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EXISTENCE AND STABILITY OF SCHRÖDINGER SOLITONS ON

NONCOMPACT MANIFOLDS

DAVID BORTHWICK, ROLAND DONNINGER, ENNO LENZMANN, AND JEREMY L. MARZUOLA

Abstract. We consider the focusing nonlinear Schrödinger equation on a large class of
rotationally symmetric, noncompact manifolds. We prove the existence of a solitary wave
by perturbing off the flat Euclidean case. Furthermore, we study the stability of the solitary
wave under radial perturbations by analyzing spectral properties of the associated linearized
operator. Finally, in the L2-critical case, by considering the Vakhitov-Kolokolov criterion
(see also results of Grillakis-Shatah-Strauss), we provide numerical evidence showing that
the introduction of a nontrivial geometry destabilizes the solitary wave in a wide variety
of cases, regardless of the curvature of the manifold. In particular, the parameters of the
metric corresponding to standard hyperbolic space will lead to instability consistent with
the blow-up results of Banica-Duyckaerts (2015). We also provide numerical evidence for
geometries under which it would be possible for the Vakhitov-Kolokolov condition to suggest
stability, provided certain spectral properties hold in these spaces.

1. Introduction

The focusing nonlinear Schrödinger equation

i∂tu(t, x) + ∆xu(t, x) + u(t, x)|u(t, x)|p−1 = 0, p > 1, (1.1)

for an unknown u : R×Rd → C, is a prototypical dispersive partial differential equation that
arises in various situations in physics, e.g., in nonlinear optics or as an effective equation in
many particle quantum mechanics. We refer the reader to the standard monograph [66] for
the general background. It is a classical result that in the parameter range 1 < p < 1 + 4

d−2

(d ≥ 2, no upper bound if d = 2), Eq. (1.1) possesses solitary waves or solitons, i.e., solutions
of the form

u∗α(t, x) = eiα
2tQRd,α(x), α > 0, (1.2)

where the profile function QRd,α ∈ H1(Rd) is radial, smooth, positive, and exponentially
decaying, see [22, 65, 23, 33, 34, 7, 9]. Note that QRd,α satisfies the elliptic equation

−∆QRd,α + α2QRd,α −QRd,α|QRd,α|p−1 = 0. (1.3)

The upper bound p = 1+ 4
d−2

has an interpretation in terms of scaling. Observe that if u is
a solution to Eq. (1.1), then so is the rescaled function

uλ(t, x) := λ−
2

p−1u(t/λ2, x/λ)

for any λ > 0. When measured in homogeneous Sobolev spaces, the rescaled solution satisfies

‖uλ(t, ·)‖Ḣs(Rd) = λ
d
2
−s− 2

p−1‖u(t/λ2, ·)‖Ḣs(Rd)
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and thus, if p = 1 + 4
d−2

, the Ḣ1(Rd)-norm is invariant under the scaling. This is called the

energy-critical case. Similarly, p = 1 + 4
d
is called the mass-critical or L2-critical case as

it leaves the L2(Rd)-norm invariant. The scaling symmetry also shows that it is enough to
consider α = 1 in Eq. (1.2), and in this case, the solution u∗1 is unique [22, 51, 47] and called
the ground state.

The ground state has a variational characterization which is closely related to stability
properties. More precisely, this refers to the notion of orbital stability. Roughly speaking, u∗1
is orbitally stable if any solution u that starts out close to u∗1 stays close to u∗1 for all times,
modulo symmetries of the equation. It is known that the ground state u∗1 is orbitally stable
in the L2-subcritical case p < 1 + 4

d
and unstable otherwise [8, 15, 70, 61, 72, 36, 35, 37].

The stronger notion of asymptotic stability of u∗1 refers to the property that all solutions
u starting out sufficiently close to u∗1 converge to u∗1 as t → ∞, modulo symmetries of the
equation. Proving asymptotic stability is challenging as it presupposes a detailed knowledge
of the spectrum of the nonself-adjoint operator that arises upon linearization of the equation
at the ground state. Unfortunately, the mathematical understanding of this operator is still
unsatisfactory and one has to rely in part on numerical evidence. Consequently, asymptotic
stability is known only in special cases or under suitable spectral assumptions, see e.g. [63,
64, 13, 57, 25, 26, 14, 55, 29, 59, 5, 28, 6, 52] for an incomplete selection of available results.

1.1. Main results. In the present paper we change the geometry and investigate the exis-
tence of solitary waves and their spectral stability for Schrödinger equations on manifolds.
More precisely, let Md = (0,∞)×A Sd−1, d ≥ 2, be a warped product manifold with warping
function A : R → R and Sd−1 equipped with the standard round metric, see e.g. [56]. For
the sake of concreteness, we use the stereographic projection ψ : Rd−1 → Sd−1,

ψ(y) :=

(
2y

|y|2 + 1
,
|y|2 − 1

|y2|+ 1

)
,

to parametrize the sphere. Then we have

∂aψ
j(y)∂bψj(y) =

4

(|y|2 + 1)2
δab

and the components gjk of the Riemannian metric on the warped product Md are given by

gjk(r, y) = δ1jδ1k +
4A(r)2

(|y|2 + 1)2
δjk(1− δ1jδ1k)

for j, k ∈ {1, 2, . . . , d}. We also remark that the sectional curvatures of Md are given by

K(∂r, ∂ya)(r, y) = −A
′′(r)

A(r)
, K(∂ya , ∂yb)(r, y) =

1−A′(r)2

A(r)2
(1− δab),

for a, b ∈ {1, 2, . . . , d− 1}, see [56].

Hypothesis 1.1. We make the following assumptions on the warping function A.

• A : R → R is smooth and odd with A′(0) = 1.
• A(r) & r for all r > 0.
• There exists a constant V0,d ∈ R such that

d− 1

2

A′′(r)

A(r)
+

(d− 1)(d− 3)

4

[
A′(r)2

A(r)2
− 1

r2

]
= V0,d[1 +O(〈r〉−2)]
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for all r > 0.

Remark 1.2. A classical example covered by Hypothesis 1.1 is A(r) = sinh(r) so that Md is
the hyperbolic space.

As usual, we denote by (gjk) the matrix inverse of (gjk) and det g is the determinant of
the latter matrix. Explicitly, we have

√
det g(r, y) = A(r)d−1

(
2

|y|2 + 1

)d−1

,

and for the inner product (·|·)L2(Md) on L
2(Md) we obtain the expression

(f |g)L2(Md) =

∫ ∞

0

∫

Rd−1

f(r, y)g(r, y)A(r)d−1

(
2

|y|2 + 1

)d−1

dy dr.

Furthermore, the Laplace-Beltrami operator ∆Md on Md is given by

∆Md :=
1√
det g

∂j

(√
det g gjk∂k

)
,

where ∂1 = ∂r and ∂j = ∂yj−1 for j = 2, 3, . . . , d. We consider the focusing nonlinear
Schrödinger equation

i∂tu(t, ·) + ∆Mdu(t, ·) + u(t, ·)|u(t, ·)|p−1 = 0 (1.4)

on Md for a function u : R × Md → C. Our first result concerns the existence of solitary
waves or solitons.

Theorem 1.3 (Existence of solitary waves). Assume Hypothesis 1.1 and 1 < p < 1 + 4
d−2

(no upper bound in the case d = 2). Then there exists an α0 > 0 such that for any α ≥ α0,
there exists a real-valued function QMd,α ∈ C2(Md) for which u∗α : R×Md → C, given by

u∗α(t, r, y) := eiα
2tQMd,α(r, y),

is a solution to Eq. (1.4) for all t ∈ R. More precisely, we have

QMd,α(r, y) = α
2

p−1

(
r

A(r)

)d−1
2 [

QRd,1(αre1) + ρα(αre1)
]
,

where ρα ∈ C2(Rd) satisfies ‖ρα‖H2(Rd) + ‖ρα‖L∞(Rd) . α−1 for all α ≥ α0. In particular,
QMd,α is radial.

Remark 1.4. The soliton profile on the manifold is a perturbation of the Euclidean profile.
The heuristic behind this fact is that for large α the soliton is supposed to concentrate near
the origin and one expects the curvature to become negligible. This effect is quantified in
Theorem 1.3.

We continue by investigating the linear stability of the solitary wave from Theorem 1.3.
By plugging the ansatz u(t, r, y) = eiα

2t[QMd,α(r, y) + w(t, r, y)] into Eq. (1.4), one obtains,
upon dropping the nonlinear terms, the evolution equation

∂t

(
Rew(t, ·)
Imw(t, ·)

)
= L̃Md,α

(
Rew(t, ·)
Imw(t, ·)

)
, (1.5)
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with the operator

L̃Md,α :=

(
0 L̃Md,α,−

−L̃Md,α,+ 0

)
,

where

L̃Md,α,− := −∆Md + α2 − |QMd,α|p−1

L̃Md,α,+ := −∆Md + α2 − p|QMd,α|p−1.

Evidently, the linear stability of u∗α is encoded in the spectral properties of (a closed realiza-

tion of) the operator L̃Md,α. We restrict our attention to the radial case and consider L̃Md,α

on the space L2
rad(M

d,C2) with domain

D(L̃Md,α) := {(f1, f2) ∈ C∞
c (Md,C2) : f1, f2 radial}.

Accordingly, we equip the scalar operators L̃Md,α,± with the domains

D(L̃Md,α,±) := {f ∈ C∞
c (Md) : f radial}.

Theorem 1.5 (Structure of the spectrum of the linearized operator). Assume Hypothesis
1.1 and 1 < p < 1+ 4

d−2
(no upper bound in the case d = 2). There exists an α0 > 0 such that

for any α ≥ α0, the operator L̃Md,α : D(L̃Md,α) ⊂ L2
rad(M

d,C2) → L2
rad(M

d,C2) is closable.
Its closure LMd,α has the following properties:

• The spectrum of LMd,α is a subset of R ∪ iR.
• If λ ∈ σ(LMd,α) then −λ ∈ σ(LMd,α).
• The essential spectrum1 of LMd,α is given by

σe(LMd,α) = {z ∈ C : Re z = 0, | Im z| ≥ α2 + V0,d}.
• The set σ(LMd,α)\σe(LMd,α) is free of accumulation points and consists of eigenvalues
with finite algebraic multiplicities.

• We have 0 ∈ σp(LMd,α) and

kerLMd,α =

〈(
0

QMd,α

)〉
.

For p 6= 1 + 4
d
we obtain a very clear picture concerning the linear stability which is

analogous to the Euclidean situation.

Theorem 1.6 (Spectral stability in the noncritical case). Assume Hypothesis 1.1 and 1 <
p < 1 + 4

d−2
(no upper bound in the case d = 2). Then there exists an α0 > 0 such that for

all α ≥ α0 the following holds.

• If p 6= 1 + 4
d
, the algebraic multiplicity of 0 ∈ σp(LMd,α) equals 2.

• If p < 1 + 4
d
, there are no positive eigenvalues of LMd,α.

• If p > 1 + 4
d
, there exists precisely one positive eigenvalue λα ∈ σp(LMd,α) and the

eigenvalues ±λα ∈ σp(LMd,α) are simple.

1There are various (in general inequivalent) definitions of the essential spectrum of a closed operator. For
us, the essential spectrum is the part of the spectrum that is invariant under relatively compact perturbations,
see Definition 4.1 and Remark 4.2 below.
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In the critical case p = 1+ 4
d
, the stability of the solitary wave is more involved and depends

on finer properties of the underlying geometry. The corresponding condition is formulated

in terms of L−1
Md,α,+

, where LMd,α,+ is the closure of L̃Md,α,+.

Theorem 1.7 (Spectral stability in the critical case). Assume Hypothesis 1.1 and 1 < p <
1 + 4

d−2
(no upper bound in the case d = 2). Then there exists an α0 > 0 such that for all

α ≥ α0 the operator L̃Md,α,+ : D(L̃Md,α,+) ⊂ L2
rad(M

d) → L2
rad(M

d) is essentially self-adjoint
and its closure LMd,α,+ is bounded invertible. If p = 1 + 4

d
then for all α ≥ α0 the following

holds:

• If (L−1
Md,α,+

QMd,α|QMd,α)L2(Md) > 0 then LMd,α has precisely one positive eigenvalue λα
and the eigenvalues ±λα ∈ σp(LMd,α) are simple.

• If (L−1
Md,α,+

QMd,α|QMd,α)L2(Md) ≤ 0 then LMd,α has no positive eigenvalues.

Remark 1.8. If ∂αQMd,α is sufficiently smooth and belongs to the domain of LMd,α,+, the
(in)stability condition in Theorem 1.7 can be simplified. Indeed, by differentiating

−∆MdQMd,α + α2QMd,α −QMd,α|QMd,α|p−1 = 0

with respect to α we find
LMd,α,+∂αQMd,α = −2αQMd,α

and thus,
(
L−1

Md,α,+
QMd,α

∣∣QMd,α

)
L2(Md)

= − 1
2α

(
∂αQMd,α

∣∣QMd,α

)
L2(Md)

= − 1
4α
∂α‖QMd,α‖2L2(Md).

Remark 1.9. Theorem 1.7 raises the intriguing question of whether it is possible to “stabilize”
the borderline unstable soliton in Euclidean space by changing the background geometry.
Unfortunately, we cannot answer this question in the affirmative as we are unable to provide
a sufficient criterion for stability in the critical case. This appears to be challenging, as
it requires a good understanding of eigenvalues and resonances on the imaginary axis, a
question which is still largely open even in the purely Euclidean setting. However, Theorem
1.7 provides a sufficient criterion for (linear) instability. Using this, we provide numerical
evidence that there exists a large class of negatively curved manifolds such that the soliton
becomes (linearly) unstable, see Section 6. This fits well with the blow-up instability for the
L2 critical (and super-critical) nonlinear Schrödinger equation on the hyperbolic space Hd

computed via virial identities in [4]. Blow-up was also established in [12] in the L2 critical
setting with a Riemannian manifold that is locally like Hd and asymptotically like Rd.

1.2. Further related results. Unfortunately, there is still no general satisfactory under-
standing of the linearized operator even in the Euclidean case, and as a consequence, this
classical problem remains a topic of contemporary research. For instance, see [30] for an
analysis of embedded eigenvalues in the essential spectrum and [16] for a modern account of
the general theory and new numerical results. Furthermore, decay properties of eigenfunc-
tions are investigated in [42]. The paper [59] is concerned with asymptotic stability but also
contains a thorough analysis of the linearized operator. In [24], a novel computer-assisted
method is introduced to prove the absence of eigenvalues in the essential spectral gap. In
addition, in [50], the authors give a numerically assisted proof for the absence of embedded
eigenvalues in a variety of settings on Rd. In the case of potential perturbations, stability
analysis in both the small and large mass limits have been studied through both dispersive
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techniques as well as bifurcation theory on Rd for a range of nonlinearities in many works, for
a small sampling see e.g. [69, 27, 39, 45, 44, 49, 54, 53] and the references captured within.

Needless to say, the literature on Schrödinger equations on manifolds is vast and we just
mention some closely related recent works. There is a number of papers devoted to the
study of the focusing nonlinear Schrödinger equation on hyperbolic space. A recurring
theme, compare Remark 1.9, is the question whether the negative curvature may improve
the situation compared to the Euclidean case and stabilize the evolution, see, e.g., [2, 1, 4].
Spectral properties in hyperbolic space are studied in [10] and the existence of ground states
on noncompact manifolds is investigated in, e.g., [21, 67, 20]. See also the recent works
[18, 19, 17] for advances on the spectral measure for asymptotically hyperbolic manifolds,
the analysis of which is required for good dispersive estimates that can lead to results on
asymptotic stability when understood with perturbations and for the linearized operator.
The literature on spectral measures for the asymptotically Euclidean and conic cases is quite
vast, but see [48, 11, 40] and references therein.

2. Preliminary transformations

We proceed by transforming the radial case of Eq. (1.4) to a standard nonlinear Schrödinger
equation on Rd with a potential. This is a well-known reduction, see e.g. [3, 21].

2.1. The Laplace-Beltrami operator. The Laplace-Beltrami operator ∆Md is given by

∆Mdf =
1√
det g

∂j

(√
det g gjk∂kf

)
.

We now assume that f(r, y) = f(r), i.e., we restrict ourselves to the radial case. Then,

∆Mdf(r) =
1√

det g(r, y)
∂r

(√
det g(r, y)∂rf(r)

)
=

1

A(r)d−1
∂r
[
A(r)d−1∂rf(r)

]

=

[
∂2r + (d− 1)

A′(r)

A(r)
∂r

]
f(r)

=: ∆rad
Mdf(r).

Obviously, ∆rad
Md is formally self-adjoint on L2

Ad−1(0,∞). Eq. (1.4) for radial functions reduces
to

i∂tũ(t, ·) + ∆rad
Md ũ(t, ·) + ũ(t, ·)|ũ(t, ·)|p−1 = 0 (2.1)

for ũ : R× (0,∞) → C.

