa)®™ we can find an f € D(Ei_) such that Ei_ij =
Ej_ f = g, where PL denotes the orthogonal projection on (Qga + p)t. Consequently,
77,; f € D(B,) and B,P+f = g. This shows that B, is surjective. From the closedness of

L2 _ it follows immediately that B, is closed and the closed graph theorem implies that B,
is bounded invertible. Now observe that J, = A.B., where the product A,B, is maximally
defined. Consequently, Lemma implies that 7, is densely defined. O

Remark 5.7. Lemma [.5] also shows that D(J,) is a core for the operator B, defined in the
proof of Lemma (.6l

The importance of J, derives from the following observation.

Lemma 5.8. Let o > 0 be sufficiently large and A € C\ {0}. Then we have the following
implications.

o If A€ p(L,) then N> + T, is surjective.
e The operator A — L, is injective if and only if N> + T, is injective.
29



Proof. Let A € p(L,) and g € (Qra+ pa)*. We have to show that there exists an f € D(J,)
such that (A\? + J,)f = g. By the self-adjointness of L2, we have

rg ﬁé,_ = (ker Ei_)l

and thus, there exists an g, € D(ﬁi_) such that )\Efly,_gg = g. Since A € p(L,), there exists
(f1, f2) € H*(R?, C?) such that
fi 0
A— L, = )
o= (5)= (5

)\fl - £a,—f2 - Oa
'Ca,-i-fl + )\f2 = g2-
By inserting the first equation into the second one, we find

LosLafo=—Nfa+Aga € D(LE ),

Equivalently,

(5.1)

and applying E%_ yields
1 1 1
Lo Lo Lo _f= —Nf+ ALL g = ~XNf+g
1
with f:= L2 _fo € D(Ja).

To prove the second assertion, we first assume that A\? 4+ 7, is injective. Suppose

o= (3) - )

1
Then, by setting g = g» = 0 in the above computation, we find (\*+7,)f = 0 for f = L2 _f.

This shows that f; € ker L2 = ker £, _ and the first equation in (5.I) implies that f; = 0.
Subsequently, the second equation in (B.]) with go = 0 shows that fo = 0 as well.

It remains to prove the reverse implication, i.e., we assume that A — L, is injective and
show that A? + 7, is injective. Consider the equation (A + J,)f = 0 for an arbitrary

1
f € D(J.). We have to show that f = 0. Set f; := L2 _f. From f € D(J,) we infer
1

that fi € D(L2 _Lay) C D(Lay) = HZ (RY). Furthermore, we define fo := —3Lq 4 f1 =

rad

—%EQ,JFEE,_J‘ € D(Ei_). Then we have
‘Cgc,—f2 = _ija.f = )‘f € D(ja) C D(£§,—)>
which shows that f, € D(L, ) = H?

rad

o) (B = (M= Leh _ (Acz g —aci ) _ (0

A\ 2 Lot f1+Af2 0 0
and it follows that f; = fo = 0 by the injectivity of A — £,. Since f; = 53_ f, we infer that
feker L2 = (Qpa+ pa). Together with f € D(J,), this implies that f = 0. O

(R%). Consequently,

A consequence of Lemma 5.8 is the self-adjointness of 7,.
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Lemma 5.9. Let a > 0 be sufficiently large. Then the operator [J, is self-adjoint.

1
Proof. By the self-adjointness of £, _, L, 1 and Lemma (.6, it follows that J, is symmetric.
In other words, J, C J} and, since J* is closed, J, is closable and its closure [, is
symmetric, too. Now consider the operators +i + J, = p% + J,, where puy := % +

%. By Lemma A8 pu+ € p(L,) and thus, Lemma [5.§ implies that +i + 7, is surjective.

Consequently, +i + J, is surjective and therefore, Ja is self-adjoint (see e.g. [43], p. 271,
Theorem 3.16). Let g € D(J,) be arbitrary. By the surjectivity of i + J,, there exists an
f € D(Ja) such that (i + Jo)f = (i + Ja)g and J, C Jo implies that (i + Jo)(f —g) = 0.

Since 0,(Ja) C R, we must have f — g = 0 and therefore, g € D(J,). Thus, we have proved
that D(J,) C D(J,) and this shows that 7, = .. O

We need one last technical result.

Lemma 5.10. Let a > 0 be sufficiently large and define By, : D(B,) C (Qpra + pa)t —
1

(Qra + pa)*t by D(B,) = D(ﬁi_) N (Qgra + pa)*= and Bof := L2 _f. Then the (mazimally
defined) operator L, B, is densely defined, closed, and D(J,) is a core for L, B,.

