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Abstract

Interactions between neighboring cells are essential for generating or refining patterns in a
number of biological systems. We propose a discrete filtering approach to predict how networks
of cells modulate spatially varying input signals to produce more complicated or precise output
signals. The interconnections between cells determine the set of spatial modes that are amplified
or suppressed based on the coupling and internal dynamics of each cell, analogously to the
way a traditional digital filter modifies the frequency components of a discrete signal. We
apply the framework to two systems in developmental biology: the Notch-Delta interaction that
shapes Drosophila wing veins and the Sox9/Bmp/Wnt network responsible for digit formation
in vertebrate limbs. The latter case study demonstrates that Turing-like patterns may occur
even in the absence of instabilities. Results also indicate that developmental biological systems
may be inherently robust to both correlated and uncorrelated noise sources. Our work shows
that a spatial frequency-based interpretation simplifies the process of predicting patterning in
living organisms when both environmental influences and intercellular interactions are present.

1 INTRODUCTION

Biological organisms rely on spatial variation in cell activity to coordinate diverse phenomena
including contrast enhancement in the visual system [2] and body planning in developing em-
bryos [3]. Interactions between neighboring cells play a crucial role in generating spatial patterns
spontaneously from stochastic initial conditions or by refining simple inputs, such as chemical
concentration gradients, into complex outputs, such as stripes in gene expression [4], [5]. Mathe-
matical theory in developmental biology has emphasized spontaneous pattern formation through
the reaction-diffusion (Turing) mechanism [6] as well as contact- or diffusion-mediated lateral inhi-
bition [7], [3], [8]. In practice, however, the conditions necessary for spontaneous pattern formation
may be prohibitively difficult to satisfy.

Prepattern processing—also known as Wolpert’s theory of positional information [9]—is an at-
tractive and flexible alternative to spontaneous patterning, but mathematical analysis of prepattern
processing has been largely limited to numerical simulations (e.g, [8]). Prepatterns may arise di-
rectly from environmental influences that differ by cell or from consistent, preinduced parameter
variation across space.

We propose a discrete filtering approach to analyze how networks of interacting cells respond
to prepatterns. The framework elucidates which components of spatial structure are amplified and
which ones attenuated by the system to produce an output from any given input. The insights
gained from this perspective challenge the conventional notion that instability is necessary for
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Figure 1: Interacting cells filter input to readout by changing the relative weights of spatial
modes. A network of interacting cells responds to a spatially varying input, or prepattern (gray), which
can be represented as a weighted sum of spatial modes. Each cell produces a readout (blue) in response to
the input it receives at a particular point in space as well as to the outputs from other cells (gold dots) with
which it is “interconnected” (e.g., by diffusible molecules). The readout across all cells forms a spatially
varying pattern that can be approximated as a sum of the same spatial modes as the input but with different
weights. Specifically, the weight of a given component in the readout is the product of the weight of that
component in the input with a “filter coefficient” determined by both the internal dynamics of, and the
interactions between, the individual cells. These filter coefficients are unique to each patterning component
independent of its weight in the input. The process of modifying weights from input to readout in the
manner described above is referred to as “filtering” (gold arrows). In this example, both the input and the
signals from neighboring cells promote gene expression such that spatial modes with small wavelengths are
attenuated relative to components with large wavelengths.
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complex patterning; for example, our approach reveals that Turing-like stripes can emerge from
a stable system lacking diffusion-driven instability, and furthermore that external noise reinforces
rather than combats this behavior (Section 4).

In Section 2 we present the setup for the framework. We combine the internal dynamics of
cell behavior with interaction between cells by modeling each cell as an input-output module cou-
pled to other modules. We examine the steady-state gains for constant-in-time, spatially varying
inputs (prepatterns) and show that the system behaves as a discrete spatial filter, where the in-
terconnectivity between cells determines the spatial modes, while the coupling and input-output
dynamics dictate how each mode is scaled to generate a readout pattern. We also examine the
system response to temporal and spatially varying noise inputs, measured with the H2 norm, to
determine which spatial modes are sensitive to stochastic influence. Lastly, we show how to apply
the approach by considering a simple model of gene expression that exemplifies two of the most
common classes of filter behaviors—highpass or lowpass—depending on the choice of parameters.

In the remaining three sections we demonstrate the utility of the filtering perspective by exam-
ining two biological case studies: the Notch-Delta system in developing fruit fly wings (Section 3)
and the Sox9/Wnt/Bmp network in vertebrate digit formation (Sections 4 and 5). We conclude
with a brief summary and areas for future research.

2 THE SPATIAL FILTERING APPROACH

The main contribution of this paper is a filtering perspective for analyzing prepattern processing in
developmental biological systems. A central component of our approach is spatial mode decompo-
sition, a common tool in distributed systems analysis (e.g., [10]) that has previously been applied
to detect instabilities in cellular networks lacking external inputs [11]. In this section we introduce
generalized notation followed by a derivation of the filter coefficients and the noise amplification
factors that we will use throughout the remainder of the paper.

2.1 Notational Conventions

We use the following notational conventions (see also Supplementary Figure 14):

• Cells are indexed by i in vector form and spatial modes are indexed by k in vector form or
(m,n) in an array, unless noted otherwise.

• Inputs except white noise in the context of the H2 norm are assumed constant in time.

• Vectors containing strictly constant-in-space entries are designated with an underline. The
entries corresponding to any fixed point in space are additionally labeled with an overbar,
e.g., u = ū1N where ū ∈ R and 1N is the length N vector of all ones.

• Steady-state values for time-dependent variables are designated with superscript asterisks.
Constant-in-space steady-state (i.e., homogeneous) solutions to nonlinear systems are desig-
nated with both an asterisk and an underline, e.g., y∗ = ȳ∗1N .

• “Actual” values in the standard basis are unadorned. Perturbations from constant-in-space
values are designated with a tilde; time-dependent perturbations are understood to be linear
approximations of “actual” nonlinear solutions, e.g., x̃i(t) ≈ xi(t) − x̄∗. Perturbed variables
in the basis T are designated with a hat, e.g., x̂∗ = T−1x̃∗.
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Figure 2: Weights of spatial modes in a prepattern are multiplied by filter coefficients, de-
termined by the internal dynamics and interconnectivity among cells, to produce patterns.
Each cell acts as an input/output module. The collective activity of cells produces the filtering behavior.
Here, a single line of cells with periodic boundary conditions communicates through contact-based lateral
inhibition, resulting in a highpass filter (see Section 3; note that wavenumber increases toward the center of
the axis). The spatial modes differ from the standard Fourier basis (Supplementary Observation 1), hence
the asymmetry in the spatial mode representation of the input and readout (Supplementary Figure 14).

4



2.2 System Dynamics and Filter Coefficients

We consider a generalized system of N identical cells with the state variables of the ith cell at time
t given by xi(t) ∈ Rn, readout yi(t) ∈ R, and constant-in-time input ui ∈ R, which may represent
an environmental stimulus or intrinsic parameter variation. Coupling occurs via vi(t) ∈ Rq and
output wi(t) ∈ Rq where q ≤ n. Let the vectors for the full system be the vertical concatenation
x(t)T := [x0(t)Tx1(t)T ...xN−1(t)T ] and similarly for u, y(t), w(t), and v(t). The dynamics of the
ith cell and the full linear coupling between the N cells are given by

ẋi(t) = f(xi(t), vi(t), ui)

wi(t) = g(xi(t))

yi(t) = h(xi(t))

v(t) = (M ⊗ Iq)w(t)

(1)

where ⊗ is the Kronecker product, Iq is the q × q identity matrix, and M ∈ RN×N .
The system (1) accommodates a wide range of specific deterministic models. Intercellular

processes such as gene expression and protein decay are encapsulated by appropriate definition
of the evolution function f for chemical concentrations xi, including the effect of environmental
stimuli or parameter values ui as well as signals from neighbors vi. The output wi is the subset of
elements in xi that transmit signals to neighbors, with the method of transmission (e.g., diffusion,
cell-to-cell contact) and the neighboring cells specified by the interconnection matrix M . The
readout yi isolates a quantity of interest to the user, which may be experimentally measurable
(e.g., fluorescence) or simply relevant to a particular model (see examples in Sections 3, 4, and 5).

The vectors indexed by i describe patterns by the concentration of chemicals within individual
cells at individual points in space. A full pattern is reconstructed from N elements, each of which
represents the concentration of a chemical in a single cell. However, patterns can also be thought
of as combinations of spatially varying components that span multiple cells, e.g., stripes of varying
thickness (frequency). When weighted and summed, these spatial modes can represent arbitrary
patterns of interest. We use the term “filtering” to refer to the process by which a network of
interacting cells alters the weighting of the spatial modes of the input, thereby producing a readout
that is built from the same components as, but differs in appearance from, the input. A key
approximation to facilitate the analysis is that coupling between spatial modes is negligible, such
that the readout can be expressed as a linear sum of the same set of spatial modes used to represent
the input. In analogy to traditional signal processing, the network of cells plays the role of a linear
time-invariant system (filter) that modifies the frequency components of a (spatially) varying signal.
The following proposition formalizes this concept mathematically.

Proposition 1. If the system described by (1) satisfies

1. M1N = µ1N and M is diagonalized by T (M = TΛT−1),

2. given ū ∈ R, ∃ x̄∗ ∈ Rn such that f (x̄∗, µg (x̄∗) , ū) = 0 and x∗ := 1N ⊗ x̄∗, u := ū1N ,

3. the homogeneous steady state (x∗, u) is stable,

then the system may be linearized about (x∗, u) with linearization matrices

A :=
∂f

∂xi

∣∣∣∣
(x̄∗,v̄∗,ū)

, Bv :=
∂f

∂vi

∣∣∣∣
(x̄∗,v̄∗,ū)

, Bu :=
∂f

∂ui

∣∣∣∣
(x̄∗,v̄∗,ū)

, C :=
dh

dyi

∣∣∣∣
x̄∗
, G :=

dg

dxi

∣∣∣∣
x̄∗
.
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A constant-in-time, varying-in-space input u to (1) equates to a perturbing input

û = T−1(u− u)

to the linearized system in the coordinate system T . Then the steady-state perturbed readout ỹ∗ in
the basis T is ŷ∗ := T−1ỹ∗ = Sû where S is a diagonal matrix and

[S]kk = −C(A+ λk(M)BvG)−1Bu

is the steady-state gain of the kth eigenvector of T .

The conditions (1) through (3) ensure that the network, when given a constant-in-space input,
will admit a stable, homogeneous steady-state solution, and that the expression pattern across cells
can be represented in a complete orthonormal basis other than the standard; this basis T comprises
the modes. The [S]kk collectively form the “filter coefficients”, which dictate how the corresponding
N spatial modes are multiplicatively scaled by the system when the input is no longer constant
in space (Figure 2). In other words, the matrix S “filters” the perturbed input into a perturbed
readout with respect to the eigenvectors, or spatial modes, of M as contained in T . In contrast
to the conditions for spontaneous pattern formation, our approach does not require the perturbed
system to be unstable; large amplification of spatial modes is possible even when the system is
stable. Figure 3 shows eight examples of prototypical filter behaviors that vary with interaction
type and cellular interconnectivity.

Many continuous pattern-forming and distributed dynamical systems exhibit spatial invariance
of the dynamics with respect to linear transformations such as reflections, rotations, or translations
[12], [10]. The discrete-space cellular network has a direct analog: If M is invariant under a
linear transformation, then S is also invariant under the same transformation, since the system
dynamics are identical within each cell and therefore the only spatial information contained within
the system is contained in M . Formally, if we let Π ∈ RN×N be a linear transformation and M
and Π commute, then Π and the filter coefficient matrix S also commute (i.e., the map from input
to output is equivariant). Thus, M ’s permutation MΠ := ΠMΠ−1 shares the same eigenvectors T
and corresponding eigenvalues Λ as M , which implies that the filter coefficients for a system with
interconnection matrix M are the same as for that system with interconnection matrix MΠ.