2.2. Conjugation to Euclidean. In order to perturb off the Euclidean case, we would
like to compare the Laplace-Beltrami operator ∆Md to the ordinary Laplace operator on Rd,
henceforth denoted by ∆Rd. The restriction of the Euclidean operator to radial functions
yields the operator

∆rad
Rd := ∂2r +

d− 1

r
∂r,

acting on L2
|·|d−1(0,∞). To compare the two operators, we need to conjugate by the unitary

map that relates the radial function spaces.
6



Let Ud : L
2
|·|d−1(0,∞) → L2

Ad−1(0,∞) be defined by

Udf(r) :=

(
r

A(r)

) d−1
2

f(r),

so that ‖Udf‖L2
Ad−1(0,∞) = ‖f‖L2

|·|d−1(0,∞). Now we consider the operator U−1
d ∆rad

MdUd on

L2
|·|d−1(0,∞). Explicitly, we have

U−1
d ∆rad

MdUdf(r) =

(
∆rad

Rd − d− 1

2

A′′(r)

A(r)
− (d− 1)(d− 3)

4

A′(r)2

A(r)2
+

(d− 1)(d− 3)

4r2

)
f(r),

By setting

ũ(t, r) = Ud (ṽ(t, ·)) (r) =
(

r

A(r)

) d−1
2

ṽ(t, r),

for a function ṽ : R× (0,∞) → C, Eq. (2.1) can now be written as

i∂tṽ(t, ·) + U−1
d ∆rad

MdUdṽ(t, ·) + ṽ(t, ·)|Udṽ(t, ·)|p−1 = 0.

In fact, we find it more convenient to formulate this equation in terms of the auxiliary
function v : R× Rd → C, given by v(t, x) := ṽ(t, |x|). This yields

i∂tv(t, ·) + ∆Rdv(t, ·)− Vdv(t, ·) + ϕd,pv(t, ·)|v(t, ·)|p−1 = 0, (2.2)

with

ϕd,p(x) :=

( |x|
A(|x|)

) (d−1)(p−1)
2

and

Vd(x) :=
d− 1

2

A′′(|x|)
A(|x|) +

(d− 1)(d− 3)

4

A′(|x|)2
A(|x|)2 − (d− 1)(d− 3)

4|x|2 .

We keep in mind that v(t, ·) is radial. Note that Eq. (2.2) resembles a standard nonlinear
Schrödinger equation on Euclidean space with a potential Vd.

To look for solitons, we plug the ansatz v(t, x) = eiα
2tRα(x) into Eq. (2.2) with Rα radial.

This yields the elliptic equation

∆RdRα − α2Rα − VdRα + ϕd,pRα|Rα|p−1 = 0. (2.3)

In terms of the rescaled profile R̃α, defined by Rα(x) = α
2

p−1 R̃α(αx), Eq. (2.3) reads

∆RdR̃α(x)− R̃α(x)− α−2Vd(α
−1x)R̃α(x) + ϕd,p(α

−1x)Fp

(
R̃α(x)

)
= 0, (2.4)

where Fp(s) := s|s|p−1. We intend to solve Eq. (2.4) by perturbing off the Euclidean situation

and hence insert the ansatz R̃α(x) = QRd(x) + ρ(x) into Eq. (2.4), where QRd := QRd,1. In
view of Eq. (1.3), we obtain

−Aαρ(x) =qα(x)F
′
p(QRd(x))ρ(x) + [qα(x)− 1]N (ρ)(x)

+ α−2Vd(α
−1x)QRd(x) + qα(x)Fp(QRd(x)),

(2.5)

7



where

Aαρ(x) := −∆Rdρ(x) + ρ(x)− F ′
p(QRd(x))ρ(x) + α−2Vd(α

−1x)ρ(x),

qα(x) := 1− ϕd,p(α
−1x),

N (ρ)(x) := Fp(QRd(x) + ρ(x))− Fp(QRd(x))− F ′
p(QRd(x))ρ(x).

3. Existence of a soliton

In this section we show that Eq. (2.5) has a solution ρ = ρα, provided α ≥ 1 is sufficiently
large. This way, we obtain a soliton solution

v∗α(t, x) := α
2

p−1 eiα
2t [QRd(αx) + ρα(αx)]

to Eq. (2.2).

3.1. Analysis of the linear operator. Initially, we define the operator Aα as a classical
differential operator acting on C∞

c (Rd). Recall that QRd ∈ C∞(Rd), QRd > 0, and Vd ∈
C∞(Rd) by Hypothesis 1.1. As a consequence, Aα is a continuous map from D(Rd) to
D(Rd). Furthermore, Aα is formally self-adjoint on L2(Rd) and thus, Aα extends to D′(Rd)
by

Aαu(ϕ) := u(Aαϕ)

for u ∈ D′(Rd) and ϕ ∈ D(Rd). In the limit α→ ∞, Aα formally reduces to L+, given by

L+f(x) = −∆Rdf(x) + f(x)− F ′
p(QRd(x))f(x).

This is a well-known operator in the Euclidean setting that occurs in the linearization about
solitary waves.

Note that both Aα and L+ map radial distributions to radial distributions since QRd and
Vd are radial. Consequently, Aα and L+ may be viewed as unbounded operators on L2

rad(R
d).

Lemma 3.1. The operator L+ : H2
rad(R

d) ⊂ L2
rad(R

d) → L2
rad(R

d) is self-adjoint. Further-
more, L+ is invertible and we have the smoothing estimate

‖L−1
+ g‖H2(Rd) . ‖g‖L2(Rd)

for all g ∈ L2
rad(R

d).

Proof. By the exponential decay of QRd and [68], p. 258, Theorem 10.2, we see that L+ is
self-adjoint with domain H2

rad(R
d) and essential spectrum σe(L+) = [1,∞). Consequently,

0 /∈ σ(L+) follows from [16], Lemma 2.1. Thus, it remains to prove the smoothing estimate.
To this end, let L0 : H2

rad(R
d) ⊂ L2

rad(R
d) → L2

rad(R
d) be given by L0f = −∆Rdf + f . For

f ∈ S(Rd) we have

FL0f(ξ) = F(−∆Rdf + f)(ξ) = (4π2|ξ|2 + 1)Ff(ξ),
where F denotes the Fourier transform

Ff(ξ) :=
∫

Rd

e−2πiξxf(x)dx.

Thus, on the Fourier side, the equation L0f = g reads

(1 + 4π2|ξ|2)Ff(ξ) = Fg(ξ).
8



Consequently, by Plancherel,

‖L−1
0 g‖H2(Rd) = ‖f‖H2(Rd) ≃ ‖〈·〉2Ff‖L2(Rd) =

∥∥〈·〉2(1 + 4π2| · |2)−1Fg
∥∥
L2(Rd)

. ‖Fg‖L2(Rd)

≃ ‖g‖L2(Rd)

for g ∈ S(Rd). By approximation, this bound holds for all g ∈ L2
rad(R

d). Let B : L2
rad(R

d) →
L2
rad(R

d) be given by Bf(x) = −F ′
p(QRd(x))f(x). By definition, we have the identity

L+ = (1 + BL−1
0 )L0,

and this shows that L+L−1
0 is a bounded operator on L2

rad(R
d). By the open mapping

theorem, its inverse L0L−1
+ is also bounded. Consequently, the smoothing property of L−1

0

implies the bound

‖L−1
+ g‖H2(Rd) = ‖L−1

0 L0L−1
+ g‖H2(Rd) . ‖L0L−1

+ g‖L2(Rd) . ‖g‖L2(Rd)

for all g ∈ L2
rad(R

d). �

Lemma 3.2. There exists an α0 > 0 such that, for any α ≥ α0, the operator Aα : H2
rad(R

d) ⊂
L2
rad(R

d) → L2
rad(R

d) is self-adjoint and invertible. Furthermore, we have the smoothing
estimate

‖A−1
α f‖H2(Rd) . ‖f‖L2(Rd)

for all f ∈ L2
rad(R

d) and all α ≥ α0.

Proof. For any α > 0 we define a bounded operator Bα on L2
rad(R

d) by setting

Bαf(x) := −Vd(α−1x)f(x).

Since Vd ∈ L∞(Rd) by Hypothesis 1.1, we infer ‖Bαf‖L2(Rd) . ‖f‖L2(Rd) for all α > 0. Con-

sequently, a Neumann series argument shows the existence of the operator (1−α−2BαL−1
+ )−1

with the bound

‖(1− α−2BαL−1
+ )−1f‖L2(Rd) . ‖f‖L2(Rd)

for all α ≥ α0, provided α0 > 0 is sufficiently large. Thus, from the identity Aα = (1 −
α−2BαL−1

+ )L+, we obtain the existence of the operator

A−1
α = L−1

+ (1− α−2BαL−1
+ )−1,

with the bound

‖A−1
α f‖H2(Rd) . ‖L−1

+ (1− α−2BαL−1
+ )−1f‖H2(Rd) . ‖(1− α−2BαL−1

+ )−1f‖L2(Rd)

. ‖f‖L2(Rd)

for all f ∈ L2
rad(R

d) and α ≥ α0. �

As a consequence of Lemma 3.2, we can now reformulate Eq. (2.5) as the fixed point
problem

ρ = −A−1
α

[
qαF

′
p(QRd(·))ρ+ (qα − 1)N (ρ) + α−2Vd(α

−1(·))QRd + qαFp(QRd(·))
]
. (3.1)
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3.2. Refined bounds for A−1
α . Next, we prove an L∞ bound for A−1

α , again by first proving
the corresponding result for L−1

+ .

Lemma 3.3. We have the bound

‖L−1
+ g‖L∞(Rd) . ‖g‖L2(Rd) + ‖g‖L∞(Rd)

for all g ∈ L2
rad(R

d) ∩ L∞(Rd) ∩ C(Rd).

Proof. By Sobolev embedding and Lemma 3.1 the result is immediate in the case d = 2, i.e.,

‖L−1
+ g‖L∞(R2) . ‖L−1

+ g‖H2(R2) . ‖g‖L2(R2).

Thus, we may restrict ourselves to d ≥ 3. Since all functions are radial, problems occur only
at the origin. Indeed, by the one-dimensional Sobolev embedding and Lemma 3.1, we have

‖L−1
+ g‖L∞(Rd\Bd) . ‖L−1

+ g‖H1(Rd) . ‖g‖L2(Rd)

for all g ∈ L2
rad(R

d). Consequently, it suffices to prove the estimate

‖L−1
+ g‖L∞(Bd) . ‖g‖L2(Rd) + ‖g‖L∞(Rd)

for all g ∈ L2
rad(R

d) ∩ L∞(Rd) ∩ C(Rd).
Let f = L−1

+ g. Then f ∈ H2
rad(R

d), and by the radial Sobolev embedding we infer that
f ∈ C(Rd \ {0}) ∩ L1

loc(R
d). The equation L+f = g implies ∆Rdf ♯ = h♯ in D′(Rd) with

h(x) := −g(x) + f(x)− F ′
p(QRd(x))f(x),

see Definition A.2 for the notation. Evidently, h ∈ C(Rd \ {0})∩L1
loc(R

d) and thus, Lemma

A.3 shows that the function f̂(r) := r
d−1
2 f(re1) belongs to C

2(0,∞) and satisfies

f̂ ′′(r)− (d− 1)(d− 3)

4r2
f̂(r)− f̂(r) + F ′

p(QRd(re1))f̂(r) = −r d−1
2 g(re1) (3.2)

for all r > 0. Now we consider the homogeneous version of Eq. (3.2), i.e.,

φ′′(r)− (d− 1)(d− 3)

4r2
φ(r)− φ(r) + F ′

p(QRd(re1))φ(r) = 0. (3.3)

Eq. (3.3) has a fundamental system {φ0, φ∞} with the asymptotic behavior

|φ0(r)| ≃ r
d−1
2 for r ∈ [0, 1], |φ0(r)| ≃ er for r ≥ 1,

|φ′
0(r)| ≃ r

d−3
2 for r ∈ [0, 1], |φ′

0(r)| ≃ er for r ≥ 1,

|φ∞(r)| ≃ r−
d−3
2 for r ∈ (0, 1], |φ∞(r)| ≃ e−r for r ≥ 1,

|φ′
∞(r)| ≃ r−

d−1
2 for r ∈ (0, 1], |φ′

∞(r)| ≃ e−r for r ≥ 1,

and we may normalize so that W (φ0, φ∞) = 1, see Lemma B.1 below. Consequently, the
variation of constants formula yields the existence of constants a, b ∈ C such that

f̂(r) = aφ0(r) + bφ∞(r)− φ0(r)

∫ ∞

r

φ∞(s)s
d−1
2 g(se1)ds− φ∞(r)

∫ r

0

φ0(s)s
d−1
2 g(se1)ds,
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and f ∈ H1
rad(R

d) implies that a = b = 0. Furthermore, we have the bounds

|φ0(r)|
∫ ∞

r

∣∣∣φ∞(s)s
d−1
2 g(se1)

∣∣∣ ds . r
d−1
2 ‖g‖L∞(Rd)

[∫ 1

0

s−
d−3
2 s

d−1
2 ds+

∫ ∞

1

e−ss
d−1
2 ds

]

. r
d−1
2 ‖g‖L∞(Rd)

and

|φ∞(r)|
∫ r

0

∣∣∣φ0(s)s
d−1
2 g(se1)

∣∣∣ ds . r−
d−3
2 ‖g‖L∞(Rd)

∫ r

0

sd−1ds

. r
d+3
2 ‖g‖L∞(Rd)

for all r ∈ (0, 1]. Consequently,

|f(re1)| =
∣∣∣r− d−1

2 f̂(r)
∣∣∣ . ‖g‖L∞(Rd)

for all r ∈ (0, 1], which implies the desired bound

‖L−1
+ g‖L∞(Bd) = ‖f‖L∞(Bd) . ‖g‖L∞(Rd).

�

By a simple perturbative argument, we obtain an analogous L∞ bound for the operator
A−1

α .

Corollary 3.4. There exists an α0 > 0 such that

‖A−1
α g‖L∞(Rd) . ‖g‖L2(Rd) + ‖g‖L∞(Rd)

for all g ∈ L2
rad(R

d) ∩ L∞(Rd) ∩ C(Rd) and α ≥ α0.

Proof. Let X := L2
rad(R

d) ∩ L∞(Rd) ∩ C(Rd) and write

‖g‖X := ‖g‖L2(Rd) + ‖g‖L∞(Rd).

As in the proof of Lemma 3.2, we set

Bαg(x) := −Vd(α−1x)g(x).

Note that ‖Bαg‖X . ‖g‖X for all g ∈ X and α > 0 by Hypothesis 1.1. Consequently, the
operator (1 − α−2Bα) : X → X is bounded invertible on X for any α ≥ α0 by a Neumann
series argument, provided α0 is sufficiently large. Furthermore,

‖(1− α−2Bα)
−1g‖X . ‖g‖X

for all g ∈ X and α ≥ α0. By Lemmas 3.1 and 3.3, we have ‖L−1
+ g‖X . ‖g‖X for all g ∈ X ,

and thus,

‖A−1
α g‖L∞(Rd) ≤ ‖A−1

α g‖X = ‖L−1
+ (1− α−2BαL−1

+ )−1g‖X . ‖(1− α−1BαL−1
+ )−1g‖X . ‖g‖X

. ‖g‖L2(Rd) + ‖g‖L∞(Rd)

for all g ∈ X and α ≥ α0, as desired. �
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3.3. Bounds on the right-hand side of Eq. (3.1). Next, we provide suitable estimates
for the terms appearing on the right-hand side of Eq. (3.1).

Lemma 3.5. We have the bounds

|qα(x)| . 1,

|qα(x)F ′
p(QRd(x))| . α−1,

|α−2Vd(α
−1x)QRd(x)| . α−2〈x〉−d,

|qα(x)Fp(QRd(x))| . α−1〈x〉−d,

for all x ∈ Rd and all α ≥ 1.

Proof. Recall that we assume Hypothesis 1.1. For r ∈ [0, α
1
2 ] we have

α−1r

A(α−1r)
=

α−1r

α−1r[1 +O(α−2r2)]
= 1 +O(α−1),

and thus,

|qα(x)| =
∣∣1− ϕd,p(α

−1x)
∣∣ =

∣∣∣∣∣∣
1−

( |α−1x|
A(|α−1x|)

) (d−1)(p−1)
2

∣∣∣∣∣∣
. α−1

for all |x| ≤ α
1
2 . For |x| ≥ α

1
2 we trivially estimate

|qα(x)| . 1 +

( |α−1x|
A(|α−1x|)

) (d−1)(p−1)
2

. 1,

since A(|α−1x|) & |α−1x|. This yields the first statement.
For the second one we recall that F ′

p(QRd(x)) = p|QRd(x)|p−1 decays exponentially as

|x| → ∞. In particular, |F ′
p(QRd(x))| . 〈x〉−2 and thus,

|qα(x)F ′
p(QRd(x))| . 〈α 1

2 〉−2 . α−1

provided |x| ≥ α
1
2 . In the case |x| ≤ α

1
2 we use the bound |qα(x)| . α−1 from above.

This proves the second bound, and the fourth bound follows analogously. Finally, the third
estimate is obvious from Vd ∈ L∞(Rd) and the exponential decay of QRd. �

Next, we provide Lipschitz estimates for the nonlinearity from Eq. (3.1).