Proof. Recall from the proof of Lemma that B, is closed and bounded invertible. As a
consequence, Lemma [5.5 shows that £, B, is densely defined. Let (f,)neny C D(La+Ba) C
D(B,) with f, — f and L, +Baf, — h as n — co. Then we have

HBOéfn - ‘C;,l—i-hHL2(Rd) = H‘C;,l-i- ('Ca,-i-Boe.fn - h)HL2(Rd) S ||£a,+8a.fn - h||L2(Rd) — 0

as n — oo and the closedness of B, implies that f € D(B,) and Bof = L34 h € D(Lo ).
Consequently, f € D(L,B,) and Lo Bof = Lo+ L' h = h. This proves the closedness of
Lo+ Ba.

Next, we claim that £, 1B, has closed range. Indeed, let (h,,)nen C rg(La +Ba) with b, —
h as n — oco. Then there exists a sequence (f,)nen C D(Lq +By) such that L, B fn = hn.
In other words, f, = B;'L.Y h, and thus, f, — f as n — oo for some f € (Qa + pa)*. By
the closedness of L, B, we infer that f € D(L, +B,) and L, +B,f = h, which shows that
h S rg(£a,+8a>‘

Now we define an auxiliary operator A, : D(A,) C (Qra + pa)t — 18(LaBa) by
D(A,) = D(L,+B,) and A,f = L, +B,f. By the above, A, is densely defined, closed,
and bijective. Thus, the1 closed graph theorem shows that A, is bounded invertible. By
definition, D(J,) = D(L2 _A,). Lemma .3 implies that D(7,) is a core for A, and hence
for Lo +B,. O

5.3. Spectral stability in the critical case. Now we can establish a stability criterion
also in the critical case p =1+ %.

Lemma 5.11. Ifp = 1+§ then there exists an ag > 0 such that for all « > g the following
holds.

o If (L34 (Qra + pa)|Qra + pa)r2@rey > 0 then L, has precisely one positive eigenvalue
Ao and the eigenvalues £\, € 0,(L,) are simple.

o If (E;}JF(QRd + pa)|Qrd + pa)2mey < 0 then L, has no positive eigenvalues.
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Proof. Let P and P, be the spectral projections from the proof of Lemma By Theorem
and [43], p. 34, Lemma 4.10, we have dimrg P, = dimrgP = 4 and thus, by Lemma (]
there can be at most one positive eigenvalue A\, > 0 and if so, the eigenvalues £\, € 0,(L,)
will be simple since 0 € Up(ﬁa).

Now assume that (£ ;+(QRd + pa)|@rd + pa)r2@ey > 0. Then, by Proposition 5.3 we can
find an fo € (Qratpa) NHZ (R?) such that (Lo + falfa)r2rae) < 0. From the self-adjointness
of L, _, we have

rg L2 = (ker £2_)* = ker(La )" = (Qra + pa)*.

1 1
Thus, since f, L Qga + pa, there exists a g, € D(L; ) such that L2 g, = fa. Set
Jo = PLg,, where Pt is the orthogonal projection onto (Qra + po)t. Then we have

Jo € D(Ba) and B,g, = £2 _PLg. = £2 0o = fa, where B, is the operator defined in
Lemma .10l By constructlon

<£o¢,+8aga = ('Ca,+fa|fa)L2(Rd) < 0.

Bage)
g L2(R%)

Since D(J,) is a core for L, B, (Lemmal5.10]), we can find for any given ¢ > 0 an fa € D(T)
such that || Lo, Bafoa — LaBagallr2me) < € and

|Bafo — Baga||L2(Rd) = HE(;,I—i- (Lo Bafa — Ea,—l-Baga]HLQ(Rd) Se
Consequently, by choosing ¢ > 0 sufficiently small, we find

1 ~ 1 ~ 1 1 ~ | ~
0>< « B aB a) :<£a ‘Cg—aﬁg— a) :<£Z_£a £Z_a Ol)
B fa|Baf - +La falLa T - Lot LiJall L)
- <\7a.f0c fa)Lz(]Rd)‘
Lemma therefore implies that 7, has negative spectrum, i.e., there exists a A\, > 0 such
that —\2 € o(Ja). If =\2 — J, = —(\2 + J,) is not surjective, then, by Lemma [.8]

Ao € 0(L,) and by Lemma B8 A\, € 0,(L,). If —(\2 + J,) is not injective, Lemma
implies that A\, € 0,(L,).
If, on the other hand, (E;}JF(QRd + Pa)|Qra + pa) 2mey < 0, we obtain

(jaf|f)L2(Rd) - (‘COC,'F‘CEQ— ;,—f) LZ(Rd) Z 0

for all f € D(J.), by Proposition Thus, Lemma implies that o(J,) C [0,00) and
from Lemma we infer that A — L, is injective for any A > 0. Consequently, Lemma [L.§
shows that o(L,) "R = {0}. O

