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Abstract

We establish existence and uniqueness of solutions to evolutive fractional Mean Field
Game systems with regularizing coupling, for any order of the fractional Laplacian s ∈ (0, 1).
The existence is addressed via the vanishing viscosity method. In particular, we prove that
in the subcritical regime s > 1/2 the solution of the system is classical, while if s ≤ 1/2
we find a distributional energy solution. To this aim, we develop an appropriate functional
setting based on parabolic Bessel potential spaces. We show uniqueness of solutions both
under monotonicity conditions and for short time horizons.
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1 Introduction

This paper deals with the following backward-forward coupled system of integro-differential
Hamilton-Jacobi-Bellman (HJB) and Fokker-Planck equations











−∂tu+ (−∆)su+H(x,Du) = F [m(t)](x) in QT

∂tm+ (−∆)sm− div(mDpH(x,Du)) = 0 in QT

m(x, 0) = m0(x), u(x, T ) = uT (x) in Td ,

(1)

where QT := Td× [0, T ], Td stands for the flat torus Rd/Zd, H = H(x, p) is a superlinear Hamil-
tonian in the second variable, (−∆)su is the fractional Laplacian of order s, F is a regularizing
coupling and m0, uT are given functions.

Systems of the form (1) arise in Mean Field Games (briefly MFG) theory, whose goal is to
describe the collective behavior of a continuum of rational agents, each of whom seeks to minimize
a common criterion. This theory was developed independently by Lasry-Lions [39] and by Huang
et al. [31] with the aim of describing Nash equilibria in differential games with infinitely many
players. Recently, MFG theory has stimulated an increasing interest due to the wide range of
applications in engineering, finance and social sciences among others.

From a PDE viewpoint, the analysis of such models has been carried out either when the
dynamics of the average player is driven by standard diffusions (see for example [27, 39]), possibly
degenerate [12], or first order (deterministic) systems (see e.g. [11, 13]). Our purpose is to study
an intermediate situation, where the dynamics of agents is perturbed by a 2s-stable Lévy process
instead of the standard diffusion. Lévy processes meet a variety of challenging topics ranging
from financial modeling (see e.g. the monograph [18]) to physics and biology among others. We
refer to [6, 51] for a comprehensive treatment of stable-like processes, to the monograph [2] for
a more general analysis on jump-type processes and the nice survey [1].

The stationary counterpart of (1), which heuristically describes an equilibrium state in the
long-time regime, has been analyzed very recently by the first author and collaborators [14]. In
particular, in [14] the investigation is performed for the subcritical order of the fractional Lapla-
cian s ∈ (12 , 1), both in the case of local and nonlocal coupling between the equations. There, the
well-posedness of the fractional Fokker-Planck equation is based on variational methods, while
the study of the fractional HJB equation is established via viscosity solutions’ techniques.

Here, we address the existence and uniqueness of solutions to (1) through the vanishing
viscosity method, namely solutions of (1) are obtained as limits (in some sense to be specified
below) of solutions uσ of the approximating viscous coupled system of PDEs











−∂tu− σ∆u + (−∆)su+H(x,Du) = F [m(t)](x) in QT

∂tm− σ∆m+ (−∆)sm− div(mDpH(x,Du)) = 0 in QT

m(x, 0) = m0(x), u(x, T ) = uT (x) in Td .

(2)
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Such way to tackle the existence issue for first order systems has been sketched in [10, Section
4.4], and it is a quite natural approach in our setting: (2) behaves well in terms of regularity,
and is also meaningful from the stochastic viewpoint.

In this paper we provide existence and uniqueness results for any order of the fractional
Laplacian s ∈ (0, 1). As it often happens in the PDE literature of MFG, we consider the periodic
case, namely all the data are defined on Td. This is the typical compact setting where one avoids
boundary phenomena. While this work was under preparation, we realized that many technical
ingredients regarding fractional calculus in the periodic case were not available in the literature,
and known at best to few experts. Part of this work is then devoted to provide a self-contained
survey on several tools and techniques, ranging from harmonic analysis to interpolation theory,
hoping that these may be useful for future research in this area. This material is basically
contained in the appendices and at the beginning of Section 2.

Bessel potential spaces on the torus Hµ
p (T

d) constitute a natural functional framework for the
periodic fractional Laplacian, and can be directly defined through multiple Fourier series. Since
we deal with parabolic problems, we also need suitable space-time spaces, on which it is possible
to establish (linear) parabolic regularity. Here, one expects space regularity of a solution and of
its time derivative to differ by a factor of 2s. Hence, we systematically treat spaces of the form

H
µ
p (QT ) = H

µ;s
p (Td × (0, T )) = {u ∈ Lp(0, T ;Hµ

p (T
d)) , ∂tu ∈ Lp(0, T ;Hµ−2s

p (Td))},

that are clearly reminiscent of classical parabolic Sobolev spaces W 2,1
p . We prove some fractional

parabolic regularity theorems, and chain/product rules that are crucial to work in the nonlinear
setting. Then, inspired by some results that appeared in the context of stochastic partial differ-
ential equations, we prove an embedding theorem for Hµ

p (QT ) that, apart from its own interest,

plays a key role in the analysis of (1). We refer to [15] for some discussions on H
µ,s
p ((0, T )×Rd),

and [34] and references therein for the case s = 1.
Let us now enter into a more detailed description of the main results of the paper. First,

let us state all the assumptions that will be in force throughout the article. We suppose that
H(x, p) is C3(Td × Rd), convex in the second variable, H(x, p) ≥ H(x, 0) = 0 and there exist
constants γ > 1 and cH , CH , C̃H > 0 such that

DpH(x, p) · p−H(x, p) ≥ CH |p|γ − cH , (H1)

H(x, p)−H(x, q) ≤ CH(|p|γ−1 + |q|γ−1)|p− q| (H2)

|D2
xxH(x, p)| ≤ CH |p|γ + C̃H , (H3)

|D2
pxH(x, p)| ≤ CH |p|γ−1 + C̃H , (H4)

D2
ppH(x, p)ξ · ξ ≥ CH |p|γ−2|ξ|2 − C̃H (H5)

for every x ∈ Td, p ∈ Rd and ξ ∈ Rd. Denote by P(Td) the set of Borel probability measures on Td

endowed with the Monge-Kantorovich distance1 d1. The following are the standing assumptions
on the regularizing coupling F : there exists a constant CF > 0 such that

F : P(Td) → C2+α(Td) is continuous, (F1)

‖F [m1]− F [m2]‖C2+α(Td) ≤ CFd1(m1,m2) for all m1,m2 ∈ P(Td), (F2)

‖F (·,m)‖C2+α(Td) ≤ CF for every m ∈ P(Td). (F3)

Finally, we suppose that

uT ∈ C4+α(Td), m0 ∈ C4+α(Td) is non-negative and

∫

Td

m0(x)dx = 1. (I)

1d1(µ, ν) := supϕ

∫
Td ϕd(µ − ν), where the supremum is taken over the 1-Lipschitz maps ϕ : Td

→ R.
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As announced, our first step is to construct solutions of the viscous coupled system (2). More
precisely, we have the following

Theorem 1.1. Let (I), (H1)-(H5) and (F1)-(F3) be in force. Then, for all σ > 0 and s ∈ (0, 1),
there exists a classical solution (uσ,mσ) to the fractional MFG system (2).

The proof of this result is a rather standard application of Schauder’s fixed point theorem.
For fixed σ > 0, we treat (−∆)su, (−∆)sm as perturbation terms in a viscous MFG system.
Semiconcavity estimates for the HJB equation with mixed local and nonlocal diffusion term are
obtained by means of the adjoint method, that ensure existence of u. Note that these estimates
are stable as σ → 0. This limiting procedure is then described by the next main result:

Theorem 1.2. Under the same assumptions of Theorem 1.1, let (uσ,mσ) be a solution to
(2). Then, as σ → 0 and up to subsequences, uσ converges uniformly to u, Duσ converges
strongly to Du, and mσ converges weakly to m. If s ∈ (0, 1/2], then (u,m) is a weak solu-
tion to (1), and (u,m) ∈ H2s

p (QT ) × H2s−1
p (QT ) for all p ∈ (1,∞). If s ∈ (1/2, 1), then

∂tu, ∂tm, (−∆)su, (−∆)sm belong to some C
ᾱ, ᾱ

2s (QT ), ᾱ ∈ (0, 1), and (u,m) is classical solution
to (1) .

For a more complete statement of convergences of uσ, Duσ,mσ, see (i)-(vi) at the beginning
of the Proof of Theorem 1.2 in Section 4.2. Moreover, we refer to the weak notion of solution as
the energy one, as detailed in Definitions 3.1 and 3.4. We mention that very little is known about
fractional Fokker-Planck equations, so part of Section 3.1 is devoted to establish some basic facts
and properties of solutions. The weak treatment of Fokker-Planck equations with local non-
degenerate diffusion (see e.g. [47] and references therein) cannot be directly converted to the
nonlocal framework, heuristically because of the gap between the energy terms (−∆)s/2 and the
divergence term. Thus, first order techniques as the ones described in [57] for the euclidean case
are better suited to work in the nonlocal setting.

Regarding uniqueness of solutions, we recall that it is known to hold under two different
regimes for MFG driven by local diffusions. The first one requires monotonicity of F and con-
vexity of H , and appeared in the seminal papers by Lasry-Lions, while the second one is when
the time horizon T is small. The latter was formally presented in the recorded lectures of Lions,
and it has been re-analyzed recently in the literature (see [3, 4, 17]). The monotone case carries
over in our fractional framework, as we have enough regularity of u,m and uniqueness for the
equations by simple energy arguments. As for the short-time regime, the proofs proposed in
[3, 4] cannot be adapted to our setting, being designed for the Laplacian and established through
L2-type estimates. Here, we follow an approach presented in [16, 17] to deal with the existence
problem in the local case. The idea will be to exploit decay properties of the semigroup associated
to the fractional Laplacian in suitable Bessel potentials spaces. These will be strong enough only
in the case s > 1/2. We stress that here it is crucial to have fractional product (also known as
Kato-Ponce inequalities) and chain rules. As mentioned before, these are known in the euclidean
setting and particular cases only, such as for x-independent compositions. We propose here a
self-contained presentation of these results in our framework.

Our uniqueness theorem can be states as follows. For its proof, see Theorems 5.1, 5.2.

Theorem 1.3. Suppose that (I), (H1)-(H5) and (F1)-(F3) hold. Then (1) admits a unique
solution in the following cases:

(a) The monotone case. If H is convex and the following monotonicity condition holds
∫

Td

(F [m1](x)− F [m2](x))d(m1 −m2)(x) > 0 , ∀m1,m2 ∈ P(Td) ,m1 6= m2 ,

then (1) admits a unique solution.
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(b) Small-time uniqueness. For s ∈ (12 , 1), there exists T ∗ > 0, depending on d, s,H, F,m0, uT

such that for all T ∈ (0, T ∗], (1) has at most a solution.

Finally, we mention that while this work was under preparation we discovered that E. R.
Jakobsen and O. Ersland were currently studying systems similar to (1). The main difference
with respect to this work are the assumptions on s and H . In [21], s has to be greater than
1/2, and H is not necessarily convex but requires at most linear growth with respect to Du
in some cases. Since without convexity of H one cannot rely on semiconcavity arguments, a
different method to obtain crucial Lipschitz estimates is used. In [21] some models with local
couplings are also analyzed. We stress that here we develop some function space techniques to
study various regimes of regularity in the whole interval s ∈ (0, 1).

Plan of the paper. Section 2 is devoted to some preliminary tools on the functional spaces
used in the following sections. We prove the Sobolev embedding theorem for parabolic spaces
in Subsection 2.3.1. Section 3 is completely designated to the separate analysis of the viscous
fractional Fokker-Planck and HJB equations. In particular, the existence result for the latter is
given in Subsection 3.2.2. In Section 4 we prove both Theorem 1.1 and Theorem 1.2, postponing
the uniqueness to Section 5, where Theorem 1.3 is proven. As announced, in the appendices we
gather regularity results in Sobolev and Hölder spaces for non-homogeneous fractional heat-type
equations together with fractional Leibniz and composition rules on the torus.

Acknowledgements. The authors are members of the Gruppo Nazionale per l’Analisi
Matematica, la Probabilità e le loro Applicazioni (GNAMPA) of the Istituto Nazionale di
Alta Matematica (INdAM). This work has been partially supported by the Fondazione CaRi-
PaRo Project “Nonlinear Partial Differential Equations: Asymptotic Problems and Mean-Field
Games”. The second-named author wishes to thank the Department of Mathematics of the
University of Padova for the hospitality during the preparation of the paper.

2 Fractional parabolic spaces

2.1 Hölder spaces

We first recall the definition of Hölder spaces on the torus and then define the classical parabolic
Hölder spaces associated to the heat and fractional heat equation. Let α ∈ (0, 1] and k be a
non-negative integer. A real-valued function u defined on Td belongs to Ck+α(Td) if u ∈ Ck(Td)
and

[Dru]Cα(Td) := sup
x 6=y∈Td

|Dru(x)−Dru(y)|

dist(x, y)α
< ∞

for each multi-index r such that |r| = k, where dist(x, y) is the geodesic distance from x to y on
Td. Note that in the definition of the previous (and following) seminorm, since u can be seen as
a periodic function on Rd, dist(x, y) can be replaced by the euclidean distance |x − y|, and the
supremum be taken in Rd. We will denote by ‖ · ‖∞;Ω the sup-norm on Ω (and eventually drop
Ω in the subscript if it is clear from the context).

Let now I ⊆ [0, T ] and Q = Td × I. First define

[u]Cα
x (Q) := sup

t∈[0,T ]

[u(·, t)]Cα(Td)

and
[u]Cβ

t (Q) := sup
x∈Td

[u(x, ·)]Cβ(I)

5



For any integer k we denote by C2k,k(Q) the set of functions u = u(x, t) : Q → R which are
continuous in Q together with all derivatives of the form ∂r

tD
β
xu for 2r+ |β| ≤ 2k. Moreover, let

C2k+α,k+α/2(Q) be functions of C2k,k(Q) such that the derivatives ∂r
tD

β
xu, with 2r + |β| = 2k,

are α-Hölder in x and α/2-Hölder in t, with norm

‖u‖C2k+α,k+α/2(Q) =
∑

2r+|β|≤2k

‖∂r
tD

β
xu‖∞;Q +

∑

2r+|β|=2k

[∂r
tD

β
xu]Cα

x (Q) + [∂r
tD

β
xu]Cα/2

t (Q)
.

For these classical parabolic Hölder spaces, we refer the interested reader to [24, 33, 37] for a
more comprehensive discussion.

We now consider some more general Hölder spaces. Let X be a Banach space and β ∈ (0, 1).
Denote by Cβ(I;X) the space of functions u : I → X such that the norm defined as

‖u‖Cβ(I;X) := sup
t∈I

‖u(t)‖X + sup
t6=τ

‖u(t)− u(τ)‖X
|t− τ |β

is finite. Hence, specializing to X = Cα(Td), α ∈ (0, 1), we have that Cβ(I;Cα(Td)) is the set
of functions u : I → Cα(Td) with finite norm

‖u‖Cβ(I;Cα(Td)) := ‖u‖∞;Q + sup
t∈I

[u(·, t)]Cα(Td) + [u]Cβ(I;Cα(Td)) ,

where the last seminorm is defined as

[u]Cβ(I;Cα(Td)) := sup
t6=τ∈I

‖u(·, t)− u(·, τ)‖Cα(Td)

|t− τ |β
.