2.3 Stochastic Influence on Patterning

The role of stochastic influences in biological patterning is a subject of ongoing theoretical and
experimental interest (e.g., [13], [14]). Here, we concern ourselves with the response of spatial
modes to time-varying white noise inputs, for which the H2 norm of the system quantifies the
expected power of the perturbed readout. The H2 norm has previously been used to analyze
energy amplification in channel flows [15], networks of cells [16], and reaction-diffusion systems
[17], among others.

To begin our analysis we rewrite the linearized ordinary differential equations in the form of a
nonlinear Langevin equation (Itô interpretation). Since the N modes are decoupled we can write
the equation for the perturbed states in the kth mode as

dx̂k(t) = [(A⊗ IN ) + (BvG)⊗ Λ] x̂k(t)dt+ (Bu ⊗ IN ) dûk(t). (2)

Here û(t) is an nu-dimensional independent standard Wiener process, also known as the standard
Brownian motion process. Implicitly we assume that concentrations of reactants are high enough
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to permit us to neglect molecular-level fluctuations, which cannot accurately be described by the
Langevin approach [18].

With slight abuse of notation, dûk(t) is stationary, therefore the variance of the readout y(t) =
Cx(t) in mode k does not change in time. The variance is given by

E
[
|ŷk|2

]
= E

[
Tr
(
ŷkŷ

T
k

)]
= Tr

(
CE

[
x̂kx̂

T
k

]
CT
)

= Tr
(
CQkC

T
)
,

where Qk := E
[
x̂kx̂

T
k

]
is the covariance of the reactants in the kth mode.

Let Gk(t) be the impulse response of (2) for readout y(t). We could equivalently write

E
[
Tr
(
ŷkŷ

T
k

)]
=

∫ ∞
0

E
[
Tr
(
Gk(t)dûkdû

T
kGk(t)

T
)]
dt

=

∫ ∞
0

Tr
(
Gk(t)E

[
dûkdû

T
k

]
Gk(t)

T
)
dt =

∫ ∞
0

Tr
(
Gk(t)Gk(t)

T
)
dt

=: ||Gk(t)||2H2
,

from which we deduce that the H2 norm is equivalent to the variance of ŷk and can be calculated
as Tr

(
CQkC

T
)

where Qk is the positive semi-definite solution to the Lyapunov equation

(A+ λkBvG)Qk +Qk (A+ λkBvG)T +BuB
T
u = 0.

The unit variance of dûk(t) allows us to interpret ||Gk(t)||2H2
as the ratio of the variance of the

readout to the variance of the input in mode k. Moreover, since dûk(t) is zero mean, the squared
H2 norm is also equivalent to the time integral of the expected power spectral density, or the factor
by which the system amplifies the average power of the readout within mode k. Those modes with
the highest H2 norms are most strongly amplified by the external noise source.

2.4 Constructing the Interconnection Matrix

In the remainder of this paper we construct the interconnection matrix M for a particular signal
as follows:

1. The length N vector of all ones 1N is an eigenvector of M , which implies that a homogeneous
steady-state solution exists.

2. The ith, jth entry [M ]ij for i 6= j is 0 if cell i is not connected to cell j. Otherwise 0 < [M ]ij ,
where the magnitude [M ]ij captures the “strength” of the connection.

3. The diagonal entries [M ]ii encapsulate the “signaling cost” associated with interaction. Neg-
ative values imply the cell loses signal to transmit to its neighbors, e.g., diffusion.

In many biological systems, cells can be approximated to have the same distance between them
and the same communication strength with each of their neighbors. In such systems, the corre-
sponding spatial modes are sinusoidal, giving rise to stripes or spots. Lower-frequency modes cor-
respond to longer-wavelength spatial modes, while higher-frequency modes correspond to shorter-
wavelength spatial modes. The relationship between patterning wavelength and spatial mode fre-
quency enables these systems to be interpreted from the standpoint of how the weights of the
frequency components in an input are scaled to produce the readout, analogous to filtering as it is
understood in discrete signal processing. In this paper we will consider basis vectors arising from
a line or sheet of regularly spaced cells with periodic or no-flux boundary conditions. The modes
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then pertain to two common signal processing transforms: the discrete Fourier transform (DFT)
for periodic boundaries or the second discrete cosine transform (DCT-2) for no-flux boundaries.
The eigenvectors and eigenvalues for these transforms are well known (e.g., [19]); a review is offered
in Supplementary Section 8. We will assume modes are indexed in order of increasing frequency
with increasing k toward N

2 for the DFT and N for the DCT-2.

2.5 Minimal Model: Gene Expression with Autoregulation

The following example is a simple model that is easy to solve analytically for the filter coefficients.
We begin with a brief description of gene expression for readers who may not be familiar with
the biology, including terminology that will be used in later sections. We then apply the filtering
approach to the example, including an expansion of the matrix notation to emphasize the role
of the filter coefficients as “weights” for the spatial modes. As this model focuses on biological
and filtering concepts, intercellular interaction is described only in the most general terms, leaving
exploration of the underlying mechanisms to later examples.

The case studies in this paper deal with gene expression, or the process by which a gene coded
in DNA is transcribed into mRNA molecules that are then translated into protein molecules (Sup-
plementary Figure 13). The production and degradation rates for mRNA and protein may be
modulated by physical or chemical factors; for example, a protein may locally interact with DNA
so as to increase (promote) or decrease (inhibit or repress) the production rate for mRNA corre-
sponding to a particular gene. In this case, the DNA-interacting protein is called a transcription
factor because it directly influences whether mRNA is transcribed. The genes expressed by cells
during embryonic development will determine the ultimate “identity” of the cell (e.g., a nerve or
skin cell) in the adult organism.

Here, we consider a simple model of an autoregulatory process in which each cell transcribes
mRNA m that is translated into protein p that in turn modifies the production rate of m. The
signaling molecule v, generated in exact proportion to p, also regulates p production in the self and
neighbors by modulating the production rate of m. The system dynamics are

ṁi = −γmm+ αmf(vi, ui, pi)

ṗi = −γpp+ αpm

y = p

v = Mp

(3)

where γm, γp are the degradation (decay) rates of mRNA and protein respectively, and αm, αp
are the corresponding transcription or translation rates. The function f(vi, ui, pi) captures the
influence of the coupling, input, and protein on the production rate of the mRNA and therefore of
the protein.

When linearized at steady state, the system becomes
˙̃mi = −γmm̃i + αm (Fvṽi + Fuũi + Fpp̃i)

˙̃pi = −γpp̃i + αpm̃i

ỹ = p̃

ṽ = Mp̃

where Fv := ∂f
∂vi

∣∣
(m̄∗,p̄∗,v̄∗,ū∗)

, Fu := ∂f
∂ui

∣∣
(m̄∗,p̄∗,v̄∗,ū∗)

, and Fp := ∂f
∂pi

∣∣
(m̄∗,p̄∗,v̄∗,ū∗)

.

Define α := αmαp and γ := γmγp. Note that the steady-state protein concentration is a linear
multiple of the steady-state mRNA concentration, such that mathematically a molecule produced
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at rate αf(vi, ui, pi) and decayed at rate γ would have the same steady-state concentration as the
protein in (3). Indeed, it is not uncommon for the dynamics of transcription and translation to be
lumped together (usually by neglecting mRNA dynamics) in mathematical models such as those
presented later in this paper.

The steady-state solution to the perturbed system yields filter coefficients

[S]kk =

α
γFu

1− α
γ (Fp + Fvλk (M))

for k = 0, 1, ..., N−1. For the homogeneous steady state to be stable—and therefore for the filtering
approach to be applicable—we require

α

γ
(Fvλk (M) + Fp) < 1.

We henceforth assume this condition is satisfied.
Recall that the spatial modes are given by tk, the columns of the matrix T that diagonalizes

M . The perturbing input can be written as

ũ = (u− u) = T û =

N−1∑
k=0

ûktk.

The coefficients ûk (the entries of û) are the weights assigned to each of the spatial modes tk. The
steady-state perturbed readout is given by

ỹ∗ =
N−1∑
k=0

[S]kk ûktk, (4)

such that the readout in the ith cell is given by ȳ + ỹ∗i .

TheH2 norm for the kth spatial mode is analytically calculated to be Fu
2α [S]kk. This relationship

indicates that the modes in the system respond identically to within a scaling factor to both
persistent spatial disturbances and temporally varying white noise inputs.

Figure 3 exemplifies how the choice of interaction type and interconnectivity affects the filtering
behavior of the system with no autoregulation. In particular, activation of neighbors tends to cause
the system to amplify low spatial frequencies, while inhibition of neighbors introduces amplification
at high spatial frequencies.

To investigate the effect of autoregulation, suppose we fix all parameters except Fp. As Fp →
−∞ all filter coefficients approach 0. This attenuating behavior occurs because allowing a protein
to effectively shut down its own production prevents the system from responding to signal.

For Fp > 0 (autoactivation), increasing Fp disproportionately increases the coefficients at spatial
modes with low eigenvalues. For T corresponding to the DFT or DCT-2, the lower eigenvalues are
associated with higher-frequency spatial modes. In the case of lateral inhibition (Fv < 0), the filter
coefficients already amplify high-frequency spatial modes relative to intermediate ones (Figure 3),
such that adding autoactivation enhances the filter’s intrinsic highpass characteristics. Indeed,
mechanisms involving lateral inhibition and autoactivation have been conjectured to increase the
sharpness of boundary formation in systems of patterned cells responding to exponential input
[3][8].
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Figure 3: A minimal model of gene expression demonstrates that the same input prepattern
produces different readouts depending on the interconnectivity and interaction type among
cells. The ith cell has dynamics given by (3) for α = γ = 1 with no autoregulation, i.e., Fp = 0. Fv < 0
corresponds to inhibition of neighbors while Fv > 0 implies activation of neighbors. The filter coefficients
are thus [S]kk = (1− Fvλk(M))

−1
. Pictured is the readout ỹ∗ given the same perturbing input ũ to

N = 62, 500 cells arranged in a 250× 250 rectangular array, with one image pixel corresponding to each cell
and the intensity of the pixel corresponding to the protein concentration. Interconnectivities vary by column;
boundary conditions in all cases are periodic. Connection strengths are identical and assumed to incur no
cost to the interacting cells (i.e., [M ]ii = 0). To best exemplify the effect of the interconnections, Fv was
modified for each of the filtered images to give the highest magnitude of eigenvalues without destabilizing
the underlying dynamical system. The readout in each cell is calculated according to (4). If cells activate
their neighbors then the filter acts as a lowpass (attenuates short wavelengths) that blurs the underlying
spatial input along the same dimension as the interconnections. Inhibition sharpens lines orthogonal to
the interconnections by enhancing contrast parallel to the interconnections. The images are individually
normalized.
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3 1D APPLICATION: NOTCH-DELTA

The Notch-Delta patterning mechanism is a lateral inhibition system that is responsible for di-
verse developmental phenomena including neural and epidermal fate determination in the fruit fly
Drosophila melanogaster. Cells produce both Notch and Delta, which are proteins found in the
cell membrane. Delta on the surface of one cell binds Notch on the surface of neighboring cells
to inhibit those neighbors’ Delta production, thereby relieving inhibition on the cell’s own Delta
production by decreasing the potential for the neighbors to bind its Notch. With the appropriate
interaction strengths, such mutual inhibition between neighbors will ultimately generate a checker-
board pattern in which cells expressing high Delta are adjacent to cells expressing low Delta. This
has significant consequences for organismal development: Notch that is bound by Delta on an
adjacent cell will cleave in two—preventing it from further signaling—and the portion left inside
the cell will signal the cell to express target genes that influence the choice of cell identity. A cell
whose neighbors express more Delta is more likely to have bound Notch and therefore more likely
to adopt a particular fate [20], [21].