Lemma 3.6. We have the bound

‖N (f)−N (g)‖L2(Rd) .
(
‖f‖p−1

H2(Rd)
+ ‖f‖H2(Rd) + ‖g‖p−1

H2(Rd)
+ ‖g‖H2(Rd)

)
‖f − g‖H2(Rd)

for all f, g ∈ H2(Rd). Furthermore,

‖N (f)−N (g)‖L∞(Rd) .
(
‖f‖p−1

L∞(Rd)
+ ‖f‖L∞(Rd) + ‖g‖p−1

L∞(Rd)
+ ‖g‖L∞(Rd)

)
‖f − g‖L∞(Rd)

for all f, g ∈ L∞(Rd).

Proof. Recall that we assume p ∈ (1, d+2
d−2

) and d ≥ 2. Let N(t0, t) := Fp(t0 + t) − Fp(t0) −
F ′
p(t0)t. Then we have

N (ρ)(x) = N(QRd(x), ρ(x)),
12



and the fundamental theorem of calculus yields

N(t0, t)−N(t0, s) =

∫ 1

0

∂uN(t0, s+ u(t− s))du

= (t− s)

∫ 1

0

[F ′
p(t0 + s + u(t− s))− F ′

p(t0)]du.

(3.4)

Now we distinguish the cases p ∈ (1, 2] and p > 2. We proceed with the former and note the
elementary estimate

∣∣|t0 + t|p−1 − |t0|p−1
∣∣ . |t|p−1 (3.5)

for all t0, t ∈ R. Since F ′
p(s) = p|s|p−1, we obtain from Eq. (3.4) the bound

|N(t0, t)−N(t0, s)| . |t− s|
∫ 1

0

|s+ u(t− s)|p−1du

.
(
|t|p−1 + |s|p−1

)
|t− s|

for all t0, t, s ∈ R. Consequently, by Hölder’s inequality and Sobolev embedding,

‖N (f)−N (g)‖L2(Rd) . ‖|f |p−1(f − g)‖L2(Rd) + ‖|g|p−1(f − g)‖L2(Rd)

. ‖f‖p−1
L2p(Rd)

‖f − g‖L2p(Rd) + ‖g‖p−1
L2p(Rd)

‖f − g‖L2p(Rd)

.
(
‖f‖p−1

H2(Rd)
+ ‖g‖p−1

H2(Rd)

)
‖f − g‖H2(Rd).

In the case p > 2 (which only occurs if d ≤ 5), we use the bound
∣∣|t0 + t|p−1 − |t0|p−1

∣∣ . |t|p−1 + |t0|p−2|t|, (3.6)

which yields

|N(t0, t)−N(t0, s)| . |t− s|
∫ 1

0

(
|s+ u(t− s)|p−1 + |t0|p−2|s+ u(t− s)|

)
du

.
(
|t|p−1 + |t0|p−2|t|+ |s|p−1 + |t0|p−2|s|

)
|t− s|

for all t0, t, s ∈ R. Consequently,

‖N (f)−N (g)‖L2(Rd) . ‖|f |p−1(f − g)‖L2(Rd) + ‖QRd‖p−2
L∞(Rd)

‖f(f − g)‖L2(Rd)

+ ‖|g|p−1(f − g)‖L2(Rd) + ‖QRd‖p−2
L∞(Rd)

‖g(f − g)‖L2(Rd)

. ‖f‖p−1
L2p(Rd)

‖f − g‖L2p(Rd) + ‖f‖L4(Rd)‖f − g‖L4(Rd)

+ ‖g‖p−1
L2p(Rd)

‖f − g‖L2p(Rd) + ‖g‖L4(Rd)‖f − g‖L4(Rd)

.
(
‖f‖p−1

H2(Rd)
+ ‖f‖H2(Rd) + ‖g‖p−1

H2(Rd)
+ ‖g‖H2(Rd)

)
‖f − g‖H2(Rd),

by the Sobolev embeddings H2(Rd) →֒ L2p(Rd) and H2(Rd) →֒ L4(Rd) (recall that d ≤ 5).
The L∞ bound is immediate from the above. �
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3.4. Existence of the soliton. Now we are ready to prove the existence of the soliton
profile QMd,α.

Proposition 3.7. There exists an α0 > 0 such that Eq. (3.1) has a real-valued solution
ρ = ρα ∈ H2

rad(R
d) ∩ C(Rd) for any α ≥ α0. Furthermore, ρα satisfies

‖ρα‖H2(Rd) + ‖ρα‖L∞(Rd) . α−1

for all α ≥ α0.

Proof. Let X := H2
rad(R

d) ∩ C(Rd) with norm

‖f‖X := ‖f‖H2(Rd) + ‖f‖L∞(Rd)

and set Xδ := {f ∈ X : ‖f‖X ≤ δ}. Similarly, we define Y := L2
rad(R

d) ∩ L∞(Rd) with

‖f‖Y := ‖f‖L2(Rd) + ‖f‖L∞(Rd).

Note that Lemmas 3.2, 3.6 and Corollary 3.4 imply the estimates

‖A−1
α f‖X . ‖f‖Y

‖N (f)−N (g)‖Y .
(
‖f‖X + ‖f‖p−1

X + ‖g‖X + ‖g‖p−1
X

)
‖f − g‖X

for all f, g ∈ X ⊂ Y and α ≥ α0, provided α0 > 0 is sufficiently large. In view of Eq. (3.1),
we define a map Kα on Xδ by

Kα(f) := −A−1
α

[
qαF

′
p(QRd(·))f + (qα − 1)N (f) + α−2Vd(α

−1(·))QRd + qαFp(QRd(·))
]
.

Then, by Lemma 3.5,

‖Kα(f)‖X . ‖qαF ′
p(QRd(·))f‖Y + ‖(qα − 1)N (f)‖Y

+ α−2‖Vd(α−1(·))QRd‖Y + ‖qαFp(QRd(·))‖Y
. α−1‖f‖X + ‖f‖pX + ‖f‖2X + α−2 + α−1

. α−1δ + δp + δ2 + α−2 + α−1

for all f ∈ Xδ. Thus, Kα(f) ∈ Xδ for all f ∈ Xδ and α ≥ α0, provided δ > 0 is sufficiently
small and α0 ≥ 1 is sufficiently large. Similarly,

‖Kα(f)−Kα(g)‖X
. ‖qαF ′

p(QRd(·))(f − g)‖Y + ‖(qα − 1)(N (f)−N (g))‖Y
. α−1‖f − g‖X +

(
‖f‖p−1

X + ‖f‖X + ‖g‖p−1
X + ‖g‖X

)
‖f − g‖X

. (α−1 + δp−1 + δ)‖f − g‖X.
Thus, Kα is a contraction on Xδ for all α ≥ α0, provided δ > 0 is small enough and α0 ≥ 1 is
large enough. Consequently, the contraction mapping principle yields the existence of a fixed
point ρα ∈ Xδ ⊂ H2

rad(R
d) ∩ C(Rd) of Kα which, by construction, is a solution to Eq. (3.1).

Finally, for the stated estimate on ρα, it suffices to note that

‖ρα‖X = ‖Kα(ρα)‖X . α−1‖ρα‖X + δp−1‖ρα‖X + δ‖ρα‖X + α−2 + α−1,

by the above estimate for Kα(f). �
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3.5. Decay and regularity. From now on we denote by ρα the solution constructed in
Proposition 3.7. Note that the radiality of ρα immediately implies a pointwise decay estimate.
To see this, we recall the classical Strauss estimate.

Lemma 3.8. We have the bound∥∥∥| · | d−1
2 f
∥∥∥
L∞(Rd)

. ‖f‖H1(Rd)

for all f ∈ H1
rad(R

d).

Proof. It suffices to prove the bound for real-valued f . First, we assume that f ∈ C∞
c (Rd).

Then f is given by f(x) = f̂(|x|) for some f̂ ∈ C∞
c (R). By the fundamental theorem of

calculus and Cauchy-Schwarz, we obtain

rd−1f̂(r)2 = −
∫ ∞

r

∂s

[
sd−1f̂(s)2

]
ds = −(d− 1)

∫ ∞

r

sd−2f̂(s)2ds− 2

∫ ∞

r

sd−1f̂ ′(s)f̂(s)ds

. ‖f‖L2(Rd)‖∇f‖L2(Rd) . ‖f‖2H1(Rd)

for all r ≥ 0, which implies the desired estimate. By approximation, the bound extends to
all f ∈ H1

rad(R
d). �

Lemma 3.8 implies the decay

|ρα(x)| . 〈x〉− d−1
2 (3.7)

for all x ∈ Rd.

Lemma 3.9. We have ρα ∈ C2(Rd). In particular, the function R̃α(x) = QRd(x) + ρα(x)
satisfies

∆RdR̃α(x)− R̃α(x)− α−2Vd(α
−1x)R̃α(x) + ϕd,p(α

−1x)Fp

(
R̃α(x)

)
= 0

for all x ∈ Rd, in the classical sense.

Proof. Let

gα(x) := −
[
qα(x)F

′
p(QRd(x))ρα(x) + [qα(x)− 1]N (ρα)(x)

+ α−2Vd(α
−1x)QRd(x) + qα(x)Fp(QRd(x))

]
.

Then, by Lemma 3.6, we have gα ∈ L2
rad(R

d)∩L∞(Rd)∩C(Rd) and by construction, Aαρ
♯
α =

g♯α. Equivalently, ∆Rdρ♯α = h♯α with

hα(x) := ρα(x)− F ′
p(QRd(x))ρα(x) + α−2Vd(α

−1x)ρα(x)− gα(x).

Since ρα, hα ∈ C(Rd) are radial, the claim follows from Lemma A.4. �

Proof of Theorem 1.3. For α > 0 sufficiently large, let

QMd,α(r, y) := α
2

p−1

(
r

A(r)

) d−1
2

[QRd(αre1) + ρα(αre1)].

By Lemma 3.9 and Hypothesis 1.1, QMd,α ∈ C2(Md) and by construction, u∗α(t, r, y) =

eiα
2tQMd,α(r, y) solves Eq. (1.4) for all t ∈ R. The remaining properties follow from Propo-

sition 3.7. �
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4. Spectral stability of the soliton

In this section we investigate the linear stability of the soliton

v∗α(t, x) = eiα
2tRα(x) = α

2
p−1 eiα

2t [QRd(αx) + ρα(αx)]

as a solution to the nonlinear Schrödinger equation (2.2). More precisely, we study spectral
properties of the linearized operator Lα associated to the soliton v∗α. We will see that the
qualitative behavior is very similar to the Euclidean case.

4.1. The linearized operator. The notion of spectral stability derives from spectral prop-
erties of the operator that is obtained by linearizing Eq. (2.2) at the soliton v∗α. More
precisely, we insert the ansatz

v(t, x) = v∗α(t, x) + eiα
2tw(t, x) = eiα

2t [Rα(x) + w(t, x)]

into Eq. (2.2). This yields

i∂tw(t, ·) + ∆Rdw(t, ·)− α2w(t, ·)− Vdw(t, ·)
+ ϕd,pFp (Rα(·) + w(t, ·))− ϕd,pFp(Rα(·)) = 0,

(4.1)

where we have used Eq. (2.3), i.e.,

∆RdRα − α2Rα − VdRα = −ϕd,pFp(Rα(·)).
Now note that for all a0, a, b ∈ R,

|a0 + a+ ib|p−1 = (a20 + 2a0a+ a2 + b2)
p−1
2

= |a0|p−1 + p−1
2
(a20)

p−1
2

−1(2a0a+ a2 + b2) +N1(a0, a, b)

= |a0|p−1 + (p− 1)a0|a0|p−3a+N2(a0, a, b),

where N1(a0, a, b) and N2(a0, a, b) are quadratic in a and b. Hence,

Fp(a0 + a + ib) = (a0 + a + ib)|a0 + a+ ib|p−1

= a0|a0|p−1 + p|a0|p−1a+ i|a0|p−1b+N(a0, a, b),

where N(a0, a, b) is quadratic in a and b. This yields

Fp (Rα(x) + w(t, x)) = Fp (Rα(x) + Rew(t, x) + i Imw(t, x))

= Fp(Rα(x)) + p|Rα(x)|p−1Rew(t, x) + i|Rα(x)|p−1 Imw(t, x)

+N (Rα(x),Rew(t, x), Imw(t, x)) .

By dropping the nonlinear terms, we obtain from Eq. (4.1) the linearized problem

i∂tw(t, ·) + ∆Rdw(t, ·)− α2w(t, ·)− Vdw(t, ·)
+ pϕd,p|Rα(·)|p−1Rew(t, ·) + iϕd,p|Rα(·)|p−1 Imw(t, ·) = 0.

Finally, we rescale by setting w(t, x) = w̃(α2t, αx). This yields

i∂tw̃(t, x) + ∆Rd,xw̃(t, x)− w̃(t, x)− α−2Vd(α
−1x)w̃(t, x)

+ pϕd,p(α
−1x)

∣∣∣R̃α(x)
∣∣∣
p−1

Re w̃(t, x) + iϕd,p(α
−1x)

∣∣∣R̃α(x)
∣∣∣
p−1

Im w̃(t, ·) = 0
(4.2)
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with R̃α(x) = α− 2
p−1Rα(α

−1x). Eq. (4.2) is equivalent to the system

∂t

(
Re w̃(t, ·)
Im w̃(t, ·)

)
= Lα

(
Re w̃(t, ·)
Im w̃(t, ·)

)
(4.3)

with the spatial differential operator

Lα :=

(
0 Lα,−

−Lα,+ 0

)
,

where

Lα,−f(x) := −∆Rdf(x) + f(x)− ϕd,p(α
−1x)

∣∣∣R̃α(x)
∣∣∣
p−1

f(x) + α−2Vd(α
−1x)f(x)

Lα,+f(x) := −∆Rdf(x) + f(x)− pϕd,p(α
−1x)

∣∣∣R̃α(x)
∣∣∣
p−1

f(x) + α−2Vd(α
−1x)f(x).

Consequently, (linear) stability properties of the soliton v∗α are encoded in the spectrum of
the operator Lα, which we consider on the space L2

rad(R
d,C2). This is a natural choice since

the operators Lα,± are self-adjoint on L2
rad(R

d). Formally at least, in the limit α → ∞, Lα

reduces to its well-known Euclidean counterpart L, given by

L =

(
0 L−

−L+ 0

)

and

L−f(x) = −∆Rdf(x) + f(x)− |QRd(x)|p−1 f(x)

L+f(x) = −∆Rdf(x) + f(x)− p |QRd(x)|p−1 f(x).

This suggests a perturbative spectral analysis, based on the Euclidean situation.

4.2. Spectral properties in the Euclidean case. Our base case will be the Euclidean
operator L which was extensively studied in the literature, see e.g. [70, 71, 35, 16]. Nev-
ertheless, there are still a number of substantial questions that remain unanswered. We
summarize some of the known results but restrict ourselves to the radial case. Since we will
be dealing with spectra of nonself-adjoint operators, there are some ambiguities that need
to be clarified first.

Definition 4.1. Let T be a closed operator on a Banach space X . We define the essential
spectrum σe(T ) of T by

σe(T ) :=
⋂

K∈K(X)

σ(T +K),

where K(X) denotes the set of all compact operators on X . Furthermore, σp(T ) is the set
of all eigenvalues of T .

Remark 4.2. There are other meaningful definitions of essential spectra for nonself-adjoint
operators in the literature, see e.g. [38, 32, 42] for a discussion on this. The choice we made
is the largest possible that is invariant under relatively compact perturbations. However, for
the particular class of operators we will be concerned with, all the usual definitions turn out
to be equivalent, see [42].

Theorem 4.3 ([70, 71, 35, 16, 59]). The operator L : H2
rad(R

d,C2) ⊂ L2
rad(R

d,C2) →
L2
rad(R

d,C2) is closed and has the following properties:
17



• The spectrum σ(L) is a subset of R ∪ iR.
• If λ ∈ σ(L) then −λ ∈ σ(L).
• The essential spectrum of L is given by

σe(L) = {z ∈ C : Re z = 0, | Im z| ≥ 1}.
• The set σ(L) \ σe(L) is free of accumulation points and consists of eigenvalues with
finite algebraic multiplicities.

• We have 0 ∈ σp(L) and
kerL =

〈(
0
QRd

)〉
.

• For the kernels of powers of L we have

dim ker(L2) = dimker(L3) =

{
2 if p 6= 1 + 4

d

4 if p = 1 + 4
d

.

In particular, the algebraic multiplicity of the eigenvalue 0 ∈ σp(L) equals 4 in the
L2-critical case p = 1 + 4

d
and 2 otherwise.

• In the L2-subcritical case p < 1 + 4
d
, L has no positive eigenvalues. In the L2-

supercritical case p > 1 + 4
d
, L has precisely one positive eigenvalue λ and the eigen-

values ±λ are simple.

Remark 4.4. The picture one has in mind is as follows. Starting from the supercritical case
p > 1+ 4

d
, the two nonzero real eigenvalues move towards the origin as p decreases. Precisely

when p = 1 + 4
d
, the two eigenvalues merge and the algebraic multiplicity of 0 ∈ σp(L)

increases by two. If one decreases p further into the subcritical regime p < 1 + 4
d
, a pair

of purely imaginary eigenvalues emerges from 0. In particular, the ground state is linearly
stable in the subcritical case and unstable in the supercritical case. These linear stability
properties are reflected in the nonlinear theory. Indeed, in the subcritical case the ground
state is orbitally stable and in the supercritical case it is unstable. The critical case p = 1+ 4

d

is more delicate as there is spectral stability (that is to say, no spectrum away from the
imaginary axis) but quite strong instability in the nonlinear theory.