When dealing with regularity of parabolic equations driven by fractional diffusion, we also need
the following Hölder spaces with different regularity in time and space. Following the lines of [8]
and [23], we define Cα,β(Q) as the space of continuous functions u such that the following Hölder
parabolic seminorm is finite

[u]Cα,β(Q) := [u]Cα
x (Q) + [u]Cβ

t (Q). (3)

The norm in the space Cα,β(Q) is defined naturally as

‖u‖
Cα,β(Q) := ‖u‖∞;Q + [u]Cα,β(Q) .

Note that if β = α/2, the space Cα,β(Q) coincides with Cα,α/2(Q). As pointed out in [23], the
following equivalence between seminorms holds

[u]Cα,β(Q) ∼ sup
x,y∈Td,t,τ∈[0,T ]

|u(x, t)− u(y, τ)|

dist(x, y)α + |t− τ |β
.

All the spaces above can be defined analogously on Rd and Q = Rd × I. Moreover, if u is a
periodic function in the x-variable, norms on Td and Rd coincide, e.g. ‖u‖Cα(Td) = ‖u‖Cα(Rd),
...

Remark 2.1. It is worth noticing that we have to distinguish the spaces Cβ([0, T ];Cα(Td)) and
Cα,β(Q), since it results

Cβ([0, T ];Cα(Td)) ( C
α,β(QT ) .

It can be easily seen by taking β = α and a periodic function in the x-variable that behaves like
(x+ t)α in a neighborhood of (0, 0) (see in particular [48, Section 4]).
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2.2 Fractional Sobolev and Bessel potential spaces

Recall that Lp(Td) is the space of all measurable and periodic functions belonging to Lp
loc(R

d)
with norm ‖ · ‖p = ‖ · ‖Lp((0,1)d). If k is a non-negative integer, W k,p(Td) consists of Lp(Td)

functions with (distributional) derivatives in Lp(Td) up to order k. For µ ∈ R and p ∈ (1,∞),
we can directly define the Bessel potential space Hµ

p (T
d) as the space of all distributions u such

that (I −∆)
µ
2 u ∈ Lp(Td), where (I −∆)

µ
2 u is the operator defined in terms of Fourier series

(I −∆)
µ
2 u(x) =

∑

k∈Zd

(1 + 4π2|k|2)
µ
2 û(k)e2πik·x ,

where

û(k) =

∫

Td

u(x)e−2πik·xdx .

The norm in Hµ
p (T

d) will be denoted by

‖u‖µ,p :=
∥

∥

∥(I −∆)
µ
2 u
∥

∥

∥

p
.

Note that Hk
p (T

d) coincides with W k,p(Td) when k is a non-negative integer and p ∈ (1,∞),

by standard arguments in Fourier series (see Remark 2.3 below). Moreover, C∞(Td) is dense in
Hµ

p (T
d), by a convolution procedure: this fact will be useful to prove several properties of Bessel

spaces, as it is sufficient to argue in the smooth setting to get general results.
Bessel potential spaces can be also constructed via complex interpolation. We will briefly

present such a construction, that will be helpful to derive some useful properties of Hµ
p (T

d). For
additional details, we refer to [44, Chapter 2], [5, Chapter 4] and [56, Section 1.9]. In general,
in complex interpolation theory one considers two Banach spaces X,Y , that are continuously
embedded in a Hausdorff topological vector space Z. Let S be the set

S := {z ∈ C : 0 < Rez < 1} .

We define

HX,Y (S) := {u(θ) |u(θ) : S → X + Y bounded and continuous,

holomorphic on S, ‖u(it)‖X , ‖u(1 + it)‖Y bounded for t ∈ R}

and we equip it with the norm

‖u‖HX,Y (S) = max{sup
t∈R

‖u(it)‖X , sup
t∈R

‖u(1 + it)‖Y }.

For every θ ∈ [0, 1] we define the complex interpolation space with respect to (X,Y ) as

[X,Y ]θ = {u(θ) : u ∈ HX,Y (S)}

endowed with the norm

‖f‖[X,Y ]θ := inf
u∈HX,Y (S),u(θ)=f

‖u‖HX,Y (S) .

Then, one has that Hµ
p (T

d) can be obtained by complex interpolation between Lp(Td) and

W k,p(Td), see, e.g., [52, Section 3] or [5, Theorem 6.4.5 and p. 170], that is

Hµ
p (T

d) ≃ [Lp(Td),W k,p(Td)]θ, where µ = kθ.

7



We briefly describe also some tools to construct real interpolation spaces, namely the so-called
K-method and the trace method, referring, among others, to [43, Chapter 1] or [44, Chapter 1]
for additional details. In general, real interpolation between Lp(Td) and W k,p(Td) leads to spaces
that do not coincide with Bessel potential spaces. Still, we will make use of this other class of
fractional spaces to prove useful properties of (−∆)s. Let X,Y be Banach spaces with Y ⊂ X ,
θ ∈ [0, 1] and p ∈ [1,∞]. For every x ∈ X and t > 0, define

K(t, x,X, Y ) = inf
x=a+b,a∈X,b∈Y

‖a‖X + t‖b‖Y .

If I ⊂ (0,∞), we denote by Lp
∗(I) the Lebesgue space Lp(I, dt

t ) and L∞
∗ (I) = L∞(I). We define

the real interpolation space (X,Y )θ,p between the Banach spaces X,Y as

(X,Y )θ,p = {x ∈ X + Y : t 7→ t−θK(t, x,X, Y ) ∈ Lp
∗(0,+∞)}

endowed with the norm
‖x‖θ,p = ‖t−θK(t, x,X, Y )‖Lp

∗(0,+∞) .

It can be proved that this is a Banach space. We remark that such a construction turns out to
be useful to prove Hölder regularity of the solution of the fractional heat equation in Theorem
B.1. Another frequent characterization of real interpolation spaces is given by means of the trace
method (see [56, Section 1.8.1], [43, Section 1.2.2] and [41]). Let X,Y be Banach spaces as above.
For α, p ∈ R with p ∈ (1,+∞) satisfying 0 < α+ 1

p < 1, we define the space

W (p, α, Y,X) = {f : R+ → X : tαf(t) ∈ Lp(0,+∞;Y ) and tαf ′(t) ∈ Lp(0,+∞;X)} .

It is a Banach space endowed with the norm

‖f‖W (p,α,Y,X) := max{‖tαf(t)‖Lp(0,+∞;Y ), ‖t
αf ′(t)‖Lp(0,+∞;X)} .

We then identify with T (p, α, Y,X) the space of traces u of those functions f(t) ∈ W (p, α, Y,X),
equipped with the norm

‖u‖T (p,α,Y,X) = inf
u=f(0)

‖f‖W (p,α,Y,X)

By [43, Proposition 1.2.10], this provides a characterization for the real interpolation space
(X,Y )θ,p as a trace space. For p ∈ (1,∞), θ ∈ (0, 1) and θ = 1

p +α, we define fractional Sobolev

spaces W 1−θ,p(Td) by
W 1−θ,p(Td) = T (p, α,W 1,p(Td), Lp(Td)).

For µ > 1, Wµ,p(Td) is defined as the space of functions in W ⌊µ⌋,p(Td) with derivatives of
order ⌊µ⌋ in Wµ−⌊µ⌋,p(Td), while for µ < 0 it is defined by duality. Note that T (p, α, Y,X) =
T (p′,−α,X ′, Y ′) by [41, Theorem 1.2].

We finally mention that spaces Wµ,p(Td) defined above can be characterized using the
Gagliardo seminorm on Td by transposing classical arguments on Rd (see, e.g., [44]).

Parabolic spaces. We proceed with the definitions of some functional spaces involving time
and space weak derivatives. Let Q = Td×I be as before. For any integer k and p ≥ 1, we denote
by W 2k,k

p (Q) the space of functions u such that ∂r
tD

β
xu ∈ Lp(Q) for any multi-index β and r

such that |β|+ 2r ≤ 2k endowed with the norm

‖u‖W 2k,k
p (Q) =





∫∫

Q

∑

|β|+2r≤2k

|∂r
tD

β
xu|

pdxdt





1
p

.
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We now define the fractional generalization of the above spaces. Let again µ ∈ R and p ∈ (1,∞).
We denote by Hµ

p (Q) := Lp(0, T ;Hµ
p (T

d)) the space of measurable functions u : (0, T ) → Hµ
p (T

d)
endowed with the norm

‖u‖
H

µ
p (Q) :=

(

∫ T

0

‖u(·, t)‖pHµ
p (Td) dt

)
1
p

.

We define the space Hµ
p (Q) = Hµ;s

p (Q) as the space of functions u ∈ Hµ
p (Q) with ∂tu ∈

(H2s−µ
p′ (Q))′ equipped with the norm

‖u‖
H

µ
p (Q) := ‖u‖

H
µ
p (Q) + ‖∂tu‖(H2s−µ

p′
(Q))′ .

We refer the reader to [15]. Note that the above definitions make sense also when s = 1 (we will
usually drop the superscript s for brevity). Those are natural spaces in the standard parabolic
setting: see [34] and [17], [7, Chapter 6] for properties in the case s = 1. Note that (H2s−µ

p′ (Q))′

coincides with Hµ−2s
p (Q).

Moreover, all the aforementioned spaces can be defined analogously on Rd and Rd×I, mutatis
mutandis. In particular, one has to consider (I − ∆)

µ
2 u as the operator acting on tempered

distributions in terms of the Fourier transform F:

F[(I −∆)
µ
2 u](ξ) = (1 + 4π2|ξ|2)

µ
2 Fu(ξ), ∀ξ ∈ Rd.

2.3 The fractional Laplacian on the torus

In this section we recall the definition of the fractional Laplacian on the flat torus. Let u : Td → R.
The fractional Laplacian on the torus can be defined via the multiple Fourier series

(−∆Td)µu(x) = (2π)2µ
∑

k∈Zd

|k|2µû(k)e2πik·x , µ > 0 .

With a slight abuse of notation, we will denote this operator by (−∆)s. Indeed, generally
speaking (−∆Td)s coincides with the standard fractional Laplacian on Rd acting on periodic
functions. We refer the reader to [50, 19] for additional details, and to [49] for transference
properties from the torus to the euclidean space. Note that in our analysis we never make use
of the integral representation formula for the fractional Laplacian on the torus.

We present two standard results that will be useful in the sequel

Lemma 2.2. For every smooth f, g, the following identity holds true for any s ∈ (0, 1)

∫

Td

(−∆)sfgdx =

∫

Td

(−∆)s/2f (−∆)s/2gdx =

∫

Td

f(−∆)sgdx .

Proof. The functions f and g can be written by multiple Fourier series expansion

f(x) =
∑

ν∈Zd

f̂(ν)e2πiν·x and g(x) =
∑

µ∈Zd

ĝ(µ)e2πiµ·x.

9



Then

∫

Td

(−∆)sfgdx = (2π)2s
∫

Td

∑

ν,µ∈Zd

|ν|2sf̂(ν)e2πiν·xĝ(µ)e2πiµ·xdx

= (2π)2s
∑

ν,µ∈Zd

|ν|2sf̂(ν)ĝ(µ)

∫

Td

e2πi(ν+µ)·xdx = (2π)2s
∑

ν+µ=0

|µ|s|ν|sf̂(ν)ĝ(µ)

∫

Td

e2πi(ν+µ)·xdx

= (2π)2s
∑

ν,µ∈Zd

|µ|s|ν|sf̂(ν)ĝ(µ)

∫

Td

e2πi(ν+µ)·xdx

= (2π)2s
∫

Td

∑

ν,µ∈Zd

|ν|sf̂(ν)eiν·x|µ|sĝ(µ)e2πiµ·xdx =

∫

Td

(−∆)
s
2 f(−∆)

s
2 gdx ,

where we used that
∫

Td e
2πi(ν+µ)·xdx = 0 if and only if µ+ ν 6= 0 and the fact that the Fourier

series defining f and g converge absolutely.

Remark 2.3. We point out that the operator (I −∆)
µ
2 maps isometrically Hη+µ

p (Td) to Hη
p (T

d)

(and therefore spaces Hη+µ
p to H

η
p) for any η, µ ∈ R, Moreover, for µ > 0, the operator (−∆)

µ
2

is bounded from Hη+µ
p (Td) to Hη

p (T
d). Indeed, T µ := [(−∆)

µ
2 (I −∆)−

µ
2 ], µ > 0 is bounded in

Lp(Rd) (see [54, p. 133]), so

‖(−∆)
µ
2 u‖Lp(Rd) ≤ C(s, p)‖u‖Hµ

p (Rd). (4)

In other words, (2π)µ|ξ|µ(1 + 4π2|ξ|2)−
µ
2 defines a Fourier multiplier on Lp(Rd). Then, by the

transference result [55, Theorem VIII.3.8], the periodized operator given by

T̃ µu :=
∑

k∈Zd

(2π)µ|k|µ(1 + 4π2|k|2)−
µ
2 û(k)e2πik·x

is in turn bounded in Lp(Td). It then follows

‖(−∆)
µ
2 u‖Lp(Td) = ‖T̃ µ(I −∆)

µ
2 u‖Lp(Td) ≤ C‖(I −∆)

µ
2 u‖Lp(Td) = C‖u‖Hµ

p (Td) , (5)

so (−∆)
µ
2 is bounded from Hµ

p (T
d) to Lp(Td). The general case follows by using the isometry

(I −∆)
η
2 .

Similarly, (1 + (2π)µ|ξ|µ)/(1 + 4π2|ξ|2)
µ
2 and (1 + 4π2|ξ|2)

µ
2 /(1 + (2π)µ|ξ|µ) define Fourier

multipliers on Lp(Rd) for 1 < p < ∞, and by continuity they transfer to Lp(Td). This proves
the equivalence of norms ‖ · ‖µ,p and ‖ · ‖p + ‖(−∆)

µ
2 · ‖p.

By analogous arguments involving Fourier multipliers, one proves that Hk
p (T

d) coincides with

W k,p(Td) when k is a non-positive integer and p ∈ (1,∞). See [29] for the euclidean case, that
easily transfers to the periodic setting.

The following interpolation estimates hold.

Lemma 2.4. Let u ∈ Lp(Td), p ∈ (1,∞).

(i) If s ∈ (0, 12 ) and Du ∈ Lp(Td), then for every δ > 0 there exists C(δ) > 0 depending on
δ, d, s, p such that

‖(−∆)su‖p ≤ δ ‖Du‖p + C(δ) ‖u‖p .
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(ii) If s ∈ [ 12 , 1) and D2u ∈ Lp(Td), then for every δ > 0 there exists C(δ) > 0 depending on
δ, d, s, p such that

‖(−∆)su‖p ≤ δ
∥

∥D2u
∥

∥

p
+ C(δ) ‖u‖p .