Proof of Theorems[3, [L8, and[1.7. Consider the map V, : L% ;(M¢) — L2 ,(R?) given by

2,
uﬁuwza”(égiﬁﬁ)%fm*mmm

a~tz]

»

with inverse
d—1

()~ store

32

vl

Vo f(ry) =«



We have
1 d—1
Va2 = a8 1\/ <a7r)) |f (e ) Prd-tdr

Sd 1\/ (r,y)] 2A )d_ldr

= I £1I72 aae):

and thus, V, is unitary for any o > 0. Furthermore, recall that

d—1
r

Qusalrin) ="t (575) * Qustaren) + pafares)],

and thus, for any radial f € C>°(M?), we have
Lugtazf = PV LagValf.

Consequently, the closure Ly , of EMd’a is given by

. 0 VLo Ve
Mo = S\ V1L, Ve 0 ’
and Ly, is unitarily equivalent to a®L,. This implies the claimed statements. O

6. STABILITY AND CURVATURE

From [4], we know that in negative curvature there is blow-up instability for sufficiently high
energy. In this last section we give numerical evidence of how this instability manifests in the
bifurcation theory from the Euclidean situation. The soliton may become linearly unstable
in the curved geometry if the curvature is strictly negative everywhere or otherwise. More
precisely, we consider the model case of a warping function A(r) = r + c17® + cor®, in the
critical case d = 2, p = 3. The sectional curvatures of the manifold M? are given by

CA"(r)  6ep + 20cr? 1= A(r)>  (3c1 +5c9r?)(2 + 3e1r? + Seor )
Alr) T+ ot A(rpr (14 crr? + cprt)?

6.1. A formal expansion. As before, we write R, = Qr2 + po with p, from Proposition
B.7 By Lemma[B.9, R, € C*(R?) and

Ap2Ro () — Ro(x) — a 2Va(a ™ a) Ro(2) + ozl 2) Ra(z)? = 0
for all x € R?. When written out explicitly for our model case, this reads
(14 a2 + oo ) (Age — 1) R,
— a7 [2¢1 + (] 4 8co)a™*r? + bercoa 1t + dcja0r] R, (6.1)
+(1+aa2? + ca”RE = 0,
where r(z) = |z|. Now we assume an asymptotic expansion of the form

Ra(z) = Qea(7) + aQi(w) + 0~ 'Qs() + 0 *Qi(x, ), (6.2)
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where [|Qg(-, )| 2wz S 1 and [|0,QE (-, )12k S o' for all @ > 1. Then, in view of
Theorem [[.3], the soliton profile on M? is given by

1

Quealrin) = (1) [Qualares) + o @ularer) + o~ Qufarer) + a~*Qe(are, o)

(r

and thus,
Qe = [ [ QuialroPAe)
0 R

- QW/ [QR2 (rer) +a2Qi(rer) + a'Qa(rer) + o °Qp(res, O‘)] “rdr
0

2 (o.]
i 1dydr = 27?/0 Quiz.o (1, y)?A(r)dr

= [1Qs 3aque) + 207 (@2 lQ1) sy + 0 (1) + 2(Qeal Q) e
+O0(a™).

In order to compute the profiles 1 and @)y, we plug the ansatz ([6.2]) into Eq. (6.]) and solve
order by order in «. This yields

o’ : AgeQpe — Q2 + Q3> = 0,
a7 LiQr = —a1(2Qr2 + r°Q}e),
a™ LiQy = —2¢1Q1 + (36 — 8¢2)r?Qre — 3177 Q2:Q1 + 3Qr2QT + (2 — o) Q3o
with £, = —Agz + 1 — 3Q%,. By definition, Qg2 () = aQg:(ax) satisfies
A2 Qpr2,o — OZQQR%C + Q%?,a =0.
By differentiating this equation with respect to «, we see that

S(](LU) = aaQR27a(l’>|a:1 = l’janR2 (.Z’) + QR2 (LU)

satisfies
£+So - —ARZS() + S() - 3@[%&250 - _2QR2-
Consequently,

(Qr2|Q1)12r2) = —3(L4S0|Q1) 12(r2) = —35(So| L4 Q1) L2(R2)
= ¢1(S0|Qr2) r2®2) + 5¢1(So|r* Q=) 12 (w2
=0,

since
0= 8oz||QlR2||2L2(1R2) = 8a||QR2,aH%2(R2) = 2(8aQR2,a‘QR2,a>L2(R2)
and

0 = allrQRe 1 Z2me) = Oallr Qe olli2@ey = 4(0aQrz2 0l Q2 o) 12(m2)
which, when evaluated at a = 1, reads