Remark 4.5. Important issues that remain unsolved concern the existence of eigenvalues
and/or resonances embedded in the essential spectrum and the “gap property”. The latter
refers to the absence of eigenvalues on the imaginary axis between 0 and i in the supercritical
case. These spectral properties are important for the (nonlinear) asymptotic stability theory
of the ground state. Some of them have been verified numerically or even proved rigorously
in special cases, see e.g. [31, 46, 16, 24], but there is no systematic theoretical understanding
so far.

4.3. Spectral properties in the curved geometry. To begin, we show that the structural
properties of the spectrum in the curved case are the same as in the Euclidean case. An
important prerequisite is the nonnegativity of Lα,−, which we establish first.

Proposition 4.6. There exists an α0 > 0 such that, for all α ≥ α0, Lα,− : H2
rad(R

d) ⊂
L2
rad(R

d) → L2
rad(R

d) is self-adjoint with the following properties:

• The essential spectrum of Lα,− is given by σe(Lα,−) = [1 + V0,dα
−2,∞).

• We have 0 ∈ σp(Lα,−) and kerLα,− = 〈QRd + ρα〉.
18



• The operator Lα,− satisfies

(Lα,−f |f)L2(Rd) & ‖f‖2L2(Rd)

for all f ∈ 〈QRd + ρα〉⊥ ∩H2
rad(R

d) and all α ≥ α0.

Proof. We define Lα,0 : H
2
rad(R

d) ⊂ L2
rad(R

d) → L2
rad(R

d) by Lα,0f := −∆Rdf+(1+V0,dα
−2)f

and set

Wα(x) := −ϕd,p(α
−1x) |QRd(x) + ρα(x)|p−1 + α−2

[
Vd(α

−1x)− V0,d
]
.

Then we have Lα,−f = Lα,0f +Wαf . By Fourier analysis it follows that

σ(Lα,0) = σe(Lα,0) = [1 + V0,dα
−2,∞).

Furthermore, by Hypothesis 1.1, Lemma 3.5, Proposition 3.7, and Lemma 3.8, we have
Wα ∈ L∞(Rd) ∩ C(Rd) and

lim
|x|→∞

Wα(x) = 0.

Consequently, f 7→ Wαf : L2
rad(R

d) → L2
rad(R

d) is bounded and the Kato-Rellich theorem
(see e.g. [68], p. 159, Theorem 6.4) shows that Lα,− is self-adjoint. In particular, σ(Lα,−) ⊂ R.
Furthermore, by [68], p. 258, Theorem 10.2, the operator f 7→Wαf : L2

rad(R
d) → L2

rad(R
d) is

relatively compact with respect to Lα,0 and Weyl’s theorem (see e.g. [68], p. 171, Theorem
6.19) implies that σe(Lα,−) = [1+V0,dα

−2,∞). As a consequence, σ(Lα,−)\σe(Lα,−) consists
of isolated eigenvalues only. The same is true for the limiting operator L−, i.e., σ(L−)\σe(L−)
consists of isolated eigenvalues only, where σe(L−) = [1,∞).

Next, we show that there exists a constant µ > 0 such that

(−∞,−µ) ⊂ ρ(Lα,−) (4.4)

for all α ≥ α0. To this end we use the resolvent bound ‖(λ−L0,α)
−1‖L2(Rd) ≤ |λ|−1, valid for

all λ < 0, which is a consequence of the self-adjointness of Lα,0 and σ(Lα,0) ⊂ [1+V0,dα
−2,∞).

Furthermore, we note that the operator Bαf := Wαf satisfies

‖Bαf‖L2(Rd) ≤ ‖Wα‖L∞(Rd)‖f‖L2(Rd) . ‖f‖L2(Rd)

for all α ≥ α0 and f ∈ L2
rad(R

d). Consequently, if µ > 0 is sufficiently large, the operator
1 − Bα(λ − Lα,0)

−1 is invertible for all λ < −µ by a Neumann series argument and the
identity,

λ− Lα,− =
[
1− Bα(λ− Lα,0)

−1
]
(λ− Lα,0),

proves (4.4).

Now we turn to the computation of kerLα,−. Obviously, 0 ∈ σp(Lα,−) since R̃α = QRd +
ρα ∈ H2

rad(R
d) ∩ C2(Rd) by Lemma 3.9 and

Lα,−R̃α(x) = −∆RdR̃α(x) + R̃α(x)− ϕd,p(α
−1x)

∣∣∣R̃α(x)
∣∣∣
p−1

R̃α(x) + α−2Vd(α
−1x)R̃α(x)

= 0.

In particular, 〈R̃α〉 ⊂ ker(Lα,−). To prove the reverse inclusion, suppose f ∈ H2
rad(R

d) \ {0}
satisfies Lα,−f = 0. By the one-dimensional Sobolev embedding we have f ∈ C(Rd \ {0})
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and thus, Wαf ∈ L2
rad(R

d) ∩ C(Rd \ {0}). Consequently, Lemma A.3 implies that f̂(r) :=

r
d−1
2 f(re1) belongs to C

2(0,∞) and satisfies

f̂ ′′(r)− (d− 1)(d− 3)

4r2
f̂(r)− [1 + V0,dα

−2]f̂(r) = Wα(re1)f̂(r)

for all r > 0. According to Lemma B.1, there exist constants a, b ∈ C such that f̂(r) =

aφ0(r) + bψ0(r), where |φ0(r)| ≃ r
d−1
2 , |φ′

0(r)| ≃ r
d−3
2 , and

|ψ0(r)| ≃
{
r

1
2 | log r| d = 2

r−
d−3
2 d 6= 2

, |ψ′
0(r)| ≃

{
r−

1
2 | log r| d = 2

r−
d−1
2 d 6= 2

for r ∈ (0, 1
2
]. Since f ∈ H1

rad(R
d), we must have b = 0 and this shows that the kernel of

Lα,− is one-dimensional. Consequently, kerLα,− = 〈R̃α〉, as claimed.
Now we define an operator Cα : L2

rad(R
d) → L2

rad(R
d) such that Lα,− = L− + Cα, i.e.,

Cαf(x) = Lα,−f(x)− L−f(x)

= −ϕd,p(α
−1x) |QRd(x) + ρα(x)|p−1 f(x) + |QRd(x)|p−1f(x) + α−2Vd(α

−1x)f(x)

=: Uα(x)f(x).

We have

|Uα(x)| .
∣∣|QRd(x) + ρα(x)|p−1 − |QRd(x)|p−1

∣∣ + |qα(x)| |QRd(x) + ρα(x)|p−1

+ α−2|Vd(α−1x)|
. |ρα(x)|p−1 + |ρα(x)|+ |qα(x)F ′

p(QRd(x))|+ |qα(x)||ρα(x)|p−1 + α−2

. α−(p−1) + α−1 + α−2

for all x ∈ Rd by Lemma 3.5 and Proposition 3.7. Here we have used the elementary
estimates (3.5) and (3.6) from the proof of Lemma 3.6. Consequently, ‖Uα‖L∞(Rd) → 0 as
α → ∞ and this shows that the operator Cα converges to 0 in norm as α → ∞. Recall
that L− is nonnegative. This is a consequence of QRd > 0, L−QRd = 0, and the Sturm
oscillation theorem. Let d0 := dist(0, σ(L−) \ {0}). Since 0 is an isolated eigenvalue of L−,
we have d0 > 0. Let γ : [0, 2π] → C be a simple, closed, smooth curve that encircles the
interval [−1 − µ, 1

4
d0] and such that γ(t) ∩ [3

4
d0,∞) = ∅ for all t ∈ [0, 2π]. By construction,

γ(t) ∈ ρ(L−) for all t ∈ [0, 2π] and thus, the spectral projection

P :=
1

2πi

∫

γ

(z − L−)
−1dz

is well defined. By the self-adjointness of L−, we have rgP = kerL− = 〈QRd〉 since 0 is the
only spectral point of L− inside of γ. Recall that Cα → 0 in norm as α → ∞ and thus,
γ(t) ∈ ρ(Lα,−) for all t ∈ [0, 2π] and α ≥ α0, provided α0 > 0 is sufficiently large. This
follows immediately from the identity

z − Lα,− = [1− Cα(z − L−)
−1](z − L−),

valid for all z ∈ ρ(L−). Thus, the spectral projection

Pα :=
1

2πi

∫

γ

(z −Lα,−)
−1dz
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is well defined, and we have Pα → P in norm as α → ∞. Consequently, by [43], p. 34,
Lemma 4.10, it follows that dim rgPα = dim rgP = 1 for all α ≥ α0. Since 0 ∈ σp(Lα,−),
we conclude that 0 is the only spectral point of Lα,− in the interval [−1 − µ, 1

4
d0]. Finally,

with (4.4), we infer that (−∞, 1
4
d0] ∩ σ(Lα,−) = {0} for all α ≥ α0. In particular, Lα,− is

nonnegative, and this finishes the proof. �

We also note the following simple observation concerning the operator Lα,+.

Lemma 4.7. The operator Lα,+ : H2
rad(R

d) ⊂ L2
rad(R

d) → L2
rad(R

d) is self-adjoint and
invertible.

Proof. We write Lα,+ = L+ + Bα with Bαf(x) = Wα(x)f(x) and

Wα(x) = −p
[
ϕd,p(α

−1x) |QRd(x) + ρα(x)|p−1 − |QRd(x)|p−1
]
+ α−2Vd(α

−1x).

We have ‖Wα‖L∞(Rd) → 0 as α → ∞ (cf. the proof of Proposition 4.6) and thus, Bα is a

bounded symmetric operator on L2
rad(R

d) that converges to 0 in norm as α → ∞. Con-
sequently, the Kato-Rellich theorem implies that Lα,+ is self-adjoint. Since 0 ∈ ρ(L+), it
follows from the identity

Lα,+ = [1 + BαL−1
+ ]L+,

and a Neumann series argument, that Lα,+ is invertible for all α ≥ α0, provided α0 > 0 is
sufficiently large. �

Based on the results on Lα,±, we can now establish some basic structural properties con-
cerning the spectrum of Lα.

Lemma 4.8. There exists an α0 > 0 such that for all α ≥ α0 the operator Lα : H2
rad(R

d,C2) ⊂
L2
rad(R

d,C2) → L2
rad(R

d,C2) is closed and the following holds:

• The spectrum of Lα is a subset of R ∪ iR.
• If λ ∈ σ(Lα) then −λ ∈ σ(Lα).
• The essential spectrum of Lα is given by

σe(Lα) = {z ∈ C : Re z = 0, | Im z| ≥ 1 + V0,dα
−2}.

• There exists a µ > 0 (independent of α) such that (−∞,−µ) ∪ (µ,∞) ⊂ ρ(Lα).
• The set σ(Lα)\σe(Lα) is free of accumulation points and consists of eigenvalues with
finite algebraic multiplicities.

• We have 0 ∈ σp(Lα) and

kerLα =

〈(
0

QRd + ρα

)〉
.

Proof. First of all, Lα,± are self-adjoint and hence closed. This implies the closedness of Lα.
Now consider the unitary operator U : L2(Rd,C2) → L2(Rd,C2) given by

U :=
1√
2

(
1 i
1 −i

)
,

and set Hα := iULαU∗. Explicitly, we have

Hα = iULαU∗ =
1

2

(
Lα,− + Lα,+ −Lα,− + Lα,+

Lα,− −Lα,+ −Lα,− − Lα,+

)
= H0,α +H′

α,
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where

H0,α :=

(
−∆Rd + 1 + V0,dα

−2 0
0 ∆Rd − 1− V0,dα

−2

)
,

H′
α

(
f1
f2

)
:=

(
Uα Wα

−Wα −Uα

)(
f1
f2

)
,

and

Uα(x) := −p+1
2
ϕd,p(α

−1x) |QRd(x) + ρα(x)|p−1 + α−2[Vd(α
−1x)− V0,d],

Wα(x) := −p−1
2
ϕd,p(α

−1x) |QRd(x) + ρα(x)|p−1 .

Evidently, H0,α is self-adjoint, and

σ(H0,α) = σe(H0,α) = (−∞,−1− V0,dα
−2] ∪ [1 + V0,dα

−2,∞).

Furthermore, H′
α is bounded, and Uα,Wα ∈ L∞(Rd) ∩ C(Rd) with

lim
|x|→∞

Uα(x) = lim
|x|→∞

Wα(x) = 0

by Hypothesis 1.1, Proposition 3.7, and Lemma 3.8. By [68], p. 201, Lemma 7.21, we see
that H′

α(z−H0,α)
−1 is compact for any z ∈ ρ(H0,α). In other words, H′

α is relatively compact
with respect to H0,α. Consequently, by [58], p. 173, Theorem 7.28,

σe(Hα) = σe(H0,α +H′
α) = σe(H0,α) = (−∞,−1− V0,dα

−2] ∪ [1 + V0,dα
−2,∞),

and, since Hα is unitarily equivalent to iLα, the statement on σe(Lα) follows.
From the identity

z −Hα =
[
1−H′

α(z −H0,α)
−1
]
(z −H0,α), z ∈ ρ(H0,α),

we infer that z−Hα is invertible for z ∈ ρ(H0,α) if and only if 1−H′
α(z−H0,α)

−1 is invertible.
By the self-adjointness ofH0,α we have the bound ‖(z−H0,α)

−1‖L2(Rd,C2) ≤ | Im z|−1 and thus,
z −Hα is certainly invertible for all z sufficiently far away from the real axis. Furthermore,
‖H′

α‖L2(Rd,C2) . 1 for all α ≥ α0, and thus, there exists a µ > 0 such that

{z ∈ C : Re z = 0, | Im z| > µ} ⊂ ρ(Hα)

for all α ≥ α0. Consequently, the analytic Fredholm theorem (see e.g. [62], p. 194, Theorem
3.14.3) applied to H′

α(z−H0,α)
−1 shows that σ(Hα) \σe(Hα) consists of isolated eigenvalues

of finite algebraic multiplicities which do not accumulate at any point outside of σe(Hα).
Next, we turn to the proof that σ(Lα) ⊂ R ∪ iR. Since σe(Lα) ⊂ iR and σ(Lα) \ σe(Lα)

consists of eigenvalues only, it suffices to prove that σp(Lα) ⊂ R ∪ iR. Furthermore, we
may restrict ourselves to nonzero eigenvalues. Let λ ∈ σp(Lα) \ {0} with eigenfunction
f = (f1, f2) ∈ H2(Rd,C2). The eigenvalue equation (λ− Lα)f = 0 is equivalent to

{
Lα,−f2 = λf1,

Lα,+f1 = −λf2.
(4.5)

Let Pα : L2
rad(R

d) → L2
rad(R

d) be the orthogonal projection onto 〈QRd + ρα〉 and set P⊥
α :=

1− Pα. Note that we must have P⊥
α f2 6= 0 because otherwise,

f1 =
1
λ
Lα,−(Pαf2 + P⊥

α f2) =
1
λ
Lα,−Pαf2 = 0,
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by Proposition 4.6, and from the second equation in (4.5) we infer that f2 = 0. This is a
contradiction to f = (f1, f2) being an eigenfunction. Note further that Pα is the spectral
projection associated to the eigenvalue 0 ∈ σp(Lα,−) and thus, Pα commutes with Lα,−.
From the first equation in (4.5) and Proposition 4.6 we obtain

0 6= (Lα,−P⊥
α f2|P⊥

α f2)L2(Rd) = (Lα,−f2|f2)L2(Rd) = λ(f1|f2)L2(Rd),

and the second equation in (4.5) yields

(Lα,+f1|f1)L2(Rd) = −λ(f2|f1)L2(Rd) = −λ(f1|f2)L2(Rd).

Consequently, since (f1|f2)L2(Rd) 6= 0,

λ2 = −(Lα,−f2|f2)L2(Rd)(Lα,+f1|f1)L2(Rd)

|(f1|f2)L2(Rd)|2
∈ R,

which implies that λ ∈ R ∪ iR. From Eq. (4.5) it is also evident that −λ ∈ σp(Lα).
Finally, by setting λ = 0 in Eq. (4.5), we obtain from Proposition 4.6 and Lemma 4.7 that

kerLα =

〈(
0

QRd + ρα

)〉
.

In particular, 0 ∈ σp(Lα). �

Now we can show that the linear stability of the soliton in the curved geometry is deter-
mined by the stability of the Euclidean ground state, at least if p 6= 1 + 4

d
.

Lemma 4.9. If p 6= 1+ 4
d
then there exists an α0 > 0 such that for all α ≥ α0 the following

holds.

• The algebraic multiplicity of 0 ∈ σp(Lα) equals 2.
• If p < 1 + 4

d
, there are no positive eigenvalues of Lα.

• If p > 1 + 4
d
, there exists precisely one positive eigenvalue λα ∈ σp(Lα) and the

eigenvalues ±λα ∈ σp(Lα) are simple.

Proof. Acoording to Lemma 4.8, there exists a µ > 0 such that (−∞,−µ)∪ (µ,∞) ⊂ ρ(Lα)
for all α ≥ α0. Let γ : [0, 1] → C be a simple, closed, smooth curve such that γ(t) ∈ ρ(L)
for all t ∈ [0, 1] and γ encircles the interval [−µ − 1, µ + 1] in such a way that only real
eigenvalues of L lie inside of γ. This is possible since 0 ∈ σp(L) is isolated. Let

P :=
1

2πi

∫

γ

(z − L)−1dz.