Patterning in a Notch-Delta system may arise spontaneously [22], [7] or through modification
of a prepattern. In the case of Drosophila wing development, the gene veinless is expressed in an
exponential gradient decreasing in either direction from what will become the center of a vein. The
level of veinless expression in a cell determines the Delta production rate at that cell. Notch activity
occurs in two peaks, one on either side of the center, where further vein development is restricted to
occur. One model of the Notch-Delta mechanism suggests that so-called mutual inactivation, when
Notch and Delta on the same cell inhibit each other’s activity, enables sharper and more robust
patterning than is achieved with lateral inhibition alone [8], [23].

The authors of [8] considered a line of cells with periodic boundary conditions, corresponding
to the interconnection matrix

M =
1

2


0 1 0 . . . 0 1
1 0 1 . . . 0 0
...

...
...

. . .
...

...
1 0 0 . . . 1 0

 .
The diagonal entries are zero to reflect the fact that Notch (N) and Delta (D) interact via contact
with neighbors rather than diffusion, while the factor of 1

2 ensures that vN is the average Notch
from neighbors and vD is the average Delta from neighbors. Because M is circulant, the spatial
modes correspond to the eigenvectors of the DFT matrix.

We discretize the input gradient of Delta production rate βD(·) into βDi , i = 0, 1, ..., N − 1
and let β̄

D
be the mean of the βDi . We then define ui := βDi − β̄

D
, xTi := [Ni, Di, Ri], and

vi := [vNi , vDi ] where readout R is a reporter for Notch activity (i.e., is expressed from a target
gene for Notch activity).

The authors of [23] propose four models of the Notch-Delta patterning mechanism that involve
mutual inactivation, lateral inhibition, or both. As an example we present the linearization for the
mutual inactivation (MI) model; equations and linearizations for the lateral inhibition with mutual
inactivation (LIMI) and simplest lateral inhibition by mutual inactivation (SLIMI) models may be
found in Supplementary Section 9.
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The system equations for the MI model are

Ṅi(t) = βN − γNi(t)−
Ni(t)vDi (t)

kt
− Ni(t)Di(t)

kc

Ḋi(t) = β̄
D

+ ui − γDi(t)−
Di(t)vNi (t)

kt
− Ni(t)Di(t)

kc

Ṙi(t) = βR
(Ni(t)vDi (t))

n

kRS+(Ni(t)vDi (t))
n − γRRi(t)

yi(t) = Cxi(t)

wi(t) =

[
Ni(t)

Di(t)

]
v(t) = (M ⊗ I2)w(t)

(5)

where γ, γR are decay rates, k−1
t is the rate at which Delta and Notch bind each other on neighboring

cells, k−1
c is the strength of mutual inactivation, and kRS , n are parameters determining how

strongly bound Notch promotes reporter expression. Note that mRNA is not explicitly incorporated
into the model, such that the dynamics are effectively lumped into the production and degradation
terms for the proteins.

Linearization about the steady state with all ui = 0 yields

A =

−γ −
v̄∗D
kt
− D̄

∗

kc
− N̄

∗

kc
0

− D̄
∗

kc
−γ − v̄∗N

kt
− N̄

∗

kc
0

b1 0 −γR

 ,

Bv =

 0 − N̄
∗

kt

− D̄
∗

kt
0

0 b2

 , Bu =

0
1
0

 , G =

[
1 0 0
0 1 0

]
,

where we have defined

b1 := βRnkRS
v̄∗nD N

∗n−1(
kRS +

(
N̄
∗
v̄∗D
)n)2 , b2 :=

N̄
∗

v̄∗D
b1

and C is chosen depending on the readout. It can be shown that the linearized dynamical system is
stable for all nonnegative and thus biologically attainable parameter values (Supplementary Section
9.1), strengthening the argument that patterning may not require instability.

To examine the effects of identical (correlated) vs. separate (uncorrelated) white noise inputs
to both Delta and Notch, we first modify 5 so that a single input appears in the equations for both
Ṅi and Ḋi in the correlated case and two independent inputs appear in each of these equations for
the uncorrelated case. Accordingly, we then calculate the H2 norm for

Bcorr
u =

1
1
0

 , Buncorr
u =

1 0
0 1
0 0

 .

3.1 Comparison of Models

The MI, LIMI, and SLIMI models from reference [23] produce substantially similar readouts (Fig-
ure 6), filter characteristics, and H2 norms (Figures 19 and 20). Mutual inactivation (lower kc)
decreases the magnitude of the coefficients and therefore the final Notch and Delta concentrations,
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Figure 4: The filter coefficients and H2 norm for the MI model of Notch-Delta interaction
reveal how changes to parameter values enhance high frequencies from an input gradient of
Delta production to readout Notch activity. The magnitude of the coefficients decreases with greater
mutual inactivation strength (lower kc), indicating that greater inhibition reduces overall activity. The
spatial modes correspond to the DFT basis and are indexed by k such that the kth mode has frequency
2πk
N . The coefficients exhibit mirror-image symmetry about k = N

2 ; we plot only the first half of the
coefficients to better visualize the filter’s characteristic highpass shape. The greater the mutual inactivation,
the greater the amplification of high frequencies relative to lower ones, as revealed by a plot of the coefficients
individually normalized to the maximum in each set. The H2 norm is qualitatively similar to the highpass
filter characteristic though smaller in magnitude, with more dramatic relative differences between values of
kc. Parameters are given in Supplementary Table 1.

Figure 5: Filter behavior is robust with respect to noisy inputs to Notch or Delta. Noise that
is completely correlated between Notch and Delta is more strongly and uniformly rejected than completely
uncorrelated noise. However, uncorrelated noisy inputs tend to emphasize the inherent highpass characteris-
tics with respect to output Notch activity, suggesting that moderate levels of white noise do not compromise
filter behavior. Pictured here are the norms for the MI model; the other models exhibit similar behavior
(Figure 20). Parameters are given in Supplementary Table 1.
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Figure 6: A linearized system qualitatively reproduces the double peaks in Notch activity
predicted from full nonilnear simulations. A two-sided exponential input gradient of Delta production
rate (solid light gray) results in two sharp bands of Notch activity (dotted yellow) that spatially segregates
steady-state levels of Notch (solid blue) and Delta (dashed orange). Curves are normalized to their respective
maxima. Note that the SLIMI model lacks a reporter protein and so does not have an output measure for
Notch activity. These plots correspond to Figure 4C in [8]. See also Figure 19.

but exaggerates the intrinsic highpass characteristics of the filter, producing the sharper peaks in
Notch activity predicted by [8]. Analysis of the H2 norm reveals that regardless of readout, noise
that is completely uncorrelated between Delta and Notch production rates is favored by the same
frequencies as the system filter, while noise that is completely correlated between the production
rates is almost uniformly rejected relative to uncorrelated noise (Figures 4 and 5). Together, these
observations suggest that time-varying stochastic inputs—unless they are of exceptionally large
magnitude—do little to combat the intrinsic behavior of the filter, contributing to the robustness
of the developmental program.

4 APPLICATION: DIGIT FORMATION

Digits in developing vertebrate embryos originate from a flat paddle-shaped layer of cells that form
the limb bud. A crucial step in digit patterning involves specifying which cells in the paddle will
become digits and which will die to create the space between digits [24], [25]. This periodic pattern
of digit with interdigit has been proposed to originate with spatially periodic expression of the gene
sox9, which produces a protein that regulates transcription of the genes wnt and bmp. In turn,
these genes code transcription factors Wnt and Bmp that regulate Sox9 production [26].

Cell cultures from developing embryos grown on plates show Turing-like patterns where Sox9
is out of phase with Wnt and Bmp. Turing patterns typically arise in chemical reaction systems
with at least two types of diffusible molecules produced at every point in space, where the activa-
tion/inhibition relationship between the types is such that the homogeneous solution to the resulting
dynamical system is unstable owing to the difference in diffusion rates between the two molecules.
Such a reaction-diffusion model has been proposed to generate the observed Sox9/Wnt/Bmp pat-
tern from stochastic initial conditions within a particular parameter range [26]. Our discretization
of the model suggests that such a pattern might be observed even if the parameters do not satisfy
the conditions for diffusion-driven instability.

Consider the Sox9/Bmp/Wnt network with diffusion distance l between cells. Let s, b, and
z represent the concentrations of Sox9, Bmp, and Wnt respectively, such that xi = [si, bi, zi]
and v = [vb, vz]. Let the input be random cell-to-cell variation in background protein production
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rate, i.e., the production rate of protein in the absence of promotion or inhibition, as from cell-to-
cell variability in transcription or translation rates (see Supplementary Figure 13). The dynamics
within cell i and the coupling are given by

ṡi(t) = αs + ui + k2bi(t)− k3zi(t)− (si(t)− s0)3

ḃ(t) = αbmp + ui − k4si(t)− k5bi(t) + db
l2
vbi(t)

żi(t) = αwnt + ui − k7si(t)− k9zi(t) + dz
l2
vzi(t)

wi(t) =

[
bi(t)

zi(t)

]
v(t) = (M ⊗ I2)w(t)

(6)

where α are background production rates, k are interaction rates, and d are diffusivities.
Linearization about the homogeneous steady state yields

A =

−3(s∗ − s0)2 k2 −k3

−k4 −k5 0
−k7 0 −k9

 ,
Bv =

 0 0
db
l2

0

0 dz
l2

 , Bu =

1
1
1

 , G =

[
0 1 0
0 0 1

]
.

4.1 Spatial Modes in 2D

For this example we will consider a two-dimensional, rectangular NR × NC array of N := NCNR

cells indexed from 0 to NCNR − 1 starting in the upper lefthand corner from top to bottom and
then left to right, i.e.,

0 NR 2NR . . . (NC − 1)NR

1 NR + 1 2NR + 1 . . . (NC − 1)NR + 1
...

...
...

. . .
...

NR − 2 2NR − 2 3R− 2 . . . NCNR − 2

NR − 1 2NR − 1 3NR − 1 . . . NCNR − 1

. (7)

It is known (e.g., [11]) that if any isolated row has interconnection matrix MR ∈ RNC×NC and
any isolated column has interconnection matrix MC ∈ RNR×NR , then the full matrix M for the
interconnectivity of the entire array is

M := (MR ⊗ INR) + (INC ⊗MC) .

If TR and TC diagonalize MR and MC respectively then M is diagonalized by

T := (TR ⊗ INR) (INC ⊗ TC) = TR ⊗ TC ,

giving NCNR eigenvalues
λm+nNR (M) = λm (MC) + λn (MR)

where m = 0, 1, ...NR − 1, n = 0, 1, ..., NC − 1. The (m,n)th spatial mode is given by TmC T
nT
R .

We can explicitly relate the spatial modes for a 2D array of cells to constituent modes in
the horizontal and vertical directions by recasting the vector ŷ in matrix form. Let U and Y be
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matrices arranged as in (7) where ui is the input to compartment i. Vector form is recovered
through the vectorization operation vec(U) = u. The readout matrix Y is defined similarly. If
the matrices Ũ and Ỹ designate perturbations from steady state in the original basis and Ŷ , Û
designate perturbations in the basis for the spatial modes, then

Ỹ = TC Ŷ T
T
R = TC

(
ΛS � Û

)
T TR

where � is the Hadamard product (element-by-element multiplication) and ΛS has mth, nth entry

[ΛS ]mn = −C [A+ (λm(MC) + λn(MR))BvG]−1Bu.

From this it can be seen that the full system alters the input along the ith vertical spatial mode
and the jth horizontal spatial mode defined by the vertical and horizontal connectivities. For the
remainder of this example, we will assume Neumann boundary conditions such that the spatial
modes for the rows and columns of M correspond to the DCT-2 (Figure 7).

