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Abstract. Inspired by Strotz’s consistent planning strategy, we formulate the infinite horizon
mean-variance stopping problem as a subgame perfect Nash equilibrium in order to determine time
consistent strategies with no regret. Equilibria among stopping times or randomized stopping times
may not exist. This motivates us to consider the notion of liquidation strategies, which allows the
stopping right to be divisible. We then argue that the mean-standard deviation variant of this
problem makes more sense for this type of strategies in terms of time consistency. It turns out that
an equilibrium liquidation strategy always exists. We then analyze whether optimal equilibrium
liquidation strategies exist and whether they are unique and observe that neither may hold.

1. Introduction

Consider an optimal stopping problem with an infinite time horizon

sup
τ

Ex[g(Xτ )], (1.1)

where X is a Markov process starting from state x, and the stopping time τ is chosen to maximize
the expectation of the payoff function g. A classical approach to solving this optimal stopping
problem is to use dynamic programming. Thanks to the particular form of (1.1), this problem
is known to be time-consistent in the sense that its optimal stopping strategy does not depend
on the initial state x. However, such property may fail to hold in some seemingly quite natural
problems where the objective function is in different forms. In those cases, a stopping strategy that
is optimal from “today’s” point of view may not be optimal anymore from “tomorrow’s” point of
view. Optimal stopping, more generally, optimal control problems with such property are said to be
time-inconsistent. Typical examples include non-exponential discounting, the optimization criteria
used in cumulative prospect theory (e.g. rank based utility), and the mean-variance criterion, which
is the focus of our paper.

There are three ways one could deal with time-inconsistency, dating back to the seminal work
of Strotz [18]. The first is to formulate an optimal stopping problem with a given initial state x.
The optimal stopping time τx is then parametrized by the initial state x. Once the state starts at
x, and optimal policy τx is determined, the player is precommitted to implementing this strategy.
This strategy simply does not take the change of future preferences into account. The second is to
have the agent repeatedly solve this problem, hence allow for changes in future preferences. [18]
called this strategy naive and further repercussions about this strategy are discussed in [6]. [16]
discusses these two formulations under the labels static optimality and dynamic optimality.
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game perfect Nash equilibrium.
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The third way is to formulate the problem in game theoretic terms by viewing each state x as a
player in a game regarding when to stop the process X and look for equilibrium strategies. Roughly
speaking, an equilibrium strategy, which is also called a consistent plan, can be viewed as a no-
regret strategy since the agent has no incentive to deviate from the strategy at any current state x.
The third way is the formulation we will follow here to analyze this problem in an infinite-horizon
discrete-time setting. In discrete time, infinite horizon is much more challenging than finite horizon
because [17]’s backward sequential optimization approach to obtain the consistent plans no longer
works.

Recently, there has been a lot of effort in determining the equilibrium strategies in stochastic
control problems, see e.g. [3] and the references therein. There are also several papers on the equi-
librium strategies for stopping problems. Among them, [15] analyzes the case in discrete time with
a finite time horizon, and [9] investigates a particular model in continuous time with an infinite-
time horizon. A general treatment for stopping problems in continuous time is considered in [11]
in the context of hyperbolic discounting. In particular, [11] proposes a definition of equilibrium in
continuous time which avoids using the “first order criteria” as in control problems in the literature.
[11] also formulates equilibrium stopping policies as fixed points of an operator and constructs a
large class of equilibria by iterating this operator. This effort is continued in [12] when the agents
use probability distortions to calculate their criteria. As for the study of how to choose an equi-
librium, [10] considers a discrete-time infinite-horizon problem with non-exponential discounting,
and investigates optimal equilibria in the sense of pointwise dominance. Apart from establishing
the existence of a pure stopping equilibrium, [10] also obtains the existence and uniqueness of an
optimal equilibrium. Also see [13] which is a continuous-time extension of [10]. Let us also mention
the recent work of [4], where the authors consider the equilibrium stopping strategies under the
definition associated with first order criteria. They point out that the mean-variance problem is out
of the scope of their approach. In another recent paper [5] by the same authors, a continuous time
general framework for time-inconsistent stopping problems covering the mean-variance criterion is
developed, and a continuous time mean-variance problem is studied, and a mixed stopping strategy
for the time-inconsistent stopping problem in continuous time is defined as the first jumping time
of a Cox-process associated to the state process.

In this paper, we study time-consistent mean-standard deviation stopping problems in discrete
time with an infinite time horizon. We show that while a Markov equilibrium in the class of pure or
randomized stopping times may not exist in general, there always exists an equilibrium liquidation
strategy. In addition, we show that an optimal equilibrium in the sense of pointwise dominance
may not exist, and may not be unique if it exists. We also establish the existence of a Pareto
optimal equilibrium.

The main novelty in this paper is the determination of the right type of “mixed” equilibrium
strategies and the appropriate modification of the criteria to make sense of the consistent planning
problem. In particular, we show that the obvious choice of mixing, i.e., a randomized stopping
strategy, does not work because when an equilibrium in this class exists it coincides with the pure
equilibrium strategy. (One should contrast this to the Example 2.6 of [4], where they show that
there exists an equilibrium randomized stopping strategy which is not a pure stopping time.) The
right notion of strategies turns out to be the liquidation strategies that were introduced by [1] (see
also [2]) in the context of subhedging American options. The stopping right is taken to be divisible,
or rather as a finite resource/fuel that the agent can consume continuously. The differences between
randomized and liquidation strategies are highlighted in Remark 2.2.

Instead of the mean-variance benchmark, we propose using the mean-standard deviation crite-
rion. We think it is more meaningful in the context of consistent planning. One reason is that the
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mean and standard deviation are associated with the same unit. Moreover, the scaling property
of this new objective function plays along well with liquidation strategies — no matter what the
history liquidation strategy is, we will face the same problem as soon as we are in the same state,
because we can factor out the proportion of the stopping right remaining in the objective function.
(For comparison, we also define equilibrium liquidation strategies for the mean-variance problem
in a similar way. The consequent results reinforce our concerns about its properness in terms of
consistent planning.)

Unlike examples in [15], the method of backward construction for equilibria fails in our setup
because the time horizon is infinite. The fixed point approach used in [10] (see e.g., (2.5) in [10])
does not work for our problem either, due to the non-linearity of the criterion. Instead, we provide
a characterization of equilibria, from which we are able to calculate explicitly all the equilibria for
many examples in this paper.

The rest of the paper is organized as follows. In Section 2 we introduce the mean-standard
deviation problem. We first analyze the equilibrium stopping time, and provide an example to
show such equilibrium may not exist. Then we introduce the concepts of randomized stopping
strategies and liquidation strategies and analyze the equilibria in these classes. In Section 3 we
consider the similar concepts for mean-variance problems. In Section 4 we compare equilibrium
liquidation strategies with statically optimal ones. Some computational details can be found in
Appendix A.

2. Mean-Standard Deviation Problem

Consider a probability space (Ω,F ,P) that supports a time-homogeneous discrete-time Markov
chain X = (Xn)n∈N, taking values in a finite state space X ⊂ R. For each x ∈ X, if X0 = x, we
will write X as Xx. The probability, expectation, and variance associated with Xx will be denoted
by Px[·], Ex[·] and Varx[·], respectively. We assume that the limit X∞ := limn→∞Xn exists almost
surely.

2.1. Equilibrium Stopping Times. For any x ∈ X and τ ∈ T (where T is the set of stopping
times w.r.t. the filtration generated by the Markov chain), consider the following objective function
in mean-standard deviation problem

Kp(x, τ) := Ex[Xτ ]− c(Varx[Xτ ])1/2, (2.1)

where c > 0 is a constant and the subscript “p” in Kp(x, τ) stands for “pure Markov stopping
time”.

As we have discussed in the introduction part, this mean-standard deviation problem is time-
inconsistent due to the non-linear term (Varx[Xτ ])1/2. We treat it as an intra-personal game
regarding when to stop the processX between current and future selves whose preferences, identified
with the objective function Kp, change as the initial state x changes. A reasonable equilibrium
strategy should be such that once the agent chooses to follow the equilibrium strategy he will
never regret no matter which state he comes into. Furthermore, we only consider the pure Markov
stopping times commonly used in game theory; see e.g. [4] and [14].