Since Lα−L is bounded and converges to 0 in norm as α → ∞ (see the proofs of Proposition
4.6 and Lemma 4.7), γ(t) ∈ ρ(Lα) for all t ∈ [0, 1] and all α ≥ α0, provided α0 > 0 is
sufficiently large. Consequently,

Pα :=
1

2πi

∫

γ

(z −Lα)
−1dz

is well defined, and Pα → P in norm as α→ ∞. This implies

dim rgPα = dim rgP =

{
2, p < 1 + 4

d
,

4, p > 1 + 4
d
,
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by Theorem 4.3. Suppose now that p < 1 + 4
d
and there exists a positive eigenvalue

λα ∈ σp(Lα). Then, by Lemma 4.8, −λα ∈ σp(Lα) and, since 0 ∈ σp(Lα), we must have
dim rgPα ≥ 3. This contradicts dim rgPα = 2 and thus, there can be no positive eigenvalue
of Lα in the case p < 1+ 4

d
. If p > 1+ 4

d
, there exists a unique positive eigenvalue λ ∈ σp(L)

with algebraic multiplicity 1 (Theorem 4.3). Let γ̃ : [0, 1] → ρ(L) ⊂ C be a simple, closed,
smooth curve that encircles the interval [λ

2
, µ+ 1] and such that λ is the only spectral point

of L that lies inside of γ̃. Set

P̃ :=
1

2πi

∫

γ̃

(z − L)−1dz.

As above,

P̃α :=
1

2πi

∫

γ̃

(z −Lα)
−1dz

is well defined for sufficiently large α and dim rg P̃α = dim rg P̃ = 1. Consequently, there
exists a positive simple eigenvalue λα ∈ σp(Lα) and by Lemma 4.8, −λα ∈ σp(Lα). Further-
more, by symmetry, −λα ∈ σp(Lα) must be simple, too. Since dim rgPα = 4 and 0 ∈ σp(Lα),
there can be no other nonzero eigenvalues in [−µ − 1, µ+ 1] as they would have to come in
pairs. Since (µ,∞) ⊂ ρ(Lα), it follows that there exists a unique simple positive eigenvalue
λα ∈ σp(Lα). In particular, the algebraic multiplicity of 0 ∈ σp(Lα) must equal 2. �

5. Spectral stability in the critical case

In the critical case p = 1+ 4
d
, the situation is subtle and the stability of the soliton depends

on the fine structure of the geometry.

5.1. Refined properties of Lα,+.

Lemma 5.1. There exists an α0 > 0 such that for all α ≥ α0 the following holds. We have

σe(Lα,+) = [1 + V0,dα
−2,∞),

Lα,+ has precisely one negative eigenvalue λ∗α < 0, and this eigenvalue is simple. Further-
more, if f ∗

α ∈ H2
rad(R

d) \ {0} is an associated eigenfunction, i.e., Lα,+f
∗
α = λ∗αf

∗
α, then we

have (
f ∗
α

∣∣QRd + ρα
)
L2(Rd)

6= 0.

Proof. As in the proof of Proposition 4.6, we write Lα,+f = Lα,0f + Wαf , where Lα,0 :
H2

rad(R
d) ⊂ L2

rad(R
d) → L2

rad(R
d) is given by Lα,0f = −∆Rdf + (1 + V0,dα

−2)f , and

Wα(x) := −pϕd,p(α
−1x) |QRd(x) + ρα(x)|p−1 + α−2

[
Vd(α

−1x)− V0,d
]
.

Thus, by repeating the argument from the proof of Proposition 4.6, we find σe(Lα,+) =
[1+V0,dα

−2,∞), and there exists a µ > 0 such that (−∞,−µ) ⊂ ρ(Lα,+) for all α sufficiently
large.

We define Cα : L2
rad(R

d) → L2
rad(R

d) by

Cαf(x) = Lα,+f(x)− L+f(x)

=
[
−pϕd,p(α

−1x) |QRd(x) + ρα(x)|p−1 + p|QRd(x)|p−1 + α−2Vd(α
−1x)

]
f(x),
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As in the proof of Proposition 4.6, we infer that Cα → 0 in norm as α → ∞. Let γ : [0, 1] → C

be given by γ(t) = −µ + µe2πit. Then, by Lemma 4.7 and the above, γ(t) ∈ ρ(Lα,+) for all
t ∈ [0, 1) and all α ≥ α0, provided α0 > 0 is sufficiently large. Define the spectral projections

P :=
1

2πi

∫

γ

(z −L+)
−1dz, Pα :=

1

2πi

∫

γ

(z − Lα,+)
−1dz.

Then Pα → P in norm as α → ∞. Furthermore, L+ has precisely one simple eigenvalue
inside of γ [71, 16], which implies that dim rgP = 1. Consequently, from [43], p. 34, Lemma
4.10, we conclude that dim rgPα = dim rgP = 1 for all α ≥ α0. In conjunction with
(−∞,−µ) ⊂ ρ(Lα,+) and the self-adjointness of Lα,+ (Lemma 4.7), this means that Lα,+

has precisely one negative eigenvalue λ∗α < 0, and this eigenvalue is simple.
Let f ∗ ∈ rgP with ‖f ∗‖L2(Rd) = 1 and set f ∗

α := Pαf
∗. Then f ∗ is an eigenfunction of L+

to the eigenvalue λ∗ < 0. Furthermore,

‖f ∗
α − f ∗‖L2(Rd) = ‖(Pα − P)f ∗‖L2(Rd) → 0

as α→ ∞ and thus, f ∗
α 6= 0 for all α ≥ α0 if α0 > 0 is sufficiently large. As a consequence, f ∗

α

is an eigenfunction of Lα,+ with eigenvalue λ∗α and any other eigenfunction to this eigenvalue
is a multiple of f ∗

α. Since λ∗ is the only negative eigenvalue of L+, it follows by Sturm
oscillation theory that f ∗ does not have zeros. In particular, (f ∗|QRd)L2(Rd) 6= 0. The fact
that

(f ∗
α|QRd + ρα)L2(Rd) → (f ∗|QRd)L2(Rd)

as α → ∞ thus implies that (f ∗
α|QRd + ρα)L2(Rd) 6= 0 for all α ≥ α0, provided α0 > 0 is

sufficiently large. �

Lemma 5.2. Let α > 0 be sufficiently large and denote by P⊥
α the orthogonal projection

onto 〈QRd + ρα〉⊥, i.e.,

P⊥
α f := f − (f |QRd + ρα)L2(Rd)

‖QRd + ρα‖2L2(Rd)

(QRd + ρα).

Then the operator P⊥
α Lα,+P⊥

α : H2
rad(R

d) ⊂ L2
rad(R

d) → L2
rad(R

d) is self-adjoint, and

σe(P⊥
α Lα,+P⊥

α ) = [1 + V0,dα
−2,∞).

Proof. The proof is based on the standard trick (see e.g. [43], p. 246) of using the decompo-
sition

P⊥
α Lα,+P⊥

α = Lα,+ + (P⊥
α − 1)Lα,+P⊥

α + Lα,+(P⊥
α − 1) =: Lα,+ +Kα.

Since dim rg(P⊥
α − 1) = 1, the operator Kα : H2

rad(R
d) ⊂ L2

rad(R
d) → L2

rad(R
d) has finite

rank. The estimate,

‖Kαf‖L2(Rd) ≤
|(Lα,+P⊥

α f |R̃α)L2(Rd)|
‖R̃α‖2L2(Rd)

‖R̃α‖L2(Rd) +
|(f |R̃α)L2(Rd)|
‖R̃α‖2L2(Rd)

‖Lα,+R̃α‖L2(Rd)

≤ (f |P⊥
α Lα,+R̃α)L2(Rd)

‖R̃α‖L2(Rd)

+
‖Lα,+R̃α‖L2(Rd)

‖R̃α‖L2(Rd)

‖f‖L2(Rd)

.
‖Lα,+R̃α‖L2(Rd)

‖R̃α‖L2(Rd)

‖f‖L2(Rd)
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for all f ∈ H2
rad(R

d), where R̃α := QRd + ρα, shows that Kα extends to a bounded operator
Kα : L2

rad(R
d) → L2

rad(R
d) of finite rank. In particular, Kα is compact. Furthermore,

K∗
α = P⊥

α Lα,+(P⊥
α − 1) + (P⊥

α − 1)Lα,+ = P⊥
α Lα,+P⊥

α −Lα,+ = Kα,

and thus Kα is self-adjoint. By the Kato-Rellich theorem (see e.g. [68], p, 159, Theorem 10.2)
it follows that P⊥

α Lα,+P⊥
α is self-adjoint. Weyl’s theorem (see e.g. [68], p. 171, Theorem 6.19),

in conjunction with Lemma 5.1, yields the statement on the essential spectrum. �

Next, we establish a crucial dichotomy for Lα,+.

Proposition 5.3. Let α > 0 be sufficiently large.

• If (L−1
α,+(QRd+ρα)|QRd+ρα)L2(Rd) > 0 then there exists an fα ∈ 〈QRd+ρα〉⊥∩H2

rad(R
d)

such that

(Lα,+fα|fα)L2(Rd) < 0.

• If (L−1
α,+(QRd + ρα)|QRd + ρα)L2(Rd) ≤ 0 then

(Lα,+f |f)L2(Rd) ≥ 0

for all f ∈ 〈QRd + ρα〉⊥ ∩H2
rad(R

d).

Proof. We first assume that (
L−1

α,+R̃α

∣∣∣ R̃α

)
L2(Rd)

> 0,

where R̃α = QRd + ρα. Let P⊥
α be the orthogonal projection on 〈R̃α〉⊥, i.e.,

P⊥
α f = f − (f |R̃α)L2(Rd)

‖R̃α‖2L2(Rd)

R̃α.

We set fα := P⊥
α L−1

α,+R̃α ∈ 〈R̃α〉⊥ ∩H2
rad(R

d). Then we have

(Lα,+fα|fα)L2(Rd) =
(
Lα,+P⊥

α L−1
α,+R̃α

∣∣∣P⊥
α L−1

α,+R̃α

)
L2(Rd)

=
(
R̃α

∣∣∣L−1
α,+R̃α

)
L2(Rd)

− (L−1
α,+R̃α|R̃α)L2(Rd)

‖R̃α‖2L2(Rd)

(
Lα,+R̃α

∣∣∣L−1
α,+R̃α

)
L2(Rd)

− (L−1
α,+R̃α|R̃α)L2(Rd)

‖R̃α‖2L2(Rd)

(
R̃α

∣∣∣R̃α

)
L2(Rd)

+
(L−1

α,+R̃α|R̃α)
2
L2(Rd)

‖R̃α‖4L2(Rd)

(
Lα,+R̃α

∣∣∣R̃α

)
L2(Rd)

= −
(
L−1

α,+R̃α

∣∣∣R̃α

)
L2(Rd)

+
(L−1

α,+R̃α|R̃α)
2
L2(Rd)

‖R̃α‖4L2(Rd)

(
Lα,+R̃α

∣∣∣R̃α

)
L2(Rd)

<
(L−1

α,+R̃α|R̃α)
2
L2(Rd)

‖R̃α‖4L2(Rd)

(
Lα,+R̃α

∣∣∣R̃α

)
L2(Rd)

.
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Thus, it suffices to show that (Lα,+R̃α|R̃α)L2(Rd) ≤ 0. Explicitly, we have

Lα,+R̃α(x) = Lα,−R̃α(x)− (p− 1)ϕd,p(α
−1x)

∣∣∣R̃α(x)
∣∣∣
p−1

R̃α(x)

= −(p− 1)ϕd,p(α
−1x)

∣∣∣R̃α(x)
∣∣∣
p−1

R̃α(x),

and thus,
(
Lα,+R̃α

∣∣∣R̃α

)
L2(Rd)

= −(p− 1)

∫

Rd

ϕd,p(α
−1x)

∣∣∣R̃α(x)
∣∣∣
p+1

dx < 0,

since ϕd,p ≥ 0 by Hypothesis 1.1. In summary, (Lα,+fα|fα)L2(Rd) < 0, as claimed.
Next, we assume that (

L−1
α,+R̃α

∣∣∣R̃α

)
L2(Rd)

≤ 0.

Suppose there exists an fα ∈ 〈R̃α〉⊥ ∩ H2
rad(R

d) such that (Lα,+fα|fα)L2(Rd) < 0. Consider

the operator P⊥
α Lα,+P⊥

α . By assumption, we have

0 >
(
Lα,+fα

∣∣∣fα
)
L2(Rd)

=
(
Lα,+P⊥

α fα

∣∣∣P⊥
α fα

)
L2(Rd)

=
(
P⊥

α Lα,+P⊥
α fα

∣∣∣fα
)
L2(Rd)

,

and thus, by Lemma 5.2, P⊥
α Lα,+P⊥

α must have a negative eigenvalue λα < 0. In other

words, there exists a nontrivial gα ∈ 〈R̃α〉⊥ ∩ H2
rad(R

d) such that P⊥
α Lα,+gα = λαgα. This

means that there exists a cα ∈ C such that

Lα,+gα = λαgα + cαR̃α.

We claim that cα 6= 0. To see this, recall that Lα,+ has a unique negative eigenvalue λ∗α < 0

(which is simple) and if f ∗
α is an associated eigenfunction, we have (f ∗

α|R̃α)L2(Rd) 6= 0, see
Lemma 5.1. Suppose now that cα = 0. Then gα is an eigenfunction of Lα,+ with negative
eigenvalue λα, and thus, λα = λ∗α and gα must be a multiple of f ∗

α. This, however, contradicts

(gα|R̃α)L2(Rd) = 0, and the claim cα 6= 0 follows. Note further that λα 6= λ∗α because otherwise
we would arrive at the contradiction

0 =
(
gα
∣∣(Lα,+ − λ∗α)f

∗
α

)
L2(Rd)

=
(
(Lα,+ − λ∗α)gα

∣∣f ∗
α

)
L2(Rd)

= cα
(
R̃α

∣∣f ∗
α

)
L2(Rd)

6= 0.

Consequently, we have

(Lα,+ − λα)
−1R̃α = 1

cα
gα.

Furthermore, (
(Lα,+ − λα)

−1R̃α

∣∣∣R̃α

)
L2(Rd)

= 1
cα
(gα|R̃α)L2(Rd) = 0.

Now we define a function φα : (−∞, 0] \ {λ∗α} → R by

φα(λ) :=
(
(Lα,+ − λ)−1R̃α

∣∣∣R̃α

)
L2(Rd)

.

Note that φα is differentiable and

φ′
α(λ) =

(
(Lα,+ − λ)−2R̃α

∣∣∣R̃α

)
L2(Rd)

=
(
(Lα,+ − λ)−1R̃α

∣∣∣(Lα,+ − λ)−1R̃α

)
L2(Rd)

=
∥∥∥(Lα,+ − λ)−1R̃α

∥∥∥
2

L2(Rd)
> 0
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for all λ ∈ (−∞, 0] \ {λ∗α}. By assumption,

φα(0) =
(
L−1

α,+R̃α

∣∣∣R̃α

)
L2(Rd)

≤ 0

and φα(λα) = 0. Thus, we must have λα < λ∗α since otherwise, we would arrive at the
contradiction

0 ≥ φα(0) =

∫ 0

λα

φ′
α(λ)dλ+ φα(λα)︸ ︷︷ ︸

=0

> 0.

However, λα < λ∗α is also impossible since it leads to the contradiction

0 = φα(λα) =
(
(Lα,+ − λα)

−1R̃α

∣∣∣R̃α

)
L2(Rd)

=
(
(Lα,+ − λα)S̃α

∣∣∣S̃α

)
L2(Rd)

=
(
(Lα,+ − λ∗α)S̃α

∣∣∣S̃α

)
L2(Rd)

+ (λ∗α − λα)
∥∥S̃α

∥∥2
L2(Rd)

> 0,

where S̃α := (Lα,+ − λα)
−1R̃α and we have used the fact that Lα,+ − λ∗α is nonnegative, see

Lemma 5.1. In summary, we see that there cannot exist an fα ∈ 〈R̃α〉⊥ ∩ H2
rad(R

d) with
(Lα,+fα|fα)L2(Rd) < 0, and this finishes the proof. �

5.2. The auxiliary operator L
1
2
α,−Lα,+L

1
2
α,−. By Proposition 4.6, Lα,− is nonnegative and

thus, the square root L
1
2
α,− is well defined either via the functional calculus for self-adjoint

operators or by the Dunford-Taylor integral, see e.g. [43], p. 281, Theorem 3.35. Furthermore,

since L
1
2
α,− is self-adjoint, we have

kerL
1
2
α,− = kerLα,− = 〈QRd + ρα〉

and rgL
1
2
α,− = 〈QRd + ρα〉⊥ by Proposition 4.6. As expected from the Euclidean case, the

auxiliary operator L
1
2
α,−Lα,+L

1
2
α,− plays a crucial role.

Definition 5.4. Let α > 0 be sufficiently large. We define an operator

Jα : D(Jα) ⊂ 〈QRd + ρα〉⊥ → 〈QRd + ρα〉⊥

by

D(Jα) :=
{
f ∈ D(L

1
2
α,−) ∩ 〈QRd + ρα〉⊥ : L

1
2
α,−f ∈ D(Lα,+) and Lα,+L

1
2
α,−f ∈ D(L

1
2
α,−)

}

and Jαf := L
1
2
α,−Lα,+L

1
2
α,−f .