Proof. The proof follows by interpolation arguments. We prove only the case (i), the other being
similar. Since H2s

p (Td) ≃ [Lp(Td),W 1,p(Td)]θ, θ = 2s, by (5) and Young’s inequality we have

‖(−∆)su‖p ≤ ‖u‖2s,p ≤ C ‖u‖
1−θ
p ‖u‖

θ
1,p ≤ (1− 2s)

(

C

ε

)
1

1−2s

‖u‖p + 2sǫ
1
2s ‖u‖1,p

where C = C(d, s, p). We then conclude (i) by setting δ := 2sǫ
1
2s and C(δ) := (1−2s)

(

C
ε

)
1

1−2s +

2sǫ
1
2s .

2.3.1 Embedding Theorems for Hµ
p

We recall some classical continuous embeddings for (stationary) Bessel potential spaces Hµ
p (T

d).

Lemma 2.5. (i) Let ν, µ ∈ R with ν ≤ µ, then Hµ
p (T

d) →֒ Hν
p (T

d).

(ii) If pµ > d and µ− d/p is not an integer, then Hµ
p (T

d) →֒ Cµ−d/p(Td).

(iii) Let ν, µ ∈ R with ν ≤ µ, p, q ∈ (1,∞) and

µ−
d

p
= ν −

d

q
,

then Hµ
p (T

d) →֒ Hν
q (T

d).

Proof. Item (i)-(iii) are proven in [36, Corollary 13.3.9], [36, Theorem 13.8.1] and [36, Theorem
13.8.7] respectively for the whole space case. The transference to the periodic setting can be
obtained as follows. Let χ ∈ C∞

0 (Rd) be a cutoff function such that χ ≡ 1 on the unit cube
[0, 1]d and 0 ≤ χ ≤ 1.

Let now u be smooth function on Td, namely a smooth periodic function on Rd. Then, it is
easy to check that the extension operator

u 7→ ũ = χu on Rd (6)

extends to a linear continuous operator W k,p(Td) → W k,p(Rd), for all non-negative integers k
and p ≥ 1. The spaces Hµ

p (R
d) and Hµ

p (T
d) can be both obtained via complex interpolation,

that is for some θ ∈ (0, 1) and k ≥ µ ≥ 0, Hµ
p (T

d) ≃ [Lp(Td),W k,p(Td)]θ and Hµ
p (R

d) ≃

[Lp(Rd),W k,p(Rd)]θ. Moreover, they coincide with Wµ,p(Td) and Wµ,p(Rd) respectively when
µ is a non-negative integer. Therefore, the extension operator (6) is also bounded on Hµ

p (T
d) →

Hµ
p (R

d) by interpolation (see [56, Theorem (a), p. 59] and [44, Chapter 2]).Thus, for all µ ≥ 0,

‖u‖Lp(Td) ≤ ‖ũ‖Lp(Rd) ≤ C‖ũ‖Hµ
p (Rd) ≤ C1‖u‖Hµ

p (Td), (7)

that implies (i) in the case ν = 0 (note that for the first inequality in (7) to be true, it is crucial
to work in Lp, so that the restriction operator Lp(Rd) → Lp(Td) is continuous). The general
case ν 6= 0 follows by applying to (7) the isometry (I −∆)ν/2. Items (ii) and (iii) are obtained
analogously.
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2.3.2 Embedding Theorems for parabolic spaces Hµ
p

We now prove continuous embedding theorems for the spaces Hµ
p (QT ) = Hµ;s

p (QT ), where QT =

Td × (0, T ). As usual, we will denote continuous embeddings of Banach spaces by the symbol
X →֒ Y . All the results of this section are valid for s ∈ (0, 1]. We will basically follow the strategy
of [34, Theorem 7.2], where analogous results are proven for (stochastic) spaces associated to
heat-type equations (that is, for s = 1) on Rd × (0, T ) (see also [35]). In addition, we refer to [7,
Theorem 6.2.2], [17, Proposition 2.2] and [45, Theorem A.3] for the case s, µ = 1. We first state
the main result of this section and, at the end, we will deduce some useful corollaries.

Theorem 2.6. Let ε > 0, µ ∈ R, p > 1, u ∈ Hµ
p (QT ) and u(0) ∈ H

µ−2s/p+ε
p (Td). If β is such

that
s

p
< β < s,

then u ∈ C
β
s −

1
p ([0, T ];Hµ−2β

p (Td)). In particular, there exists C > 0 depending on d, p, β, s, T, ε,
such that

‖u(·, t)− u(·, τ)‖
p
µ−2β,p ≤ C|t− τ |

β
s p−1(‖u‖

H
µ
p (QT ) + ‖u(0)‖µ−2s/p+ε,p)

for 0 ≤ t, τ ≤ T . Hence,

‖u‖
C

β
s
−

1
p ([0,T ];Hµ−2β

p (Td))
≤ C(‖u‖

H
µ
p (QT ) + ‖u(0)‖µ−2s/p+ε,p) . (8)

Note that the constant C remains bounded for bounded values of T .

We first need some estimates in the spaces of Bessel potentials for the semigroup Tt associated
to the fractional Laplacian. Recall that for a given smooth u, Ttu := v(t), where v solves

{

∂tv + (−∆)sv = 0 in QT ,

v(0) = u in Td.

Then we have the following standard representation formula that can be obtained via Fourier
transform

Ttu(x) =

∫

Rd

pt(x− y)u(y)dy = pt ⋆Rd u(x), (9)

where pt(x) := F−1(e−t|ξ|2s)(x) =
∫

Rd e
2πix·ξe−t|ξ|2sdξ. In the periodic case, namely if u : Td →

R, defining p̂t(x) :=
∑

z∈Zd pt(x+ z) =
∑

z∈Zd e−t|z|2se2πiz·x, we note that

Ttu(x) =

∫

Rd

pt(x− y)u(y)dy =
∑

z∈Zd

∫

(0,1)d+z

pt(x− y)u(y + z)dy

=

∫

Td

∑

z∈Zd

pt(x− y − z)u(y)dy =

∫

Td

p̂t(x− y)u(y)dy = p̂t ⋆Td u(x). (10)

This shows that some properties of the fractional heat semigroup on the whole space Rd can be
directly transferred to the periodic case. First, ‖pt‖L1(Rd) = 1, so ‖p̂t‖L1(Td) = 1, readily yielding

‖Ttf‖p ≤ ‖f‖p ∀p ∈ [1,∞] , (11)
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by Young’s inequality for convolutions. Moreover, pt(x) = t−d/2sp1(t
−1/2sx) by rescaling, hence

for a multiindex β we have
∥

∥Dβ p̂t
∥

∥

L1(Td)
≤
∥

∥Dβpt
∥

∥

L1(Rd)
≤ t−|β|/2s

∥

∥Dβp1
∥

∥

L1(Rd)
≤ Ct−|β|/2s, (12)

by boundedness of
∥

∥Dβp1
∥

∥

L1(Rd)
(see, e.g., [58, Lemma 2.4]).

Remark 2.7. Representation formula (10) and decay estimates (11) imply that for any f ∈
C∞(Td) and multiindices k,m ∈ N,

‖Dk+m
Ttf‖p ≤ Ct−

k
2s ‖Dmf‖p ∀p ∈ [1,∞] . (13)

On the one hand, this shows that for t > 0, Tt maps Cm(Td) onto Ck+m(Td). On the other hand,
exploiting the density of C∞(Td) in Hµ

p (T
d), one obtains that Tt is bounded from Wm,p(Td) to

W k+m,p(Td).

In addition, note that, for µ ∈ R, it results

Tt(I −∆)
µ
2 u = (I −∆)

µ
2 Ttu. (14)

The equality can be verified by taking its Fourier transform.

Lemma 2.8. (i) For any p > 1 and ν ∈ R,γ ≥ 0, we have for all f ∈ Hν
p (T

d)

‖Ttf‖ν+γ,p ≤ Ct−γ/2s ‖f‖ν,p ,

where C = C(ν, γ, d, s, p).

(ii) For any θ ∈ [0, s] and p > 1, there exists a constant C = C(d, s, p, θ) such that, for all
f ∈ H2θ

p (Td), it holds

‖Ttf − f‖p ≤ Ctθ/s ‖f‖2θ,p . (15)

Proof. To prove (i) one can restrict without loss of generality to ν = 0, since the general case
will follow by replacing f by (I −∆)−νf . The proof is a consequence of (complex) interpolation
between inequalities (11) and (13), see e.g. [56, Theorem (a) p. 59].

We prove (ii), and follow the strategy of [34, Lemma 7.3]. First, by (i) with ν = 2θ and
γ = 2s− 2θ ≥ 0, we get

‖Ttf‖2s,p ≤ Ct
θ
s−1 ‖f‖2θ,p , (16)

where C = C(d, p, θ, s). Note that (Ttf)
′ = −(−∆)sTtf . Hence, we have

‖(Tt − 1)f‖p ≤

∫ t

0

∥

∥[(−∆)s(I −∆)−s](I −∆)sTτf
∥

∥

p
dτ

≤ C

∫ t

0

‖Tτf‖2s,p dτ ≤ C ‖f‖2θ,p

∫ t

0

τ
θ
s−1dτ = Ct

θ
s ‖f‖2θ,p

where we used (16) and the fact that [(−∆)s(I − ∆)−s] is bounded in Lp(Td) (see Remark
2.3).

Remark 2.9. We observe that −(−∆)s generates an analytic semigroup Tt on Lp(Td) for all
p > 1, since the following inequality

‖−(−∆)sTtf‖p ≤ Ct−1 ‖f‖p

holds (then, argue via [46, Theorem 2.5.2] for example). The above estimate is in turn a straight-
forward consequence of Lemma 2.8-(i) with ν = 0 and γ = 2s.
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We recall the following useful lemma, and refer to [34, Lemma 7.4] (and references therein)
for its proof.

Lemma 2.10. Let p ≥ 1 and αp > 1. Then, for any continuous Lp-valued function h(·) and
τ ≤ t we have

‖h(t)− h(τ)‖
p
p ≤ C(α, p)(t− τ)αp−1

∫ t

τ

∫ t

τ

1r2>r1

‖h(r2)− h(r1)‖
p
p

|r2 − r1|1+αp
dr1dr2 (17)

= C(α, p)(t − τ)αp−1

∫ t−τ

0

dγ

γ1+αp

∫ t−γ

τ

‖h(r + γ)− h(r)‖
p
p dr .

As a consequence one has

sup
0≤τ<t≤T

‖h(t)− h(τ)‖pp
(t− τ)αp−1

≤ C(α, p)

∫ T

0

∫ T

0

1r2>r1

‖h(r2)− h(r1)‖
p
p

|r2 − r1|1+αp
dr1dr2 , (18)

where 1A denotes the indicator function of a given set A.

We now proceed with the proof of the embeddings of Hµ
p .

Proof of Theorem 2.6. Note first that since the operator (I −∆)
η
2 maps isometrically Hµ

p (QT )
onto Hµ−η

p (QT ) for any η, µ (see Remark 2.3), we just consider the case 2β = µ. We than have
to prove that

‖u(t)− u(τ)‖
p
p ≤ C|t− τ |

β
s p−1(‖u‖

H
2β
p (QT ) + ‖u(0)‖2β−2s/p+ε,p),

for 0 ≤ t, τ ≤ T .
Define

f := ∂tu+ (−∆)su, (19)

and by Duhamel’s formula we have

u(t) = Ttu(0) +

∫ t

0

Tt−τf(τ)dτ ,

where Tt is defined at the beginning of this section. We claim that

u(r + γ)− u(r) = (Tγ − 1)u(r) +

∫ γ

0

Tγ−ρf(r + ρ)dρ .

Indeed we have

Tγu(r) − u(r) +

∫ γ

0

Tγ−ρf(r + ρ)dρ

= Tr+γu(0) +

∫ r

0

Tr+γ−τf(τ)dτ − u(r) +

∫ γ

0

Tγ−ρf(r + ρ)dρ

= Tr+γu(0) +

∫ r+γ

0

Tr+γ−τf(τ)dτ − u(r) = u(r + γ)− u(r) .

Therefore,
‖u(r + γ)− u(r)‖pp ≤ C(A(r, γ) +B(r, γ)) ,
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where
A(r, γ) = ‖(Tγ − 1)u(r)‖

p
p

and

B(r, γ) =

∥

∥

∥

∥

∫ γ

0

Tγ−ρf(r + ρ)dρ

∥

∥

∥

∥

p

p

=

∥

∥

∥

∥

∫ γ

0

Tωf(r + γ − ω)dω

∥

∥

∥

∥

p

p

.

Choose α so that 1
p < α < β

s . By Lemma 2.10 we have

‖u(t)− u(τ)‖
p
p ≤ C(α, p)(t − τ)αp−1(I(t, τ) + J(t, τ)) , (20)

where

I(t, τ) =

∫ t−τ

0

dγ

γ1+αp

∫ t−γ

τ

A(r, γ)dr

and

J(t, τ) =

∫ t−τ

0

dγ

γ1+αp

∫ t−γ

τ

B(r, γ)dr .

To estimate B, we use Hölder’s inequality and Lemma 2.8-(i) (with ν = 0 and γ = 2s−2β ∈ (0, 1).
We have

B(r, γ) =

∫

Td

∣

∣

∣

∣

∫ γ

0

ω
β
s −1ω1−β

s Tωf(r + γ − ω)dω

∣

∣

∣

∣

p

dx

≤

(∫ γ

0

ω( β
s −1)qdω

)
p
q
∫ γ

0

ω(1− β
s )p

∫

Td

|Tωf(r + γ − ω)|pdx dω

≤ C(d, p, β, s)γ
β
s p−1

∫ γ

0

‖f(r + γ − ω)‖
p
2β−2s,p dω

= C(d, p, β, s)γ
β
s p−1

∫ γ

0

‖f(r + ρ)‖p2β−2s,p dρ.

This and the inequality α < β
s give

J(t, τ) ≤ C(d, p, α, β, s)

∫ t−τ

0

dγ

γ2+(α− β
s )p

∫ γ

0

dρ

∫ t−γ

τ

‖f(r + ρ)‖
p
2β−2s,p dr

≤ C(d, p, α, β, s)

∫ t−τ

0

dγ

γ2+(α−β
s )p

∫ γ

0

dρ

∫ t

0

‖f(r)‖
p
2β−2s,p dr

= C(d, p, α, β, s)(t− τ)(−α+ β
s )p

∫ t

0

‖f(r)‖
p
2β−2s,p dr. (21)

Recalling that f = ∂tu+ (−∆)su, by (4)

J(t, τ) ≤ C(d, p, α, β, s)(t − τ)(−α+ β
s )p

∫ t

0

(

‖∂tu(r)‖
p
2β−2s,p + ‖(−∆)su(r)‖p2β−2s,p

)

dr

≤ C(d, p, α, β, s)(t − τ)(−α+ β
s )p

∫ t

0

(

‖∂tu(r)‖
p
2β−2s,p + ‖u(r)‖p2β,p

)

dr

= C(d, p, α, β, s)(t − τ)(−α+ β
s )p
(

‖∂tu‖
p

H
2β−2s
p (QT )

+ ‖u‖
p

H
2β
p (QT )

)

= C(d, p, α, β, s)(t − τ)(−α+ β
s )p ‖u‖

p

H
2β
p (QT )

.
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To estimate I, we apply Lemma 2.8-(ii) with θ = β ∈ (0, s) and Theorem B.3 to get

∫ t

0

A(r, γ)dr ≤ C(d, p, β, s)γ
β
s p

∫ t

0

‖u(r)‖
p
2β,p dr

≤ Cγ
β
s p‖u‖p

H
2β
p (QT )

≤ C1(d, p, α, β, s, T, ε)γ
β
s p(‖f‖

p

H
2β−2s
p (QT )

+ ‖u(0)‖
p
2β−2s/p+ε,p).