0= (SO|QR2)L2(R2) = (SO|T’2Q%2)L2(R2).
This implies that

HQM2,a||2L2(M2) = ||QR2||2L2(R2) +at HQIH%Z(RZ) + 2(Qr2|Q2) 12r2) | + O(a™®).
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The sign of 9, ||Quz a2 (r2) is to leading order determined by the sign of

ko= (| Qull 722 + 2(Qr2]Q2) 2 w2).
More precisely, we have
0| Que all 722y = —4a ™"k + O(a™)

and the soliton is linearly unstable for sufficiently large « if kK > 0, see Theorem [L.7 and
Remark

6.2. Stability. By using the defining equation for ()5, we find the expression
k= Q72 @2y — (£4:501Q2) 2@y = [1Q1l|72m2) — (SolL4Q2) 22
= |Q1[l72(ge)
—+ (50}201621 — (30% — 802)7’2QR2 + 3017’269%2@1 — 3@]}@2@% — (C% — CQ>T4Q%2)L2(R2).

It is convenient to introduce the function Q;, defined as the unique solution (in H2 (R?))
of the equation

£+@1 = —2Qg> — 7”2@%2-

Then we have )1 = 01@1 and we arrive at k = cib; + cpby with
b, = H@uiz(W) + (S0]2Q1 — 3r*Qre + 3r2Q2: Q1 — 3QrQ% — 11Q2.) (R2)
bQ = (50‘87’2QR2 + T4Q%2)L2(R2)'

Consequently, the issue is to determine the signs of b; and by (which depend only on the
Euclidean profile Qgz). An integration by parts yields

by = —8(Qr2|r’Qre2) r2r2) — 2(Qre|r* Q) 122y < 0

and numerical evaluation shows, somewhat surprisingly, that b; > 147, see Appendix [Cl
This means that the simple choice ¢; = 1 and ¢; = 0 provides a negatively curved metric
that makes the soliton linearly unstable. In addition, we see that there are values of ¢; < ¢
such that the mass condition for stability is possibly true. Of course, to establish orbital
stability, further analysis is required on such a manifold, for which the metric expansion is

far from standard examples.

APPENDIX A. BACKGROUND MATERIAL

For the convenience of the reader and to fix notation, we compile some background material
on radial distributions and distributional solutions of Poisson’s equation.

A.1. Radial distributions. As usual, for U C R? open, we denote by D(U) = C>°(U) the
set of test functions. For (¢,)neny € D(U) and ¢ € D(U), we say that lim,, . ¢, = ¢ in
D(U) if there exists a compact K C U such that supp ¢, C K for all n € N and for any
k € No, [[on — @llwheo@y — 0 as n — oo. Here,

||90||Wk’°°(U) = Z HaBQDHL‘X’(U)

Bl<k
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with the usual multi-index notation. This notion of convergence defines a topology on
D(U) and the space D'(U) of continuous linear functionals on D(U) is called the space of
distributions.

In order to define radial distributions, we start with a test function f € D(R?) and define
its spherical mean M f by

M) = g [ ko)),

where o is the standard surface measure on the sphere S~!. Clearly, M f = f if and only if
f is radial. The most important properties are summarized in the next lemma.

Lemma A.1. We have Aga M f = MAgaf for all f € C*(RY). Furthermore, for any s > 0
we have

| M f | zsay S 11 as e
for all f € C*(RY). Finally, M extends to a self-adjoint operator on L*(RY).

Proof. We use polar coordinates z = rw’ defined by r = |z|, W’ = y for z € RAN{0}. Since
M f is radial, we obtain

AraM f(z) = (8,2, + ?&) Mf(rw') = |Sd1—1‘ (af + ?@) - f(rw)do(w)

1 d—1
— W " (83 + T&) f(rw)do(w)

1 d—1 1
— W - (83 + T& + ﬁASd17w) f(rw)do(w)

1
= W /;dl ARdf(Tw)dO'((A))
= MAga f(z)
for any z € R¥\{0}. Next, by Cauchy-Schwarz,

Mo = [ [, MFo) ot

< /000 /Sdl /Sdl |f(rw)|?do (W) do(w)rtdr
S A7z ay
Since M commutes with Aga, we can also estimate
1M fll oy = 1A% M fll 2@ey + M fll 2@y = [MAGaf |l 2@ay + IM | 2za)
S ’|A§§df||L2(Rd) + [ fll z2(ray
= ||f||H2k(Rd)

for any k£ € Ny. By interpolation, we obtain the claimed estimate. Clearly, M f has compact
support if f € C®(RY) and the Sobolev embedding theorem shows that in fact Mf €
C>®(R%). In particular, Aga M f(x) = M Aga f(x) holds for all z € R? by continuity.
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By density, M extends to a bounded operator on L*(RY), and we have
(Mflg)r2gea) = / M f(z)g(z)dz = / [ MIrw)g(r)do )t dr
R4 0 d—1
1 o -
= —_/ / f(rw)do(w)g(rw)de (w)rd=tdr
S o Jga1 Jsa-n
1 & -
= —/ f(T’w/)/ g(rw)do(w)de(W)r¢ dr
S o Jsa Sd-1