It is not immediately obvious that Jα is densely defined. Thus, we first establish this fact
using the following simple property of maximally defined products.

Lemma 5.5. Let (X, ‖ · |X), (Y, ‖ · ‖Y ), and (Z, ‖ · ‖Z) be Banach spaces. Furthermore, let
A : D(A) ⊂ Y → Z and B : D(B) ⊂ X → Y be densely defined linear operators and assume
that B is bounded invertible. Then the maximally defined operator2 AB : D(AB) ⊂ X → Z
is densely defined and D(AB) is a core for B.

2That is to say, D(AB) := {x ∈ D(B) : Bx ∈ D(A)}.
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Proof. Let x ∈ X and ǫ > 0 be arbitrary. Since D(B) is dense in X , we can find an x′ ∈ D(B)
such that ‖x − x′‖X < ǫ

2
. By the density of D(A) in Y , there exists a ỹ ∈ D(A) such that

‖Bx′ − ỹ‖Y < ǫ
2
‖B−1‖−1

B(X,Y ). Set x̃ := B−1ỹ. By definition, x̃ ∈ D(AB) and

‖x− x̃‖X = ‖x− x′‖X + ‖x′ − x̃‖X < ǫ
2
+ ‖B−1(Bx′ −Bx̃)‖X

≤ ǫ
2
+ ‖B−1‖B(X,Y )‖Bx′ − ỹ‖Y < ǫ.

To prove the second assertion, let x ∈ D(B). We have to show that there exists a sequence
(xn)n∈N ⊂ D(AB) such that xn → x in X and Bxn → Bx in Y as n → ∞. Since D(A) is
dense in Y , there exists a sequence (yn)n∈N ⊂ D(A) such that yn → Bx in Y as n→ ∞. We
set xn := B−1yn. Then (xn)n∈N ⊂ D(AB) and we have Bxn → Bx in Y as well as

‖xn − x‖X = ‖B−1(Bxn −Bx)‖X . ‖yn − Bx‖Y → 0

as n→ ∞. �

Lemma 5.6. Let α > 0 be sufficiently large. Then the operator Jα is densely defined.

Proof. To begin with, we define an auxiliary operator Aα : D(Aα) ⊂ L2
rad(R

d) → 〈QRd+ρα〉⊥
by

D(Aα) :=
{
f ∈ D(Lα,+) = H2

rad(R
d) : Lα,+f ∈ D(L

1
2
α,−)

}

and Aαf := L
1
2
α,−Lα,+f . Since 0 /∈ σ(Lα,+) by Lemma 4.7, Lemma 5.5 shows that Aα is

densely defined. Next, we define another auxiliary operator Bα : D(Bα) ⊂ 〈QRd + ρα〉⊥ →
〈QRd + ρα〉⊥ by

D(Bα) := D(L
1
2
α,−) ∩ 〈QRd + ρα〉⊥

and Bαf := L
1
2
α,−f . Obviously, Bα is densely defined and, since kerL

1
2
α,− = 〈QRd + ρα〉, it

follows that Bα is injective. Furthermore, by the self-adjointness of L
1
2
α,−, rgL

1
2
α,− = 〈QRd +

ρα〉⊥ and thus, for any g ∈ 〈QRd + ρα〉⊥ we can find an f ∈ D(L
1
2
α,−) such that L

1
2
α,−P⊥

α f =

L
1
2
α,−f = g, where P⊥

α denotes the orthogonal projection on 〈QRd + ρα〉⊥. Consequently,

P⊥
α f ∈ D(Bα) and BαP⊥

α f = g. This shows that Bα is surjective. From the closedness of

L
1
2
α,− it follows immediately that Bα is closed and the closed graph theorem implies that Bα

is bounded invertible. Now observe that Jα = AαBα, where the product AαBα is maximally
defined. Consequently, Lemma 5.5 implies that Jα is densely defined. �

Remark 5.7. Lemma 5.5 also shows that D(Jα) is a core for the operator Bα defined in the
proof of Lemma 5.6.

The importance of Jα derives from the following observation.

Lemma 5.8. Let α > 0 be sufficiently large and λ ∈ C \ {0}. Then we have the following
implications.

• If λ ∈ ρ(Lα) then λ
2 + Jα is surjective.

• The operator λ− Lα is injective if and only if λ2 + Jα is injective.
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Proof. Let λ ∈ ρ(Lα) and g ∈ 〈QRd + ρα〉⊥. We have to show that there exists an f ∈ D(Jα)

such that (λ2 + Jα)f = g. By the self-adjointness of L
1
2
α,−, we have

rgL
1
2
α,− = (kerL

1
2
α,−)

⊥

and thus, there exists an g2 ∈ D(L
1
2
α,−) such that λL

1
2
α,−g2 = g. Since λ ∈ ρ(Lα), there exists

(f1, f2) ∈ H2(Rd,C2) such that

(λ− Lα)

(
f1
f2

)
=

(
0
g2

)
.

Equivalently, {
λf1 −Lα,−f2 = 0,

Lα,+f1 + λf2 = g2.
(5.1)

By inserting the first equation into the second one, we find

Lα,+Lα,−f2 = −λ2f2 + λg2 ∈ D(L
1
2
α,−),

and applying L
1
2
α,− yields

L
1
2
α,−Lα,+L

1
2
α,−f = −λ2f + λL

1
2
α,−g2 = −λ2f + g

with f := L
1
2
α,−f2 ∈ D(Jα).

To prove the second assertion, we first assume that λ2 + Jα is injective. Suppose

(λ− Lα)

(
f1
f2

)
=

(
0
0

)
.

Then, by setting g = g2 = 0 in the above computation, we find (λ2+Jα)f = 0 for f = L
1
2
α,−f2.

This shows that f2 ∈ kerL
1
2
α,− = kerLα,− and the first equation in (5.1) implies that f1 = 0.

Subsequently, the second equation in (5.1) with g2 = 0 shows that f2 = 0 as well.
It remains to prove the reverse implication, i.e., we assume that λ − Lα is injective and

show that λ2 + Jα is injective. Consider the equation (λ2 + Jα)f = 0 for an arbitrary

f ∈ D(Jα). We have to show that f = 0. Set f1 := L
1
2
α,−f . From f ∈ D(Jα) we infer

that f1 ∈ D(L
1
2
α,−Lα,+) ⊂ D(Lα,+) = H2

rad(R
d). Furthermore, we define f2 := − 1

λ
Lα,+f1 =

− 1
λ
Lα,+L

1
2
α,−f ∈ D(L

1
2
α,−). Then we have

L
1
2
α,−f2 = − 1

λ
Jαf = λf ∈ D(Jα) ⊂ D(L

1
2
α,−),

which shows that f2 ∈ D(Lα,−) = H2
rad(R

d). Consequently,

(λ− Lα)

(
f1
f2

)
=

(
λf1 −Lα,−f2
Lα,+f1 + λf2

)
=

(
λL

1
2
α,−f − λL

1
2
α,−f

0

)
=

(
0
0

)

and it follows that f1 = f2 = 0 by the injectivity of λ−Lα. Since f1 = L
1
2
α,−f , we infer that

f ∈ kerL
1
2
α,− = 〈QRd + ρα〉. Together with f ∈ D(Jα), this implies that f = 0. �

A consequence of Lemma 5.8 is the self-adjointness of Jα.
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Lemma 5.9. Let α > 0 be sufficiently large. Then the operator Jα is self-adjoint.

Proof. By the self-adjointness of L
1
2
α,−, Lα,+ and Lemma 5.6, it follows that Jα is symmetric.

In other words, Jα ⊂ J ∗
α and, since J ∗

α is closed, Jα is closable and its closure Jα is
symmetric, too. Now consider the operators ±i + Jα = µ2

± + Jα, where µ± := 1√
2
±

i√
2
. By Lemma 4.8, µ± ∈ ρ(Lα) and thus, Lemma 5.8 implies that ±i + Jα is surjective.

Consequently, ±i + Jα is surjective and therefore, Jα is self-adjoint (see e.g. [43], p. 271,
Theorem 3.16). Let g ∈ D(Jα) be arbitrary. By the surjectivity of i + Jα, there exists an
f ∈ D(Jα) such that (i+ Jα)f = (i+ Jα)g and Jα ⊂ Jα implies that (i+ Jα)(f − g) = 0.
Since σp(Jα) ⊂ R, we must have f − g = 0 and therefore, g ∈ D(Jα). Thus, we have proved
that D(Jα) ⊂ D(Jα) and this shows that Jα = Jα. �

We need one last technical result.

Lemma 5.10. Let α > 0 be sufficiently large and define Bα : D(Bα) ⊂ 〈QRd + ρα〉⊥ →
〈QRd + ρα〉⊥ by D(Bα) := D(L

1
2
α,−) ∩ 〈QRd + ρα〉⊥ and Bαf := L

1
2
α,−f . Then the (maximally

defined) operator Lα,+Bα is densely defined, closed, and D(Jα) is a core for Lα,+Bα.

Proof. Recall from the proof of Lemma 5.6 that Bα is closed and bounded invertible. As a
consequence, Lemma 5.5 shows that Lα,+Bα is densely defined. Let (fn)n∈N ⊂ D(Lα,+Bα) ⊂
D(Bα) with fn → f and Lα,+Bαfn → h as n→ ∞. Then we have

∥∥Bαfn − L−1
α,+h

∥∥
L2(Rd)

=
∥∥L−1

α,+ (Lα,+Bαfn − h)
∥∥
L2(Rd)

. ‖Lα,+Bαfn − h‖
L2(Rd) → 0

as n → ∞ and the closedness of Bα implies that f ∈ D(Bα) and Bαf = L−1
α,+h ∈ D(Lα,+).

Consequently, f ∈ D(Lα,+Bα) and Lα,+Bαf = Lα,+L−1
α,+h = h. This proves the closedness of

Lα,+Bα.
Next, we claim that Lα,+Bα has closed range. Indeed, let (hn)n∈N ⊂ rg(Lα,+Bα) with hn →

h as n→ ∞. Then there exists a sequence (fn)n∈N ⊂ D(Lα,+Bα) such that Lα,+Bαfn = hn.
In other words, fn = B−1

α L−1
α,+hn and thus, fn → f as n→ ∞ for some f ∈ 〈QRd + ρα〉⊥. By

the closedness of Lα,+Bα, we infer that f ∈ D(Lα,+Bα) and Lα,+Bαf = h, which shows that
h ∈ rg(Lα,+Bα).

Now we define an auxiliary operator Aα : D(Aα) ⊂ 〈QRd + ρα〉⊥ → rg(Lα,+Bα) by
D(Aα) := D(Lα,+Bα) and Aαf := Lα,+Bαf . By the above, Aα is densely defined, closed,
and bijective. Thus, the closed graph theorem shows that Aα is bounded invertible. By

definition, D(Jα) = D(L
1
2
α,−Aα). Lemma 5.5 implies that D(Jα) is a core for Aα and hence

for Lα,+Bα. �

5.3. Spectral stability in the critical case. Now we can establish a stability criterion
also in the critical case p = 1 + 4

d
.

Lemma 5.11. If p = 1+ 4
d
then there exists an α0 > 0 such that for all α ≥ α0 the following

holds.

• If (L−1
α,+(QRd + ρα)|QRd + ρα)L2(Rd) > 0 then Lα has precisely one positive eigenvalue

λα and the eigenvalues ±λα ∈ σp(Lα) are simple.
• If (L−1

α,+(QRd + ρα)|QRd + ρα)L2(Rd) ≤ 0 then Lα has no positive eigenvalues.
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Proof. Let P and Pα be the spectral projections from the proof of Lemma 4.9. By Theorem
4.3 and [43], p. 34, Lemma 4.10, we have dim rgPα = dim rgP = 4 and thus, by Lemma 4.8,
there can be at most one positive eigenvalue λα > 0 and if so, the eigenvalues ±λα ∈ σp(Lα)
will be simple since 0 ∈ σp(Lα).

Now assume that (L−1
α,+(QRd + ρα)|QRd + ρα)L2(Rd) > 0. Then, by Proposition 5.3, we can

find an fα ∈ 〈QRd+ρα〉⊥∩H2
rad(R

d) such that (Lα,+fα|fα)L2(Rd) < 0. From the self-adjointness
of Lα,−, we have

rgL
1
2
α,− = (kerL

1
2
α,−)

⊥ = ker(Lα,−)
⊥ = 〈QRd + ρα〉⊥.

Thus, since fα ⊥ QRd + ρα, there exists a g̃α ∈ D(L
1
2
α,−) such that L

1
2
α,−g̃α = fα. Set

gα := P⊥
α g̃α, where P⊥

α is the orthogonal projection onto 〈QRd + ρα〉⊥. Then we have

gα ∈ D(Bα) and Bαgα = L
1
2
α,−P⊥

α g̃α = L
1
2
α,−g̃α = fα, where Bα is the operator defined in

Lemma 5.10. By construction,
(
Lα,+Bαgα

∣∣∣Bαgα

)
L2(Rd)

= (Lα,+fα|fα)L2(Rd) < 0.

SinceD(Jα) is a core for Lα,+Bα (Lemma 5.10), we can find for any given ǫ > 0 an f̃α ∈ D(Jα)

such that ‖Lα,+Bαf̃α − Lα,+Bαgα‖L2(Rd) < ǫ and

‖Bαf̃α − Bαgα‖L2(Rd) = ‖L−1
α,+[Lα,+Bαf̃α −Lα,+Bαgα]‖L2(Rd) . ǫ.

Consequently, by choosing ǫ > 0 sufficiently small, we find

0 >
(
Lα,+Bαf̃α

∣∣∣Bαf̃α

)
L2(Rd)

=
(
Lα,+L

1
2
α,−f̃α

∣∣∣L
1
2
α,−f̃α

)
L2(Rd)

=
(
L

1
2
α,−Lα,+L

1
2
α,−f̃α

∣∣∣f̃α
)
L2(Rd)

=
(
Jαf̃α

∣∣∣f̃α
)
L2(Rd)

.

Lemma 5.9 therefore implies that Jα has negative spectrum, i.e., there exists a λα > 0 such
that −λ2α ∈ σ(Jα). If −λ2α − Jα = −(λ2α + Jα) is not surjective, then, by Lemma 5.8,
λα ∈ σ(Lα) and by Lemma 4.8, λα ∈ σp(Lα). If −(λ2α + Jα) is not injective, Lemma 5.8
implies that λα ∈ σp(Lα).

If, on the other hand, (L−1
α,+(QRd + ρα)|QRd + ρα)L2(Rd) ≤ 0, we obtain

(Jαf |f)L2(Rd) =
(
Lα,+L

1
2
α,−f

∣∣∣L
1
2
α,−f

)
L2(Rd)

≥ 0

for all f ∈ D(Jα), by Proposition 5.3. Thus, Lemma 5.9 implies that σ(Jα) ⊂ [0,∞) and
from Lemma 5.8 we infer that λ− Lα is injective for any λ > 0. Consequently, Lemma 4.8
shows that σ(Lα) ∩ R = {0}. �

Proof of Theorems 1.5, 1.6, and 1.7. Consider the map Vα : L2
rad(M

d) → L2
rad(R

d) given by

Vαf(x) := α− d
2

(
A(α−1|x|)
α−1|x|

) d−1
2

f(α−1|x|, y),

with inverse

V−1
α f(r, y) = α

d
2

(
r

A(r)

) d−1
2

f(αre1).
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We have

‖Vαf‖2L2(Rd) = α−d|Sd−1|
∫ ∞

0

(
A(α−1r)

α−1r

)d−1

|f(α−1r, y)|2rd−1dr

= |Sd−1|
∫ ∞

0

|f(r, y)|2A(r)d−1dr

= ‖f‖2L2(Md),

and thus, Vα is unitary for any α > 0. Furthermore, recall that

QMd,α(r, y) = α
2

p−1

(
r

A(r)

) d−1
2

[QRd(αre1) + ρα(αre1)] ,

and thus, for any radial f ∈ C∞
c (Md), we have

L̃Md,α,±f = α2V−1
α Lα,±Vαf.

Consequently, the closure LMd,α of L̃Md,α is given by

LMd,α = α2

(
0 V−1

α Lα,−Vα

−V−1
α Lα,+Vα 0

)
,

and LMd,α is unitarily equivalent to α2Lα. This implies the claimed statements. �

6. Stability and curvature

From [4], we know that in negative curvature there is blow-up instability for sufficiently high
energy. In this last section we give numerical evidence of how this instability manifests in the
bifurcation theory from the Euclidean situation. The soliton may become linearly unstable
in the curved geometry if the curvature is strictly negative everywhere or otherwise. More
precisely, we consider the model case of a warping function A(r) = r + c1r

3 + c2r
5, in the

critical case d = 2, p = 3. The sectional curvatures of the manifold M2 are given by

−A
′′(r)

A(r)
= − 6c1 + 20c2r

2

1 + c1r2 + c2r4
,

1− A′(r)2

A(r)2
= −(3c1 + 5c2r

2)(2 + 3c1r
2 + 5c2r

4)

(1 + c1r2 + c2r4)2
.