4.2 Analysis

We pick C to monitor Sox9, Bmp, or Wnt concentration and choose s0 such that the Turing
instability conditions are not satisfied, i.e., the eigenvalues of (IN ⊗A)+M⊗(BvG) are all negative.
Nevertheless, the readout still replicates the spatially periodic patterns predicted by [26] for a range
of intercellular distances (Figure 10) owing to the bandpass behavior of the filter (Figure 8). [Sox9]
is out of phase with both [Bmp] and [Wnt], as indicated by the opposing signs of the coefficients
in the passband.

The H2 norm measurements for the readouts qualitatively emphasize the same frequency bands
as their respective filters [S]kk (Figure 9). For correlated or uncorrelated noise sources, readouts
[Bmp] and [Wnt] experience much greater magnification than does [Sox9], suggesting that the
opposing effects of Bmp and Wnt on sox9 expression may mostly cancel each other out at the level
of Sox9 concentration. Relative noise amplification in the same modes favored by the [S]kk may
ensure that stochastic influences do not counteract filter behavior, at the same time that attenuation
and evenness in the response to other modes might reduce the relative influence of temporally
varying inputs on the readout. The latter especially may be useful to maintain consistent behavior
in a process such as digit formation that takes place over a long timespan.

While our simulations do not refute the hypothesis that a diffusion-driven instability constitutes
the biological basis for digit formation, the fact that we can produce a similar pattern with an
externally perturbed stable system suggests that not all apparent Turing patterns need arise from
an instability. This observation could significantly ease the search for molecules and proteins that
contribute to “spontaneous” stripe and spot patterning, as the parameter restrictions required for
true Turing instabilities may not be biologically plausible.
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Figure 7: A complete set of spatial modes for a 2D interconnectivity with Neumann boundary conditions
(DCT-2 basis) on a 4× 4 rectangular array. Modes are indexed such that the (m,n)th mode has frequency
πm
NR

in the vertical direction (down rows) and πn
NC

in the horizontal direction (across columns).
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Figure 8: The stable, linearized reaction-diffusion system behaves as a bandpass filter for
Sox9 (left), Bmp (center), and Wnt (right), resulting in a spatially periodic output (see Figure
10). Pictured are heat maps of the magnitude of the filter coefficients for the three readouts assuming
Neumann boundary conditions (DCT-2 basis) in both dimensions, such that vertical frequency increases
down rows (higher m) and horizontal frequency increases across columns (higher n). Increasing the distance
between cells (l) increases the frequency of the passband but decreases the sharpness of the dropoff. The
readout concentration of Sox9 is out of phase from the Bmp and Wnt concentrations due to the fact that
the coefficients of S have an extra multiplicative factor of −1 = eiπ, or a phase shift of π, relative to the
coefficients when the readout is [Bmp] or [Wnt]. Parameters are as given in Table ST4 of [26] with s0 = 11
instead of 10, i.e., s0 6= s∗ and therefore [A]00 6= 0 (see also Supplementary Table 2). This choice of s0
stabilizes the dynamical system with diffusion, thereby violating Turing conditions. Here, NR = NC = 40
for a total of N = 1600 cells. Images are normalized to the same scale (min. 0, max. 26.6).
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Figure 9: The stabilized Sox9-Bmp-Wnt network emphasizes noise in the same frequency
bands as those favored by the filter. The H2 norm for correlated noise when the readout is [Sox9] is
less than 1 in magnitude, indicating noise rejection at all frequencies, while uncorrelated noise is amplified
at all frequencies for readout [Wnt]. Uncorrelated noise, despite being highly amplified for readouts [Bmp]
and [Wnt], is rejected at frequencies higher than the upper end of the filter passband for [Sox9] and only
weakly amplified at lower frequencies, perhaps as a result of the opposing influences of Bmp and Wnt on sox9
expression. Parameters are as in 8 with l = 1.7 (see also Supplementary Table 2). Images are normalized to
the same scale (min. 0, max. 111).
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Figure 10: A linearized, discrete 2D system with random but constant-in-time variation be-
tween points replicates predictions from a Turing reaction-diffusion model even when the
parameters do not satisfy the conditions for Turing-driven instability. The color-coded visualiza-
tion reproduces images of micromass cultures from Supplementary Figure S3 in [26], showing similar periodic
striped patterns. Higher intensity corresponds to higher concentration level and intensity is normalized indi-
vidually by protein species, even in the overlaid images. The expression boundaries depicted here are not as
sharp as the original Turing model due to the stability of the linearized system. The concentration of Sox9
is out of phase with Bmp and Wnt concentrations, as seen from the overlaid images. Parameters are as in 8
and 9 with l = 1.7 (see also Supplementary Table 2), with a constant-in-time input background production
rate input that is shared by all reactants (as in (6)). For outputs [Sox9], the filter coefficient of greatest
magnitude occurs at (14, 6) (and symmetrically also (6, 14); see Figure 8), corresponding to a spatial mode
comprising a sum of two cosines, the higher of which has period 25% the length of one side of the array.
As predicted therefrom, the output pattern has approximately four complete periods at an angle about 67◦

from horizontal.
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5 APPLICATION: DIGIT FORMATION WITH A MORPHOGEN
GRADIENT

Expanding on the work of [26], reference [27] demonstrated that changes to the parameters in the
proposed Turing network for digit formation in mice can produce sox9 expression patterns matching
those found in embryonic catshark fins, suggesting that the mechanism has been evolutionarily
conserved. The authors augmented the model with an exponential gradient of fibroblast growth
factor (Fgf), a morphogen originating at the fin edge that has been experimentally demonstrated
to facilitate normal digit arrangement in mice. In their model, Fgf represses Sox9 repression of
bmp expression (k4) and promotes Sox9 repression of wnt expression (k7). In simulation, the
authors observed that increasing the ratio of Wnt production to Bmp production or decreasing
Bmp promotion of sox9 expression caused the Turing pattern to transition from stripes to spots.

We implemented the model from [27] using the following evolution equations:

Ḟi(t) = αF + u1i − µFFi(t) +
df
l2
vFi(t)

ṡi(t) = αs + u2i + k2bi(t)− k3zi(t)− si(t)3

ḃ(t) = αbmp + u2i − k4 (1− kfFi(t)) si(t)− k5bi(t) + db
l2
vbi(t)

żi(t) = αwnt + u2i − k7kfFi(t)si(t)− k9zi(t) + dz
l2
vzi(t)

ẇi(t) =

Fi(t)bi(t)

zi(t)


v(t) = (M ⊗ I3)w(t)

(8)

where αF is the Fgf production rate, u1 represents the source of Fgf, and u2 is random constant-
in-time spatial variation in background production rate. Unlike [27], we did not normalize F to
[0, 1], but we chose u1, u1 such that 0 ≤ F̃i

∗
+ F̄

∗ ≤ 1 and 0 ≤ u1i − ū1.
As compared to (6), the equations in (8) are rendered as perturbations to prior steady-state

protein concentrations, therefore “negative” steady-state values should be interpreted as reductions
in concentration relative to preexisting levels.

To handle both background production rate and localized Fgf production we use the general-
ization to L inputs

ŷ∗ := − (IN ⊗ C) [(IN ⊗A) + Λ⊗ (BvG)]−1

[
L∑
k=1

(IN ⊗Buk) ûk

]
(9)

where uk ∈ RN is the kth input vector and

Buk :=
∂f

∂uk

∣∣
(x̄∗,v̄∗,ū1,ū2,...,ūL)

is the linearization matrix for one subsystem with respect to the kth input when all inputs are held
constant in time and space. To avoid ambiguity, the “filter” interpretation is defined with respect
to one input, i.e., as one term in the summation (9).
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The matrices for the linearization are

A =


−µF 0 0 0

0 −3s∗2 k2 −k3

k4kfs
∗ −k4

(
1− kf F̄

∗) −k5 0
−k7kfs

∗ −k7kf F̄
∗

0 −k9

 ,

Bv =


df
l2

0 0
0 0 0

0 db
l2

0

0 0 dz
l2

 , Bu1 =


1
0
0
0

 , Bu2 =


0
1
1
1

 , G =

1 0 0 0
0 0 1 0
0 0 0 1



where the steady-state concentration of Fgf is F̄
∗

=
αF+ū1
µF

independent of the other variables. We
stabilized the homogeneous steady-state solution by setting αF = 0 and using a small value of ū1

with the remaining parameters taken from Figures 4 and 5 in [27]. This choice of αF completely
localizes the source of Fgf to the input u2.

5.1 Spatial Modes on a Hexagonal Lattice

The hexagonal lattice is the tightest 2D packing arrangement for cells of fixed area and is found in
a number of natural systems such as the wing epithelial cells in Drosophila [28]. For this example
we will derive the lattice from a rectangular array where the columns are offset by 30◦ from vertical
and assume periodic boundary conditions as well as identical spacing between all neighbors. With
the cells numbered as shown in Figure 11, the (m,n)th spatial mode corresponds to the mth mode
horizontally and the nth mode on a line at a 60◦ angle from each row. Cells in the hexagonal lattice
interact with each of their six nearest neighbors such that there are “diagonal interconnections” be-
tween rows of cells. We account for the diagonal connections as follows: Define CD := min (NR, NC)
and RD := max (NR, NC), and let P ∈ RCD×CD be the permutation matrix with lower diagonal
ones and the last entry of the first column also one. Define PF := diag

(
P 0, P 1, ..., PRD

)
. Then the

interconnection matrix for a hexagonal lattice with periodic boundary conditions is given by

M := (MR ⊗ IR) + (IC ⊗MC) + P TF (MF ⊗ IRD)PF .

If we let MR = MC = MF = M0 ∈ RN0×N0 be the circulant diffusion matrix, then M has
eigenvalues

[Λ]mn = −6 + 2

(
cos

2πm

N0
+ cos

2πn

N0
+ cos

2π(m− n)

N0

)
.

From this we see that Λ = ΛT and [Λ]mn = [Λ](N0−m)(N0−n).
Further discussion of diagonal interconnectivites and planar lattices more generally is available

in Supplementary Sections 8.3 and 8.4.

5.2 Analysis

As in the original Sox9-Bmp-Wnt Turing model in [26], the filter coefficients in the Fgf-augmented
model form a bandpass at mid-range frequencies, resulting in the roughly periodic output patterning
that alternates between Sox9 and Wnt (Figure 12). Increasing αwnt decreases the magnitude of
the bandpass, while decreasing k2 concentrates amplification at a small range of frequencies inside
the bandpass. Either of these parameter changes tends to shrink contiguous regions of high [Sox9],
consistent with the transition from stripes to spots observed in [27]. Parameters yielding more
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Figure 11: A 4× 4 hexagonal lattice in which each cell is connected to its six nearest neighbors. Cells are
uniformly spaced along the directions indicated by the black arrows, which are separated by a 60◦ angle.
The gray arrow indicates a 90◦ angle from horizontal.

spotlike patterns also tend to suppress the influence of both correlated and uncorrelated noise for
readout [Sox9], though the effect on readout [Wnt] is negligible (Supplementary Figures 27, 28, 29,
and 30). The distal edge where the source of Fgf is localized exhibits relatively higher Wnt than
Sox9 expression, as observed in vivo [27]; in our normalized images, the effect is most visible at
higher values of αwnt.

If we assume cells are approximately 12 to 15 µm in diameter [29], then for αwnt = 1.2, k2 = 1
the filter and H2 norm analysis indicate that wavelengths of about 84 to 105 µm will be most
strongly amplified in the result. The prediction is in decent agreement with the experimental
images in Figure 2 of [27], which exhibit periodicity on the order of 80 to 100 µm. Some of the
error may be accounted for by the difference in domain shape between filter simulations and actual
limb paddles (rhomboidal vs. elliptical) as well as the presence of growth in the living animal.
Nevertheless, this observation suggests that the framework correctly identifies the range of spatial
modes that will be most influential in forming the “actual” biological pattern.