Definition 2.1. A stopping time τ is said to be a pure Markov stopping time, or pure stopping
time for short, if τ = inf{t ≥ 0 : Xt ∈ S} for some measurable set S ⊂ X and S is called the
stopping region.

Remark 2.1. Obviously for any stopping region S, the value will not change if we add or remove
an absorbing state from S. Therefore, without loss of generality we may assume a stopping region
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always contains all the absorbing states. The similar argument applies to the cases when we discuss
randomized stopping and liquidation strategies later on.

A pure stopping time governs when the agent should stop. The decision whether to stop or not
depends directly on the current state x and not on the past path of process X. A corresponding
subgame perfect Nash equilibrium based on pure Markov stopping time is defined as the following.

Definition 2.2. A pure Markov stopping time τ with stopping region S is said to be an equilibrium
stopping time for (2.1) if

x ≥ Kp(x, ρ(x, S)), ∀x ∈ S and x ≤ Kp(x, ρ(x, S)), ∀x /∈ S, (2.2)

where ρ(x, S) := inf{n ≥ 1 : Xx
n ∈ S} ∈ T .

The next result shows that an equilibrium stopping time may not exist.

Proposition 2.1. An equilibrium stopping time does not always exist.

Proof. We will prove this by giving a counterexample. Let c = 1. X has state space X =
{0, 1, 3, 6, 10} and the following transition matrix.

0 1 3 6 10
0 1 0 0 0 0
1 0.2 0 0.4 0.2 0.2
3 0 0 1 0 0
6 0 0.2 0 0 0.8
10 0 0 0 0 1

For this Markov chain, {0, 3, 10} are absorbing states and {1, 6} are transient. Suppose there ex-
ists an equilibrium stopping time with stopping region S ⊂ {0, 1, 3, 6, 10} and consider the following
four cases.

Case 1: S = {0, 1, 3, 6, 10}. We have that

P1(Xρ(1,S) = 0) = P1(Xρ(1,S) = 6) = P1(Xρ(1,S) = 10) = 0.2, P1(Xρ(1,S) = 3) = 0.4,

then

E1[Xρ(1,S)] = 4.4, E1[X
2
ρ(1,S)] = 30.8⇒ Kp(1, ρ(1, S)) = 1.0177 > 1,

which yields a contradiction.

Case 2: S = {0, 3, 6, 10}. We have that

P6(Xρ(6,S) = 0) = P6(Xρ(6,S) = 6) = 0.04, P6(Xρ(6,S) = 3) = 0.08, P6(Xρ(6,S) = 10) = 0.84,

then

E6[Xρ(6,S)] = 8.88, E6[X
2
ρ(6,S)] = 86.16⇒ Kp(6, ρ(6, S)) = 6.1771 > 6,

which yields a contradiction.

Case 3: S = {0, 1, 3, 10}. We have that

P6(Xρ(6,S) = 1) = 0.2, P6(Xρ(6,S) = 10) = 0.8,

then

E6[Xρ(6,S)] = 8.2, E6[X
2
ρ(6,S)] = 80.2⇒ Kp(6, ρ(6, S)) = 4.6 < 6,

which yields a contradiction.
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Case 4: S = {0, 3, 10}. We have that

P1(Xρ(1,S) = 0) =
5

24
, P1(Xρ(1,S) = 3) =

5

12
, P1(Xρ(1,S) = 10) =

3

8
,

then

E1[Xρ(1,S)] = 5, E1[X
2
ρ(1,S)] =

165

4
⇒ Kp(1, ρ(1, S)) = 0.9689 < 1,

which yields a contradiction. �

2.2. Randomized Stopping Times. In the last section, we observed that there is no guaran-
tee that an equilibrium stopping time exists. Therefore we will now seek an equilibrium among
randomized stopping times.

Let us first briefly recall some facts of randomized stopping times, and we refer to [7] for more
details. A randomized stopping time (w.r.t. the original space (Ω,F)) is defined to be a stopping
time w.r.t. the extended space (Ω × [0, 1],F ⊗ B([0, 1])). For a randomized stopping time γ :
Ω× [0, 1] 7→ N, its ω-distribution is defined by

Mk(ω) := Leb{v : γ(ω, v) ≤ k}, k ∈ N, ω ∈ Ω,

where Leb is the Lebesgue measure. Intuitively, Mk(ω) represents the probability that the underly-
ing process has stopped by time k along the path ω. Moreover, there is a one-to-one correspondence
(up to a rearrangement) between γ and M ; see [7]. For the Markov chain X and any randomized
stopping time γ with the ω-distribution M , denote

E[Xγ ] = E

[
M0X0 +

∞∑
k=1

Xk(Mk −Mk−1) + (1−M∞)X∞

]
,

and

Var[Xγ ] = E[X2
γ ]− (E[Xγ ])2,

M∞ := limn→∞Mn.

Definition 2.3. We say γ is a time-homogeneous randomized stopping time, if there exists p :
X→ [0, 1], such that the ω-distribution of γ satisfies

Mk(·) = 1−
k∏

n=0

(1− p(Xk(·))).

Here p(x) represents the probability to stop at state x, given the underlying process has not stopped
yet. We call p : X→ [0, 1] a randomized stopping strategy, and denote the set of all of them by P.

Intuitively, given a function p : X→ [0, 1], we can design n biased coins, where n is the number
of states in X. When we are at state Xk = x, we will flip the coin with probability p(x) it comes
up heads. If it comes up heads, we will stop. Otherwise, we will continue. In general, we can
design more complicated strategies about flipping coins, which will fit in with general randomized
stopping times, not just time-homogeneous randomized stopping times.

For any p,q ∈ P, denote γq⊗p as the randomized stopping time with the ω-distribution

M0 = q(X0), and Mk = 1− (1− q(X0))

k∏
n=1

(1− p(Xk)), k = 1, 2, . . . .

We sometimes also write γp instead of γp⊗p for short. With a bit abuse of notation, we use E[Xq⊗p]
to represent E[Xγq⊗p ], and Var[Xq⊗p] to represent Var[Xγq⊗p ].
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In Definition 2.2, an equilibrium stopping time is a subgame perfect Nash equilibrium in which
all players use pure Markov stopping times. Now we propose to consider an equilibrium randomized
stopping strategy which is a subgame perfect Nash equilibrium in the game where all players use
time-homogeneous randomized stopping times and their preferences are identified with the following
objective function

Kr(x,p) := Ex[Xp]− c(Varx[Xp])1/2, (2.3)

where p is a randomized stopping strategy and the subscript “r” in Kr stands for “randomized
stopping strategy”.

Definition 2.4. p ∈ P is said to be an equilibrium randomized stopping strategy for (2.3), if for
any mapping q : X→ [0, 1],

Kr(x,q⊗ p) ≤ Kr(x,p⊗ p), ∀x ∈ X, (2.4)

where Kr(x,q⊗ p) is from (2.3) by replacing p with p⊗ q.

The randomized strategy is also called “mixed strategy” in game theory, i.e., an assignment of a
probability to each pure strategy. In our context, we assign probability p(x) to the pure strategy
“to stop at state x” and probability 1− p(x) to the pure strategy “not to stop at state x”.

If the randomized stopping strategy p ∈ P satisfies that p(x) ∈ {0, 1} for any x ∈ X, then it is
actually a pure strategy, which is to stop at state x if p(x) = 1 and not to stop at state x if p(x) = 0.
In this case, it simply gives us a pure stopping time with stopping region {x ∈ X : p(x) = 1}.
We have the following result, which together with Proposition 2.1 implies that an equilibrium
randomized stopping strategy does not always exist.

Proposition 2.2. If p ∈ P is an equilibrium randomized stopping strategy for (2.3), then p(x) = 0
or 1 for any (transient state) x ∈ X. Conversely, if there is an equilibrium stopping time with
stopping region S, then p ∈ P defined by

p(x) =

{
1, x ∈ S,
0, x /∈ S,

(2.5)

is an equilibrium randomized stopping strategy. Consequently, an equilibrium randomized stopping
strategy does not always exist.