6.1. A formal expansion. As before, we write R̃α = QR2 + ρα with ρα from Proposition

3.7. By Lemma 3.9, R̃α ∈ C2(R2) and

∆R2R̃α(x)− R̃α(x)− α−2V2(α
−1x)R̃α(x) + ϕ2,3(α

−1x)R̃α(x)
3 = 0

for all x ∈ R
2. When written out explicitly for our model case, this reads

(1 + c1α
−2r2 + c2α

−4r4)2(∆R2 − 1)R̃α

− α−2
[
2c1 + (c21 + 8c2)α

−2r2 + 6c1c2α
−4r4 + 4c22α

−6r6
]
R̃α

+ (1 + c1α
−2r2 + c2α

−4r4)R̃3
α = 0,

(6.1)

where r(x) = |x|. Now we assume an asymptotic expansion of the form

R̃α(x) = QR2(x) + α−2Q1(x) + α−4Q2(x) + α−6QE(x, α), (6.2)
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where ‖QE(·, α)‖L2(R2) . 1 and ‖∂αQE(·, α)‖L2(R2) . α−1 for all α ≫ 1. Then, in view of
Theorem 1.3, the soliton profile on M

2 is given by

QM2,α(r, y) = α

(
r

A(r)

) 1
2 [
QR2(αre1) + α−2Q1(αre1) + α−4Q2(αre1) + α−6QE(αre1, α)

]

and thus,

‖QM2,α‖2L2(M2) =

∫ ∞

0

∫

R

QM2,α(r, y)
2A(r)

2

y2 + 1
dydr = 2π

∫ ∞

0

QM2,α(r, y)
2A(r)dr

= 2π

∫ ∞

0

[
QR2(re1) + α−2Q1(re1) + α−4Q2(re1) + α−6QE(re1, α)

]2
rdr

= ‖QR2‖2L2(R2) + 2α−2(QR2|Q1)L2(R2) + α−4
[
‖Q1‖2L2(R2) + 2(QR2 |Q2)L2(R2)

]

+O(α−6).

In order to compute the profiles Q1 and Q2, we plug the ansatz (6.2) into Eq. (6.1) and solve
order by order in α. This yields

α0 : ∆R2QR2 −QR2 +Q3
R2 = 0,

α−2 : L+Q1 = −c1(2QR2 + r2Q3
R2),

α−4 : L+Q2 = −2c1Q1 + (3c21 − 8c2)r
2QR2 − 3c1r

2Q2
R2Q1 + 3QR2Q2

1 + (c21 − c2)r
4Q3

R2 ,

with L+ = −∆R2 + 1− 3Q2
R2 . By definition, QR2,α(x) = αQR2(αx) satisfies

∆R2QR2,α − α2QR2,α +Q3
R2,α = 0.

By differentiating this equation with respect to α, we see that

S0(x) := ∂αQR2,α(x)|α=1 = xj∂jQR2(x) +QR2(x)

satisfies

L+S0 = −∆R2S0 + S0 − 3Q2
R2S0 = −2QR2 .

Consequently,

(QR2 |Q1)L2(R2) = −1
2
(L+S0|Q1)L2(R2) = −1

2
(S0|L+Q1)L2(R2)

= c1(S0|QR2)L2(R2) +
1
2
c1(S0|r2Q3

R2)L2(R2)

= 0,

since

0 = ∂α‖QR2‖2L2(R2) = ∂α‖QR2,α‖2L2(R2) = 2(∂αQR2,α|QR2,α)L2(R2)

and

0 = ∂α‖rQ2
R2‖2L2(R2) = ∂α‖rQ2

R2,α‖2L2(R2) = 4(∂αQR2,α|r2Q3
R2,α)L2(R2)

which, when evaluated at α = 1, reads

0 = (S0|QR2)L2(R2) = (S0|r2Q3
R2)L2(R2).

This implies that

‖QM2,α‖2L2(M2) = ‖QR2‖2L2(R2) + α−4
[
‖Q1‖2L2(R2) + 2(QR2|Q2)L2(R2)

]
+O(α−6).
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The sign of ∂α‖QM2,α‖2L2(R2) is to leading order determined by the sign of

κ := ‖Q1‖2L2(R2) + 2(QR2 |Q2)L2(R2).

More precisely, we have

∂α‖QM2,α‖2L2(M2) = −4α−5κ+O(α−7)

and the soliton is linearly unstable for sufficiently large α if κ > 0, see Theorem 1.7 and
Remark 1.8.

6.2. Stability. By using the defining equation for Q2, we find the expression

κ = ‖Q1‖2L2(R2) − (L+S0|Q2)L2(R2) = ‖Q1‖2L2(R2) − (S0|L+Q2)L2(R2)

= ‖Q1‖2L2(R2)

+
(
S0

∣∣2c1Q1 − (3c21 − 8c2)r
2QR2 + 3c1r

2Q2
R2Q1 − 3QR2Q2

1 − (c21 − c2)r
4Q3

R2

)
L2(R2)

.

It is convenient to introduce the function Q̂1, defined as the unique solution (in H2
rad(R

2))
of the equation

L+Q̂1 = −2QR2 − r2Q3
R2 .

Then we have Q1 = c1Q̂1 and we arrive at κ = c21b1 + c2b2 with

b1 = ‖Q̂1‖2L2(R2) +
(
S0

∣∣2Q̂1 − 3r2QR2 + 3r2Q2
R2Q̂1 − 3QR2Q̂2

1 − r4Q3
R2

)
L2(R2)

,

b2 =
(
S0|8r2QR2 + r4Q3

R2

)
L2(R2)

.

Consequently, the issue is to determine the signs of b1 and b2 (which depend only on the
Euclidean profile QR2). An integration by parts yields

b2 = −8(QR2 |r2QR2)L2(R2) − 1
2
(QR2 |r4Q3

R2)L2(R2) < 0

and numerical evaluation shows, somewhat surprisingly, that b1 ≥ 14π, see Appendix C.
This means that the simple choice c1 = 1 and c2 = 0 provides a negatively curved metric
that makes the soliton linearly unstable. In addition, we see that there are values of c1 ≪ c2
such that the mass condition for stability is possibly true. Of course, to establish orbital
stability, further analysis is required on such a manifold, for which the metric expansion is
far from standard examples.

Appendix A. Background material

For the convenience of the reader and to fix notation, we compile some background material
on radial distributions and distributional solutions of Poisson’s equation.

A.1. Radial distributions. As usual, for U ⊂ Rd open, we denote by D(U) = C∞
c (U) the

set of test functions. For (ϕn)n∈N ⊂ D(U) and ϕ ∈ D(U), we say that limn→∞ ϕn = ϕ in
D(U) if there exists a compact K ⊂ U such that suppϕn ⊂ K for all n ∈ N and for any
k ∈ N0, ‖ϕn − ϕ‖W k,∞(U) → 0 as n→ ∞. Here,

‖ϕ‖W k,∞(U) =
∑

|β|≤k

‖∂βϕ‖L∞(U)
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with the usual multi-index notation. This notion of convergence defines a topology on
D(U) and the space D′(U) of continuous linear functionals on D(U) is called the space of
distributions.

In order to define radial distributions, we start with a test function f ∈ D(Rd) and define
its spherical mean Mf by

Mf(x) :=
1

|Sd−1|

∫

Sd−1

f(|x|ω)dσ(ω),

where σ is the standard surface measure on the sphere Sd−1. Clearly, Mf = f if and only if
f is radial. The most important properties are summarized in the next lemma.

Lemma A.1. We have ∆RdMf =M∆Rdf for all f ∈ C∞
c (Rd). Furthermore, for any s ≥ 0

we have

‖Mf‖Hs(Rd) . ‖f‖Hs(Rd)

for all f ∈ C∞
c (Rd). Finally, M extends to a self-adjoint operator on L2(Rd).

Proof. We use polar coordinates x = rω′ defined by r = |x|, ω′ = x
|x| for x ∈ R

d\{0}. Since

Mf is radial, we obtain

∆RdMf(x) =

(
∂2r +

d− 1

r
∂r

)
Mf(rω′) =

1

|Sd−1|

(
∂2r +

d− 1

r
∂r

)∫

Sd−1

f(rω)dσ(ω)

=
1

|Sd−1|

∫

Sd−1

(
∂2r +

d− 1

r
∂r

)
f(rω)dσ(ω)

=
1

|Sd−1|

∫

Sd−1

(
∂2r +

d− 1

r
∂r +

1

r2
∆Sd−1,ω

)
f(rω)dσ(ω)

=
1

|Sd−1|

∫

Sd−1

∆Rdf(rω)dσ(ω)

=M∆Rdf(x)

for any x ∈ Rd\{0}. Next, by Cauchy-Schwarz,

‖Mf‖2L2(Rd) =

∫ ∞

0

∫

Sd−1

|Mf(rω)|2dσ(ω)rd−1dr

.

∫ ∞

0

∫

Sd−1

∫

Sd−1

|f(rω′)|2dσ(ω′)dσ(ω)rd−1dr

. ‖f‖2L2(Rd)

Since M commutes with ∆Rd, we can also estimate

‖Mf‖H2k(Rd) ≃ ‖∆k
RdMf‖L2(Rd) + ‖Mf‖L2(Rd) = ‖M∆k

Rdf‖L2(Rd) + ‖Mf‖L2(Rd)

. ‖∆k
Rdf‖L2(Rd) + ‖f‖L2(Rd)

≃ ‖f‖H2k(Rd)

for any k ∈ N0. By interpolation, we obtain the claimed estimate. Clearly, Mf has compact
support if f ∈ C∞

c (Rd) and the Sobolev embedding theorem shows that in fact Mf ∈
C∞

c (Rd). In particular, ∆RdMf(x) =M∆Rdf(x) holds for all x ∈ Rd by continuity.
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By density, M extends to a bounded operator on L2(Rd), and we have

(Mf |g)L2(Rd) =

∫

Rd

Mf(x)g(x)dx =

∫ ∞

0

∫

Sd−1

Mf(rω)g(rω)dσ(ω)rd−1dr

=
1

|Sd−1|

∫ ∞

0

∫

Sd−1

∫

Sd−1

f(rω′)dσ(ω′)g(rω)dσ(ω)rd−1dr

=
1

|Sd−1|

∫ ∞

0

∫

Sd−1

f(rω′)

∫

Sd−1

g(rω)dσ(ω)dσ(ω′)rd−1dr

=

∫ ∞

0

f(rω′)Mg(rω′)dσ(ω′)rd−1dr

= (f |Mg)L2(Rd)

for all f, g ∈ C∞
c (Rd) by Fubini. Consequently, M extends to a self-adjoint operator on

L2(Rd). �

We use the same symbol M to denote the extension of the spherical mean to L2(Rd). For
s ≥ 0 we define the closed subspace Hs

rad(R
d) ⊂ Hs(Rd) of radial functions in Hs(Rd) by

Hs
rad(R

d) := {f ∈ Hs(Rd) :Mf = f}.
It is now straightforward to further extend M to distributions. Indeed, for u ∈ D′(Rd) we

define M̂u by

(M̂u)(ϕ) := u(Mϕ)

for all ϕ ∈ D(Rd). Obviously, M̂u is a linear form on D(Rd) and, for any K ⊂ Rd compact,
we can find a k ∈ N0 such that

|(M̂u)(ϕ)| = |u(Mϕ)| . ‖Mϕ‖W k,∞(Rd) . ‖Mϕ‖Hk+d(Rd) . ‖ϕ‖Hk+d(Rd) . ‖ϕ‖W k+d,∞(K)

for all ϕ ∈ C∞
c (K) by Sobolev embedding and Lemma A.1. This estimate shows that

M̂u ∈ D′(Rd) and by the self-adjointness ofM on L2(Rd), the operator M̂ : D′(Rd) → D′(Rd)
is an extension of M to the space of distributions. Consequently, it is justified to simplify

notation by writing M instead of M̂ . Accordingly, a distribution u ∈ D′(Rd) is said to
be radial if Mu = u. Note that by Lemma A.1, ∆Rd maps radial distributions to radial
distributions.

A.2. Regularity results. We state and prove two regularity results for radial distributional
solutions of Poisson’s equation. It is convenient to introduce the following notation.

Definition A.2. Let U ⊂ Rd be open and f ∈ L1
loc(U). Then we define the distribution

f ♯ ∈ D′(U) by

f ♯(ϕ) :=

∫

U

f(x)ϕ(x)dx

for ϕ ∈ D(U).

Lemma A.3. Let f, g ∈ C(Rd \ {0}) ∩ L1
loc(R

d) be radial and suppose f satisfies

∆Rdf ♯ = g♯ in D′(Rd).
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Then the function f̂ : (0,∞) → R, defined by f̂(r) := r
d−1
2 f(re1), belongs to C2(0,∞) and

satisfies

f̂ ′′(r)− (d− 1)(d− 3)

4r2
f̂(r) = r

d−1
2 g(re1)

for all r > 0.

Proof. Let

Ddψ(r) := ψ′′(r)− (d− 1)(d− 3)

4r2
ψ(r).

The operator Dd maps D(0,∞) to D(0,∞) continuously and is formally self-adjoint on
L2(0,∞). Thus, Dd extends to D′(0,∞) by setting Ddv(ψ) := v(Ddψ) for v ∈ D′(0,∞) and
ψ ∈ D(0,∞). Furthermore, we have the identity

∆Rd

(
| · |− d−1

2 ψ(| · |)
)
(x) = |x|− d−1

2 (Ddψ)(|x|)

for all x ∈ Rd. Now note that ψ ∈ C∞
c (0,∞) implies | · |− d−1

2 ψ(| · |) ∈ C∞
c (Rd) and thus,

every distribution u ∈ D′(Rd) defines a distribution û ∈ D′(0,∞) by setting

û(ψ) := u
(
| · |− d−1

2 ψ(| · |)
)

for ψ ∈ D(0,∞). Then we have

∆Rdu
(
| · |− d−1

2 ψ(| · |)
)
= u

(
∆Rd

(
| · |− d−1

2 ψ(| · |)
))

= u
(
| · |− d−1

2 (Ddψ)(| · |)
)
= û(Ddψ)

= Ddû(ψ)

for all ψ ∈ D(0,∞), and the equation ∆Rdf ♯ = g♯ in D′(Rd) implies that

Ddf̂ ♯ = ĝ♯ in D′(0,∞).

Explicitly, we have

f̂ ♯(ψ) = f ♯
(
| · |− d−1

2 ψ(| · |)
)
=

∫

Rd

f(x)|x|− d−1
2 ψ(|x|)dx = |Sd−1|

∫ ∞

0

r
d−1
2 f(re1)ψ(r)dr

and thus, f̂ ♯ = f̂ ♯ with f̂(r) := |Sd−1|r d−1
2 f(re1). This yields

Ddf̂
♯ = ĝ♯ in D′(0,∞),

and by [41], p. 58, Corollary 3.1.6, it follows that f̂ ∈ C2(0,∞) and Ddf̂ = ĝ holds in the
classical sense. �

Lemma A.4. Let f, g ∈ C(Rd) be radial and suppose f satisfies

∆Rdf ♯ = g♯ in D′(Rd).

Then f ∈ C2(Rd) and ∆Rdf(x) = g(x) for all x ∈ Rd in the classical sense.
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Proof. From Lemma A.3 we know that f̂(r) := r
d−1
2 f(re1) belongs to C

2(0,∞) and satisfies

f̂ ′′(r)− (d− 1)(d− 3)

4r2
f̂(r) = r

d−1
2 g(re1)

for all r > 0. In particular, f ∈ C2(Rd \ {0}). We set φ(s) := s−
d−1
4 f̂(

√
s) = f(

√
se1). Then

φ ∈ C2(0,∞) ∩ C([0,∞)) and

φ′′(s) +
d

2s
φ′(s) =

1

s
h(s)

for all s > 0 and h(s) := 1
4
g(
√
se1). Obviously, h ∈ C([0,∞)). A fundamental system

for the homogeneous equation is given by {1, ψ0}, where ψ0(s) = − 2
d−2

s−
d−2
2 if d ≥ 3 and

ψ0(s) = log s if d = 2. Note that W (1, ψ0)(s) = s−
d
2 and thus, by the variation of constants

formula, φ can be written as

φ(s) = c0 + c1ψ0(s)−
∫ s

0

ψ0(t)t
d
2
−1h(t)dt + ψ0(s)

∫ s

0

t
d
2
−1h(t)dt

for some constants c0, c1 ∈ R. Since φ ∈ C([0,∞)), we must have c1 = 0 and therefore,

φ′(s) = ψ′
0(s)

∫ s

0

t
d
2
−1h(t)dt = s−

d
2

∫ s

0

t
d
2
−1h(t)dt.

Consequently, by de l’Hôpital’s rule,

lim
s→0+

φ′(s) = lim
s→0+

∫ s

0
t
d
2
−1h(t)dt

s
d
2

= lim
s→0+

s
d
2
−1h(s)
d
2
s

d
2
−1

= 2
d
h(0),

and we see that φ ∈ C1([0,∞)). Furthermore,

φ′′(s) = s−1h(s)− d
2
s−

d
2
−1

∫ s

0

t
d
2
−1h(t)dt = s−1h(s)− d

2
s−1φ′(s)

and thus,

lim
s→0+

[sφ′′(s)] = lim
s→0+

[
h(s)− d

2
φ′(s)

]
= 0.