6 CONCLUSIONS

In this paper we have presented a framework to analyze how networks of interacting cells modify
spatially varying inputs, either from environmental factors or intrinsic parameter variation, to pro-
duce patterned outputs. Three biologically relevant examples indicate that qualitatively similar
patterns may arise from different physical implementations (Section 3), from both stable and un-
stable fixed points (Section 4), as well as from variable filter behaviors when certain postprocessing
steps are applied (Section 5). Furthermore, these biological models appear robust to correlated and
uncorrelated space-and-time-varying white noise inputs, a critical feature for maintaining consis-
tency during embryonic development.

We have demonstrated in a theoretical context how a filtering approach can offer insight into
system behavior at an intermediate level between the exact physical implementation and the mea-
sured result. In an experimental context, evaluating systems at the filter level may clarify when

23



Figure 12: Either increasing Wnt production or decreasing Bmp promotion of sox9 expression
shrinks the size of contiguous high-[Sox9] regions, though filter analysis shows the two methods
act through different mechanisms. Simulations are performed for nine (αwnt, k2) pairs on a hexagonal
lattice (NR = NC = 32) with two external inputs: a random background production rate for Sox9, Wnt,
and Bmp; and an Fgf source localized to 5 columns of cells on the left. The effect of the Fgf is visible as an
increase in [Wnt] (blue) relative to [Sox9] (red) at both the left and right boundaries owing to the periodic
boundary conditions. The “actual” readouts, normalized across all images independently by channel, are
pictured above the dotted white line; readout values below the dotted line have been post-processed to
saturate at a threshold (0.005 for [Sox9], 0.3 for Wnt) and are normalized in the same fashion as (but
separately from) the “actual” readouts. For visual emphasis, saturated [Sox9] values are displayed at 10×
the threshold intensity. Inset heat maps display the magnitude of the filter coefficients around the bandpass
(from kC = 0 to kC = NR

2 and kR = 0 to kR = NC

2 ) from input background production to readout [Sox9],
each normalized to the same range (min. 0, max. 3.36). Readouts that saturate above a certain threshold
show more spotlike patterns for higher αwnt or lower k2, as observed in [27]. Increasing αwnt decreases the
overall amplitude of the filter and thereby shrinks the width of the passband, which suggests that spots rather
than stripes may emerge when fewer cells express above a threshold. In contrast, decreasing k2 increases the
maximum magnitude of the bandpass in a concentrated region, suggesting that spots may also be obtained
by exaggerating differences in amplification between frequencies. Parameters unless noted otherwise are as
given in [27], Figures 4 and 5.
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alterations to the input are capable of distinguishing between alternative explanations for an ob-
served behavior. For example, systems with near-identical filter coefficients are predicted to respond
equivalently to inputs of all kinds (e.g., the three Notch-Delta models in Section 3), suggesting that
pure input-output probing is unlikely to illuminate the underlying mechanism. Conversely, model
systems with disparate filter coefficients may not vary much in their response to certain inputs but
differ drastically in reponse to others, such that experiments in which inputs to the real system
can be finely controlled may suffice to differentiate more accurate models from less accurate ones.
Of interest in both cases is the extent to which a particular system may impose structure upon an
output pattern as compared to how much structure must be present in the prepattern.

A critical assumption in our development of the filtering framework is that linearization about
a homogeneous steady state is sufficient to capture relevant system behavior. Future work should
focus on incorporating nonlinear dynamics as well as investigating the influence of external in-
puts on spatially distributed, networked systems in the vicinity of unstable or nonhomogeneous
steady states. Additional areas for further research include patterning in time-varying or per-
turbed networks and system response to non-white noise inputs. Lastly, although we have focused
our applications on models in developmental biology, the generality of our framework suggests
possible applications to synthetically engineered biological circuits as well.

Overall, we believe a spatial frequency-based interpretation simplifies the process of predicting
how intermolecular and intercellular interactions affect patterning mechanisms in living organisms.
It is our hope that the viewpoint developed here will help us to elucidate—and elaborate upon—
nature’s designs.
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Supplementary Material

Figure 13: A schematic of gene expression. An input (gray triangle) modifies the transcription rate
of mRNA (purple) from a gene (gold). The mRNA is then translated into protein (blue). The proteins
may in turn modify the transcription rate of some other target gene (green). If the target gene is the same
as the expressed gene, then the protein is said to be autoregulatory. Chemical, mechanical, or electrical
signals from neighboring cells may also influence transcription rates (not pictured). Cell-to-cell variability
in production rates that “persists” in time (i.e., is not due to the intrinsically stochastic nature of chemical
interactions) may arise, for example, from variation in the concentrations of intercellular machinery (red
circles) responsible for transcription and translation.

7 MORE ON FILTER COEFFICIENTS

7.1 Derivation of Filter Coefficients

Here we provide a derivation of the filter coefficients from Proposition 1.
Let u := ū1N be a spatially homogeneous input and assume ∃ x̄∗ ∈ Rn such that f (x̄∗, µg (x̄∗) , ū) =

0. Then x∗ := 1N ⊗ x̄∗ is a homogeneous steady state. The remaining steady-state quantities are
similarly designated y∗ = ȳ∗1N , w̄∗ = g(x̄∗), and v∗ = Mqw

∗ = 1N ⊗ v̄∗ (where Mq := M⊗Iq). Let
x̃i(t), ũi, ỹi(t), w̃i(t), ṽi(t) denote perturbations about that steady state. The full system linearized
about (x∗, u) yields perturbed dynamics

˙̃x(t) = [(IN ⊗A) + (IN ⊗Bv)Mq (IN ⊗G)] x̃(t) + (IN ⊗Bu) ũ (10)

where A := ∂f
∂xi

∣∣
(x̄∗,v̄∗,ū)

, Bv := ∂f
∂vi

∣∣
(x̄∗,v̄∗,ū)

, Bu := ∂f
∂ui

∣∣
(x̄∗,v̄∗,ū)

, C := dh
dyi

∣∣
x̄∗

, and G := dg
dxi

∣∣
x̄∗

are

the linearization matrices.
Assume that the interconnection matrix M ∈ RN×N is diagonalizable and let M = TΛT−1

be the diagonalization (so that Mq is diagonalized by T ⊗ Iq). Define x̂(t) :=
(
T−1 ⊗ In

)
x̃(t),

û := T−1ũ, and ŷ(t) := T−1ỹ(t). Recasting (10) in the coordinate system T , we obtain the
dynamical system

˙̂x(t) = [(IN ⊗A) + Λ⊗ (BvG)] x̂(t) + (IN ⊗Bu) û. (11)

In contrast to the conditions for spontaneous pattern formation, we will not require this system to
be unstable; large amplification of spatial modes is possible even when the system is stable. The
steady-state perturbed readout in basis T is

ŷ∗ := − (IN ⊗ C) [(IN ⊗A) + Λ⊗ (BvG)]−1 (IN ⊗Bu) û

=: Sû, (12)

where S is a diagonal matrix with entries

[S]kk = −C(A+ λk(M)BvG)−1Bu
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for k = 0, 1, ..., N − 1 and [S]kk collectively form the “filter coefficients” for the corresponding N
spatial modes. The matrix S is thus analogous to a digital filter that processes the input ũ into
readout ỹ∗ with respect to the eigenvectors, or spatial modes, of M as contained in T .

7.2 Multiple Orthogonal Signals Sharing Same Spatial Modes

Let M0,M1, ...,Mq−1 ∈ RN×N be the interconnection matrices for q orthogonal signals and assume
they all commute (share the same basis). Let ∆i ∈ Rq×q signify the matrix with (i, i)th entry one
and all other entries zero, such that the full interconnectivity is

M =

q−1∑
i=0

(Mi ⊗∆i) .

If Λi = T−1MiT for i = 0, 1, ..., q − 1, then the basis T ⊗ Iq diagonalizes M such that the filter
coefficients are given by

[S]kk = −C

(
A+

q−1∑
i=0

λk (Mi)Bv∆iG

)
Bu.

29



Figure 14: Schematic illustrating the variables utilized in the filter coefficient derivation. Left, red cor-
responds to input-related variables; right, blue corresponds to readout-related variables. Top, plots in the
standard basis; the solid line for the input is the exact input to the full system, while the solid blue line is the
approximated readout based on the filter coefficient analysis. Bottom, plots in the basis of the spatial modes.
Dashed gray lines indicate values associated with the linearization; in this example, these constant-in-space
inputs produce impulses at constant frequency (i.e., contribution to all other modes is zero—these values are
not plotted). This example uses periodic boundary conditions and sinusoidal modes given by 1 with k (from
0 to N − 1) indexing increasing frequency toward the middle of the x-axis, i.e., modes k and N − k have the
same frequency. The filter coefficients are symmetric about the midpoint but the mode representations of
input and readout are not. This asymmetry captures the “location” of the standard-basis input and readout
relative to the cell indices i, since modes k and N − k have opposite phase (sign).
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7.3 Derivation of Equivariance

Here we derive the equivariance property of the input-output map comprising the filter coefficients.
Let ỹ∗ = Sũ and ỹ∗Π = SΠũ. An equivalent statement to “S is equivariant” is then ỹ∗Π =

ΠSũ =⇒ ỹ∗Π = Πỹ∗. To see this, take

ỹ∗Π = SΠũ = − (IN ⊗ C) [(IN ⊗A) +M ⊗ (BvG)]−1 (IN ⊗Bu) Πũ

= − (IN ⊗ C) [(IN ⊗A) +M ⊗ (BvG)]−1 (Π⊗ In) (IN ⊗Bu) ũ

= − (IN ⊗ C)
[(

Π−1 ⊗ In
)

((IN ⊗A) +M ⊗ (BvG))
]−1

(IN ⊗Bu) ũ

= − (IN ⊗ C)
[(

Π−1 ⊗ In
)

(IN ⊗A) + Π−1M ⊗ (BvG)
]−1

(IN ⊗Bu) ũ. (13)

Since (
Π−1 ⊗ In

)
(IN ⊗A) = (IN ⊗A)

(
Π−1 ⊗ In

)
,

then
M = ΠMΠ−1 =⇒ Π−1M = MΠ−1 =⇒ Π−1M ⊗ (BvG) = MΠ−1 ⊗ (BvG)

such that (13) becomes

ỹ∗Π = − (IN ⊗ C)
[
((IN ⊗A) +M ⊗ (BvG))

(
Π−1 ⊗ In

)]−1
(IN ⊗Bu) ũ

= − (IN ⊗ C) (Π⊗ In) [(IN ⊗A) +M ⊗ (BvG)]−1 (IN ⊗Bu) ũ

= −Π (IN ⊗ C) [(IN ⊗A) +M ⊗ (BvG)]−1 (IN ⊗Bu) ũ

= Πỹ∗.

If Λ = T−1MT , then since M = ΠMΠ−1 =⇒ Π−1MΠ, Λ = T−1Π−1MΠT (i.e., T diagonalizes
the permuted version of M with the same resultant eigenvalues). Note that the immutability of
M under permutation Π confers immutability of Λ under permutation T−1ΠT , which is just the
permutation in the basis of M ; i.e.,

Λ =
(
T−1ΠT

)
Λ
(
T−1ΠT

)−1
,

or equivalently, Λ and
(
T−1ΠT

)
commute.
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8 TUTORIAL ON SPATIAL MODES

Here we present a brief introduction to two sets of 1D spatial modes corresponding to common signal
processing transforms. These spatial modes have direct interpretations as spatial frequencies. We
then provide two useful observations for calculating the spatial modes and eigenvalues for 2D arrays
with diagonal interconnections, as well as an interpretation of spatial frequencies for cells arranged
in arbitrary planar lattices.