For the proof of this proposition we will need the following result:

Lemma 2.1. Let γ1, γ2, γ be randomized stopping times and λ ∈ (0, 1), such that

P(γ = γ1) = 1− P(γ = γ2) = λ.

(Denote γ = λγ1 ⊕ (1− λ)γ2.) Then

Var[Xλγ1⊕(1−λ)γ2 ] ≥ λVar[Xγ1 ] + (1− λ)Var[Xγ2 ] ≥
(
λ(Var[Xγ1 ])1/2 + (1− λ)(Var[Xγ2 ])1/2

)2
.

Moreover, the first equality holds if and only if E[Xγ1 ] = E[Xγ2 ], and the second equality holds if
and only if Var[Xγ1 ] = Var[Xγ2 ].

Proof. We have that

Var[Xλγ1⊕(1−λ)γ2 ] = E[X2
λγ1⊕(1−λ)γ2 ]− (E[Xλγ1⊕(1−λ)γ2 ])2

= λE[X2
γ1 ] + (1− λ)E[X2

γ2 ]− (λE[Xγ1 ] + (1− λ)E[Xγ2 ])2

≥ λE[X2
γ1 ] + (1− λ)E[X2

γ2 ]−
(
λ(E[Xγ1 ])2 + (1− λ)(E[Xγ2 ])2

)
= λVar[Xγ1 ] + (1− λ)Var[Xγ2 ].
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We obtain the inequality using Jensen’s inequality. The rest of the result is easy to check. �

Proof of Proposition 2.2. Let p ∈ P be an equilibrium randomized stopping strategy for (2.3).
Suppose there exists a transient state x ∈ X such that 0 < λ := p(x) < 1. Denote

α := 1⊗ p and β := 0⊗ p, (2.6)

where 1 ∈ P (resp. 0 ∈ P) is the strategy with all components 1 (resp. 0). We have the following.

Kr(x,p⊗ p) = Kr(x, λα⊕ (1− λ)β)

= E
[
Xλα⊕(1−λ)β

]
− c

(
Var[Xλα⊕(1−λ)β]

)1/2
≤ λE[Xα] + (1− λ)E[Xβ]− c

(
λ (Var[Xα])1/2 + (1− λ) (Var[Xβ])1/2

)
(2.7)

= λKr(x, α) + (1− λ)Kr(x, β)

≤ Kr(x,p⊗ p), (2.8)

where (2.7) follows from Lemma 2.1 and (2.8) follows from (2.4). This implies that equality holds
for (2.7). By Lemma 2.1

x = Xα = Xβ.

Since the state x is transient, there is a positive probability that the Markov chain never returns
back to x. As a result, it is not possible that Xβ = x with probability 1.

Conversely, assume there is an equilibrium stopping time with stopping region S, and define
p ∈ P as in (2.5). Let q ∈ P and x ∈ X. Denote λ′ := q(x), and define α and β as in (2.6). We
consider two cases:
(i) p(x) = 1: Then

Kr(x, β) = Kp(x, ρ(x, S)) ≤ x = Kr(x, α).

Then by a similar argument as above, we have that

Kr(x,q⊗ p) ≤ λ′Kr(x, α) + (1− λ′)Kr(x, β) ≤ Kr(x, α) = Kr(x,p⊗ p).

(ii) p(x) = 0: Kr(x, β) = Kr(x,p ⊗ p) ≥ Kr(x, α) = x, and thus Kr(x,q ⊗ p) ≤ Kr(x, β) =
Kr(x,p⊗ p). �

2.3. Equilibrium Liquidation Strategies.

Definition 2.5. An adapted nondecreasing process θ = (θn)n∈N is said to be a liquidation strategy,
if θ0 ≥ 0, and

lim
n→∞

θn ≤ 1, a.s..

A liquidation strategy θ is said to be time homogeneous, if there exists η : X 7→ [0, 1], such that
along any path (xn)n∈N ∈ X∞,

θn(x0, . . . , xn) = 1−
n∏
i=0

(1− η(xi)).

Denote by L the collection of all time-homogeneous liquidation strategies.

Consider the objective function

Kl(x, θ) := Ex[θ(X)]− c(Varx[θ(X)])1/2, (2.9)
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where the subscript “l” in Kl(x, θ) stands for “liquidation strategy” and θ(X) is the payoff under
liquidation strategy θ

θ(X) = X0θ0 +
∞∑
n=1

Xn(θn − θn−1) +X∞(1− θ∞).

If θ = θη ∈ L is a time-homogeneous liquidation strategy, then

θη(X) = η(X0)X0 + (1− η(X0))

[
η(X1)X1

+
∞∑
k=2

(1− η(X1)) · · · (1− η(Xk−1))η(Xk)Xk +
∞∏
k=1

(1− η(Xk))X∞

]
.

(2.10)

Intuitively liquidation strategy means to liquidate the asset at several periods instead of at one
time. Such strategy is very common in practice. For instance, when an investor has a large amount
of identical asset, e.g., 10000 shares of American option, she may excise these shares at different
times instead of once. In the following, we use an example to illustrate the motivation to consider
liquidation strategies. In particular, we will show that if X is divisible, then it is possible that the
optimal value for pure stopping time supτ Kp(x, τ) is strictly less than Kl(x, θ) for some liquidation
strategy θ and some x ∈ X.

Example 2.1. Let c = 1/(
√

44− 5). X has the following transition matrix.

0 1 2 3
0 1 0 0 0
1 1

6 0 1
2

1
3

2 1
5 0 0 4

5
3 0 0 0 1

Then it is easy to see that the optimal stopping value for Kp(x, τ) is given by

sup
τ
Kp(1, τ) = Kp(1, τ

′) = Kp(1, τ
′′) = 2− c = 1.3877,

where

τ ′ := inf{n ≥ 0 : Xn = 0, 2, 3},
and

τ ′′ := inf{n ≥ 0 : Xn = 0, 3}.
Now consider the liquidation strategy θ′ given by

θ′0(·) = 0, θ′1(·, 2) = 1/2, and θ′n = 0 for all other cases.

Then it is easy to see that

θ′(X1) =
1

2
X1
τ ′ +

1

2
X1
τ ′′ .

Then the distribution of θ(X1) is given by

P(θ′(X1) = 0) =
1

6
, P(θ′(X1) = 1) =

1

10
, P(θ′(X1) = 5/2) =

2

5
, P(θ′(X1) = 3) =

1

3
.

Therefore, we have that

sup
θ
Kl(1, θ) ≥ Kl(1, θ

′) =
21

10
−
√

119

10
c = 1.4321 > sup

τ
Kp(1, τ).
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Remark 2.2. As discussed in Remark 3.1 in Bayraktar and Zhou’s paper [1], there is a one-
to-one correspondence between the set of time-homogeneous liquidation strategies L and the set
of time-homogeneous randomized stopping times P. But the paths of a liquidation strategy and
a randomized stopping time are quite different. First of all, in terms of behavior, when using a
randomized stopping time, we flip a coin at each period to decide whether we stop or not, and we
still liquidate the whole unit asset over a single period. Second, in terms of variance, randomized
stopping time will result in a larger variance, since the overall variance will include the part from
randomization of the stopping time, while liquidation strategy results in a smaller variance, since
averaging random variable leads to a smaller variance. This can also be seen from Lemma 2.1 and
the following result.

Lemma 2.2. Let θ1, θ2 be two liquidation strategies and λ ∈ (0, 1). Then λθ1 + (1− λ)θ2 is also a
liquidation strategy and

Var[(λθ1 + (1− λ)θ2)(X)] ≤
(
λ(Var[θ1(X)])1/2 + (1− λ)(Var[θ2(X)])1/2

)2
≤ λVar[θ1(X)] + (1− λ)Var[θ2(X)].