Thus,

I(t, τ) ≤

∫ t−τ

0

dγ

γ1+αp

∫ t

0

A(r, γ)dr

≤ C(d, p, α, β, s, T, ε)(t− τ)(
β
s −α)p(‖∂tu+ (−∆)su‖p

H
2β−2s
p (QT )

+ ‖u(0)‖p2β−2s/p+ε,p)

≤ C(d, p, α, β, s, T, ε)(t− τ)(−α+ β
s )p(‖u‖p

H
2β
p (QT )

+ ‖u(0)‖p2β−2s/p+ε,p).

Finally, combining the last inequality with (20) and (21), we proved that

‖u(t)− u(τ)‖
p
p ≤ C(d, p, α, β, s, T, ε)|t− τ |

β
s p−1(‖u‖

p

H
2β
p (QT )

+ ‖u(0)‖
p
2β−2s/p+ε,p) . (22)

To obtain (8), in the special case µ = 2β, it remains to show that

sup
t≤T

‖u(t)‖p ≤ C(‖u‖
H

2β
p (QT ) + ‖u(0)‖2β−2s/p+ε,p) , (23)

This is a consequence of (22) and the continuous embedding of H
2β−2s/p+ε
p (Td) into Lp(Td), as

β > 2s/p. Indeed,

‖u(t)‖
p
p ≤ C(β, s, p, d) ‖u(0)‖

p
2β−2s/p+ε,p + CT

β
s p−1(‖u‖

p

H
2β
p (QT )

+ ‖u(0)‖
p
2β−2s/p+ε,p).

We now present some continuous embedding results that stem from Thereom 2.6.

Proposition 2.11. Let ε > 0, q ≥ p > 1, 0 ≤ θ ≤ 1 and µ, η ∈ R be such that

η < µ+
d

q
−

d+ 2s(1− θ)

p
. (24)

Then, for any u ∈ Hµ
p (QT ),

(

∫ T

0

‖u(·, t)‖
p
θ
η,q dt

)θ

≤ C(‖u‖
p
H

µ
p (QT ) + ‖u(0)‖

p
µ−2s/p+ε,p) .

In particular, if µ > 0, 1 < p < d+2s
µ and 1

q > 1
p − µ

d+2s ,

‖u‖Lq(QT ) ≤ C(‖u‖
H

µ
p (QT ) + ‖u(0)‖µ−2s/p+ε,p)

Here, C depends on d, p, q, µ, η, θ, T, s, but remains bounded for bounded values of T .
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Proof. Let 0 < β < s to be chosen. Recall that, for any θ ∈ [0, 1], if ν = ν(β) = (µ − 2β)(1 −
θ) + θµ, then Hν

p can be obtained by (complex) interpolation between Hµ
p and Hµ−2β

p (see, e.g.,

[5, Theorem 6.4.5]). Moreover, Hν
p is continuously embedded in H

ν+d/q−d/p
q in view of Lemma

2.5. Hence, for a.e. t,

c(d, p, s, β) ‖u(t)‖ν− d
p+

d
q ,q

≤ ‖u(t)‖ν,p ≤ ‖u(t)‖
1−θ
µ−2β,p ‖u(t)‖

θ
µ,p .

By (24), we can choose 2β > 2s
p so that η ≤ ν(β)− d

p + d
q < µ+ d

q −
d+2s(1−θ)

p , and therefore

(

∫ T

0

‖u(t)‖
p
θ
η,q dt

)θ

≤ C

(

∫ T

0

‖u(t)‖
(1−θ)p

θ

µ−2β,p ‖u(t)‖
p
µ,p dt

)θ

≤ C sup
t≤T

‖u(t)‖
(1−θ)p
µ−2β,p

(

∫ T

0

‖u(t)‖
p
µ,p dt

)θ

≤ C(‖u‖
H

µ
p (QT ) + ‖u(0)‖µ−2s/p+ε,p)

(1−θ)p ‖u‖
θp
H

µ
p (QT )

≤ C(‖u‖
H

µ
p (QT ) + ‖u(0)‖µ−2s/p+ε,p)

p

where, in the last inequality, we used Theorem 2.6 and Young’s inequality.
The last statement follows by choosing η = 0 and θ = p/q.

Proposition 2.12. Let ε > 0, 1
2 < s < 1, p > d+2s

2s−1 and u(0) ∈ H
µ−2s/p+ε
p (Td). Then for all

u ∈ H2s−1
p (QT ) the following inequality holds

‖u‖
C

γ,
γ
2s (QT )

≤ C(‖u‖
H

2s−1
p (QT ) + ‖u(0)‖2s−1−2s/p+ε,p),

where

γ = s−
s

p
−

d

2p
−

1

2
,

and C depends on d, s, p, T .

Proof. First apply Theorem 2.6 with µ = 2s− 1 to get

H
µ
p (QT ) →֒ C

β
s −

1
p ([0, T ];Hµ−2β

p (Td)) .

Then, exploit the embedding Hµ−2β
p (Td) →֒ Cµ−2β− d

p (Td) of Lemma 2.5. By choosing β so that
β
s − 1

p = γ
2s and γ as in the statement, then µ− 2β − d

p = γ, and one concludes by the inclusion

of C
γ
2s (Cγ) into Cγ, γ

2s (see Remark 2.1).

Remark 2.13. We point out that all the estimates carried out in this section can be proven
exactly in the same manner for the Rd case. Indeed, the arguments turn around decay estimates
for the fractional heat operator and fractional heat parabolic regularity that hold to the same
extent on Rd and Td.

2.4 Relation between Hµ
p and W µ,p

We prove the embeddings between Wµ,p and Hµ
p via the trace method. Without going into the

details, we mention that when p = 2 the space Wµ,2 coincides with Hµ
2 by properties of Fourier

transform. For general p 6= 2, we follow the lines of [41, Theorem 3.1], shortening their proof by
using decay estimates of Lemma 2.8.
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Lemma 2.14. For every ε > 0, µ ∈ R and 1 < p < ∞ we have

Hµ+ε
p (Td) →֒ Wµ,p(Td) →֒ Hµ−ε

p (Td) .

Proof. Step 1. We first prove that H1−θ+ε
p (Td) →֒ W 1−θ,p(Td) for every ε > 0 and θ ∈ (0, 1).

To show this, it is sufficient to confine ourselves to the case ε < θ since Hν
p (T

d) →֒ Hη
p (T

d) for

every ν, η ∈ R such that ν > η. Set λ := 1 − θ + ε and take u ∈ Hλ
p (T

d). We need to show the
existence of f(t) such that

tαf(t) ∈ Lp(0, 1;W 1,p(Td))

tαf ′(t) ∈ Lp(0, 1;Lp(Td))

and
f(0) = u

are fulfilled, for α = θ − 1/p. Once one finds such f(t), it is sufficient to multiply it by a
continuously differentiable function ζ(t) for t ∈ [0,+∞), which vanishes for t ≥ 1 and it is
identically 1 for t ∈ [0, 1/2] and then set g(t) = ζ(t)f(t) for t ∈ [0, 1] and g(t) = 0 for t > 1. As
a consequence, it follows that tαg(t) ∈ Lp(0,+∞;W 1,p(Td)), tαg′(t) ∈ Lp(0,+∞;Lp(Td)) and
g(0) = f(0) = u ∈ W 1−θ,p(Td). To reach our goal, we use the solution of the fractional heat
equation with s = 1/2 and initial data equal to u, that is

f(t) := Ttu ,

where here Tt is the semigroup associated to the half-laplacian. It is clear that f(0) = u. We
show only that tαf(t) ∈ Lp(0, 1;W 1,p(Td)), the other case being similar. By Lemma 2.8-(i) with
ν = λ and γ = θ − ǫ > 0 we have

(∫ 1

0

‖tαTtu‖
p
1,pdt

)

1
p

≤ C1

(∫ 1

0

tαpt−(θ−ε)p‖u‖pλ,pdt

)

1
p

≤ C2

(∫ 1

0

t(α−θ+ε)pdt

)

1
p

‖u‖λ,p ≤ C3.

Step 2. We claim that for every ε > 0 it results W 1−θ,p(Td) →֒ H1−θ−ε
p (Td). By isometry (see

Remark 2.3), the operator (I −∆)
1
2 maps W 1,p(Td) onto Lp(Td) and Lp(Td) onto W−1,p(Td).

In addition, it also maps H1−θ+ǫ(Td) onto H−θ+ǫ(Td). By definition we have that it is also an
isometry between

T (p, α,W 1,p(Td), Lp(Td)) = W 1−θ,p(Td)

and

T (p, α, Lp(Td),W−1,p(Td)) = (T (p′,−α,W 1,p′

(Td), Lp′

(Td)))′

= (W 1−(1/p′−α),p′

(Td))′ = W−θ,p(Td).

By Step 1 we obtain
H−θ+ε

p (Td) →֒ W−θ,p(Td) ,

which turns out to hold for every ε > 0. By duality we also conclude W θ,p′

(Td) →֒ Hθ−ε
p′ (Td)

and hence the validity of the claim after replacing θ by 1− θ.

Step 3. Suppose µ ≥ 0. We first prove the left inclusion Hµ+ǫ
p (Td) →֒ Wµ,p(Td). Let

u ∈ Hµ+ǫ
p (Td). Then Dku ∈ Lp(Td) for all |k| ≤ [µ], where [·] stands for the integer part. On
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the other hand, Dku ∈ H
µ+ε−[µ]
p (Td) for k = [µ], which gives by Step 1 Dku ∈ Wµ−[µ],p(Td).

Then u ∈ Wµ,p(Td). Conversely, if u ∈ Wµ,p(Td), it means that u ∈ H
[µ]
p (Td). Thus in

view of Step 2 we obtain Dku ∈ H
µ−[µ]−ε
p (Td), namely u ∈ Hµ−ε

p (Td) which in turn implies

Wµ,p(Td) →֒ Hµ−ε
p (Td). The case µ < 0 follows by the previous one arguing by duality.

3 Fractional Fokker-Planck and HJB equations

3.1 On the fractional Fokker-Planck equation

In this section we gather some results on fractional Fokker-Planck equations in the periodic
setting of the form

{

∂tm− σ∆m+ (−∆)sm+ div(bm) = 0 in Td × (0, T ) ,

m(x, 0) = m0(x) in Td ,
(25)

with σ ≥ 0 and m0 ∈ L∞(Td). When σ = 0, we expect low regularity of solutions, in particular
when 0 < s < 1/2. In this case we will adopt the usual notion of weak solution, with the following
integrability requirements.

Definition 3.1. Let b ∈ L∞(QT ) be such that2 [div b]− ∈ L∞(QT ). A function

m ∈ L2(0, T ;Hs
2(T

d)) = Hs
2(QT ) with ∂tm ∈ L2(0, T ;H−1

2 (Td)) = H−1
2 (QT ) (26)

is a weak solution to (25) if, for every ϕ ∈ C∞(Td × [0, T )), one has

∫∫

QT

−m∂tϕ− bm ·Dϕ+ (−∆)
s
2m(−∆)

s
2ϕdxdt =

∫

Td

ϕ(x, 0)m0(x) dx .

Remark 3.2. It can be verified that (26) implies m ∈ C([0, T ];H
(s−1)/2
2 (Td)), see e.g. [20, p.

480]. This suggests, by a density argument, that test functions ϕ in the previous formulation
can be chosen so that ϕ ∈ L2(0, T ;H1

2 (T
d)) with ∂tϕ ∈ L2(0, T ;H−s

2 (Td)), therefore satisfying

ϕ ∈ C([0, T ];H
(1−s)/2
2 (Td)). In this case the integration by parts in time formula holds (with an

abuse of notation, integration in space is hiding duality pairings here):

∫∫

QT

ϕ∂tm+m∂tϕdxdt =

∫

Td

ϕ(x, T )m(x, T ) dx−

∫

Td

ϕ(x, 0)m(x, 0) dx.

We also point out that solutions defined as in Definition 3.1 are unique, as a consequence of
the crucial unilateral bound on div b. This can be justified formally by multiplying the equation
by m itself and deriving an usual L2-energy estimate (as in (30) below). Since m itself cannot be
a test function because of the “asymmetric” integrability requirements on m and ∂tm, one has
to perform a preliminary regularization procedure via convolution (see, e.g., [40, 57] and [26]).

We will need the following estimates independent of σ, for classical solutions of the viscous
problem.

Proposition 3.3. Let σ ≥ 0, m0 ∈ C(Td) and b ∈ C1
x(QT ) such that

‖m0‖∞ + ‖b‖∞ + ‖[div b]−‖∞ ≤ K.

2In what follows, we will denote by [u]− the negative part of u.
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Then, there exists C = C(K) such that for every classical solution m to (25) it holds

‖m‖∞;QT ≤ C, (27)

σ

∫∫

QT

|Dm|2 dxdt+

∫∫

QT

[(−∆)s/2m]2 dxdt ≤ C, (28)

‖∂tm‖
H

−1

2
(QT ) ≤ C. (29)

Proof. By standard comparison arguments involving the function

w(x, t) := m(x, t)e−(K+ε)t − ‖m0‖∞

with ε → 0 (see e.g. [24, Section II.2]), one concludes

‖m‖∞;QT ≤ ‖m0‖∞eKT .

Multiply the equation in (25) by m and integrate over QT to get

1

2

∫ T

0

d

dt
‖m‖

2
L2(Td) − σ

∫∫

QT

m∆mdxdt+

∫∫

QT

m(−∆)smdxdt = −

∫∫

QT

m div(bm)dxdt

Using Lemma 2.2 and integrating by parts we have

1

2

∫ T

0

d

dt
‖m(·, t)‖

2
L2(Td) + σ

∫∫

QT

|Dm|2dxdt +

∫∫

QT

[(−∆)
s
2m]2 dxdt =

∫∫

QT

mb ·Dmdxdt

= −
1

2

∫∫

QT

(div b)m2 dxdt. (30)

Using that [div(b)]− ≤ K and the L∞ bound on m (one could also argue via Gronwall’s lemma),
we obtain

1

2
‖m(T )‖2L2(Td) + σ

∫∫

QT

|Dm|2dx+

∫∫

QT

[(−∆)s/2m]2 dx ≤ C(K) +
1

2
‖m(0)‖2L2(Td)

which gives the desired inequality (28).
The last estimate follows by observing that, using the equation in (25),

∣

∣

∣

∣

∫∫

QT

∂tmϕdxdt

∣

∣

∣

∣

≤ ‖b‖L∞(QT )‖m‖L2(QT )‖Dϕ‖L2(QT ) + ‖(−∆)
s
2m‖L2(QT )‖ϕ‖Hs

2
(QT )

≤ C‖ϕ‖H1
2
(QT ).