8.1 Discrete Fourier Transform (DFT)

If the N cells form a ring indexed clockwise or counterclockwise, then M is circulant. The eigen-
vectors of a circulant matrix form the discrete Fourier basis such that the spatial modes of T
correspond exactly to the frequencies of sinusoids.

We can choose T to be the discrete Fourier transform matrix (DFT) where the jth entry of the
kth eigenvector, j, k = 0, 1, ..., N − 1, is given by

[T ]jk =
1√
N
e−

2πijk
N

with i :=
√
−1. T is conjugate symmetric. If we let m0, m1, ...,mN−1 denote the entries in the

first row of M , then the eigenvalues of M are given by

λk (M) =
1√
N

N−1∑
n=0

mne
− 2πijk

N ,

which corresponds to the coefficients of the discrete Fourier transform (DFT) of the first row of M .
If M is symmetric in addition to circulant, then we can alternatively select the eigenvectors

such that all entries are real.

Observation 1. Let M ∈ RN×N be a symmetric circulant matrix where m0 ∈ RN is the first row
and define m as the periodization of m0. Let the matrix T have entries

[T ]jk =
1√
N

(
cos

2πjk

N
+ sin

2πjk

N

)
.

Then T is a basis for M with eigenvalues

λk (M) =

N−1∑
n=0

mn cos
2πnk

N
,

k = 0, 1, ..., N − 1.

Proof. Let W be the unitary DFT matrix, i.e., the jth entry of the kth column is

W j
k =

1√
N
e
i2πjk
N .

We can express T as

T =
1

2

[
W +WH + e

−iπ
2 W +

(
e
−iπ
2 W

)H]
.
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Then

T−1MT = THMT = TMT

=
1

4

[
W +WH + e

−iπ
2 W +

(
e
−iπ
2 W

)H]
M

[
W +WH + e

−iπ
2 W +

(
e
−iπ
2 W

)H]
=

1

4

(
W +WH

)
M
(
W +WH

)
+

1

4

(
e
−iπ
2 W + e

iπ
2 WH

)
M
(
e
−iπ
2 W + e

iπ
2 WH

)
+

1

4

(
W +WH

)
M
(
e
−iπ
2 W + e

iπ
2 WH

)
+

1

4

(
e
−iπ
2 W + e

iπ
2 WH

)
M
(
W +WH

)
=

1

2
WHMW +

1

2
WMWH +

1

2
cos

π

2

[
WHMW +WMWH

]
+

1

2
e
iπ
2 WHMWH +

1

2
e
−iπ
2 WMW

=
1

2
WHMW +

1

2
WMWH +

1

2
e
iπ
2 WHMWH +

1

2
e
−iπ
2 WMW. (14)

Since M is real and even (symmetric), the DFT is also real. The symmetry of M together with
the symmetry of W and the fact that diagonal matrices are symmetric also imply that WHMW =
(WHMW )T = W TMTW ∗T = WMWH , so we can somewhat simplify (14) to

WHMW +
1

2

[
e
iπ
2 WHMWH + e

−iπ
2 WMW

]
= WHMW +

1

2

[
e
iπ
2
(
WHMW

)
WHWH + e

−iπ
2
(
WMWH

)
WW

]
= WHMW +WHMW

1

2

[
e
iπ
2 WHWH + e

−iπ
2 WW

]
. (15)

For k = 1, 2, ..., N2 (N odd) or k = 1, 2, ..., N−1
2 (N even), the (N − k)th row or column of W is

equal to the kth row or column of WH . Therefore [WW ]k,N−k = 1. Because of the orthogonality
of complex exponentials, the remaining entries are 0. By the same logic we deduce an identical
structure for WHWH such that WW = WHWH . Now (15) becomes

WHMW +WHMW
1

2

[
e
iπ
2 WW + e

−iπ
2 WW

]
= WHMW +WHMW (WW ) cos

π

2

= WHMW,

which is just M diagonalized by the complex exponential DFT matrices, as desired. From this we
derive that the eigenvalues are the same as the DFT coefficients of h0, which owing to symmetry
may be calculated as

λm (M) =
N−1∑
n=0

mn cos
2πnm

N
.

Owing to the periodicity of cosine, the eigenvalues of symmetric circulant M (and hence the
corresponding [S]kk) are symmetric about the highest-frequency eigenvector associated with k = N

2 .
A situation of particular interest occurs when vi is a diffusible molecule and the connection

strength is equal between cells. Then M is a scaled version of the circulant finite differences
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(Laplacian) matrix

M =


−2 1 0 . . . 0 1
1 −2 1 . . . 0 0
...

...
...

. . .
...

...
1 0 0 . . . 1 −2


with eigenvalues

λk(M) = −2 + 2 cos
2πk

N
.

This form of M corresponds to the second differences matrix for a system with periodic boundary
conditions [19].

8.2 Second Discrete Cosine Transform (DCT-2)

If the N cells are organized in a line, then the two cells on the end each communicate with only
one neighbor. If the mode of communication is a diffusible molecule and the cells are indexed from
one end of the line to the other, then the connectivity takes the form of a second differences matrix
with Neumann boundary conditions centered at the midpoint:

M =


−1 1 0 . . . 0 0 0
1 −2 1 . . . 0 0 0
...

...
...

. . .
...

...
...

0 0 0 . . . 1 −2 1
0 0 0 . . . 0 1 −1

 .

The spatial modes of T form the basis for the second discrete cosine transform (DCT-2). The jth
entry of the kth eigenvector, j, k = 0, 1, ..., N − 1, is given by

[T ]jk =

√
2

N
cos

[(
j +

1

2

)
kπ

N

]
(for k = 0, divide by additional factor of

√
2) with corresponding eigenvalue

λk(M) = −2 + 2 cos
kπ

N
.

The highest frequency is k = N − 1 [19]. Unlike the case of circulant M , there are no guarantees
of symmetry in the filter S and T itself is not conjugate symmetric.
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Figure 15: Sample spatial modes for a ring interconnectivity with N = 10 cells. Each cell is connected
to each of its two neighbors with equal connection strength. M is circulant, so the eigenvectors form the
discrete Fourier basis such that the spatial modes of T correspond exactly to the frequencies of sinusoids.
The value k corresponds to the spatial frequency, or the number of complete periods present in a single
cycle around the ring. Because the basis is the discrete Fourier transform (DFT) and N is even, the highest
frequency is N

2 = 5. Neighboring cells in this mode alternate between two values. Such a pattern is not
possible in a ring configuration when N is odd.
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Figure 16: Sample spatial modes for a line interconnectivity with N = 10 cells. The two cells on the
end each interact with only one neighbor such that the basis vectors are the DCT-2 vectors. The value k
corresponds to twice the frequency of its corresponding mode, i.e., k

2 periods are represented in mode k.

“Even” modes (k even) have symmetry about the midpoint between cells N
2 − 1 and N

2 + 1, while “odd”
modes (k odd) are antisymmetric about this same point. If N were odd, the midpoint would instead be the(
N−1
2

)
th cell.

36



Figure 17: A complete set of spatial modes for a 2D periodic boundary interconnectivity (DFT basis) on a
4× 4 rectangular array. Due to the symmetry in the eigenvectors, modes (m,n) and (m, 4−n) are identical,
as are (m,n) and (4−m,n).
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8.3 Eigenvectors and Eigenvalues for Arrays with Diagonal Interconnections

Observation 2. Consider an NR × NC array of cells. Let MF describe the interconnectivity of
CD := min(NR, NC) elements in the forward diagonal direction and MB the interconnectivity of
CD elements in the backward diagonal direction. Let P ∈ RCD×CD be the permutation matrix
with lower diagonal ones and the last entry of the first column also one, such that PF := P TB :=
diag

(
P 0, P 1, P 2, ..., PRD

)
where RD := max(NR, NC). In total, the interconnectivity of an array

with horizontal, vertical, and diagonal components is described by

M := (MR ⊗ INR) + (IC ⊗MC) + P TF (MF ⊗ IRD)PF + P TB (MB ⊗ IRD)PB

where MR, MC , MF , and MB are circulant. Furthermore, if NR = NC = N0 and the real or
complex DFT basis T0 diagonalizes each of MR, MC , MF , and MB individually, then (T0 ⊗ T0)
diagonalizes M .

Proof. Let T0 diagonalize M0 such that (T0 ⊗ T0) diagonalizes (MR ⊗ INR)+(IC ⊗MC). Since M0

is circulant,

M0 =


m0 mNR−1 mNR−2 . . . m1

m1 m0 mNR−1 . . . m2
...

...
...

. . .
...

mNR−1 mNR−2 mNR−3 . . . m0

 = m0P
0 +m1P +m2P

2 + ...+mNR−1P
NR−1

and therefore

P−1
F (M0 ⊗ INR)PF = P−1

F

NR−1∑
q=0

mqP
q ⊗ INR

PF (16)

=

NR−1∑
q=0

mqP
−1
F (P q ⊗ INR)PF . (17)

If we expand PF and use the fact that P−1 = PNR−1 = P T , then the summation simplifies to

NR−1∑
q=0

mq

(
P q ⊗ P−q

)
(18)

which is diagonalized by the complex exponential DFT vectors T−1
0 and T0 as follows:

(
T−1

0 ⊗ T−1
0

)NR−1∑
q=0

mq

(
P q ⊗ P−q

) (T0 ⊗ T0) =

NR−1∑
q=0

mq

(
T−1

0 ⊗ T−1
0

) (
P q ⊗ P−q

)
(T0 ⊗ T0)

=

NR−1∑
q=0

mq

(
T−1

0 P qT0

)
⊗
(
T−1

0 ⊗ P−qT0

)
, (19)

which is a sum of diagonal matrices because permutation matrices are circulant and therefore
diagonalized by the DFT matrices T0, and the Kronecker product of two diagonal matrices is
diagonal. Since PB = P TF = P−1

F , the same derivation for diagonal connectivity in the backward
direction gives

P−1
B (M0 ⊗ INR)PB =

NR−1∑
q=0

mq (P q ⊗ P q) , (20)
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which is also diagonalized by DFT matrices as

NR−1∑
q=0

mq

(
T−1

0 P qT0

)
⊗
(
T−1

0 ⊗ P qT0

)
where each summand is diagonal. This implies that the complex exponential form of the DFT is
the basis for an array that is diagonally connected in either or both directions.

If M0 is symmetric, then in addition to the complex exponential basis T0 we might also choose
the basis T ′0 with the jth entry of kth eigenvector given by

T ′0(k) =
1√
R

(
cos

2πjk

R
+ sin

2πjk

R

)
, (21)

in which case each term in the summation (19) is no longer diagonal because T ′0 does not diag-
onalize the nonsymmetric permutation matrices. Hence for the real-valued basis T ′0 we require
that the array is diagonally connected in both forward and backward directions such that the full
connectivity matrix is given by the sum of (20) and (18):

NR−1∑
q=0

mq

(
P q ⊗ P−q

)
+

NR−1∑
q=0

mq (P q ⊗ P q) =

NR−1∑
q=0

mqPq ⊗
(
P−q + P q

)
. (22)

The matrix (P−q + P q) is circulant and symmetric and hence diagonalized by T ′0. To complete the
argument we appeal to the symmetry of mq. Specifically, if NR is odd,

NR−1∑
q=0

mqP
q ⊗

(
P−q + P q

)

= 2m0INR +

NR−1

2∑
q=1

mqPq ⊗
(
P−q + P q

)
+

NR−1∑
q=

NR−1

2
+1

mqP
q ⊗

(
P−q + P q

)

= 2m0INR +

NR−1

2∑
q=1

mqP
q ⊗

(
P−q + P q

)
+mR−qP

R−q ⊗
(
P q−R + PR−q

)

= 2m0INR +

NR−1

2∑
q=1

mqP
q ⊗

(
P−q + P q

)
+mqP

−q ⊗
(
P q + P−q

)

= 2m0INR +

NR−1

2∑
q=1

mq

(
P q + P−q

)
⊗
(
P−q + P q

)
,

where each individual term is diagonalized by T ′0, and hence the whole summation is diagonal. If
NR is even, the summation (22) breaks into

2m0INR +mNR
2

P
NR
2 ⊗

(
P
NR
2 + P−

NR
2

)
+

NR−1

2∑
q=1

mq

(
P q + P−q

)
⊗
(
P−q + P q

)
.
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When NR is even, PR/2 alone is circulant symmetric, hence the additional term is also diagonalized
by T ′0. Therefore when M0 is circulant symmetric, the matrix

M = P TF (M0 ⊗ INR)PF + P TB (M0 ⊗ INR)PB

is diagonalized by T ′ := T ′0 ⊗ T ′0. Note that this implies

(M0 ⊗ INR) + (INR ⊗M0) + P TF (M0 ⊗ INR)PF + P TB (M0 ⊗ INR)PB

is also diagonalized by T ′.