Proof. We have that

Var[(λθ1 + (1− λ)θ2)(X)] = Var[λθ1(X) + (1− λ)θ2(X)]

= λ2Var[θ1(X)] + (1− λ)2Var[θ2(X)] + 2λ(1− λ)Cov[θ1(X), θ2(X)]

≤ λ2Var[θ1(X)] + (1− λ)2Var[θ2(X)] + 2λ(1− λ)(Var[θ1(X)])1/2(Var[θ1(X)])1/2

=
(
λ(Var[θ1(X)])1/2 + (1− λ)(Var[θ2(X)])1/2

)2
.

The second inequality is easy to check. �

Our next goal is to analyze the subgame perfect Nash equilibrium in the game where all play-
ers use time-homogeneous liquidation strategies. Notice that each time-homogeneous liquidation
strategy is characterized by a function η(x) that represents the proportion of the remaining asset
we will liquidate when the Markov chain moves to position x. η(x) is independent of time and the
history of the paths. For simplicity of notation, we use Kl(x, η) instead of Kl(x, θ

η) for θ = θη ∈ L.

Definition 2.6. A liquidation strategy θ = θη ∈ L is said to be an equilibrium liquidation strategy
for (2.9) if for any mapping ξ : X→ [0, 1], we have

Kl(x, ξ ⊗ η) ≤ Kl(x, η ⊗ η), ∀x ∈ X,

where θξ⊗η is a perturbation of strategy θη in which we liquidate ξ(·) at time 0 and then from time
1 we liquidate η(·) proportion of the remaining asset at each period.

Remark 2.3. Notice that this definition looks similar to the definition of equilibrium randomized
stopping time. But as we mentioned earlier, unlike selling the whole unit of asset in one period
which is random, the liquidation strategy will leave us with different proportions of asset at different
periods, so the objective function might change as time goes on. Thanks to the square root term
in (2.9), mean-standard deviation problem has the scaling effect which allows Definition 2.6 to
make perfect sense since we essentially face the same problem (with the same parameter c) at every
period. However, we will see in Section 3, a similar definition of equilibrium liquidation strategy in
mean-variance problem is not a proper definition.

Also note that a liquidation strategy should be considered as a pure strategy from the game theory
point of view, with the added assumption that partial selling the asset over time is possible. In
contrast, a randomized stopping strategy should be considered as a mixed strategy.
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2.4. Existence of an Equilibrium Liquidation Strategy. In this section we will prove that in
contrast to the equilibrium stopping time for (2.1) and equilibrium randomized stopping strategy
for (2.3), an equilibrium liquidation strategy for (2.9) always exists.

Lemma 2.3. For ηn, η ∈ L, n ∈ N, if ηn → η as n→∞, then

θηn(X)→ θη(X), a.s..

Proof. For a.e. ω ∈ Ω, there exists N = N(ω) such that for any k ≥ N , XN (ω) = X∞(ω). Then
along ω, we have that

θηn(X) =

∞∑
k=0

((1− ηn(X0)) . . . (1− ηn(Xk−1))) ηn(Xk)Xk +

∞∏
k=0

(1− ηn(Xk))X∞

=
N∑
k=0

((1− ηn(X0)) . . . (1− ηn(Xk−1))) ηn(Xk)Xk +
N∏
k=0

(1− ηn(Xk))X∞

n→∞−−−→
N∑
k=0

((1− η(X0)) . . . (1− η(Xk−1))) η(Xk)Xk +
N∏
k=0

(1− η(Xk))X∞

=
∞∑
k=0

((1− η(X0)) . . . (1− η(Xk−1))) η(Xk)Xk +
∞∏
k=0

(1− η(Xk))X∞

= θη(X).

�

Lemma 2.4. For ξn, ηn, ξ, η ∈ L, n ∈ N, if ξn → ξ and ηn → η as n→∞, then

Kl(x, ξn ⊗ ηn)→ Kl(x, ξ ⊗ η), ∀x ∈ X.

Proof. As

|Kl(x, ξn ⊗ ηn)−Kl(x, ξ ⊗ η)| ≤ |Kl(x, ξn ⊗ ηn)−Kl(x, ξ ⊗ ηn)|+ |Kl(x, ξ ⊗ ηn)−Kl(x, ξ ⊗ η)|,
it suffices to show that∣∣∣Ex [θξn⊗ηn(X)

]
− Ex

[
θξ⊗ηn(X)

]∣∣∣→ 0, n→∞; (2.11)∣∣∣∣Ex [(θξn⊗ηn(X)
)2]
− Ex

[(
θξ⊗ηn(X)

)2]∣∣∣∣→ 0, n→∞; (2.12)∣∣∣Ex [θξ⊗ηn(X)
]
− Ex

[
θξ⊗η(X)

]∣∣∣→ 0, n→∞; (2.13)∣∣∣∣Ex [(θξ⊗ηn(X)
)2]
− Ex

[(
θξ⊗η(X)

)2]∣∣∣∣→ 0, n→∞. (2.14)

We have that∣∣∣Ex [θξn⊗ηn(X)
]
− Ex

[
θξ⊗ηn(X)

]∣∣∣
=

∣∣∣∣∣∣
ξn(x)x+ (1− ξn(x))

∑
y∈X

p(x, y)Ey [θηn(X)]

−
ξ(x)x+ (1− ξ(x))

∑
y∈X

p(x, y)Ey [θηn(X)]

∣∣∣∣∣∣
≤|x| · |ξn(x)− ξ(x)|+

∣∣∣∣∣∣
∑
y∈X

p(x, y)Ey [θηn(X)]

∣∣∣∣∣∣ · |ξn(x)− ξ(x)|

≤(α+ |x|)|ξn(x)− ξ(x)| → 0, as n→∞,



11

where α := sup{|y| : y ∈ X}. Hence, we have (2.11) holds.

Noticing that

θξn⊗ηn(X) = ξn(x)x+ (1− ξn(x))θηn(X·+1),

we have that∣∣∣∣Ex [(θξn⊗ηn(X)
)2]
− Ex

[(
θξ⊗ηn(X)

)2]∣∣∣∣
=
∣∣∣Ex [(ξn(x))2x2 + 2ξn(x)x(1− ξn(x))θηn(X·+1) + (1− ξn(x))2(θηn(X·+1))

2
]

− Ex
[
(ξ(x))2x2 + 2ξ(x)x(1− ξ(x))θηn(X·+1) + (1− ξ(x))2(θηn(X·+1))

2
] ∣∣∣

≤
∣∣(ξn(x))2x2 − (ξ(x))2x2

∣∣+ 2|ξn(x)x(1− ξn(x))− ξ(x)x(1− ξ(x))| · |Ex [θηn(X·+1)]|
+
∣∣(1− ξn(x))2 − (1− ξ(x))2

∣∣ · ∣∣Ex [(θηn(X·+1))
2
]∣∣

≤
∣∣(ξn(x))2x2 − (ξ(x))2x2

∣∣+ 2|ξn(x)x(1− ξn(x))− ξ(x)x(1− ξ(x))| · α
+
∣∣(1− ξn(x))2 − (1− ξ(x))2

∣∣ · α2 → 0, as n→∞,

and thus (2.12) follows.

Moreover,∣∣∣Ex [θξ⊗ηn(X)
]
− Ex

[
θξ⊗η(X)

]∣∣∣
=

∣∣∣∣∣∣
ξ(x)x+ (1− ξ(x))

∑
y∈X

p(x, y)Ey [θηn(X)]

−
ξ(x)x+ (1− ξ(x))

∑
y∈X

p(x, y)Ey [θη(X)]

∣∣∣∣∣∣
≤(1− ξ(x))

∑
y∈X

p(x, y) |Ey [θηn(X)]− Ey [θη(X)]| → 0, as n→∞,

where the last line follows from Lemma 2.3, and thus (2.13) holds.