3.2 On the fractional HJB equation

3.2.1 Semiconcavity estimates

This subsection is devoted to the analysis of semiconcavity properties of solutions to backward
fractional HJB equations

{

−∂tu− σ∆u+ (−∆)su+H(x,Du) = V (x, t) in QT ,

u(x, T ) = uT (x) in Td ,
(31)

We prove in particular that u is semiconcave, with semiconcavity constant depending on the
data and independent of σ. First, we stress that when σ = 0 we mean that u is a weak (energy)
solution according to the following
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Definition 3.4. Let σ = 0 and V be a continuous function on QT . We say that u ∈ Hs
2(QT )

with Du ∈ L∞(QT ) is a weak solution to (31) if

−

∫

Td

ϕ(x, T )uT (x)dx+

∫∫

QT

∂tϕudxdt+

∫∫

QT

(−∆)
s
2u(−∆)

s
2ϕdxdt+

∫∫

QT

H(x,Du)ϕdxdt

=

∫∫

QT

V ϕdxdt

for all ϕ ∈ C∞(Td × (0, T ]).

Remark 3.5. We make a preliminary observation, which we will use in the sequel. Recall that
u ∈ Hs

2(QT ) means u ∈ L2(0, T ;Hs
2(T

d)) with ∂tu ∈ L2(0, T ;H−s
2 (Td)). Note that Hs

2(QT )
is continuously embedded into C(0, T ;L2(Td)) in view of [20, Theorem XVIII.2.1]), so this is
equivalent to

∫∫

QT

[−∂tuϕ+ (−∆)
s
2 u(−∆)

s
2ϕ+H(x,Du)ϕ]dxdt =

∫∫

QT

V ϕdxdt

for all ϕ ∈ Hs
2(QT ), and u(T ) = uT in the L2-sense. Uniqueness of solutions in this sense

holds by usual energy arguments (see also Remark 3.2), and is based on the crucial property
Du ∈ L∞(QT ) and the C1 regularity of H .

Proposition 3.6. Assume that V ∈ C2+α,1+α/2(QT ), (H1) and (H3)-(H5) hold, and

‖V ‖C2
x(QT ) + ‖uT‖C2(Td) ≤ K

for some K > 0. Then every classical solution u to (31) satisfies

D2u(x, t) ≤ C I on QT ,

where C depends on K.

The proof will be accomplished via the so-called adjoint method, that is, by using information
of the dual linearized problem. This procedure is particularly effective when the Hamiltonian
lacks uniform convexity. Here, we are inspired by some results in [27], see also references therein.
We stress that we do not require convexity of H , but just assumptions (H1) and (H3)-(H5). Gen-
erally, for uniformly convex Hamiltonians similar results can be obtained in a more straightfor-
ward way through maximum principle arguments. When dealing with non-convex Hamiltonians,
such approach fails in general.

For any given ρτ ∈ C∞(Td), ρτ ≥ 0, τ ∈ [0, T ) and ‖ρτ‖L1(Td) = 1 we consider the adjoint
equation

{

∂tρ− σ∆ρ+ (−∆)sρ− div(DpH(x,Du)ρ) = 0 in Td × [τ, T ] ,

ρ(x, τ) = ρτ (x) on Td .
(32)

We have the following preliminary result

Lemma 3.7. There exists a classical solution ρ to (32). Moreover,

∫ T

τ

∫

Td

|Du|γρ dxdt ≤ C,

where C depends on K and not on ρτ nor τ .
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Proof. The well-posedness of (32) is a consequence of [24, Theorem II.3.1] and the regularity
assumptions on H and u. By multiplying the fractional HJB equation by ρ and the adjoint
equation by u, one easily obtains the following formula

∫

Td

u(x, τ)ρτ (x)dx =

∫

Td

u(x, T )ρ(x, T )dx+

∫ T

τ

∫

Td

V ρ dxdt+ (33)

+

∫ T

τ

∫

Td

(DpH(x,Du) ·Du−H(x,Du))ρ dxdt.

Then, by (H1) we get

∫

Td

u(x, τ)ρτ (x)dx ≥

∫ T

τ

∫

Td

V ρ dxdt+ CH

∫ T

τ

∫

Td

|Du|γρ dxdt−

− cH

∫ T

τ

∫

Td

ρ dxdt+

∫

Td

ρ(x, T )u(x, T )dx. (34)

Then, since u is a classical solution to (31), a standard linearization argument and the application
of the Comparison Principle for linear viscous integro-differential PDE (see, e.g. [24, Section II.2])
yield

‖u‖∞;Q ≤ ‖uT ‖∞;Td + T
(

‖V ‖∞;Q + ‖H(·, 0)‖∞;Td

)

. (35)

Finally, plugging (35) in (34) and using the fact that ‖ρ(t)‖1 = 1 for all t, we conclude the desired
estimate.

We now prove the semiconcavity estimate.

Proof of Proposition 3.6. Since V ∈ C2+α,1+α/2(QT ), by a bootstrap argument u belongs to
C4+α,2+α/2(QT ) (see Proposition 3.11 below). So, we can differentiate twice the equation in any
direction ξ ∈ Rd, |ξ| = 1. Observe that v = uξ satisfies

−∂tv − σ∆v + (−∆)sv +DpH(x,Du) ·Dv +DξH(x,Du) = Vξ , v(x, 0) = uξ(0)

and w = uξξ solves

−∂tw − σ∆w + (−∆)sw +Dv ·D2
ppH(x,Du)Dv +DpH(x,Du) ·Dw+ (36)

+2D2
pξH(x,Du) ·Dv +D2

ξξH(x,Du) = Vξξ , w(x, 0) = uξξ(0) .

Then, multiply (36) by the adjoint variable ρ satisfying (32) and integrate over Td× [τ, T ] to get

∫

Td

w(x, τ)ρτ (x) dx +

∫ T

τ

∫

Td

Dv ·D2
ppH(x,Du)Dvρ dxdt =

∫

Td

w(x, T )ρ(x, T ) dx−

−2

∫ T

τ

∫

Td

D2
pξH(x,Du) ·Dvρ dxdt −

∫ T

τ

∫

Td

D2
ξξH(x,Du)ρ dxdt+

∫ T

τ

∫

Td

Vξξρ dxdt .

On one hand, by (H5) we have

∫ T

τ

∫

Td

Dv ·D2
ppH(x,Du)Dvρ dxdt ≥ C1

∫ T

τ

∫

Td

|Du|γ−2|Dv|2ρ dxdt− C̃1

∫ T

τ

∫

Td

ρ dxdt
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and hence, using also (H3)-(H4), we conclude

∫

Td

w(x, τ)ρτ (x)dx + C1

∫ T

τ

∫

Td

|Du|γ−2|Dv|2ρ dxdt− C̃1

∫ T

τ

∫

Td

ρ dxdt

≤

∫

Td

w(x, T )ρ(x, T )dx + C2

∫ T

τ

∫

Td

|Du|γ−1|Dv|ρdxdt+ C3

∫ T

τ

∫

Td

|Du|γρ dxdt

+ (C̃2 + C̃3)

∫ T

τ

∫

Td

ρ dxdt+

∫ T

τ

∫

Td

Vξξρ dxdt.

Now, we apply Young’s inequality to the second term on the right-hand side of the above in-
equality to get

∫ T

τ

∫

Td

|Du|γ−1|Dv|ρ dxdt ≤
ǫ2

2

∫ T

τ

∫

Td

|Du|γ−2|Dv|2ρdxdt+
1

ǫ2

∫ T

τ

∫

Td

|Du|γρdxdt.

Taking ǫ so that C1 = ǫ2

2 we finally obtain the estimate

∫

Td

w(x, τ)ρτ (x)dx ≤

∫

Td

w(x, T )ρ(x, T )dx +

(

1

2C1
+ C3

)∫ T

τ

∫

Td

|Du|γρ dxdt+

+

∫ T

τ

∫

Td

Vξξρ dxdt+ C̃4 .

During the above computations Ci = Ci(CH). By Lemma 3.7 we finally deduce the desired
semiconcavity estimate after passing to the supremum over ρτ .

Remark 3.8. The viscosity parameter σ does not play any role in the above proof, and hence if
u is sufficiently regular to perform a differentiation procedure in the classical sense, the above
scheme can be carried out with merely fractional diffusion of any order s ∈ (0, 1).

We now turn to space-time Hölder bounds for (forward) fractional HJB equations with
bounded right hand side. These will be useful in the vanishing viscosity limit to have uniform
convergence of solutions, and therefore to bring to the limit the viscosity notion.

Proposition 3.9. Let f ∈ L∞(QT ) and u be a classical solution to

{

∂tu− σ∆u + (−∆)su = f(x, t) in QT

u(x, 0) = u0(x) in Td.

with u0 ∈ C1(Td). Then
‖u‖Cα,β(QT ) ≤ C (37)

for some α, β ∈ (0, 1), where the constant C depends only on ‖f‖L∞(QT ), ‖u0‖C1(Td) and is
independent of σ.

Remark 3.10. To prove the above result, we need to show the counterpart of Lemma 2.8 for the
semigroup T̄t generated by the full operator σ∆− (−∆)s. We point out that the two semigroups
e−t(−∆)s and etσ∆ commute, and therefore

T̄t = e−t(−∆)s(etσ∆).
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Proof of Proposition 3.9. We observe that by Lemma 2.8-(i) and (11), it is straightforward to
see that, for ν ∈ R, p > 1 and γ ≥ 0 we have

‖T̄tf‖ν+γ,p ≤ Ct−γ/2s ‖g‖ν,p . (38)

Note that C does not depend on σ here.
Write u using Duhamel’s formula, that is u(t) = u1(t) + u2(t), where

u1(t) = T̄tu0, u2(t) =

∫ t

0

T̄t−τf(τ)dτ.

The estimate of u1(t) := T̄tu0 follows using the same argument as in Theorem B.3 and the

estimates in Lemma 2.8. We focus on u2(t) =
∫ t

0 T̄t−τf(τ)dτ . Take ν = 0, γ = s
p in (38) to get

‖T̄t−τf‖
p
s,p ≤ C(t− τ)−1/2‖f‖pL∞(QT ) .

Therefore

‖u2‖Hs
p(QT ) =

(

∫ T

0

‖u2(t)‖
p
s,p

)
1
p

≤ CT
3
2p ‖f‖L∞(QT )

Since u2 solves ∂tu2 + (−∆)su2 = f , one has

∫ T

0

‖∂tu2(t)‖
p
−s,p dt ≤ C1

(

∫ T

0

‖(−∆)su2‖
p
−s,p + ‖f‖p−s,pdt

)

≤ C2‖f‖L∞(QT ) ,

yielding the full estimate

‖u‖
Hs

p(QT ) ≤ C(‖f‖L∞(QT ) + ‖u0‖s−2s/p+ǫ)

for ε < 2s
p . Then, for p > d+2s

s , by Sobolev embedding theorems in Proposition 2.6 we conclude

‖u‖
Cα,β(QT ) ≤ C ‖u‖

Hs
p(QT ) ≤ C1 .

3.2.2 Existence of solutions

In this section we prove an existence result for backward integro-differential HJB equations of
the form

{

−∂tu−∆u+ (−∆)su+H(x,Du) = V (x, t) on QT ,

u(x, T ) = uT (x) on Td .
(39)

Proposition 3.11. Let V ∈ C2+α,1+α/2(QT ), H satisfying (H1)-(H5) and uT ∈ C4+α(Td).
Then, there exists a unique solution u ∈ C4+α,2+α/2(QT ) to (39), and the following estimate
holds

‖u‖C4+α,2+α/2(QT ) ≤ C(‖V ‖C2+α,1+α/2(QT ) + ‖uT ‖C4+α(Td)) . (40)

The crucial step to obtain this existence result are the semiconcavity estimates of the previous
section, that yield a priori gradient bounds of solutions. Then, the construction of a solution
follows by standard arguments. Since we were not able to find a similar result in the literature,
we detail the proof here for the convenience of the reader.
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Proof. Step 1: Local existence on Qτ = Td × (T − τ, T ) . Let τ ≤ 1 and

Sa :=
{

u ∈ W 2,1
p (Qτ ) : u(T ) = uT , ‖u‖W 2,1

p (Qτ )
≤ a , p > d+ 2

}

be the space on which we apply the contraction mapping principle. The parameter a will be
chosen large enough. Fix z ∈ W 2,1

p (Qτ ), p > d+2 and let w = Jz be the solution of the problem

{

−∂tw −∆w = V −H(x,Dz)− (−∆)sz in Td × (T − τ, T ] ,

w(x, T ) = uT (x) in Td.
(41)

By standard (local) parabolic regularity theory (see [37, Theorem IV.9.1] or [16]), since the right
hand side of the equation in (41) is in Lp(Qτ ), (41) admits a unique solution w ∈ W 2,1

p (Qτ )
satisfying the following estimate

‖w‖W 2,1
p (Qτ )

≤ C(‖V ‖Lp(Qτ ) + ‖H(x,Dz)‖Lp(Qτ ) + ‖(−∆)sz‖Lp(Qτ ) + ‖uT ‖W 2−2/p,p(Td)).

We show that we can choose τ ∈ (0, T ] sufficiently small so that ‖Jz‖W 2,1
p (Qτ )

≤ a. By [16,

Lemma 2.4]

‖H(x,Dz)‖Lp(Qτ ) ≤ C1τ
1
2p ‖H(x,Dz)‖L2p(Qτ ) ≤ C2τ

1
2p ‖Dz‖γ∞;Qτ

Moreover, by [16, Proposition 2.5] we have

‖Dz‖∞;Qτ ≤ C3(‖z‖W 2,1
p (Qτ )

+ ‖uT‖W 2−2/p,p(Td)) ,

which gives

‖H(x,Dz)‖Lp(Qτ ) ≤ C4τ
1
2p (‖z‖γ

W 2,1
p (Qτ )

+ ‖uT‖
γ

W 2−2/p,p(Td)
) .

Concerning the fractional term we observe that if either s ∈ (0, 12 ) or s ∈
[

1
2 , 1
)

, then by Lemma
2.4 we get for some δ > 0

‖(−∆)sz‖Lp(Qτ )
≤ δ ‖z‖W 2,1

p (Qτ )
+ C(δ) ‖z‖Lp(Qτ )

where C(δ) > 0 grows as δ approaches to 0. Then, note that by writing

z(·, s) = uT (·)−

∫ T

s

∂tz(·, ω)dω ,

we obtain
‖z‖Lp(Qτ ) ≤ τ

1
p ‖uT‖Lp(Td) + τ‖∂tz‖Lp(Qτ ) .

Then

‖w‖W 2,1
p (Qτ )

≤ C
[

max{‖z‖W 2,1
p (Qτ )

, ‖z‖γ
W 2,1

p (Qτ )
}(τ

1
2p + C(δ)τ + δ)

+(τ
1
p + τ

1
2p )max{‖uT‖Lp(Td), ‖uT‖

γ
W 2−2/p,p(Td)

}+ ‖V ‖Lp(Qτ )

]

≤ C
[

max{‖z‖W 2,1
p (Qτ )

, ‖z‖γ
W 2,1

p (Qτ )
}(τ

1
2p (1 + C(δ)) + δ)

+2τ
1
2p max{‖uT‖Lp(Td), ‖uT ‖

γ
W 2−2/p,p(Td)

}+ ‖V ‖Lp(Qτ )

]

.
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At this stage, take

a ≥ C
(

2max{‖uT‖Lp(Td), ‖uT‖
γ

W 2−2/p,p(Td)
}+ ‖V ‖Lp(Qτ )

)

+ 2

to get

‖w‖W 2,1
p (Qτ )

≤ C
{

max{‖z‖W 2,1
p (Qτ )

, ‖z‖γ
W 2,1

p (Qτ )
}
[

(1 + C(δ))τ
1
2p + δ

]}

+ a− 2 .