Remark 1. For a system with diagonal connections only (MR = MC = 0), then if NR = NC odd,
the diagonal transformations are identical to a 2D DFT rotated 45◦. For NR = NC even, the array
becomes divided into two separate classes that are transformed separately; i.e., the underlying net-
work graph is no longer connected. This is because for NR = NC odd, the array has a compartment
at the center, while for NR = NC even, the center would (in physical space) represent a crossing of
intersections.

Observation 3. Let NC = NR = N0, M0 circulant with complex exponential basis vectors T0 and
consider the full forward diagonal interconnection matrix M = P TF (M0 ⊗ IN0)PF . The (m,n)th
eigenvalue of M is

λm+nN0 (M) =


m0 + 2

N0−1
2∑

q=0
mq cos 2πq(n−m)

N0
, N0 odd,

m0 +mN0
2

(−1)n−1 + 2

N0
2
−1∑

q=0
mq cos 2πq(n−m)

N0
, N0 even,

where mk is the kth entry of the first row or column of M0.

Proof. For NC = NR = N0 and MF as defined above, the kth entry of the N0-point DFT of the

first row of P q is e
2πikq
N0 , k = 0, 1, ..., N0 and the diagonalization T−1

0 P qT0 is the matrix with the
DFT entries on the diagonal. This implies that we can write (19) as

(
T−1

0 ⊗ T−1
0

)
P TF (IN0 ⊗M0)PF (T0 ⊗ T0) =

N0−1∑
q=0

mq

(
T−1

0 P qT0

)
⊗
(
T−1

0 P−qT0

)

=

N0−1∑
q=0

mq



1

e
2πiq
N0

e
4πiq
N0

. . .

e
2πiq(N0−1)

N0


⊗



1

e
−2πiq
N0

e
−4πiq
N0

. . .

e
−2πiq(N0−1)

N0



=:

N0−1∑
q=0

mq


IN

Eq1
Eq2

. . .

EqN0−1

 , (23)
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where we have defined

Eqk :=



e
2πiqk
N0

e
2πiq(k−1)

N0

e
2πiq(k−2)

N0

. . .

e
2πiq(k−(N0−1))

N0


.

For N0 odd, we use the symmetry mq = m−q to rewrite the summation (23) as

m0IN2
0

+

N0−1
2∑

q=1

mq


2IN

Eq1 + E−q1

Eq2 + E−q2
. . .

EqN0−1 + E−qN0−1

 .
Conveniently,

Eqk + E−qk =



2 cos 2πiqk
N0

2 cos 2πiq(k−1)
N0

2 cos 2πiq(k−2)
N0

. . .

2 cos 2πiq(k−(N0−1))
N0

 ,

from which we infer

λm+nN0

(
P−1
F (M0 ⊗ IN0)PF

)
= m0 + 2

N0−1
2∑

q=0

mq cos
2πq (n−m)

N0

is the eigenvalue for the (m,n)th spatial mode owing to diagonal connectivity, N0 odd. If N0 is
even, we write (23) as

m0IN2
0
+mN0

2


IN

E
N0
2

1
. . .

E
N0
2
N0−1

+

N0
2
−1∑

q=1

mq


2IN

Eq1 + E−q1
. . .

EqN0−1 + E−qN0−1

 ,
(24)

and note that

E
N0
2
k =


(−1)k

(−1)k−1

. . .

(−1)k−(N0−1)
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to write the (m,n)th eigenvalue as

λm+nN0 (MF ) = m0 +mN0
2

(−1)n−1 + 2

N0
2
−1∑

q=0

mq cos
2πq (n−m)

N0
.

8.4 Spatial Modes on Planar Lattices

It is straightforward to generalize a frequency-based interpretation to cells arranged in periodic
planar lattices, which are well described mathematically. Throughout the following discussion we
will refer to coordinates in physical space as ê, the unit vector pointing “east,” and ŝ, the unit
vector pointing “south”. This choice of vector orientations mimics the numbering scheme in an
array, whereby indices increase horizontally left to right (with ê) and vertically top to bottom (with
ŝ). We will assume a system of cells indexed in an NR×NC array with periodic boundary conditions
such that M is diagonalized by TR ⊗ TC where both TC and TR are real or complex DFT bases of
appropriate dimension.

Let cells in physical space be arranged in a planar lattice described by vectors aR and aC
corresponding respectively to the rows and columns of the indexed array. Without loss of generality
we orient aR along ê (such that aR · ê = |aR|). We define the unit vectors âR := aR

|aR| = ê and

âC := aC
|aC | . Letting θ be the angle between aR and aC , we can write aR = |aR|ê and aC =

|aC | cos θê + |aC | sin θŝ. Note that the eigenfunctions are periodic in n with period NC |aR| along
aR and periodic in m with period NR|aC | along aC .

Observation 4. For an NR⊗NC cellular lattice with lattice vectors aR, aC and periodic boundary
conditions, the (m,n)th spatial mode corresponds to a plane wave of frequency

n

|aR|NC
âR +

m

|aC |NR
âC =: faR âR + faC âC = (faR + faC cos θ) ê+ faC sin θŝ

in physical space, with an “absolute” frequency of

f =

√
|faR + faC cos θ|2 + |faC sin θ|2

pointing at an angle

φ = tan−1

(
faC sin θ

faR + faC cos θ

)
from the x̂ axis.

Remark 2. One may liken the translation from physical space into matrix space to “sampling” in
space from an underlying pattern with “spatial sampling frequency” 1

|aR| along aR and 1
|aC | along

aC . The translation into spatial modes, or the DFT, recovers normalized frequency components
from the discrete samples. Maintaining a constant surface area but increasing the number of cells
occupying that surface area (i.e., N ′R = cRNR, N ′C = cCNC , a′R = 1

CR
aR, a′C = 1

cC
aC) does

not change the physical range of space over which the modes are described but does increase the
“resolution” or “sampling rate” of the system by a factor of cR along aR and cC along aC , enabling
the system to modify higher frequencies than before and therefore permitting finer filtering of a
continuous-in-space input gradient.
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Figure 18: Examples of lattice configurations. Left, hexagonal (θ = 60◦) with nearest-neighbor
(row/column/forward diagonal) interconnectivity; center, rectangular (θ = 90◦) with |a1| = 2|a2| and
row/column interconnectivity; right, an arbitrary lattice with θ = 105◦, |a2| = 2|a1|, and row/backward
diagonal interconnectivity.
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9 NOTCH-DELTA MODELS

9.1 Mutual Inactivation (MI)

For this system we can explicitly calculate the steady-state values N̄
∗
, D̄
∗
, v̄∗N , v̄

∗
D for u = 0. First

we note that for our choice of M the homogeneous solution satisfies v̄∗N = N̄
∗

and v̄∗D = D̄
∗
. After

algebra, we find that N̄
∗

is the positive root of a quadratic, D̄
∗

is found in terms of N̄
∗
, and R̄

∗
is

expressed in terms of N̄
∗

and D̄
∗
:

− γ
K N̄

∗2
+

(
βN
K − γ

2 − β̄
D
K

)
N̄
∗

+ βNγ = 0

D̄
∗

=
β̄
D

γ+KN̄
∗

R̄
∗

= βR
γR

(N̄∗D̄∗)
n

kRS+(N̄∗D̄∗)
n

where K := kckt
kc+kt

.

The filter coefficients [S]kk are given by −C (A+ λk(M)BvG)−1Bu, k = 0, 1, ..., N − 1. To find
them we can exploit the structure of C and Bu. For the sake of demonstration we will take the
readout to be the reporter protein such that C = [0 0 1], although the procedure applies equally
well to arbitrary choices of C.

First we notate

A+ λk(M)BvG =

[
A1 0

[b1, b2λk(M)] −γR

]
and apply the matrix inversion lemma to obtain

(A+ λk(M)BvG)−1 =

[
A−1

1 0
1
γR

[b1, b2λk(M)]A−1
1 − 1

γR

]
. (25)

Observe that

A−1
1 =

1

detA1

[
−γ − N̄

∗

K
N̄
∗

kc
+ λk(M0) N̄

∗

kt
D̄
∗

kc
+ λk(M) D̄

∗

kt
−γ − D̄

∗

K

]
.

Parameter Value Description Source

αN 10 “leakiness” of Notch expression (RFU/hr) [23] Table S1 (Figure S4A)
βD0 17.5 max. Delta production rate (RFU/hr) [8] Table S3 (Figure 4C)
x0 7 number of cell diameters [8] Table S3 (Figure 4C)

βDi βD0e
−|i|/x0 Delta production rate (RFU/hr) for cell i [8] (Figure 4C)

β̄
D

9.09 Delta production rate (RFU/hr) for linearization 1
N

∑N−1
i=0 βDi

βN 10 Notch production rate (RFU/hr) [8] Table S3 (Figure 4C)
βR 150 reporter production rate (RFU/hr) [8] Table S3 (Figure 4C)
γ 0.1 Notch, Delta decay rate (1/hr) [8] Table S3 (Figure 4C)
γR 0.05 reporter decay rate (1/hr) [8] Table S3 (Figure 4C)
kc 0.25 inverse cis-interaction strength [8] Table S3 (Figure 4C)
kt 5 inverse trans-interaction strength [8] Table S3 (Figure 4C)
n 2 Hill coefficient for Notch-Delta activation of reporter -
m 2 Hill coefficient for reporter repression of Delta -
kRS 300,000 affinity of reporter induction [23] Table S1 (Figure S4A)
kNS 5× 107 affinity of reporter induction -

Table 1: Parameters used in the Notch-Delta model simulations, unless noted otherwise in the text (Figures
4 to 6, 19, and 20).
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Premultiplying (25) by C extracts the bottom row, while postmultiplying by Bu extracts the middle
entry of that row, which is given by

1

γR detA1

[
b1

(
N̄
∗

kc
+ λk(M)

N̄
∗

kt

)
+ b2λk(M)

(
−γ − D̄

∗

K

)]
.

Substituting b1 and b2, we simplify the expression to

[S]kk = − N̄
∗
b1

γRkc detA1

[
1− λk (M)

(
1 +

γkc

D̄
∗

)]
where

detA1 =

(
−γ − N̄

∗

K

)(
−γ − D̄

∗

K

)
−
(
N̄
∗

kc
+ λk (M)

N̄
∗

kt

)(
D̄
∗

kc
+ λk (M)

D̄
∗

kt

)
= −

[
N̄
∗
D̄
∗

k2
t

λk (M)2 + 2
N̄
∗
D̄
∗

ktkc
λk (M) +

(
N̄
∗
D̄
∗

k2
c

− γ2 − γ

K

(
N̄
∗

+ D̄
∗)− N̄

∗
D̄
∗

K2

)]
.