Finally, ∣∣∣∣Ex [(θξ⊗ηn(X)
)2]
− Ex

[(
θξ⊗η(X)

)2]∣∣∣∣
=
∣∣∣Ex [(ξ(x))2x2 + 2ξ(x)x(1− ξ(x))θηn(X·+1) + (1− ξ(x))2(θηn(X·+1))

2
]

− Ex
[
(ξ(x))2x2 + 2ξ(x)x(1− ξ(x))θη(X·+1) + (1− ξ(x))2(θη(X·+1))

2
] ∣∣∣

≤ 2ξ(x)|x|(1− ξ(x)) |Ex [θηn(X·+1)]− Ex [θη(X·+1)]|
+ (1− ξ(x))2

∣∣Ex [(θηn(X·+1))
2
]
− Ex

[
(θη(X·+1))

2
]∣∣→ 0, as n→∞,

which implies (2.14). �

Theorem 2.1. There exists an equilibrium liquidation strategy for the mean-standard deviation
problem (2.9).

Proof. For η ∈ L, define the set valued map

Φ(η) := {ξ∗ ∈ L : Kl(x, ξ
∗ ⊗ η) ≥ Kl(x, ξ ⊗ η), ∀x ∈ X, ∀ ξ ∈ L}.

First, we have that for any η ∈ L, Φ(η) is not empty. Indeed, since Kl(x, ξ ⊗ η) depends on ξ
only through ξ(x), we can choose ξ∗(x) to be a maximizer for each x fixed.
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For ξ1, ξ2, η ∈ L and λ ∈ (0, 1), we have that θη⊗η = θη and

θ(λξ1+(1−λ)ξ2)⊗η = λθξ1⊗η + (1− λ)θξ2⊗η.

Moreover, thanks to Lemma 2.2, we obtain that Φ(η) is a convex set for any η ∈ L. In addition,
by Lemma 2.4, the map Φ is u.s.c.. That is, for ηn, ξ

∗
n, η, ξ

∗ ∈ L with ηn → η and ξ∗n → ξ∗, if
ξ∗n ∈ Φ(ηn), then ξ∗ ∈ Φ(η).

Applying [8, Theorem 1], we obtain the desired result. �

Remark 2.4. As we can see in this proof, the assumption that X have finite state space and the
limit X∞ exists a.s. is necessary to obtain some key estimations which are hard to achieve when
the state space is infinite. Despite this, the concepts introduced in this paper do not rely on this
assumption and a future work can focus on extending certain results to the case with infinite state
space.

2.5. Optimal Equilibrium Liquidation Strategies. According to consistent planning in Strotz
[18], finding equilibria is only the first step and the agent should choose the best one among all
equilibria. We then formulate the definition of optimal equilibrium liquidation strategy as the
following.

Definition 2.7. Let E ⊂ L be the collection of equilibrium liquidation strategies. We say an
equilibrium liquidation strategy η∗ ∈ E is optimal if

Kl(x, η
∗) ≥ Kl(x, η), ∀x ∈ X, ∀ η ∈ E .

To find an optimal equilibrium liquidation strategy, we need to study the set E . We will provide
a characterization of equilibrium liquidation strategies in the following proposition.

Proposition 2.3. η is an equilibrium liquidation strategy if and only if the following holds:

(i) η(x) = 0 for all x ∈ X such that Ex[Yη]− c(Varx[Yη])
1/2 > x, and

(ii) η(x) = 1 for all x ∈ X such that Ex[Yη]− c(Varx[Yη])
1/2 < x,

where Yη = θη(X·+1) := η(X1)X1 +
∑∞

k=2(1 − η(X1)) · · · (1 − η(Xk−1))η(Xk)Xk +
∏∞
k=1(1 −

η(Xk))X∞.

Remark 2.5. The term Ex[Yη] − c(Varx[Yη])
1/2 is interpreted as the continuation value, i.e., the

value we expect to get if we choose not to stop at the current state x. Then (i) and (ii) tell us
whether we should liquidate the whole unit or not liquidate at all by comparing the current value x
and the continuation value. This is in fact in the same vein as (2.2).

Proof of Proposition 2.3. By (2.10), we have

θη(X) =η(X0)X0 + (1− η(X0))Yη,

θξ⊗η(X) =ξ(X0)X0 + (1− ξ(X0))Yη,

and

Kl(x, ξ ⊗ η) = xξ(x) + (1− ξ(x))Ex[Yη]− c(1− ξ(x))(Varx[Yη])
1/2

= (x− (Ex[Yη]− c(Varx[Yη])
1/2))ξ(x) + Ex[Yη]− c(Varx[Yη])

1/2, (2.15)

which implies that when η is fixed, Kl(x, ξ ⊗ η) is a linear function of ξ(x).

If η is an equilibrium liquidation strategy, then according to Definition 2.6,

Kl(x, η) = sup
ξ∈L

Kl(x, ξ ⊗ η).
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Therefore, if x− (Ex[Yη]− c(Varx[Yη])
1/2) > 0, then η(x) = 1. If x− (Ex[Yη]− c(Varx[Yη])

1/2) <
0, then η(x) = 0. η(x) ∈ (0, 1) only when η(x) is a solution to the equation x − (Ex[Yη] −
c(Varx[Yη])

1/2) = 0. �

Corollary 2.1. If there exists an equilibrium stopping time τ with stopping region S, then η(x) =
1S(x), x ∈ X is an equilibrium liquidation strategy.

By Proposition 2.3, we can find an equilibrium liquidation strategy by solving a system of
equations Ex[Yη] − c(Varx[Yη])

1/2 = x,∀x ∈ X. The solution {η(x) ∈ [0, 1] : x ∈ X} must be an
equilibrium liquidation strategy if it exists. Other candidates of equilibrium liquidation strategies
can be found by checking conditions (i) and (ii) in Proposition 2.3 when Ex[Yη]−c(Varx[Yη])

1/2 = x
does not hold for some x ∈ X. Here are some examples of mean-standard deviation problems with
different sets of equilibrium liquidation strategies E .

Example 2.2. In this example, a unique equilibrium liquidation strategy exists, which is also an
equilibrium stopping time.

Let c = 1/4. X has state space X = {0, 1, 2} and the following transition matrix.

0 1 2
0 1 0 0
1 0.2 0.4 0.4
2 0 0 1

Note that {0, 2} are absorbing states. For any pure stopping time, its stopping region must
contain the absorbing states {0, 2}. Likewise, any liquidation strategy must satisfy η(0) = η(2) = 1.

One can easily check that the pure stopping time with stopping region S = {0, 2} is an equilibrium
stopping time with

E1[Xρ(1,S)]− c(Varx[Xρ(1,S)])
1/2 =

4

3
−
√

2

6
> 1.

Moreover, this is the only equilibrium stopping time. If S = {0, 1, 2}, then

E1[Xρ(1,S)]− c(Varx[Xρ(1,S)])
1/2 =

6

5
−
√

14

20
> 1,

which means the pure stopping time with stopping region {0, 1, 2} is not an equilibrium stopping
time.

Now we want to find all equilibrium liquidation strategies for this problem. The only parameter
remains to be determined is a := η(1).

By analyzing the behavior of this Markov chain we have

P1(X1 = 0 = Xn, n ≥ 1) = 0.2,

P1(X1 = 2 = Xn, n ≥ 1) = 0.4,

P1(X1 = 1, X2 = 0 = Xn, n ≥ 2) = 0.4 · 0.2,
P1(X1 = 1, X2 = 2 = Xn, n ≥ 2) = 0.4 · 0.4,
· · ·
P1(Xk = 1, k = 1, 2, · · · ,m,Xn = 0, n > m) = 0.4m · 0.2,
P1(Xk = 1, k = 1, 2, · · · ,m,Xn = 2, n > m) = 0.4m · 0.4,
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Figure 1. Graph for Example 2.3

and

Xk =

{
1, k = 1, 2, · · · ,m,
0, k ≥ m+ 1,

⇒ Yη = η(1)(
m−1∑
i=0

(1− η(1))i),

Xk =

{
1, k = 1, 2, · · · ,m,
2, n ≥ m+ 1,

⇒ Yη = η(1)(
m−1∑
i=0

(1− η(1))i) + 2(1− η(1))m.