- / £ (r) Mg (ra)dor (o)~ dr
0
= (fIMg)12re)
for all f,g € C®(R?) by Fubini. Consequently, M extends to a self-adjoint operator on
L*(RY). O
We use the same symbol M to denote the extension of the spherical mean to L?(RY). For
s > 0 we define the closed subspace H? 4 (R?) C H*(R?) of radial functions in H*(RY) by
Hi(RY) o= {f € H'(R) : Mf = f}.

It is now straightforward to further extend M to distributions. Indeed, for u € D'(R?) we
define Mu by

(Mu)(p) == u(Myp)
for all ¢ € D(R?). Obviously, Mu is a linear form on D(R?) and, for any K C R? compact,
we can find a £ € Nj such that
[(Mu)(p)| = [u(Me)| S ||M90||Wk’°°(]Rd) S ||M<P||Hk+d(Rd) S ||<P||Hk+d(Rd) S ||90||Wk+dv°°(K)

for all ¢ € CX(K) by Sobolev embedding and Lemma [A.1l This estimate shows that
Mu € D'(R?) and by the self-adjointness of M on L*(R?), the operator M : D'(RY) — D'(RY)
is an extension of M to the space of distributions. Consequently, it is justified to simplify
notation by writing M instead of M. Accordingly, a distribution u € D'(RY) is said to

be radial if Mu = u. Note that by Lemma [AJl Ags maps radial distributions to radial
distributions.

A.2. Regularity results. We state and prove two regularity results for radial distributional
solutions of Poisson’s equation. It is convenient to introduce the following notation.

Definition A.2. Let U C R? be open and f € L{.(U). Then we define the distribution
ffeD'(U) by

Fio)i= [ s@plarts
U
for p € D(U).
Lemma A.3. Let f,g € C(R?\ {0}) N LL (R?) be radial and suppose f satisfies

Agaf* = ¢* in D'(RY).
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d—1

Then the function [ : (0,00) — R, defined by f(r) := 2" f(re1), belongs to C2(0,00) and
satisfies

Py - == Fy = o e
for all r > 0.
Proof. Let

Da(r) = () - L=y,

The operator Dy maps D(0,00) to D(0,00) continuously and is formally self-adjoint on
L?(0,00). Thus, Dy extends to D’'(0,00) by setting Dgv(v)) := v(Dgtp) for v € D'(0, c0) and
1 € D(0,00). Furthermore, we have the identity

d—1

B (|- 77 6( 1)) (@) = |27 (D))

for all z € R%. Now note that ¢ € C(0,00) implies | - |~“Z (| - |) € C=(R?) and thus,
every distribution u € D'(R?) defines a distribution 7 € D'(0, 00) by setting

(W) =u (I 17w )
for ¢» € D(0,00). Then we have

gt (117700 - 1) = (B (11700 - )

for all ¢ € D(0, 00), and the equation Agaf* = ¢* in D'(R?) implies that
Daft = g* in D'(0,00).
Explicitly, we have

Fw) =7 (175000 0) = [ @lel 5 wllahds = 527 [0 freutriar

and thus, f# = f* with f(r) := [ST!|r“Z f(re,). This yields
Daf* = §* in D'(0, 00),

and by [41], p. 58, Corollary 3.1.6, it follows that fe C?(0,00) and Dyf = § holds in the
classical sense. O

Lemma A.4. Let f,g € C(R?) be radial and suppose f satisfies
Agaf? = g% in D'(R?).