Then, choose δ ≤ 1
Ca so that

‖w‖W 2,1
p (Qτ )

≤ Cmax{‖z‖W 2,1
p (Qτ )

, ‖z‖γ
W 2,1

p (Qτ )
}(1 + C(δ))τ

1
2p + a− 1

and finally τ small to conclude
‖w‖W 2,1

p (Qτ )
≤ a .

This shows that J maps Sa into itself.
To prove that J is a contraction, one has to argue as above, exploiting also the fact that for

bounded z ∈ W 2,1
p (QT ), p > d+ 2, then Dz is bounded in L∞(QT ). So,

‖H(x,Dz1)−H(x,Dz2)‖Lp(QT ) ≤ C ‖z1 − z2‖Lp(QT ) ≤ CT ‖∂t(z1 − z2)‖Lp(QT )

for some positive constant C. Therefore, one obtains, for small τ ,

‖Jz1 − Jz2‖W 2,1
p (QT̄ ) ≤

1

2
‖z1 − z2‖W 2,1

p (QT̄ ) ,

which ensures the existence of a unique fixed point, z = Jz, i.e. a solution z of the HJB equation
in the interval (T − τ, T ].

Now note that by Sobolev embedding, if p > d + 2, then u ∈ C1+α, 1+α
2 (Qτ ). Then a bootstrap

argument allows to conclude u ∈ C4+α,2+α/2(Qτ ), since V ∈ C2+α,1+α/2(Qτ ).

Step 2. Define

T ∗ := inf{τ ∈ [0, T ] : (39) admits a solution C4+α,2+α/2(Qτ )}

In view of Step 1 we claim that the above set is nonempty. We want to show that T ∗ ≤ 0. To
this aim, take a sequence {(τk, uk)} in (T ∗, T )×W 2,1

p (Qτk
), where τk converges decreasingly to

T ∗ and uk solves (39) in Qτk . Since, by Sobolev Embedding, uk ∈ C4+α,2+α/2(Qτk), we have
that uk is semiconcave independently on k. Being also bounded by the Comparison Principle for
classical solutions of integro-differential uniformly parabolic equations (see [24, Corollary II.2.18],
there exists C > 0 such that

‖Duk‖L∞(Qτ )
≤ C ∀k ∈ N

(see [9, Remark 2.1.8]). Arguing as in Step 1, by [37, Theorem IV.9.1] we claim that uk satisfies

‖uk‖W 2,1
p (Qτ )

≤ C. (42)

In particular the solution turns out to be classical by bootstrapping and [24, Theorem II.3.1].
Again by the Comparison Principle, we also have

uk = uh on Qτh for every k ≥ h . (43)
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We define a function u : Td × [T ∗, T ] → R by setting u = uk on Qτk for every k ∈ N and then
by taking its continuous extension to Td × [T ∗, T ]. Moreover, it solves the Cauchy problem on
Td× [T ∗, T ] by continuity of u, ∂tu,Du,D2u (using the results for parabolic Hölder spaces, since,
as claimed above, at the end u has classical regularity). If, by contradiction, T ∗ > 0, one argues
as in Step 1 to find w ∈ W 2,1

p (Qτ ) which solves

−∂tw −∆w + (−∆)sw +H(x,Dw) = V on Qτ , w(·, T ) = u(·, T ∗) on Td

(basically one applies the local existence to the backward equation with datum in T ∗) which at
the end will have C4+α,2+α/2 regularity. One can check that

u∗(x, t) =

{

u(x, t) if (x, t) ∈ Td × [T ∗, T ] ,

w(x, T + t− T ∗) if (x, t) ∈ Td × [T ∗ − τ, T ∗]

belongs to C4+α,2+α/2(Td× [T ∗− τ, T ]) and solves the problem on Td× [T ∗− τ, T ], contradicting
the minimality of T ∗.

4 Existence for the MFG system

This section is devoted to the proofs of existence for systems (1) and (2). We begin by the viscous
case, then proceed with the vanishing viscosity procedure.

4.1 The viscous case

Proof of Theorem 1.1. The statement is a consequence of the Schauder’s fixed point theorem
(see [25, Corollary 11.2]). Let

X = C1+α/2([0, T ];P(Td))

and
C = {m ∈ X : ‖m‖C1+α/2([0,T ];P(Td)) ≤ C}.

It is straightforward to see that C is closed and convex. We construct a map T : C → C in the
following way: given µ ∈ C, let u be the unique solution to

{

−∂tu− σ∆u+ (−∆)su+DpH(x,Du) = F [µ(t)](x) in Td × (0, T ) ,

u(x, T ) = uT (x) in Td .
(44)

Then we define m = T (µ) as the solution to the fractional Fokker-Planck equation

{

∂tm− σ∆m+ (−∆)sm− div(mDpH(x,Du)) = 0 in Td × (0, T ) ,

m(x, 0) = m0(x) in Td .
(45)

We divide the proof in three steps.

Step 1. T is well-defined. To show that the map T is well-defined, first note that, since

µ ∈ C
1+α/2
t (QT ), by the assumptions on F we have F [µ] ∈ C2+α,1+α/2(QT ); in particular, F [µ]

is bounded in C2+α,1+α/2(QT ) independently with respect of µ. By Proposition 3.11, problem
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(44) has a unique classical solution belonging to C4+α,2+α/2(QT ), and satisfies the a priori
estimate

‖u‖C4+α,2+α/2(QT ) ≤ C1

where C1 in particular depends on ‖uT ‖C4+α(Td), but does not depend on µ. Then, we can
expand the divergence term of the viscous fractional Fokker-Planck equation as

∂tm− σ∆m+ (−∆)sm−DpH(x,Du) ·Dm−m div(DpH(x,Du)) = 0 ,

which turns out to be a linear equation with parabolic Hölder coefficients in C2+α,1+α/2(QT ),
uniformly with respect to µ. Indeed div(DpH(x,Du)) ∈ C2+α,1+α/2(QT ) owing to [33, Remark
8.8.7]. This gives that

‖m‖C4+α,2+α/2(QT ) ≤ C2 (46)

by [24, Theorem II.3.1]. In particular, the map T is well-defined from C into itself by choosing
C above large enough.

Step 2. T is continuous. To this aim, let µn ∈ C converging to some µ. Let (un,mn), (u,m)
be the corresponding solutions. By the continuity assumption (F1) we conclude that the map
(x, t) 7−→ F [µn(t)](x) uniformly converges to (x, t) 7−→ F [µ(t)](x). We can then consider the
equation

−∂tun − σ∆un + (−∆)sun +H(x,Dun) = F [µn(t)](x)

whose right-hand side F [µn(t)](x) is uniformly bounded in C2+α,1+α/2(QT ). Then the sequence
{un} is uniformly bounded in C4+α,2+α/2(QT ) in view of Proposition 3.11 and thus converges in
C4,2 to the unique solution u of the HJB equation. As before, the mn are solutions of a linear
equation with Hölder continuous coefficients, providing uniform estimates in C4+α,2+α/2(QT )
for {mn}. Therefore {mn} converges in C4,2 to the unique solution m of the Fokker-Planck
equation. Note that the convergence holds also in C.

Step 3. T (C) is compact. By bounds (46), one proves that for every µn ∈ C, the sequence
mn = T (µn) has a convergent subsequence.

4.2 The vanishing viscosity limit

We emphasize that in the limiting procedure σ → 0, one passes from classical parabolic W 2,1
p

regularity to fractional parabolic H
2s
p (QT ) regularity. The strategy will thus be to pass to the

limit in some suitable weak sense, and then recover maximal regularity by means of Theorem
B.3.

Proof of Theorem 1.2. Let (uσ,mσ) a the solution of (2). For σ > 0 we know that a solution
exists in view of Theorem 1.1. Collecting the results in Proposition 3.3, Proposition 3.6 and
Proposition 3.9, we are able to construct a sequence σ = {σn} → 0 such that, if (uσ,mσ) is the
corresponding solution, we have

(i) uσ converges to u in C(QT ) as a consequence of the estimate (37) and Ascoli-Arzelá The-
orem. Moreover, one easily has bounds for uσ in Hs

2, so uσ → u weakly in Hs
2.

(ii) The semiconcavity estimates in Proposition 3.6 yield Duσ → Du a.e. in QT in view of [9,
Theorem 3.3.3]. In addition, by [9, Remark 2.1.8] they also imply uniform bounds for Duσ

in L∞(QT ), so Duσ → Du in the L∞-weak-∗ sense. Finally, u is semiconcave with the
same semiconcavity bounds.
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(iii) By (ii) and dominated convergence theorem Duσ → Du in Lp(QT ) for every finite p ≥ 1.

(iv) As a consequence of the semiconcavity estimates we have [div(b)]− ≤ C, where b =
−DpH(x,Duσ). Indeed

div(−DpH(x,Duσ)) = −
∑

i,j

D2
pixj

H −
∑

i,j

D2
pipj

H∂xixjuσ ≥ −C.

The first term can be controlled by (ii) and (H4). Since 0 ≤ D2
pH(x,Du) ≤ C1 Id and

D2uσ ≤ CId, we have a control on the second term by a constant independent of σ.

(v) In view of the estimate (27), mσ converges to m ∈ L∞(QT ), weakly-∗ in L∞.

(vi) Proposition 3.3 ensures that mσ, ∂tmσ are bounded uniformly with respect to σ in Hs
2(QT )

and H−1
2 (QT ) respectively, so they weakly converge.

In addition, note that (x, t) 7−→ F [mσ(t)](x) uniformly converges to the map (x, t) 7−→ F [m(t)](x).
We now pass to the limit in the weak formulation of both equations.

Step 1. Fokker-Planck Equation. Multiplying the Fokker-Planck equation by a test function
ϕ ∈ C∞(Td × [0, T )) and integrating over QT we get

−

∫

Td

mσ(x, 0)ϕ(x, 0)dx −

∫∫

QT

mσ∂tϕdxdt− σ

∫∫

QT

mσ∆ϕdxdt

+

∫∫

QT

(−∆)s/2mσ(−∆)s/2ϕdxdt+

∫∫

QT

mσDpH(x,Duσ) ·Dϕdxdt = 0 (47)

We then let σ → 0 to conclude

−

∫

Td

m(x, 0)ϕ(x, 0)dx −

∫∫

QT

m∂tϕdxdt +

∫∫

QT

(−∆)s/2m(−∆)s/2ϕdxdt+

+ lim
σ→0

∫∫

QT

mσDpH(x,Duσ) ·Dϕdxdt = 0 ,

by the convergence of mσ stated in (v)-(vi). It remains to prove

∫∫

QT

mσDpH(x,Duσ) ·Dϕdxdt →

∫∫

QT

mDpH(x,Du) ·Dϕdxdt .

We write

∣

∣

∣

∣

∫∫

QT

(mσDpH(x,Duσ)−mDpH(x,Du)) ·Dϕdxdt

∣

∣

∣

∣

≤

≤

∫∫

QT

|mσDpH(x,Duσ)−mσDpH(x,Du)| |Dϕ| dxdt

+

∫∫

QT

|mσDpH(x,Du)−mDpH(x,Du)| |Dϕ| dxdt .
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The first term on the right-hand side of the above inequality can be handled using (H2) and
(iii)-(v)

∫∫

QT

|mσ(DpH(x,Duσ)−DpH(x,Du))| |Dϕ|dxdt

≤ C ‖mσ‖L∞(QT ) ‖DpH(x,Duσ)−DpH(x,Du)‖L1(QT )

≤ C1

∥

∥|Duσ|
γ−1 + |Du|γ−1

∥

∥

Lp(QT )
‖Duσ −Du‖Lq(QT ) ≤ C2 ‖Duσ −Du‖Lq(QT ) ,

where we also applied Hölder’s inequality with p conjugate exponent of q. Finally,
∫∫

QT

(mσ −m)DpH(x,Du) ·Dϕdxdt → 0

in view of the L∞ weak-∗ convergence mσ to m and the fact that

‖DpH(x,Du)‖L1(QT ) ≤ C ‖Du‖γ−1
Lγ−1(QT ) < ∞ .

Step 2. The HJB equation. We now pass to the limit in the fractional HJB equation.
Multiplying the equation satisfied by uσ by a test function ϕ ∈ C∞(Td × (0, T ]) we get

−

∫∫

QT

∂tuσϕdxdt− σ

∫∫

QT

∆uσϕdxdt+

∫∫

QT

(−∆)suσϕdxdt

+

∫∫

QT

H(x,Duσ)ϕdxdt =

∫∫

QT

F [mσ(t)]ϕdxdt

We now integrate by parts using Lemma 2.2 to obtain

−

∫

Td

uσ(x, T )ϕ(x, T )dx+

∫∫

QT

uσ∂tϕdxdt + σ

∫∫

QT

Duσ ·Dϕdxdt

+

∫∫

QT

(−∆)
s
2uσ(−∆)

s
2ϕdxdt +

∫∫

QT

H(x,Duσ)ϕdxdt =

∫∫

QT

F [mσ(t)]ϕdxdt.

Now note that (iii) together with Lemma 2.4 implies also that (−∆)
s
2uσ → (−∆)

s
2u in Lp(QT ).

By the regularity assumptions of the coupling F , the term on the right-hand side converges to
∫∫

QT
F [m(t)]ϕdxdt as σ → 0. We only need to prove that

∫∫

QT

H(x,Duσ)ϕdxdt →

∫∫

QT

H(x,Du)ϕdxdt

as σ → 0. To this aim we use again (H2) and the convergence of Duσ to Du in Lp for every
finite p ≥ 1.

Step 3. Recall that the energy solution u ∈ Hs
2(QT ) of the fractional Hamilton-Jacobi equa-

tion is unique. The same is true for the solution of the Fokker-Planck equation in view of Remark
3.2. Moreover, since u,m are in L∞(QT ), the HJB and Fokker-Planck equations can be consid-
ered as fractional heat equations with bounded source terms. Therefore, by Theorem B.3 the
solution u belongs a posteriori to H

2s
p (QT ), while m is of class H2s−1

p (QT ) for all p > 1.

Step 4. Finally, if s > 1/2 one can set up a bootstrap procedure to obtain classical regularity.
This will be proven in the following Theorem 4.2.

Remark 4.1. By uniform convergence of uσ and F [mσ] on QT we can also conclude that the
limit u solves the HJB equation in (1) in the viscosity sense.
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4.3 Classical regularity in the subcritical case s > 1/2

In what follows, we will assume that
1

2
< s < 1.

We aim at proving that (u,m) previously found in Theorem 1.2 solves the MFG system in the
classical sense. We stress that for a (linear) bootstrap procedure to be performed, s must be
greater than 1/2, because the Hamiltonian and divergence terms deteriorate the regularity of the
unknowns up to one derivative, while the gain realized by the fractional Laplacian is of order 2s.

Theorem 4.2. Let s ∈ (12 , 1) and (u,m) be a solution to (2) (in the sense of Definitions 3.1 and
3.4). Then u,m both satisfy (56) for some 0 < ᾱ < 1, and in particular solve (2) in the classical
sense. Moreover, there exists a constant C > 0 depending on the data and remaining bounded
for bounded values of T such that

‖m‖∞ + ‖Du‖∞ ≤ C.