In conclusion, the random variable Yη has the following distribution

P1(Yη = 1− (1− η(1))n) = 0.4n · 0.2, n = 0, 1, 2, · · · ,
P1(Yη = 1 + (1− η(1))n) = 0.4n · 0.4, n = 0, 1, 2, · · · .

It can be derived that

E1[Yη] =
0.8 + 0.4a

0.6 + 0.4a
,

Var1[Yη] =
0.112a2 + 0.256a+ 0.192

(1− 0.4(1− a)2)(0.6 + 0.4a)2
.

Let h(a) := E1[Yη]− 1
4(Var1[Yη])

1/2. By computation we have h(a) > 1 for all a ∈ [0, 1]. So there is
only one equilibrium liquidation strategy, η(1) = 0, which also coincides with the unique equilibrium
stopping time mentioned above.

Example 2.3. In this example, a unique equilibrium liquidation strategy exists, which is not a pure
stopping time.

Consider the example in the proof of Proposition 2.1. Since {0, 3, 10} are absorbing states, we
have η(0) = η(3) = η(10) = 1. The only parameters remain to be determined are a := η(1) and
b := η(6). By the proof of Proposition 2.1. we know that there is no equilibrium stopping time in
this example. However we will see that it does have an equilibrium liquidation strategy.

Let gi(a, b) := Ei[Yη] − (Ei[Y 2
η ] − Ei[Yη]2)1/2 for i = 1, 6. They have explicit expressions as

shown in Appendix A.1. We obtain the graph of sets {(a, b) ∈ [0, 1] × [0, 1] : g1(a, b) = 1} and
{(a, b) ∈ [0, 1]× [0, 1] : g6(a, b) = 6} as following.

From Figure 1 we observe that there exists a unique intersection of the curve g1(a, b) = 1 and
g6(a, b) = 6, denoted by (a0, b0). Then η(1) = a0, η(6) = b0 is an equilibrium liquidation strategy
which is not a pure stopping time. There could be other equilibrium liquidation strategies in the
following cases.

(i) If g1(a, 0) = 1 and g6(a, 0) > 6, then η(1) = a, η(6) = 0 is an equilibrium liquidation strategy;
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(ii) If g1(a, 1) = 1 and g6(a, 1) < 6, then η(1) = a, η(6) = 1 is an equilibrium liquidation strategy;

(iii) If g6(0, b) = 6 and g1(0, b) > 1, then η(1) = 0, η(6) = b is an equilibrium liquidation strategy;

(iv) If g6(1, b) = 6 and g1(1, b) < 1, then η(1) = 1, η(6) = b is an equilibrium liquidation strategy.

However, from the above graph, we conclude that there are no solutions for g1(a, 0) = 1, g1(a, 1) =
1, g6(0, b) = 6 or g6(1, b) = 6. So there is only one equilibrium liquidation strategy in this example.

The above two examples illustrate that an equilibrium liquidation strategy exists regardless of
the existence of equilibrium stopping times. Since the equilibrium liquidation strategies are unique
in Example 2.2 and Example 2.3, they are also optimal. However, uniqueness of an equilibrium
liquidation strategy and existence of an optimal equilibrium liquidation strategy are not guaranteed
in general as we will show later.

From Proposition 2.3 and (2.15), we have that

Kl(x, η) = max{x, Ex[Yη]− cVarx[Yη]} =

{
x, 0 < η(x) ≤ 1,

Ex[Yη]− cVarx[Yη], 0 ≤ η(x) < 1.
(2.16)

A necessary condition for η∗ ∈ E to be an optimal equilibrium liquidation strategy is given in the
following proposition.

Proposition 2.4. If an equilibrium liquidation strategy η∗ ∈ E is optimal then

C(η∗) =
⋃
η∈E
C(η),

where C(η) := {x ∈ X : x < Ex[Yη]− c(Varx[Yη])
1/2}.

Proof. Suppose C(η∗) =
⋃
η∈E C(η) does not hold. Then there exists some η ∈ E and some x ∈ X

such that x ∈ C(η) and x /∈ C(η∗). Then by (2.16) we have that

Kl(x, η
∗) = x < Ex[Yη]− C(Varx[Yη])

1/2 = Kl(x, η),

which contradicts that η∗ is optimal. �

Corollary 2.2. If
⋃
η∈E C(η) = ∅, then any η ∈ E is an optimal equilibrium liquidation strategy.

Proof. If
⋃
η∈E C(η) = ∅, then for all η ∈ E and all x ∈ X, we have Kl(x, η) = x. By definition, they

are all optimal. �

The next proposition shows that the existence and uniqueness of an optimal equilibrium liqui-
dation strategy are not guaranteed.

Proposition 2.5. The optimal equilibrium liquidation strategy may not exist. When it does exist,
it may not be unique.

Proof. (i) We will give an example in which there exist multiple equilibrium liquidation strategies
and one of them is optimal.
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Let c = 0.4. X has state space X = {0, 1, 2, 7, 9} and the following transition matrix.

0 1 2 7 9
0 1 0 0 0 0
1 0.2 0 0.4 0.2 0.2
2 0 0 1 0 0
7 0 0.2 0 0 0.8
9 0 0 0 0 1

Since {0, 2, 9} are absorbing states, we have η(0) = η(2) = η(9) = 1 for all η ∈ L. Let a = η(1)

and b = η(7). Let gi(a, b) := Ei[Yη] − (Ei[Y 2
η ] − Ei[Yη]2)1/2 for i = 1, 7. By analysis shown in

Appendix A.2, we obtain the following results.

(1) g1(a, b) > 1 for all (a, b) ∈ [0, 1]× [0, 1].

(2) There exists a unique b0 ∈ (0, 1) such that g7(0, b0) = 7.

(3) g7(0, 0) > 7 and g7(0, 1) < 7.

So there are three equilibrium liquidation strategies in total: (a, b) = (0, 0), (a, b) = (0, b0)
and (a, b) = (0, 1). By graphs of g1(0, b) and g7(0, b) in Appendix A.2, we observe that g1(0, 0) >
g1(0, b0) > g1(0, 1) and g7(0, 0) > g7(0, b0) > g7(0, 1), which implies thatK(x, (0, 0)) = maxη∈E K(x, η)
for all x ∈ X. By Definition 2.7 (a, b) = (0, 0) is the optimal equilibrium liquidation strategy.

(ii) We will give an example in which there exist multiple equilibrium liquidation strategies but
none of them are optimal.

Let c = 0.1. X has state space X = {0, 11, 17, 18} and the following transition matrix.

0 11 17 18
0 1 0 0 0
11 0.1 0.7 0 0.2
17 0 0.1 0.1 0.8
18 0 0 0 1

Since {0, 18} are absorbing states, we have η(0) = η(18) = 1 for all η ∈ L. Let a = η(11)

and b = η(17). Let gi(a, b) := Ei[Yη] − (Ei[Y 2
η ] − Ei[Yη]2)1/2 for i = 11, 17. By analysis shown in

Appendix A.3, we obtain the following results.

(1) There is not intersection of the curve g11(a, b) = 11 and g17(a, b) = 17.

(2) There exist 0 < a1 < a2 < a3 < a4 < 1 and 0 < b0 < 1 such that g17(a1, 0) = 17, g17(a2, 1) =
17, g17(a4, 1) = 17, g11(a3, 0) = g11(a3, 1) = 11, and g17(1, b0) = 17.

(3) g11(a1, 0) 6= 11, g11(a2, 1) 6= 11 and g11(a4, 1) 6= 11.

(4) g17(a3, 0) > 17, g17(a3, 1) > 17 and g11(1, b0) < 11.

So there are five equilibrium liquidation strategies in total. The following table summarises the
values of objective functions under these equilibrium liquidation strategies.
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η : (a, b) Kl(11, η) Kl(17, η)
(1, 1) 11 17
(0, 1) 11.1515 17
(1, 0) 11 17.0022
(a3, 0) 11 ≈ 17.0212
(1, b0) 11 17

The table shows that there is no optimal equilibrium liquidation strategy.

(iii) We will give an example in which there are two equilibrium liquidation strategies and both
are optimal.