Then f € C*(R?) and Agaf(z) = g(x) for all x € R in the classical sense.
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N d—1

Proof. From Lemma we know that f(r) :=r"2 f(re;) belongs to C?(0,00) and satisfies

ey (d=1)(d=3)
f (7’)—4—TQ

for all r > 0. In particular, f € C2(R?\ {0}). We set ¢(s) := s~ 1 f(v/s) = f(\/s€1). Then
¢ € C%*0,00) N C(]0,00)) and

() + ol (5) = h(s)

for all s > 0 and h(s) := 1g(v/se;). Obviously, h € C([0,00)). A fundamental system
for the homogeneous equation is given by {1, 1}, where ¢y(s) = —-2-s~“ if d > 3 and

-2
wo(s) = log s if d = 2. Note that W (1,1)(s) = s~ 2 and thus, by the variation of constants
formula, ¢ can be written as

wﬁ=%+wmﬁ—llam?%wﬁ+%m/3?%@w

0
for some constants cg, c; € R. Since ¢ € C(]0,00)), we must have ¢; = 0 and therefore,
¢'(s) = ¥o(s) /Ost%—lh(t)dt — 573 /Ost%—lh(t)dt.
Consequently, by de I’'Hopital’s rule,
lim ¢/(s) = lim Syt thde L sEh(s)

s—0+ s—0+ s

ol

and we see that ¢ € C*(]0,00)). Furthermore,

¢"(s) = s h(s) — 5757 / St%—lh(t)dt — s h(s) — D571 (s)

0
and thus,

Jip 1s0"(9)] = g, [M(s) —30(5)] =0,
By definition, f(z) = ¢(|z|*) and thus,

00k f (x) = dajurd” (|2*) + 20/ (|2 [*) O
This implies that

lim 9,0, f () = 2¢'(0)d 1.
since
|2z (J2])| < |2*]" (|2[*)] = 0

as |z| — 0. Consequently, f € C?*(R9). O
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APPENDIX B. CONSTRUCTION OF A FUNDAMENTAL SYSTEM

Lemma B.1. Let A > 0 and V € C*([0,00)). Furthermore, suppose that for any k € Ny
there exists a Cy, > 0 such that |V® (r)| < Cp(r)=%7* for allv > 0. Then the equation

(d—1)(d—-3)

¢"(r) — " ¢(r) = V(r)g(r) — N¢(r) =0 (B.1)
has fundamental systems {po, o} on (0, %] and {¢oo; Voo } 0N [i, 00), respectively, of the form
1
d-1 r2 log [l + by(r)], d=2,
=rz |1+ , = _
ol = ) vl {_rlzr—dfp Fho)l, d#2,
Poo (1) = €[+ aso (1)), oo(r) = 556" [1 4 boo ().
For any k € Ny there exists a Cy, > 0 such thaf]
|a(()k)(r)\ < Cpr'F, for allr € (0, 3],
(k) [logr|[~'r~*, d=2,
by ()] < Cy {rl_k, Q49 for all r € (0, %],
|af ()] + b ()| < Crr ™7, for all v > %.
Proof. We start with the construction of the solution ¢y. Note that the equation
(d—1)(d—-3)
f1r) = s fr) =0
has the fundamental system {fo, go}, given by
1
a—1 r2 logr, if d =2,
folr)=r=", gO(T)_{_dleT_dQS> it d £ 2,

and W(fo,g90) = 1. Thus, in view of the variation of constants formula, ¢q is supposed to
solve the equation

bo(r) = folr) — folr) / () [V (s) + Nbo(s)ds + golr) / o) [V(s) + Nldols)ds.

We rewrite this equation in terms of the auxiliary function h, defined by ¢y = foh. This
yields the Volterra equation

h(r) =1+ /O K (r,$)h(s)ds, (B.2)

with the kernel

— [ %) s)% — fo(s)go(s s 2
()= | B0 o) = olshon()] V) + 22

If d > 3 we have the bound
|K(r,s)] Sr @247 4 5 < s
3The bounds on the error functions ag, by are not optimal but simple to work with and sufficient for our

purposes.
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V)
N
<
N
|

5- If d =2, we fix an arbitrary § € (0,1) and estimate
K (r,5)] S |logrs + s|logs| S 5~

S
=
=
—
e}
IN
VA
AN
<
N
|—=

5. Consequently,

1

| su Krolds <1,
0

T’E[S,%]

and the standard existence result for Volterra equations (see e.g. [60], Lemma 2.4) yields the
existence of a solution h € L=(0,1) to Eq. (B2), satisfying the bound

h <>—1\</ K (r,9)][1(s)[ds S 1A e / s < 12

2

for all r € [0,1]. This proves the existence of ¢o(r) = fo(r)h(r) = fo(r)[1 + ao(r)], with the
bound |ag(r)| < 70 < for all 7 € [0, 5.

Next, we turn to the derivative bounds on ay. For any j € Ny we have the bound
VK (r,s)| Srist 0 Srdforall0<r<s<i If we set k;(r) := 02K (r, s)|s=, then, for

J, k € No, we have |/<a§ (M| <r~=*for all r € ( . In terms of ag, Eq. (B.2) reads

/Krsds—l—/Krsao

a(()k)( ) = l%((]k 1)(7’)+ (Kkja0) (k 1=9) / 8k K(r, s)ag(s)ds.