The dynamical system corresponding to these filter coefficients is analytically stable for our chosen
M with any biologically relevant parameter values (i.e., when the parameters in 1 are positive, as
they must be in a living system). Since A+λk (M0)BvG is a block triangular matrix, its eigenvalues
are the eigenvalues of the diagonal blocks, i.e., −γR along with the eigenvalues of A1. Since −γR is
always negative, checking for stability amounts to checking the sign of the eigenvalues of A1.

Using the fact that v̄∗D = D̄
∗

and v̄∗N = N̄
∗

for our choice of M yields

A1 =

[
−γ − D̄

∗

K − N̄
∗

kc
− λk (M0) N̄

∗

kt

− D̄
∗

kc
− λk (M0) D̄

∗

kt
−γ − N̄

∗

K

]

with K as and A1 as defined earlier. The eigenvalues are given by the zeros of the characteristic
polynomial, found by solving for s in(

−γ − D̄
∗

K
− s
)(
−γ − N̄

∗

K
− s
)
−
(
−N̄

∗

kc
− λk (M0)

N̄
∗

kt

)(
−D̄

∗

kc
− λk (M0)

D̄
∗

kt

)
= 0.

The first term multiplies out to

s2 +

[
2γ +

N̄
∗

+ D̄
∗

K

]
s+

[
γ2 +

N̄
∗
D̄
∗

K2
+
γ

K

(
N̄
∗

+ D̄
∗)]

and the second contributes the following terms, independent of s:

−
(
N̄
∗

kc
+ λk (M0)

N̄
∗

kt

)(
D̄
∗

kc
+ λk (M0)

D̄
∗

kt

)
= −N̄

∗
D̄
∗

k2
c

− 2λk (M0)
N̄
∗
D̄
∗

kckt
− λk (M0)2 N̄

∗
D̄
∗

k2
t

.

To be biologically attainable the parameters and steady-state values must all be positive, such that
the quadratic in s has positive coefficients for the first- and second-order terms. If the roots are
complex then assuming nonzero decay and nontrivial solutions, the real part is given by

−
[
2γ + N̄

∗
+D̄
∗

K

]
2

< 0,

guaranteeing stability.
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If the roots are real, then they will be negative if the zeroth-order term is positive. However, if
the zeroth-order term is negative, then one root will be positive and the system will not be stable.
Neglecting the expressions in γ, which by observation must be positive, the contributions to the
zeroth-order term are

N̄
∗
D̄
∗

K2
− N̄

∗
D̄
∗

k2
c

− 2λk (M0)
N̄
∗
D̄
∗

kckt
− λk (M0)2 N̄

∗
D̄
∗

k2
t

=
N̄
∗
D̄
∗

(kc + kt)
2 − k2

t N̄
∗
D̄
∗ − 2kcktλk (M0) N̄

∗
D̄
∗ − λk (M0)2 k2

c N̄
∗
D̄
∗

k2
ck

2
t

=
N̄
∗
D̄
∗ (
k2
c + 2kckt

)
− 2kcktλk (M0) N̄

∗
D̄
∗ − λk (M0)2 k2

c N̄
∗
D̄
∗

k2
ck

2
t

=
N̄
∗
D̄
∗

k2
ck

2
t

[
k2
c

(
1− λk (M0)2

)
+ 2kckt (1− λk (M0))

]
.

By our choice of M0, λk (M0) ∈ [−1, 1], therefore the bottom expression is minimized to 0 by
λk (M0) = 1. Since this expression contains all the possible negative contributions to the zeroth-
order term, the overall zeroth-order term cannot be negative, and hence the roots of the character-
istic polynomial must be negative, implying stability of the system with given M0 for all biologically
relevant parameter choices.

9.2 Lateral Inhibition with Mutual Inactivation (LIMI)

The system equations are the same as for the mutual inactivation model (5), except that now Delta
production is repressed by reporter protein:

Ṅi(t) = βN − γNi(t)−
Ni(t)vDi (t)

kt
− Ni(t)Di(t)

kc

Ḋi(t) =
(
β̄
D

+ ui

)
1

1+Ri(t)m
− γDi(t)−

Di(t)vNi (t)

kt
− Ni(t)Di(t)

kc

Ṙi(t) = βR
(Ni(t)vDi (t))

n

kRS+(Ni(t)vDi (t))
n − γRRi(t)

yi(t) = Cxi(t)

wi(t) =

[
Ni(t)

Di(t)

]
v(t) = (M ⊗ I2)w(t)

. (27)

When linearized at steady state, the relevant matrices are

A =

−γ −
v̄∗D
kt
− D̄

∗

kc
− N̄

∗

kc
0

− D̄
∗

kc
−γ − v̄∗N

kt
− N̄

∗

kc
−a

b1 0 −γR

 ,

Bv =

 0 − N̄
∗

kt

− D̄
∗

kt
0

0 b2

 , Bu =

0
1
0

 ,
C =

[
0 0 1

]
, G =

[
1 0 0
0 1 0

]
where b1, b2 are defined as before and

a := m
R̄
∗m−1(

1 + R̄
∗m)2 .
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9.3 Simplest Lateral Inhibition by Mutual Inactivation (SLIMI)

The system equations are

Ṅi(t) = αN + βN
(Ni(t)vDi (t))

n

kNS+(Ni(t)vDi (t))
n − γNi(t)−

Ni(t)vDi (t)

kt
− Ni(t)Di(t)

kc

Ḋi(t) = β̄
D

+ ui − γDi −
Di(t)vNi (t)

kt
− Ni(t)Di(t)

kc

yi(t) = Cxi(t)

wi(t) =

[
Ni(t)

Di(t)

] . (29)

When linearized at steady state, the relevant matrices are

A =

[
b1 − γ −

v̄∗D
kt
− D̄

∗

kc
− N̄

∗

kc

− D̄
∗

kc
−γ − v̄∗N

kt
− N̄

∗

kc

]
,

Bv =

[
0 b2 − N̄

∗

kt

− D̄
∗

kt
0

]
, Bu =

[
0
1

]
,

G =

[
1 0
0 1

]
where now

b1 := βNnkNS
v̄∗nD N̄

∗n−1(
kNS +

(
N̄
∗
v̄∗D
)n)2 , b2 :=

N̄
∗

v̄∗D
b1.
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Figure 19: Three different models for the Notch-Delta interaction produce qualitatively similar
filter characteristics. Top row, a two-sided exponential input gradient of Delta production rate (solid light
gray) results in two sharp bands of Notch activity (dotted yellow) that spatially segregates steady-state levels
of Notch (solid blue) and Delta (dashed orange). Curves are normalized to their respective maxima. Note
that the SLIMI model lacks a reporter protein and so does not have an output measure for Notch activity.
Middle row, the magnitude of the filter coefficients for each possible output. Because the spatial modes
correspond to the DFT basis, the coefficients exhibit mirror-image symmetry about k = N

2 ; we plot only
the first half of the coefficients to better visualize the filter’s characteristic highpass shape for output Notch
activity, and lowpass shape for Delta and Notch (with a pi

2 phase shift in Notch expression). Each set of
coefficients has been individually normalized to the maximum in each set. Bottom row, the H2 norm is
qualitatively similar to the filter characteristic for the corresponding output. The coefficients here are not
normalized in order to better visualize the large gain in Notch expression relative to Delta or activity levels.
Parameters for all models are given in Table 1.
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Figure 20: System response to correlated vs. uncorrelated noise is similar across models. The
most notable behavioral difference between models is that the LIMI model rejects uncorrelated noise slightly
more strongly for readout Delta. Parameters for all models are given in Table 1.
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10 DIGIT FORMATION

Parameter Value Description

αsox9 0 constitutive Sox9 production rate
αbmp 16.9 constitutive Bmp production rate
αwnt 13.7 constitutive Wnt production rate
k2 1 Bmp promotion of sox9 expression
k3 1 Wnt repression of sox9 expression
k4 1.59 Sox9 repression of bmp expression
k5 0.1 Bmp decay rate
k7 1.27 Sox9 repression of wnt expression
k9 0.1 Wnt decay rate
db 2.5 diffusion coefficient for Bmp
dw 1 diffusion coefficient for Wnt
l 1.7 distance between cells

Table 2: Parameters used in the simulations of digit formation, unless noted otherwise in the text (Figures
10, 8, 9). Values are from Table ST4 and text of [26].

Parameter Value Description

αsox9 0 constitutive Sox9 production rate
αbmp 0.1 constitutive Bmp production rate
αwnt 1.2 constitutive Wnt production rate
µF 0.1 Fgf decay rate
k2 1 Bmp promotion of sox9 expression
k3 3 Wnt repression of sox9 expression
k4 6 Sox9 repression of bmp expression
k5 0.1 Bmp decay rate
k7 2.4 Sox9 repression of wnt expression
k9 0.1 Wnt decay rate
kf

2
3 strength of Fgf influence on k4, k7

db 160 diffusion coefficient for Bmp
dw 25 diffusion coefficient for Wnt
dF 600 diffusion coefficient for Fgf
l 4 distance between cells

Table 3: Parameters used in the simulations of digit formation with a morphogen gradient, unless noted
otherwise in the text (Figures 12, 21 to 30). Values are from Methods in [27] (Figures 4 and 5).
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Figure 21: Magnitude of filter coefficients for input background production rate and readout [Sox9] as
production rates for Wnt and Bmp are varied. Increasing the ratio of αwnt to αbmp shrinks the size and
magnitude of the passband. Images are normalized to the same scale (min. 0, max. 2.19). Other parameters
are from Table 3.
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Figure 22: Simulated outputs Sox9 (red) and Wnt (blue) for changing production rates of Wnt and Bmp.
Smaller αbmp exaggerates the effect of the Fgf gradient on [Wnt]. Readouts are normalized independently
to the same scale across all images. Other parameters are from Table 3.
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Figure 23: Simulated readouts with saturation for Sox9 (red) and Wnt (blue) for changing production
rates of Wnt and Bmp. As observed in [27], higher ratios of αwnt to αbmp produce more spotlike patterns.
Readouts are normalized independently to the same scale across all images. Other parameters are from
Table 3.
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Figure 24: Full plots for the magnitude of filter coefficients for varying Wnt production and Bmp promotion
of sox9 expression (see insets in Figure 12). The coefficients exhibit hexagonal symmetry when tiled on a
hexagonal lattice. Readouts are normalized independently to the same scale across all images. Other
parameters are from Table 3.
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Figure 25: Full simulated readouts for Sox9 (red) and Wnt (blue) for changing Wnt production rate and
Bmp promotion (see Figure 12). Readouts are normalized independently to the same scale across all images.
Other parameters are from Table 3.

55



Figure 26: Full simulated readouts with saturation for Sox9 (red) and Wnt (blue) for changing Wnt
production rate and Bmp promotion (see Figure 12). Readouts are normalized independently to the same
scale across all images. Other parameters are from Table 3.
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Figure 27: H2 norms with readout [Sox9] for 100% uncorrelated white noise inputs to sox9, bmp, and wnt.
Images are normalized to the same scale as Figure 28 (min. 0, max. 3.43). Other parameters are from Table
3.
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Figure 28: H2 norms with readout [Sox9] for 100% correlated white noise inputs to sox9, bmp, and wnt.
Images are normalized to the same scale as Figure 27 (min. 0, max. 3.43). Other parameters are from Table
3.
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Figure 29: H2 norms with readout [Wnt] for 100% uncorrelated white noise inputs to sox9, bmp, and wnt.
Images are normalized to the same scale as Figure 30 (min. 0, max. 2.28). Other parameters are from Table
3.
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Figure 30: H2 norms with readout [Wnt] for 100% correlated white noise inputs to sox9, bmp, and wnt.
Images are normalized to the same scale as Figure 29 (min. 0, max. 2.28). Other parameters are from Table
3.
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