Let c = 0.5. X has state space X = {0, 1, 4} and the following transition matrix.

0 1 4
0 1 0 0
1 0.1 0.8 0.1
4 0 0 1

Since {0, 4} are absorbing states, we have η(0) = η(4) = 1 for all η. Let a = η(1) and we
obtain function h(a) = E1[Yη] − cVarx[Yη] as shown in Appendix A.4. h(a) is decreasing on the
interval [0, 1] and h(0) = 1, h(1) = 0.7101 < 1. By definition, there are two equilibrium liquidation
strategies in total η(1) = 0 and η(1) = 1. By Corollary 2.2, Kl(1, η) = 1 for both equilibrium
liquidation strategies, so they are both optimal. �

Since the existence of optimal equilibrium liquidation strategy is not guaranteed, we naturally
turn to the concept of Pareto optimality.

Definition 2.8. η∗ ∈ E is called a Pareto optimal equilibrium liquidation strategy if there is no
η ∈ E such that

(i) ∀x ∈ X,Kl(x, η) ≥ Kl(x, η
∗);

(ii) ∃x ∈ X,Kl(x, η) > Kl(x, η
∗)

Remark 2.6. In the second example in proof of Proposition 2.5, the optimal equilibrium liquida-
tion strategy does not exist, but (0, 1) and (a3, 0) are both Pareto optimal equilibrium liquidation
strategies.

Proposition 2.6. A Pareto optimal equilibrium liquidation strategy always exists.

Proof. Consider the following optimization problem

sup
η∈E

∑
x∈X

Kl(x, η). (2.17)

Then any maximizer η∗ of this problem is a Pareto optimal equilibrium liquidation strategy.
Otherwise, there exists η′ ∈ E such that

Kl(x, η
′) ≥ Kl(x, η

∗),∀x ∈ X; Kl(x0, η
′) > Kl(x0, η

∗), ∃x0 ∈ X;

then
∑

x∈XKl(x, η
′) >

∑
x∈XKl(x, η

∗), which contradicts that η∗ is the maximizer of the problem.

Next we will show such maximizer exists and is in E . Let ηn be the 1
n -optimizer of (2.17). Then

there exists η∗ ∈ L such that up to a subsequence ηn → η∗. Since {ηn}n∈N are all equilibrium
liquidation strategies, Kl(x, ξ⊗ηn) ≤ Kl(x, η

n) holds for all x ∈ X and all ξ ∈ L. By the continuity
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of the mappings η → Kl(x, ξ ⊗ η) and η → Kl(x, η), Kl(x, ξ ⊗ η∗) ≤ Kl(x, η) also holds for all
x ∈ X and all ξ ∈ L, i.e., η∗ is also an equilibrium liquidation strategy. Again by the continuity of
mapping η → Kl(x, η), η∗ is the maximizer of (2.17). �

3. Mean-Variance Problem

As what we have done in mean-standard deviation problem, we will analyze different types
of subgame perfect Nash equilibrium in mean-variance problems. More specifically, we define
equilibrium stopping time, equilibrium randomized stopping strategy and equilibrium liquidation
strategy for mean-variance problems as the following.

Definition 3.1. A pure Markov stopping time τ with stopping region S is said to be an equilibrium
stopping time for the mean-variance problem if

x ≥ Jp(x, ρ(x, S)), ∀x ∈ S and x ≤ Jp(x, ρ(x, S)), ∀x /∈ S,
where ρ(x, S) := inf{n ≥ 1 : Xx

n ∈ S} and Jp(x, ρ(x, S)) := Ex[Xρ(x,S)]− cVarx[Xρ(x,S)].

Definition 3.2. A randomized stopping time p ∈ P is said to be an equilibrium randomized stopping
time for the mean-variance problem, if for any mapping q : X→ [0, 1],

Jr(x,q⊗ p) ≤ Jr(x,p⊗ p), ∀x ∈ X,

where Jr(x,q⊗ p) := Ex[Xq⊗p]− cVarx[Xq⊗p].

Definition 3.3. A liquidation strategy θ = θη ∈ L is said to be an equilibrium liquidation strategy
for the mean-variance problem if for any mapping ξ : X→ [0, 1], we have

Jl(x, ξ ⊗ η) ≤ Jl(x, η ⊗ η), ∀x ∈ X,

where Jl(x, ξ ⊗ η) := Ex[θξ⊗η(X)]− cVarx[θξ⊗η(X)].

Proposition 3.1. An equilibrium stopping time for mean-variance problem may not exist.

Proof. We will prove this by giving a counterexample. Let c = 21
50 and X has the following transition

matrix.
0 1 2 3

0 1 0 0 0
1 1

3 0 1
3

1
3

2 0 1
3 0 2

3
3 0 0 0 1

Suppose there exists an equilibrium stopping time with stopping region S ⊂ {0, 1, 2, 3}. Denote
H(·, S) = Jp(·, ρ(·, S)). We consider the following four cases.

Case 1: 1, 2 ∈ S. We have

P1(Xρ(1,S) = 0) = P1(Xρ(1,S) = 2) = P1(Xρ(1,S) = 3) =
1

3
,

and

E1

[
Xρ(1,S)

]
=

5

3
, E1

[
X2
ρ(1,S)

]
=

13

3
, and thus H(1, S) =

76

75
> 1,

that yields a contradiction.

Case 2: 1 /∈ S and 2 ∈ S. We have

P2(Xρ(2,S) = 0) = P2(Xρ(2,S) = 2) =
1

9
, P2(Xρ(2,S) = 3) =

7

9
,
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and

E2

[
Xρ(2,S)

]
=

23

9
, E2

[
X2
ρ(2,S)

]
=

67

9
, and thus H(2, S) =

1466

675
> 2,

that yields a contradiction.

Case 3: 1 ∈ S and 2 /∈ S. We have that

P2(Xρ(2,S) = 1) =
1

3
, P2(Xρ(2,S) = 3) =

2

3
,

and

E2

[
Xρ(2,S)

]
=

7

3
, E2

[
X2
ρ(2,S)

]
=

19

3
, and thus H(2, S) =

147

75
< 2,

that yields a contradiction.

Case 4: 1, 2 /∈ S. We have that

P1(Xρ(1,S) = 0) =
3

8
, P1(Xρ(1,S) = 3) =

5

8
,

and

E1

[
Xρ(1,S)

]
=

15

8
, E1

[
X2
ρ(1,S)

]
=

45

8
, and thus H(1, S) =

633

640
< 1,

that yields a contradiction. �

Besides, using a proof similar to the case of mean-standard deviation problem, we can show that
an equilibrium randomized stopping time for mean-variance problem exists if and only if it is an
equilibrium stopping time.

Now we will focus on the equilibrium liquidation strategy for mean-variance problem as defined
in Definition 3.3, although it is not a proper definition as pointed out in Remark 3.1. Following an
argument similar to the one in the proof of Theorem 2.1, we can prove that there exists an equilib-
rium liquidation strategy in mean-variance problem. The next proposition shows that in contrast
to mean-standard deviation problem, the equilibrium liquidation strategy is not a generalization
of equilibrium stopping time in mean-variance problem, although equilibrium liquidation strategies
can be thought of as a relaxation of equilibrium stopping times.

Proposition 3.2. An equilibrium stopping time may not be an equilibrium liquidation strategy.

Proof. Consider the Markov process in Example 2.2 and let c = 0.25. It can be shown that there is
only one equilibrium stopping time with stopping region S = {0, 2} and Ex[XS ]− cVarx[XS ] = 10

9 .
Next we will show that the corresponding liquidation strategy η(1) = 0 is not an equilibrium
liquidation strategy. Since E1[Yη] = 4

3 and Var1[Yη] = 8
9 , we have

Jl(1, ξ ⊗ η) = ξ(1) +
4

3
(1− ξ(1))− 2

9
(1− ξ(1))2.

It is easy to check that maxξ Jl(1, ξ ⊗ η) = 9
8 >

10
9 and the maximum is attained at ξ(1) = 1

4
instead of 0. By definition η is not an equilibrium liquidation strategy. �

This result illustrates that the equilibrium liquidation strategy for mean-variance problem is not
a proper definition as we briefly discuss next.