Thus, for k € N, we obtain

Inductively, we find
|a(k)( ) <tk g g2k < gLk
for all 7 € (0, 5], which is the desired bound.

The singular solution )y is constructed via the reduction formula. Since ¢g(r) = rie 1+
O(r)], there exists an ro € (0, 5] such that ¢o(r) > 0 for all r € (0, 7). Consequently,

Yo(r) = —go(r /¢0 )-2ds

is well-defined for all r € (0,7¢] and provides a solution to Eq. (Bl on (0,7]. We define
the function by on (0, 7o) by ¥o(r) = go(r)[1 + bo(r)], i.e.,

bo(r) = — 200" H“O /f 1+ ag(s)]"2ds — 1.

Observe that

(@)/ _ Jogo — fo90 _ W (fo, 90) _ 2

fo 13 f3 ’

and thus,
CSolr) [ e folr) _ 90(r0)
oo(r) / fo(s)™ds =1 Cogo(r)’ o : olro).
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Consequently,

fo(r)
go(r)

fo(T
90(7"

bo(r) = ag(r) — co (14 ap(r)] — ;[1 + ao(r)] /TO fo(s)™2 [(1 + ag(s)) ™% — 1} ds,

and in the case d > 3 we obtain
lbo ()| < 7+ rd2 4 pd=2 /TO sTI200s < p 4?2 420 < p
for all r € [0, 7¢]. In the case d = 2 we have the weaker bound
bo(7)] S+ |logr| ™t + |logr| ™ /m 515> %ds < |logr|

for all r € (0,7¢]. The derivative bounds on by follow directly by differentiating the explicit
formula for by. By solving an initial value problem with data at r = ry, we extend the solution
Yo to (0,1] and clearly, ¥y € C*>((0,1]) since the coefficients of Eq. (B} are smooth on
(0,00).
The solution ¢, is constructed by a similar procedure. This time we treat the term
(d—1)(d—3)

— 47— ¢(r) perturbatively since it is negligible for large r. That is to say, we first note

that the equation
f(r) =N f(r) =0

has the fundamental system {fw, goo}, where foo(r) = e and goo(r) = 55¢*. Conse-
quently, we write ¢, = fooh and consider the Volterra equation
h(r) =1 —i—/ K(r,s)h(s)ds (B.3)
with the kernel
, 9oo(T) 2| [(d—=1)(d —3)
() = [Felolanto) - 220 o) =D v

We estimate
|K(T’, S)| S (1 + 62)\r6—2>\s)8—2 5 8_2
for all i < r <s, which yields

411 re[%,s}

/ sup |K(r, s)\dsS/ s 2ds < 1.
i i

The Volterra theorem (see e.g. [60], Lemma 2.4) then implies the existence of a solution
h € L>(3,00). Furthermore,

) =11 [ KM ds S bl [ 572 S0

for all r > 1 and thus, ¢oo(r) = foo(r)[1 + aue(r)] With |as(r)| S v~ for all r >
42
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For the bounds on the derivatives of a.,, we rewrite the Volterra equation for a,, = h — 1

/Krsds—i—/ K(r, s)ax(s)ds

—/ K(rs+7‘ds+/ K(r,s 4 r)as(s + r)ds.
0

as

Note that

K(r,s+71) = (1 iZe—”(”’“)) [(di(l)ﬂ +V(s+ r)}

1
2) e 5+1)?

_ ! oy | (d—1)(d —3)

_—)\(1 e A){W—FV(S—FT)}

DO

and thus, for 7 € N,

VK (r,s+7) < (s+7r)27
for all i <r <s. Now let £ € N and assume that for any j € Ny with 7 < k£ — 1, we have
a2 (r)] < r=19 for all r > 1. Then we obtain

k) r):/ 8,'?K(r,s+r)ds+/ OF [K(r, s 4+ 1)ase(s +1)] ds
0 0

= O(r~'7h) +/ K(r,s)a®™(s)ds
and thus, a(r) := itk ®) (r) satisfies the Volterra equation
ar(r) = O(r°) +/ K(r, s)r'™s 7 Fq,(s)ds.

Since
‘K(r, s)r”ks_l_k} < 572
for all i < r < s, a Volterra iteration yields a; € LC’O(l o0) and we obtain

a0)] = I au)] < 7 H ol ey g S

for all r > i. Consequently, the stated bounds on the derivatives of a,, follow inductively.

Finally, for the growing solution 1., we note that there exists an r; > 1 such that

Goo(r) > 0 for all 7 > r; and set 1
Unr) = 6l0) [ 0ne(s) 2.