By definition, f(x) = φ(|x|2) and thus,

∂j∂kf(x) = 4xjxkφ
′′(|x|2) + 2φ′(|x|2)δjk.

This implies that

lim
x→0

∂j∂kf(x) = 2φ′(0)δjk,

since

|xjxkφ′′(|x|2)| ≤ |x|2|φ′′(|x|2)| → 0

as |x| → 0. Consequently, f ∈ C2(Rd). �
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Appendix B. Construction of a fundamental system

Lemma B.1. Let λ > 0 and V ∈ C∞([0,∞)). Furthermore, suppose that for any k ∈ N0

there exists a Ck > 0 such that |V (k)(r)| ≤ Ck〈r〉−2−k for all r ≥ 0. Then the equation

φ′′(r)− (d− 1)(d− 3)

4r2
φ(r)− V (r)φ(r)− λ2φ(r) = 0 (B.1)

has fundamental systems {φ0, ψ0} on (0, 1
2
] and {φ∞, ψ∞} on [1

4
,∞), respectively, of the form

φ0(r) = r
d−1
2 [1 + a0(r)], ψ0(r) =

{
r

1
2 log r[1 + b0(r)], d = 2,

− 1
d−2

r−
d−3
2 [1 + b0(r)], d 6= 2,

φ∞(r) = e−λr[1 + a∞(r)], ψ∞(r) = 1
2λ
eλr[1 + b∞(r)].

For any k ∈ N0 there exists a Ck > 0 such that3

|a(k)0 (r)| ≤ Ckr
1−k, for all r ∈ (0, 1

2
],

|b(k)0 (r)| ≤ Ck

{
| log r|−1r−k, d = 2,

r1−k, d 6= 2,
for all r ∈ (0, 1

2
],

|a(k)∞ (r)|+ |b(k)∞ (r)| ≤ Ckr
−1−k, for all r ≥ 1

4
.

Proof. We start with the construction of the solution φ0. Note that the equation

f ′′(r)− (d− 1)(d− 3)

4r2
f(r) = 0

has the fundamental system {f0, g0}, given by

f0(r) = r
d−1
2 , g0(r) =

{
r

1
2 log r, if d = 2,

− 1
d−2

r−
d−3
2 , if d 6= 2,

and W (f0, g0) = 1. Thus, in view of the variation of constants formula, φ0 is supposed to
solve the equation

φ0(r) = f0(r)− f0(r)

∫ r

0

g0(s)[V (s) + λ2]φ0(s)ds+ g0(r)

∫ r

0

f0(s)[V (s) + λ2]φ0(s)ds.

We rewrite this equation in terms of the auxiliary function h, defined by φ0 = f0h. This
yields the Volterra equation

h(r) = 1 +

∫ r

0

K(r, s)h(s)ds, (B.2)

with the kernel

K(r, s) :=

[
g0(r)

f0(r)
f0(s)

2 − f0(s)g0(s)

]
[V (s) + λ2].

If d ≥ 3 we have the bound

|K(r, s)| . r−d+2sd−1 + s . s

3The bounds on the error functions a0, b0 are not optimal but simple to work with and sufficient for our
purposes.
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for all 0 ≤ s ≤ r ≤ 1
2
. If d = 2, we fix an arbitrary δ ∈ (0, 1) and estimate

|K(r, s)| . | log r|s+ s| log s| . s1−δ

for all 0 ≤ s ≤ r ≤ 1
2
. Consequently,

∫ 1
2

0

sup
r∈[s, 1

2
]

|K(r, s)|ds . 1,

and the standard existence result for Volterra equations (see e.g. [60], Lemma 2.4) yields the
existence of a solution h ∈ L∞(0, 1

2
) to Eq. (B.2), satisfying the bound

|h(r)− 1| .
∫ r

0

|K(r, s)||h(s)|ds . ‖h‖L∞(0, 1
2
)

∫ r

0

s1−δds . r2−δ

for all r ∈ [0, 1
2
]. This proves the existence of φ0(r) = f0(r)h(r) = f0(r)[1 + a0(r)], with the

bound |a0(r)| . r2−δ . r for all r ∈ [0, 1
2
].

Next, we turn to the derivative bounds on a0. For any j ∈ N0 we have the bound
|∂jrK(r, s)| . r−js1−δ . r−j for all 0 < r ≤ s ≤ 1

2
. If we set κj(r) := ∂jrK(r, s)|s=r, then, for

j, k ∈ N0, we have |κ(k)j (r)| . r−j−k for all r ∈ (0, 1
2
]. In terms of a0, Eq. (B.2) reads

a0(r) =

∫ r

0

K(r, s)ds+

∫ r

0

K(r, s)a0(s)ds.

Thus, for k ∈ N, we obtain

a
(k)
0 (r) = κ

(k−1)
0 (r) +

k−1∑

j=0

(κja0)
(k−1−j)(r) +

∫ r

0

∂krK(r, s)a0(s)ds.

Inductively, we find

|a(k)0 (r)| . r1−k + r2−k . r1−k

for all r ∈ (0, 1
2
], which is the desired bound.

The singular solution ψ0 is constructed via the reduction formula. Since φ0(r) = r
d−1
2 [1 +

O(r)], there exists an r0 ∈ (0, 1
2
] such that φ0(r) > 0 for all r ∈ (0, r0]. Consequently,

ψ0(r) := −φ0(r)

∫ r0

r

φ0(s)
−2ds

is well-defined for all r ∈ (0, r0] and provides a solution to Eq. (B.1) on (0, r0]. We define
the function b0 on (0, r0] by ψ0(r) = g0(r)[1 + b0(r)], i.e.,

b0(r) := −f0(r)[1 + a0(r)]

g0(r)

∫ r0

r

f0(s)
−2[1 + a0(s)]

−2ds− 1.

Observe that (
g0
f0

)′
=
f0g

′
0 − f ′

0g0
f 2
0

=
W (f0, g0)

f 2
0

= f−2
0

and thus,

−f0(r)
g0(r)

∫ r0

r

f0(s)
−2ds = 1− c0

f0(r)

g0(r)
, c0 :=

g0(r0)

f0(r0)
.
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Consequently,

b0(r) = a0(r)− c0
f0(r)

g0(r)
[1 + a0(r)]−

f0(r)

g0(r)
[1 + a0(r)]

∫ r0

r

f0(s)
−2
[
(1 + a0(s))

−2 − 1
]
ds,

and in the case d ≥ 3 we obtain

|b0(r)| . r + rd−2 + rd−2

∫ r0

r

s−d+1s2−δds . r + rd−2 + r2−δ . r

for all r ∈ [0, r0]. In the case d = 2 we have the weaker bound

|b0(r)| . r + | log r|−1 + | log r|−1

∫ r0

r

s−1s2−δds . | log r|−1

for all r ∈ (0, r0]. The derivative bounds on b0 follow directly by differentiating the explicit
formula for b0. By solving an initial value problem with data at r = r0, we extend the solution
ψ0 to (0, 1

2
] and clearly, ψ0 ∈ C∞((0, 1

2
]) since the coefficients of Eq. (B.1) are smooth on

(0,∞).
The solution φ∞ is constructed by a similar procedure. This time we treat the term

− (d−1)(d−3)
4r2

φ(r) perturbatively since it is negligible for large r. That is to say, we first note
that the equation

f ′′(r)− λ2f(r) = 0

has the fundamental system {f∞, g∞}, where f∞(r) = e−λr and g∞(r) = 1
2λ
eλr. Conse-

quently, we write φ∞ = f∞h and consider the Volterra equation

h(r) = 1 +

∫ ∞

r

K(r, s)h(s)ds (B.3)

with the kernel

K(r, s) :=

[
f∞(s)g∞(s)− g∞(r)

f∞(r)
f∞(s)2

] [
(d− 1)(d− 3)

4s2
+ V (s)

]
.

We estimate

|K(r, s)| . (1 + e2λre−2λs)s−2 . s−2

for all 1
4
≤ r ≤ s, which yields

∫ ∞

1
4

sup
r∈[ 1

4
,s]

|K(r, s)|ds .
∫ ∞

1
4

s−2ds . 1.

The Volterra theorem (see e.g. [60], Lemma 2.4) then implies the existence of a solution
h ∈ L∞(1

4
,∞). Furthermore,

|h(r)− 1| ≤
∫ ∞

r

|K(r, s)||h(s)|ds . ‖h‖L∞( 1
4
,∞)

∫ ∞

r

s−2ds . r−1

for all r ≥ 1
4
and thus, φ∞(r) = f∞(r)[1 + a∞(r)] with |a∞(r)| . r−1 for all r ≥ 1

4
.
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For the bounds on the derivatives of a∞, we rewrite the Volterra equation for a∞ = h− 1
as

a∞(r) =

∫ ∞

r

K(r, s)ds+

∫ ∞

r

K(r, s)a∞(s)ds

=

∫ ∞

0

K(r, s+ r)ds+

∫ ∞

0

K(r, s+ r)a∞(s+ r)ds.

Note that

K(r, s+ r) =
1

2λ

(
1− eλr

e−λr
e−2λ(s+r)

)[
(d− 1)(d− 3)

4(s+ r)2
+ V (s+ r)

]

=
1

2λ

(
1− e−2λs

) [(d− 1)(d− 3)

4(s+ r)2
+ V (s+ r)

]

and thus, for j ∈ N0,
|∂jrK(r, s+ r)| . (s+ r)−2−j

for all 1
4
≤ r ≤ s. Now let k ∈ N and assume that for any j ∈ N0 with j ≤ k − 1, we have

|a(j)∞ (r)| . r−1−j for all r ≥ 1
4
. Then we obtain

a(k)∞ (r) =

∫ ∞

0

∂krK(r, s+ r)ds+

∫ ∞

0

∂kr [K(r, s+ r)a∞(s+ r)] ds

= O(r−1−k) +

∫ ∞

r

K(r, s)a(k)∞ (s)ds

and thus, ak(r) := r1+ka
(k)
∞ (r) satisfies the Volterra equation

ak(r) = O(r0) +

∫ ∞

r

K(r, s)r1+ks−1−kak(s)ds.

Since ∣∣K(r, s)r1+ks−1−k
∣∣ . s−2

for all 1
4
≤ r ≤ s, a Volterra iteration yields ak ∈ L∞(1

4
,∞) and we obtain

|a(k)∞ (r)| = |r−1−kak(r)| ≤ r−1−k‖ak‖L∞( 1
4
,∞) . r−1−k

for all r ≥ 1
4
. Consequently, the stated bounds on the derivatives of a∞ follow inductively.

Finally, for the growing solution ψ∞, we note that there exists an r1 ≥ 1
4
such that

φ∞(r) > 0 for all r ≥ r1 and set

ψ∞(r) := φ∞(r)

∫ r

r1

φ∞(s)−2ds.

Then ψ∞ solves Eq. (B.1) on [r1,∞) and the function b∞, defined by ψ∞ = g∞(1 + b∞), is
given explicitly by

b∞(r) =
f∞(r)[1 + a∞(r)]

g∞(r)

∫ r

r1

f∞(s)−2[1 + a∞(s)]−2ds− 1.

As before,
f∞(r)

g∞(r)

∫ r

r1

f∞(s)−2ds = 1− c1
f∞(r)

g∞(r)
, c1 :=

g∞(r1)

f∞(r1)
,
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and thus,

b∞(r) = a∞(r)− c1
f∞(r)

g∞(r)
[1 + a∞(r)] +

f∞(r)

g∞(r)
[1 + a∞(r)]

∫ r

r1

f∞(s)−2[(1 + a∞(s))−2 − 1]ds.

This yields the bound

|b∞(r)| . r−1 + e−2λr + e−2λr

∫ r

r1

e2λss−1ds . r−1

for all r ≥ 1
4
. The bounds on the derivatives of b∞ follow in a straightforward manner

by differentiating the explicit expression for b∞. By solving an initial value problem, the
solution ψ∞ smoothly extends to all of [1

4
,∞). �

Appendix C. Numerics

C.1. Numerical construction of the soliton profile. We would like to obtain a radial
solution to

∆R2Q−Q+Q3 = 0.

That is to say, we need to solve the radial equation

f ′′(r) +
1

r
f ′(r)− f(r) + f(r)3 = 0 (C.1)

for r ≥ 0. Asymptotically, the nonlinearity is negligible and thus, we expect the behavior
f(r) ≃ 1 as r → 0+ and f(r) ≃ r−

1
2 e−r as r → ∞. We encode the expected asymptotics in

the definition of the new variable g, given by

f(r) =: (1 + r)−
1
2 e−rg

(
r − 1

r + 1

)
.

In terms of g and x := r−1
r+1

, Eq. (C.1) reads

R(g) := g′′(x) +
3x2 − 6x− 5

(1− x)2(1 + x)
g′(x)− 3(3− x)

4(1− x)2(1 + x)
g(x) +

2

(1− x)3
e−2 1+x

1−x g(x)3 = 0

(C.2)
for x ∈ [−1, 1). We compactify the problem (C.2) by allowing x ∈ [−1, 1]. Evidently, the
endpoints x = ±1 are singular and this yields the regularity conditions

4g′(−1)− 3g(−1) = 16g′(1) + 3g(1) = 16g′′(1)− 5g′(1)− 3g(1) = 0. (C.3)

Note that these conditions are determined by the linear part of the equation since the coeffi-
cient of g(x)3 is not singular at x = ±1. We solve Eq. (C.2) by a Chebyshev pseudospectral
method. To this end, we use the basis functions φn : [−1, 1] → R, n ∈ N0,

φn(x) := Tn(x) + a0,n + a1,nx+ a2,nx
2,

where Tn are the standard Chebyshev polynomials and aj,n are chosen in such a way that each
φn satisfies the regularity conditions Eq. (C.3). Note that this leads to φ0 = φ1 = φ2 = 0.
Then we numerically solve the root finding problem

R
(

25∑

n=3

βnφn

)
(xk) = 0
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for k = 0, 1, 2, . . . , 22, and xk ∈ [−1, 1] some collocation points. The expansion coefficients
(βn)

25
n=3 are given in Table C.1.

Table C.1. Expansion coefficients for the approximate soliton profile

n 3 4 5 6 7 8
βn − 2542

141001
8061
72860

23
25643

− 17127
731900

− 113
61446

407
88530

n 9 10 11 12 13 14
βn

80
79969

− 195
296276

− 167
607101

3
91531

3
109289

1
42237921

n 15 16 17 18 19 20
βn

1
163112

1
171418

1
1839428

− 1
412985

− 1
693490

− 1
3459389

n 21 22 23 24 25
βn

1
5641102

1
2626342

1
45286837

1
10226264

− 1
9836273

C.2. Numerical construction of Q̂1. The goal is to numerically construct the unique

(radial) solution Q̂1 to the equation

L+Q̂1 = −2QR2 − r2Q3
R2 .

Recall that S0(x) = xj∂jQR2(x) + QR2(x) satisfies L+S0 = −2QR2 . Consequently, it suffices

to solve L+S1 = −r2Q3
R2 because then, Q̂1 = S0 + S1. In other words, we need to solve the

radial equation

f ′′(r) +
1

r
f ′(r)− f(r) + 3f0(r)

2f(r) = r2f0(r)
3, (C.4)

where f0(r) = QR2(re1). Again, we introduce the auxiliary variable g, defined by

f(r) = (1 + r)−
1
2 e−rg

(
r − 1

r + 1

)
,

which transforms Eq. (C.4) into

g′′(x) +
3x2 − 6x− 5

(1− x)2(1 + x)
g′(x)− 3(3− x)

4(1− x)2(1 + x)
g(x) +

6

(1− x)3
e−2 1+x

1−x g0(x)
2g(x)

= 2
(1 + x)2

(1− x)5
e−2 1+x

1−x g0(x)
3,

(C.5)

where x = r−1
r+1

and g0 is given by

f0(r) = (1 + r)−
1
2 e−rg0

(
r − 1

r + 1

)
.

We replace g0 by the approximation obtained in Section C.1 and solve Eq. (C.5) by a Cheby-
shev pseudospectral method with the basis functions φn from above. This yields an approx-
imate solution of the form

∑40
n=3 γnφn with the coefficients (γn)

40
n=3 given in Table C.2.

With the numerical approximations to the functions QR2 and Q̂1 at hand, it is straight-
forward to compute (an approximation to) the constant b1 from Section 6.2. By numerical
integration we find b1

2π
≈ 7.39.
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Table C.2. Expansion coefficients for approximation to S1

n 3 4 5 6 7 8 9 10
γn

54973
96387

− 3088
102021

−11563
65730

− 622
123831

935
19694

715
80273

− 972
107461

− 245
66869

n 11 12 13 14 15 16 17 18
γn

43
75440

6
13097

7
79466

23
138473

10
87071

− 1
41044

− 7
100544

− 3
79736

n 19 20 21 22 23 24 25 26
γn − 1

247350
1

98688
1

104302
1

181864
1

1748151
− 1

795239
− 1

519650
− 1

1141942

n 27 28 29 30 31 32 33 34
γn − 1

2632970
1

3481458
1

4334802
1

3856839
1

14342913
− 1

142634956
− 1

42463795
− 1

12658667

n 35 36 37 38 39 40
γn

1
45132528

− 1
14926347

1
15529718

− 1
15419336

1
13135736

− 1
36714512
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