Proof of Theorem 4.2. We first observe that since m ∈ H2s−1
p (QT ) for all p > 1, by Proposition

2.12 we have that m is bounded in Cᾱ, ᾱ
2s (QT ) for some 0 < ᾱ < 1, by choosing p large enough.

Therefore, in view of (F3), F [m] ∈ Cᾱ/2s([0, T ];C2+α(Td)), that is in turn embedded in H2
p for

all p > 1.
Note that u solves the following equation

−∂tu+ (−∆)su = G(x, t), u(x, T ) = uT (x),

where G(x, t) := F [m(t)](x)−H(x,Du(x, t)), and Du ∈ L∞. Then, at first glance, G ∈ Lp(QT )
for all p. This yields u ∈ H2s

p (QT ) by applying Theorem B.3, and in particular Du ∈ H2s−1
p (QT ).

Then H(x,Du) ∈ H2s−1−ε
p (QT ) by the fractional chain rule in Lemma A.2, so G ∈ H2s−1−ε

p (QT ).

Using that s > 1
2 and taking ε small, we can iterate this procedure until, in a finite number

of steps, G ∈ H2
p(QT ), that is the maximal regularity allowed by F [m] ∈ H2

p(QT ). Another
iteration yields u ∈ H2+2s

p (QT ) for all p > 1. Since 2 + 2s > 3, we can apply Theorem 2.6 with

p large and β close to zero to obtain u ∈ Cα1([0, T ];C3+α2(Td)), for some 0 < α1, α2 < 1, thus
H(x,Du) ∈ Cα1([0, T ];C2+α2(Td)). As a consequence, G ∈ Cᾱ, ᾱ

2s (QT ), possibly for a smaller ᾱ
than the one appeared at the beginning of the proof. So, Theorem B.1 applies, providing the
desired regularity for u.

Let us now focus on the Fokker-Planck equation. By similar arguments we have that
DpH(x,Du) ∈ H1+2s−ε

p ∩ L∞(QT ). Moreover, m ∈ H2s−1
p ∩ L∞(QT ), so by Lemma A.1 we

obtain that div(mDpH(x,Du)) ∈ H2s−2
p (QT ). An application of fractional parabolic regularity

stated in Theorem B.3 provides m ∈ H4s−2
p (QT ). We may iterate this procedure until we get

m ∈ H2s+1
p ∩L∞(QT ), and another time to conclude m ∈ H4s−ε

p (QT ) for all p > 1. Since 4s > 2,

we can use Theorem 2.6 with p large and β small to get m ∈ Cα3([0, T ];C1+α4(Td)), for some
0 < α3, α4 < 1. Since we previously obtained DpH(x,Du) ∈ Cα1([0, T ];C2+α2(Td)), we finally

have div(mDpH(x,Du)) ∈ Cᾱ, ᾱ
2s (QT ), reducing eventually the value of ᾱ previously chosen. We

deduce the stated regularity for m again from Theorem B.1.
Last, the estimate on the sup-norm of Du on QT follows by comparison and semiconcavity

bounds. Note that Proposition 3.6 applies in view of Cα1([0, T ];C3+α2(Td)) regularity of u, see
in particular Remark 3.8. Analogous bounds for m are then a direct consequence of Theorems
B.3 and 2.6.

Remark 4.3. We mention that if uT ,m0, H and F are smoother, an additional bootstrap proce-
dure yields further regularity of u,m, up to C∞. For the sake of brevity, we omit the details.
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5 Uniqueness

Here, we prove some uniqueness results in the case σ = 0, that is for system (1). We assume
that equations are satisfied in the sense of Definitions 3.1 and 3.4. The case σ > 0 is easier, since
solutions enjoy classical regularity, and the following arguments apply similarly.

5.1 Uniqueness in the monotone case

Theorem 5.1. Assume that H is convex and the following monotonicity condition holds

∫

Td

(F [m1](x)− F [m2](x))d(m1 −m2)(x) > 0 , ∀m1,m2 ∈ P(Td) ,m1 6= m2 .

Then, the solution to (1) is unique.

Proof. Uniqueness in the monotone case follows from the usual ideas by Lasry-Lions [39]. One
has to be careful that (u,m) is regular enough to run the argument. Let (u1,m1) and (u2,m2)
be two solutions of the MFG system (1). Set v = u1 − u2 and µ = m1 − m2. Then v and µ
satisfy respectively the equations

−∂tv + (−∆)sv +H(x,Du1)−H(x,Du2) = F [m1(t)](x) − F [m2(t)](x) , v(x, T ) = 0

and
∂tµ+ (−∆)sµ− div

(

m1DpH(x,Du1)−m2DpH(x,Du2)
)

= 0 , µ(x, 0) = 0 .

We distinguish between the supercritical-critical (namely s ∈ (0, 1/2) and s = 1/2) case and the
subcritical (s ∈ (1/2, 1)) one.

Case 1. The supercritical-critical case. Recall that ui, Dui,mi ∈ L∞(QT ), so v,Dv, µ ∈
L∞(QT ). Moreover, v ∈ H

s
2(QT ). Hence, using µ ∈ Hs

2(QT ) ∩ L∞(QT ) as a test function in the
weak formulation of Definition 3.4, we get

∫∫

QT

−µ∂tv + µ
(

H(x,Du1)−H(x,Du2)
)

− µ
(

F [m1(t)](x) − F [m2(t)](x)
)

dxdt+

+

∫∫

QT

(−∆)
s
2µ(−∆)

s
2 v dxdt = 0 . (48)

Then, we use v ∈ Hs
2(QT ) ∩ L∞(0, T ;W 1,∞(Td)) as a test function in the weak formulation of

the equation satisfied by µ, recalling also that ∂tµ ∈ H−1
2 (QT ), to conclude

0 =

∫∫

QT

−µ∂tv dxdt+ (−∆)
s
2µ(−∆)

s
2 v dxdt+

+

∫∫

QT

Dv · (m1DpH(x,Du1)−m2DpH(x,Du2)) dxdt , (49)

Subtracting (49) from (48) we obtain

0 =

∫∫

QT

−µ
(

(F [m1(t)](x) − F [m2(t)](x)
)

+ µ(H(x,Du1)−H(x,Du2))dxdt−

−

∫∫

QT

Dv ·
(

m1DpH(x,Du1)−m2DpH(x,Du2)
)

dxdt . (50)
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The following inequality holds true

∫∫

QT

µ(H(x,Du1)−H(x,Du2))−Dv · (m1DpH(x,Du1)−m2DpH(x,Du2))dxdt ≤ 0 ,

by convexity of H . Using (50) we can conclude that

∫∫

QT

(m1 −m2)
(

F [m1(t)]− F [m2(t)]
)

dtdx ≤ 0 ,

In view of the monotonicity condition we get m1 = m2 a.e.. Finally, by the fact that u1 and u2

solves the same equation with same final datum, they must concide.
Case 2. The subcritical case. The proof of the case s ∈ (12 , 1) is simpler and it can be carried

out as in Step 1, observing that (u,m) is a classical solution.

5.2 Small-time uniqueness

The result of this section is the following

Theorem 5.2. For s ∈ (12 , 1), there exists T ∗ > 0, depending on d, s,H, F,m0, uT such that for
all T ∈ (0, T ∗] system (1) has at most one solution (u,m).

Rewriting (1) as a forward-forward system for v,m setting v(·, t) := u(·, T−t) for all t ∈ [0, T ],
then

{

v(x, t) = TtuT (x)−
∫ t

0 Tt−τΦ
v[v,m](τ)(x)dτ ,

m(x, t) = Ttm0(x) +
∫ t

0
Tt−τΦ

m[v,m](τ)(x)dτ ,
(51)

where
Φv[v,m](τ)(·) = F [m(T − τ)](·) −H(·, Dv(·, τ)) ,

Φm[v,m](τ)(·) = div(DpH(·, Dv(·, T − τ))m(τ))

for τ ∈ [0, T ]. We will exploit the decay properties of Tt.

Proof of Theorem 5.2. For p > 1 and µ ≥ 0, let us denote by

Xµ
p := C([0, T ];Hµ

p (T
d)).

First, observe that any solution is classical by Theorem 4.2, and therefore it belongs to
X2s

p × X2s−1
p . Moreover, every solution of (1) can be seen as a fixed point of the map Ψ :

(v,m) 7−→ (v̂, m̂), where

{

v̂(t) = TtuT (x)−
∫ t

0 Tt−τΦ
v[v,m](τ)(x)dτ ,

m̂(t) = Ttm0(x) +
∫ t

0
Tt−τΦ

m[v,m](τ)(x)dτ .
(52)

We prove that the fixed point of Ψ defined in (52) is unique by the contraction properties of
Ψ itself that are valid for small T . Let (v1,m1) and (v2,m2) be two fixed points of Ψ. Set

ǫ = d
(

1
p − 1

p̄

)

< 2s− 1 with p̄ > p. This choice yields

‖m(τ)‖2s−1−ǫ,p̄ ≤ C ‖m(τ)‖2s−1,p
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for some C > 0 in view of Lemma 2.5. We apply Lemma 2.8-(i) (with ν = 2s − 1 − ε and
γ = 1 + ε) and the assumptions on F and H to get

∥

∥

∥

∥

∫ t

0

Tt−τ (Φ
v[v1,m1](τ)(x) − Φv[v2,m2](τ)(x))dτ

∥

∥

∥

∥

2s,p

≤

≤

∫ t

0

‖Tt−τ (Φ
v[v1,m1](τ)(x) − Φv[v2,m2](τ)(x))‖2s,p dτ

≤ C1

(∫ t

0

(t− τ)−
1+ε
2s ‖F [m1(T − τ)](·) − F [m2(T − τ)](·)‖2s−1−ε,p dτ+

+

∫ t

0

(t− τ)−
1+ε
2s ‖H(·, Dv1(·, T − τ)) −H(·, Dv2(·, T − τ))‖2s−1−ε,p dτ

)

≤ C2

(∫ t

0

(t− τ)−
1+ε
2s ‖m1(·, T − τ)−m2(·, T − τ)‖2s−1,p dτ+

+

∫ t

0

(t− τ)−
1+ε
2s ‖Dv1(·, T − τ) −Dv2(·, T − τ)‖2s−1,p dτ

)

≤ C3T
2s−1−ε

2s

(

‖m1 −m2‖X2s−1
p

+ ‖v1 − v2‖X2s
p

)

,

by taking T small enough.
We now consider the term related to the Fokker-Planck equation. We apply Lemma 2.8-(i) with
ν = 2s− 2− ε and γ = 1 + ε to obtain

∥

∥

∥

∥

∫ t

0

Tt−τ (Φ
m[v1,m1](τ)(x) − Φm[v2,m2](τ)(x))dτ

∥

∥

∥

∥

2s−1,p

≤

≤

∫ t

0

‖Tt−τ (Φ
m[v1,m1](τ)(x) − Φm[v2,m2](τ)(x))‖2s−1,p dτ

∫ t

0

(t− τ)−
1+ε
2s

∥

∥div
(

DpH(·, Dv1(·, T − τ))m1(τ) −DpH(·, Dv2(·, T − τ))m2(τ)
)∥

∥

2s−2−ǫ,p

≤ C1

(∫ t

0

(t− τ)−
1+ε
2s ‖div(DpH(·, Dv1(·, T − τ))(m1(τ)−m2(τ)))‖2s−2−ǫ,p dτ+

+

∫ t

0

(t− τ)−
1+ε
2s ‖div(m2(τ)(DpH(·, Dv1(·, T − τ))−DpH(·, Dv2(·, T − τ))))‖2s−2−ǫ,p dτ

)

≤ C2

(∫ t

0

(t− τ)−
1+ε
2s ‖DpH(·, Dv1(·, T − τ))(m1(τ) −m2(τ))‖2s−1−ǫ,p dτ+

+

∫ t

0

(t− τ)−
1+ε
2s ‖m2(τ)(DpH(·, Dv1(·, T − τ)) −DpH(·, Dv2(·, T − τ)))‖2s−1−ǫ,p dτ)

)

Then one has to observe that

‖DpH(Dv1(·, T − τ))(m1(τ)−m2(τ))‖2s−1−ǫ,p

≤ C3(‖DpH‖q̄ ‖m1 −m2‖2s−1−ǫ,p̄ + ‖DpH‖2s−1−ǫ,q̄ ‖m1 −m2‖p̄)

≤ C4 ‖m1 −m2‖2s−1−ǫ,p̄ ≤ C5 ‖m1 −m2‖2s−1,p ,

where we applied Lemma A.1 to the second inequality, Lemma 2.5-(iii) to the last one, the fact
that ‖DpH‖2s−1−ǫ,q̄ is bounded independently of T by the regularity assumption on H and the
L∞ bound on Du and m.

34



Similarly,

‖m2(τ)(DpH(·, Dv1(·, T − τ))−DpH(·, Dv2(·, T − τ)))‖2s−1−ǫ,p

≤ C1

(

‖m2‖q̄ ‖DpH(·, Dv1)−DpH(·, Dv2)‖2s−1−ǫ,p̄ +

+ ‖m2‖2s−1−ǫ,q̄ ‖DpH(·, Dv1)−DpH(·, Dv2)‖p̄

)

≤ C2 ‖DpH(·, Dv1)−DpH(·, Dv2)‖2s−1−ǫ,p̄ ≤ C3 ‖D(v1 − v2)‖2s−1−ǫ,p̄

≤ C4 ‖D(v1 − v2)‖2s−1,p ≤ C5 ‖v1 − v2‖2s,p ,

where Ci = Ci(d, s, ǫ, p, p̄, q̄). This gives

∥

∥

∥

∥

∫ t

0

Tt−τ (Φ
m[v1,m1](τ)(x) − Φm[v2,m2](τ)(x))dτ

∥

∥

∥

∥

2s−1,p

≤ C4T
2s−1−ε

2s (‖v1 − v2‖X2s
p

+ ‖m1 −m2‖X2s−1
p

)

by eventually taking T small enough. At the end we get

‖v1 − v2‖X2s
p

+ ‖m1 −m2‖X2s−1
p

= ‖Ψ(v1,m1)−Ψ(v2,m2)‖X2s
p ×X2s−1

p

≤
1

2
(‖v1 − v2‖X2s

p
+ ‖m1 −m2‖X2s−1

p
) ,

which allows to conclude (v1,m1) = (v2,m2) for T sufficiently small.

A Fractional product and chain rules on the torus

We first present a version of the Kato-Ponce inequality on Bessel potential spaces on the torus.
We refer the reader to the classical results in [32] and to [30] (and references therein) for more
recent developments, all stated in the euclidean case.

Lemma A.1. Let µ ∈ (0, 1) and 1 < p, p1, q1, p2, q2 < ∞ and such that 1
p = 1

p1
+ 1

q1
= 1

p2
+ 1

q2
.

Then,
‖fg‖Hµ

p (Td) ≤ C(‖f‖Lp1(Td) ‖g‖Hµ
q1

(Td) + ‖f‖Hµ
p2

(Td) ‖g‖Lq2(Td))

for some C > 0.

We recall that the inequality can be proven in the euclidean case as follows, see e.g. [28].
First, a bilinear multiplier operator with symbol m acting on f, g ∈ S(Rd) is defined as

Tm(f, g)(x) :=

∫∫

R2d

m(ξ, η)Ff(ξ)Fg(η)e2πi(ξ+η)·xdξdη . (53)

We are interested in the symbol |ξ + η|µ, since

(−∆)µ/2(fg)(x) =

∫∫

R2d

|ξ + η|µFf(ξ)Fg(η)e2πi(ξ+η)·xdξdη .