Then 1y, solves Eq. (B) on [r1,00) and the function b.,, defined by ¥ = goo(1 + bso), 18
given explicitly by

boo(r) = 120 H“‘X’ /foo 21 4 o (s)]2ds — 1.

fOO(T> " 24 _wa(r) 1= 900(7"1>
goo<r>/T1f°°($’ ds=l-al )y T )

As before,
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and thus,

boo (1) = 0o (1) — 1;0:22 [1 4 axo(r)] + g: : + Ao (7 / Foo(8)2[(1 + ano(s)) ™2 — 1]ds.

This yields the bound

T
[boo (7] < rl ey 6_2M/ s s <yt

T1

for all r > i. The bounds on the derivatives of b, follow in a straightforward manner
by differentiating the explicit expression for b.,. By solving an initial value problem, the
solution 1., smoothly extends to all of [%, 00). O

APPENDIX C. NUMERICS

C.1. Numerical construction of the soliton profile. We would like to obtain a radial
solution to

Ap2Q — Q+ Q* =0.
That is to say, we need to solve the radial equation
1
f'(r)+ = f'(r) = f(r) + f(r)* =0 (C.1)

for » > 0. Asymptotically, the nonlinearity is negligible and thus, we expect the behavior
f(r)~1asr — 0+ and f(r) ~ r3e~" as r — oo. We encode the expected asymptotics in
the definition of the new variable g, given by

Py = (L4 7) e g( ‘1)

+1
In terms of g and z := =, Bq. (CI) reads

322 —6x—5 3(3—1) 2 _olts
S T R (R T prm A C I s

R(g) := g"(x) +

(C.2)
for € [-1,1). We compactify the problem (C.2)) by allowing = € [—1,1]. Evidently, the
endpoints x = £1 are singular and this yields the regularity conditions

4g'(=1) = 3g(=1) = 16¢'(1) + 39(1) = 16¢"(1) — 5¢'(1) — 39(1) = 0. (C.3)
Note that these conditions are determined by the linear part of the equation since the coeffi-
cient of g(x)? is not singular at x = +1. We solve Eq. (C2]) by a Chebyshev pseudospectral
method. To this end, we use the basis functions ¢, : [-1,1] = R, n € Ny,
On (1) 1= T () + agn + @107 + az.,2°,

where T}, are the standard Chebyshev polynomials and a; ,, are chosen in such a way that each
¢, satisfies the regularity conditions Eq. (C.3]). Note that this leads to ¢g = ¢ = ¢ = 0.
Then we numerically solve the root finding problem

(En)o-s



for k =0,1,2,...,22, and z; € [—1,1] some collocation points. The expansion coefficients
(8,)22_5 are given in Table [C1]

TAaBLE C.1. Expansion coefficients for the approximate soliton profile

n 3 4 5 6 7 8
B, | — 2012 8061 23 _ame7 | 113 407
n 141001 | 72860 25643 731900 61446 88530
n 9 10 11 12 13 14
3 80 195 | 167 3 3 1
n | 79969 296276 607101 | 91531 109289 42237921
n 15 16 17 18 19 20
: 1 1 1 1 1 1
n | 163112 171418 1839428 412985 693490 3459389
n 21 22 23 24 25
3 1 1 1 1 1
n | 5641102 | 2626342 | 15286837 | 10226264 9836273

C.2. Numerical construction of @1. The goal is to numerically construct the unique
(radial) solution @) to the equation

£+@1 = —2Qg2 — 7”2@%2-
Recall that So(x) = 270;Qgz(x) + Qgz(x) satisfies LSy = —2Qg2. Consequently, it suffices

~

to solve L5 = —r2Q3, because then, 1 = Sy + Si. In other words, we need to solve the
radial equation

F) S 50) = £+ Bfalr £ ) = 7 folr, ()

where fo(r) = Qgrz(re;). Again, we introduce the auxiliary variable g, defined by

Fr) = (14 7) ke g ( - 1) |

r+1
which transforms Eq. (C.4]) into
322 — 6z — 5 3(3 —x) 6 Lo
" / . -2
I S Y i AT w7 e KA Gl s 90(2)

14+2)? it
2 e o,

_r—1 : :
where x = = and go is given by

r+1

We replace gy by the approximation obtained in Section and solve Eq. (C.3) by a Cheby-
shev pseudospectral method with the basis functions ¢,, from above. This yields an approx-
imate solution of the form > . ~,¢, with the coefficients (y,)2L, given in Table [C2

With the numerical approximations to the functions Qg2 and @1 at hand, it is straight-
forward to compute (an approximation to) the constant b; from Section By numerical
integration we find ;’—; ~ 7.39.

for)=(1+7r)"2e gy (T - 1) |
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TABLE C.2. Expansion coefficients for approximation to S;
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