Then one performs the partition m(ξ, η) = σ1(ξ, η)|ξ|
µ + σ2(ξ, η)|η|

µ, where

σ1(ξ, η) :=
|ξ + η|µ

|ξ|µ

(

1− φ

(

|ξ|

|η|

))

, σ2(ξ, η) :=
|ξ + η|µ

|η|µ
φ

(

|ξ|

|η|

)
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and φ is a suitable C∞
0 cut-off function; we are then reduced to prove the boundedness of the

operators Tσi on Lpi(Rd)× Lqi(Rd). Indeed, this would yield

∥

∥

∥(−∆)µ/2(fg)
∥

∥

∥

Lp(Rd)
≤ C

(

∥

∥

∥(−∆)µ/2f
∥

∥

∥

Lp1(Rd)
‖g‖Lq1(Rd) + ‖f‖Lp2(Rd)

∥

∥

∥(−∆)µ/2g
∥

∥

∥

Lq2(Rd)

)

,

and the desired estimate with Hµ
p norms would follow by equivalence of ‖ · ‖µ,p with ‖ · ‖p +

‖(−∆)
µ
2 · ‖p. The key result for boundedness of Tσi is the Coifman-Meyer multiplier theorem

(see [30, Theorem A] and references therein). Note that the assumptions of such theorem are
fulfilled, since the multipliers σi are homogeneous of degree zero.

Proof of Lemma A.1. One may argue as in the euclidean case. We start by observing that
bilinear operators Tσi have a periodic counterpart defined on the torus, that is

Bσi(f, g)(x) :=
∑

µ∈Zd

∑

ν∈Zd

σi(µ, ν)f̂ (µ)ĝ(ν)e
2πi(µ+ν)·x (54)

By the transference results on multilinear multipliers in [22, Theorem 3], since σi are bilinear
Coifman-Meyer multipliers on Rd × Rd, then they are so also on Td × Td. One has just to be
careful since σi are discontinuous at (0, 0), but it is sufficient to have them defined in (0, 0) so
that (0, 0) is a Lebesgue point for both σi.

We also present a chain rule for fractional Sobolev spaces.

Lemma A.2. Let µ > 0, and Ψ : Td×Rd → R be of class C⌈µ⌉(Td×Rd) with bounded derivatives
on Td × Rd up to order ⌈µ⌉. Let u ∈ Wµ,p(Td) ∩Hµ

p (T
d). Then

‖Ψ(·, u(·))‖Wµ,p(Td) ≤ C(‖u‖Wµ,p(Td) + 1) ,

and, for all ε > 0,
‖Ψ(·, u(·))‖Hµ−ε

p (Td) ≤ C(‖u‖Hµ
p (Td) + 1) .

Proof. We just consider the case 0 < µ < 1, the general case being treated similarly. We start
with the inequality in Wµ,p spaces, using their construction through the trace method. It is
sufficient to recall that

‖u‖W 1−µ,p(Td) = inf
u=f(0)

max{‖tµ−1/pf(t)‖Lp(0,∞;W 1,p(Td)); ‖t
µ−1/pf ′(t)‖Lp(Td×(0,∞))},

and observe that
‖Ψ(x, f(x))‖W 1,p(Td) ≤ C(1 + ‖f‖W 1,p(Td)),

where the constant C depends on global bounds on the derivatives of Ψ. Then, one uses
Ψ(x, f(x)) to estimate ‖Ψ(·, u(·))‖W 1−µ,p(Td), where f is close to the infimum in the definition of
‖u‖W 1−µ,p(Td). The analogous inequality in Hµ

p spaces is then a consequence of Lemma 2.14.

B Regularity in parabolic fractional Hölder spaces

We consider the problem
{

∂tu+ (−∆)su = f(x, t) in QT ,

u(x, 0) = u0(x) in Td .
(55)
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The purpose of this section is to present a fractional analogue of classical parabolic Hölder and
Sobolev regularity. We point out that related results for this problem on the euclidean space
appeared in [8, Appendix A] and [15], see also references therein. We stress that transference
of these results to the periodic setting is delicate, in particular concerning regularity in Sobolev
spaces, and to our knowledge they are not explicitly stated in the literature. We present some
proofs that make use of interpolation methods and results for abstract parabolic equations, with
some details for the reader’s convenience.

As for regularity in Hölder spaces, we follow the approach of [44, Chapter 5-6],[42, Chapter
3-4] (see also [43, Chapter 5]).

Theorem B.1. Let α ∈ (0, 1) so that 2s + α is not an integer, f ∈ Cα, α
2s (QT ) and u0 ∈

C2s+α(Td). Then problem (55) has a unique classical solution u, and there exists a positive
constant C depending on d, T, α, s (which remains bounded for bounded values of T ) such that

‖∂tu‖Cα, α
2s (QT )

+ ‖(−∆)su‖
C

α, α
2s (QT )

≤ C(‖u0‖C2s+α(Td) + ‖f‖
C

α, α
2s (QT )

) . (56)

We begin with some preliminary decay estimates for the fractional heat semigroup Tt in
Hölder spaces.

Lemma B.2. For every 0 ≤ θ1 < θ2, θ1, θ2 ∈ R, there exists C = C(θ1, θ2) such that for all
f ∈ Cθ1(Td)

‖Ttf‖Cθ2(Td) ≤ Ct−(θ2−θ1)/2s‖f‖Cθ1(Td) .

Proof. Computations of Remark 2.7 (in particular the representation formula for Tt and Young’s
inequality for convolution) show that for every k > h, k, h ∈ N ∪ {0} there exists C = C(h, k)

‖Ttf‖Ck+h(Td) ≤ Ct−
k
2s ‖f‖Ch(Td) .

This implies that Ttf : Ch(Td) → Ck+h(Td) is bounded for t > 0. Recall that, as a consequence
of the so-called Reiteration Theorem [43, Section 1.2.4] and [42, Theorem 1.1.14 and Example
1.1.7] (whose proofs can be readily adapted to the torus) we get

(Ch(Td), Ck+h(Td))α,∞ = Ch+α(Td) .

In addition, one also has Ttf : L∞(Td) → L∞(Td). By interpolation (see [43, Proposition 1.2.6]),
Tt maps Cθ1(Td) onto Cθ2(Td) with the desired estimate.

Proof of Theorem B.1. Step 1. We first prove the existence of a constant C > 0 such that

sup
t∈[0,T ]

‖u(·, t)‖C2s+α(Td) ≤ C( sup
t∈[0,T ]

‖f(·, t)‖Cα(Td) + ‖u0‖C2s+α(Td)) .

We first observe that for s, α ∈ (0, 1) such that 2s+ α is not an integer we have

C2s+α(Td) = (Cα+δ(Td), C2s+α+δ(Td))1−δ/2s,∞ , 0 < δ < 2s .

We show that u(·, t) is bounded with values in C2s+α(Td). Fix t ∈ [0, T ]. Then, for every ξ > 0
we split u(t) as u(t) = a(ξ) + b(ξ) + c(ξ) using Duhamel’s formula, that is

a(ξ) =

∫ min{ξ,t}

0

Tτf(t− τ)(x)dτ,

b(ξ) =

∫ t

min{ξ,t}

Tτf(t− τ)(x)dτ,

c(ξ) = Tt−min{ξ,t}Tmin{ξ,t}u0.
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Then a(ξ) ∈ Cα+δ(Td), b(ξ), c(t) ∈ C2s+α+δ(Td) for each δ ∈ (0, 2s). Indeed,

‖a(ξ)‖Cα+δ(Td) ≤

∫ min{ξ,t}

0

C

τδ/2s
dτ sup

τ∈[0,T ]

‖f(τ)‖Cα(Td)

≤
C

1− δ/2s
ξ1−δ/2s sup

τ∈[0,T ]

‖f(τ)‖Cα(Td) .

In addition

‖b(ξ)‖C2s+α+δ(Td) ≤

∫ t

min{ξ,t}

C

τ1+δ/2s
dτ sup

τ∈[0,T ]

‖f(τ)‖Cα(Td)

≤
C

δ/2s
ξ−δ/2s sup

τ∈[0,T ]

‖f(τ)‖Cα(Td) .

Similarly to the above computations we have

‖c(ξ)‖C2s+α+δ(Td) ≤ ‖Tmin{ξ,t}u0‖C2s+α+δ(Td) ≤ Cξ−δ/2s‖u0‖C2s+α(Td).

Therefore, by the definition of K in Section 2.2 we have

ξ−(1−δ/2s)K(ξ, u(t), Cα+δ(Td), C2s+α+δ(Td))

≤ ξ−(1−δ/2s)(‖a(ξ)‖Cα+δ(Td) + ξ‖b(ξ) + c(ξ)‖C2s+α+δ(Td))

≤ C( sup
τ∈[0,T ]

‖f(τ)‖Cα(Td) + ‖u0‖C2s+α(Td)) .

This shows in particular that u(t) ∈ C2s+α(Td) = (Cα+δ(Td), C2s+α+δ(Td))1−δ/2s,∞ and

‖u(t)‖C2s+α(Td) ≤ C(‖f‖Cα
x (QT ) + ‖u0‖C2s+α(Td)) .

for all t ∈ [0, T ]. Since ∂tu = −(−∆)su+f and ‖(−∆)su(t)‖Cα(Td) is controlled by ‖u(t)‖C2s+α(Td)

(see, e.g. [50, Theorem 1.4]), we obtain the bound on ‖∂tu‖Cα(Td) + ‖(−∆)su(t)‖Cα(Td).

Step 2. We need to show that ∂tu and (−∆)su are both α/2s-Hölder continuous in time.
Note that as before it is sufficient to estimate the term (−∆)su. One can proceed adapting the
arguments in [42, Theorem 4.0.14] to the fractional framework, and essentially use estimates of
Lemma B.2. We refer the reader to [26] for detailed computations. Anyhow, our setting falls
into a general treatment for abstract parabolic equations, see [53] or [42, Theorem 4.0.15].

Concerning parabolic regularity in Sobolev spaces, we need the following

Theorem B.3. Let p > 1, ε > 0 and µ ∈ R. Suppose that u ∈ Hµ
p (QT ) solves (55) with

u0 ∈ H
µ−2s/p+ε
p (Td). Then, there exists C > 0, that depends on d, T, p, s, ε (but remains bounded

for bounded values of T ) such that

‖u‖Hµ
p(QT ) ≤ C(‖f‖

H
µ−2s
p (QT ) + ‖u0‖µ−2s/p+ε,p).

Proof. A detailed proof of this result on Rd can be found in [15]. In the periodic setting one may
proceed as follows. Note first that by Duhamel’s formula u(t) = u1(t) + u2(t), where

u1(t) = Ttu0, u2(t) =

∫ t

0

Tt−τf(τ)dτ.
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Recall that (−∆)s generates the analytic semigroup Tt on Lp(Td) in view of Remark 2.9.
This observation allows to apply the abstract regularity result [38, Theorem 1], which yields the
following estimate for u2

‖u2‖H2s
p (QT ) ≤ C‖f‖Lp(QT ) .

The general case follows by the isometry property of the operator (I −∆)
µ
2 in view of Remark

2.3.
The estimate of the term involving the initial datum ‖u1‖Hµ

p (QT ) ≤ C‖u0‖µ−2s/p+ε,p can

be obtained directly using decay estimates. We assume without loss of generality ε < 2s
p . By

Lemma 2.8-(i) we have

‖u1(t)‖µ,p = ‖Ttu0‖µ,p ≤ Ct−
1
p+

ǫ
2s ‖u0‖µ−2s/p+ǫ,p .

Note that C here does not depend on T . Integrating between 0 and T we have

‖u1‖
p
H

µ
p (QT ) =

∫ T

0

‖u1(·, t)‖
p
µ,p dt ≤ CT

pǫ
2s ‖u0‖

p
µ−2s/p+ǫ,p

Since u1 solves ∂tu1 + (−∆)su1 = 0 we get

‖∂tu1‖
p

H
µ−2s
p (QT )

=

∫ T

0

‖∂tu1(·, t)‖
p
µ−2s,p =

∫ T

0

‖(−∆)su1(·, t)‖
p
µ−2s,p dt

≤ C

∫ T

0

‖(I −∆)su1(·, t)‖
p
µ−2s,p dt = C

∫ T

0

‖u1(·, t)‖
p
µ,p dt ,

that allows to conclude.

Remark B.4. In Theorem B.3 we “pay a price” of ε in terms of the regularity of the initial datum
in order to make the argument more transparent. Set now µ = 2s for simplicity. Actually, it
is natural for the initial datum u0 in (55) to belong to the space T (p, 0, H2s

p (Td), Lp(Td)), that

is the space of traces of functions in H2s
p (Td × (0,+∞)) = W (p, 0, H2s

p (Td), Lp(Td)). Similarly,

T (p, 0, H2s
p (Td), Lp(Td)), is the space of traces of functions in H2s

p (QT ) by an easy localization

argument. As mentioned in Section 2, T (p, 0, H2s
p (Td), Lp(Td)) is equivalent to the real interpo-

lation space (H2s
p (Td), Lp(Td))1/p,p. The latter is isomorphic to the Besov space B

2s−2s/p
p,p (Td)

and therefore to W
2s−2s/p
p (Td). This chain of equivalences can be motivated as follows: arguing

as in [5, Theorem 6.4.5-(4)] and [5, Exercise 6.8.7], (H2s
p (Td), Lp(Td))1/p,p is equivalent to the

space of functions u ∈ Lp(Td) with finite seminorm

[u]
B

2s−2s/p
p,p (Td)

=

(∫∫

Td×Td

|u(x)− u(x+ h)|p

|h|d+2sp−2s
dxdh

)
1
p

< ∞.

This is indeed the Gagliardo seminorm, an equivalent way to define the space W
2s−2s/p
p (Td)

(see [42, Example 1.0.6]). Such space is larger in general than H
2s−2s/p+ε
p (Td) by Lemma 2.14.

Therefore, by these ideas one could slightly relax the dependance on u(0) in, e.g., Theorem 2.6,
Propositions 2.11, 2.12, ...
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Classics. Birkhäuser/Springer Basel AG, Basel, 1995. [2013 reprint of the 1995 original]
[MR1329547].

[44] A. Lunardi. Interpolation theory, volume 16 of Appunti. Scuola Normale Superiore di Pisa (Nuova
Serie) [Lecture Notes. Scuola Normale Superiore di Pisa (New Series)]. Edizioni della Normale,
Pisa, 2018. Third edition [of MR2523200].

[45] G. Metafune, D. Pallara, and A. Rhandi. Global properties of transition probabilities of singular
diffusions. Teor. Veroyatn. Primen., 54(1):116–148, 2009.

[46] A. Pazy. Semigroups of linear operators and applications to partial differential equations, volume 44
of Applied Mathematical Sciences. Springer-Verlag, New York, 1983.

[47] A. Porretta. Weak solutions to Fokker-Planck equations and mean field games. Arch. Ration. Mech.
Anal., 216(1):1–62, 2015.

[48] P. J. Rabier. Vector-valued Morrey’s embedding theorem and Hölder continuity in parabolic prob-
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