Remark 3.1. Definition 3.3 seems to be reasonable as an analogy of Definition 2.6. However,
since there is no scaling effect in the mean-variance problem, this definition has deviated from the
concept of subgame perfect Nash equilibrium. For example, at time t = 0, the objective function is

EX0 [θ(X)]− cVarX0 [θ(X)].
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If we liquidate 1−α proportion of the asset, then the objective function at time t = 1 would become

EX1 [αθ(X)]− cVarX1 [αθ(X)] = α(EX1 [θ(X)]− cαVarX1 [θ(X)]),

i.e., the preference of player “X1” becomes EX1 [θ(X)] − cαVarX1 [θ(X)] instead of EX1 [θ(X)] −
cVarX1 [θ(X)]. Generally, the proportion of asset remaining, α, is decreasing as time goes on,
therefore we are faced with different problems with different parameter c at different time, even if
the initial state remains the same. Definitions of equilibrium liquidation strategies in Definition
3.3 and Definition 2.6 only make sense when the objective function remains the same for the same
initial state x.

A possible improved definition is incorporating the remaining component, i.e., to enlarge the
strategy set such that it depends on the state as well as the remaining component of the asset.
However, this expansion makes the set of players an uncountable set (instead of identifying the
players with the states of the Markov chain, we will need to use an additional variable which is
not discrete). This is an intergenerational problem with exhaustible resources. Such a problem is
beyond the scope of this paper and will be left for future research. But we should emphasize that
one of the main messages of our paper is that mean-standard deviation problem is more appropriate
and for this criterion such an extension of the state space is not necessary.

4. Comparison with Static Optimal Stopping Time

In this section, we want to compare the pre-commitment strategy with the equilibrium liquidation
strategy. It is obvious that given any current state x, the static optimality is no less than the value
of Kp(x, τ) where τ is an equilibrium stopping time. However this may not be the case when we
compare static optimal stopping times with equilibrium liquidation strategies. As we have discussed
in Example 2.1, a liquidation strategy may produce larger value than the static optimal stopping
time does. However in Example 2.1, the liquidation strategy is not an equilibrium. The following
examples show that an equilibrium liquidation strategy may produce larger value than the static
optimal stopping time does in both mean-standard deviation problem and mean-variance problem.
The intuitive reason is that a liquidation strategy allows for selling parts of an asset over time,
while the static optimal stopping time problem relies on the assumption that the whole asset must
be sold at exactly one point in time.

Example 4.1. Consider the first example in the proof of Proposition 2.5.

For mean-standard deviation problem,

sup
τ∈T

Kp(1, τ) = Kp(1, τ
′) = 2.6940, sup

τ∈T
Kp(7, τ) = Kp(7, τ

′) = 7.0187.

where τ ′ = inf{n ≥ 0 : X1
n ∈ {0, 2, 9}}.

The optimal equilibrium liquidation strategy η is the same as τ ′. We have

Kl(1, η) = sup
τ∈T

Kp(1, τ), Kl(7, η) = sup
τ∈T

Kp(7, τ).

For mean-variance problem,

sup
τ
Jp(1, τ) = Jp(1, τ

′′) = 1, sup
τ
Jp(7, τ) = Jp(7, τ

′′) = 7.

where τ ′′ = 0.

The unique equilibrium liquidation strategy is η(1) = a′ ∈ (0, 1), η(7) = b′ ∈ (0, 1) where a′ ≈
0.6778 and b′ ≈ 0.9089. Details on finding the equilibrium liquidation strategy can be found in
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Appendix A.5. We have

Jl(1, η) = 2.6438 > sup
τ∈T

Jp(1, τ), Jl(7, η) = 6.4521 < sup
τ∈T

Jp(7, τ).

Example 4.2. Consider the second example in the proof of Proposition 2.5.

For mean-standard deviation problem,

sup
τ∈T

Kp(11, τ) = Kp(11, τ ′) = Kp(11, τ ′′) = 11.1515,

where τ ′ = inf{n ≥ 0 : X1
n ∈ {0, 18}}, τ ′′ = inf{n ≥ 0 : X1

n ∈ {0, 17, 18}}, and

sup
τ∈T

Kp(17, τ) = Kp(17, τ ′′′) = 17.0022,

where τ ′′′ = inf{n ≥ 0 : X1
n ∈ {0, 11, 18}}.

There is an equilibrium liquidation strategy η(11) = a3 ∈ (0, 1), η(17) = 0. We have

Kl(11, η) = 11 < sup
τ∈T

Kp(11, τ), Kl(17, η) = 17.0212 > sup
τ∈T

Kp(17, τ).

For mean-variance problem,

sup
τ∈T

Jp(11, τ) = Jp(11, τ ′) = 11, sup
τ∈T

Jp(17, τ) = Jp(17, τ ′) = 17,

where τ ′ = 0.

The unique equilibrium liquidation strategy is η(11) = a′ ∈ (0, 1), η(17) = b′ ∈ (0, 1) where
a′ ≈ 0.9312 and b′ ≈ 0.7629. Details on finding the equilibrium liquidation strategy can be found in
Appendix A.5. We have

Jl(11, η) = 10.8365 < sup
τ∈T

Jp(11, τ), Jl(17, η) = 16.9981 < sup
τ∈T

Jp(17, τ).

Appendix A. Computation details

A.1. Example 2.3. We first analyze all the possible trajectories of Markov chain X when starting
from 1 and 6.

Case 1: X : 1→ 6→ 1→ 6→ 1→ · · · → 6→ 1→ 0.

⇒ Yη = 0 for k = 0 and Yη = a
∑k

i=1(1− a)i−1(1− b)i + 6b
∑k−1

i=0 (1− a)i(1− b)i for k ≥ 1. Then

Yη = c(1− (1− a)k(1− b)k) with probability 0.22k+1 for k ≥ 0 where c = a+6b−ab
1−(1−a)(1−b) .

Case 2: X : 1→ 6→ 1→ 6→ 1→ · · · → 6→ 1→ 3.

⇒ Yη = 3 for k = 0 and Yη = a
∑k

i=1(1−a)i−1(1−b)i+6b
∑k−1

i=0 (1−a)i(1−b)i+3(1−a)k(1−b)k
for k ≥ 1. Then Yη = c(1 − (1 − a)k(1 − b)k) + 3(1 − a)k(1 − b)k with probability 2 × 0.22k+1 for
k ≥ 0.

Case 3: X : 1→ 6→ 1→ 6→ 1→ · · · → 6→ 1→ 10.

⇒ Yη = 10 for k = 0 and Yη = a
∑k

i=1(1−a)i−1(1−b)i+6b
∑k−1

i=0 (1−a)i(1−b)i+10(1−a)k(1−b)k
for k ≥ 1. Then Yη = c(1− (1−a)k(1− b)k) + 10(1−a)k(1− b)k with probability 0.22k+1 for k ≥ 0.

Case 4: X : 1→ 6→ 1→ 6→ 1→ · · · → 6→ 10.
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⇒ Yη = a
∑k

i=1(1− a)i−1(1− b)i + 6b
∑k

i=0(1− a)i(1− b)i + 10(1− a)k(1− b)k+1 for k ≥ 0. Then

Yη = c(1− (1− a)k(1− b)k) + (10− 4b)(1− a)k(1− b)k with probability 0.8× 0.22k+1 for k ≥ 0.

Case 5: X : 6→ 1→ 6→ 1→ · · · → 6→ 1→ 0 for k ≥ 0.

⇒ Yη = a for k = 0 and Yη = a
∑k

i=0(1 − a)i(1 − b)i + 6b
∑k−1

i=0 (1 − a)i+1(1 − b)i for k ≥ 1.

Then Yη = d(1 − (1 − a)k(1 − b)k) + a(1 − a)k(1 − b)k with probability 0.22k+2 for k ≥ 0 where

d = a+6b−6ab
1−(1−a)(1−b) .

Case 6: X : 6→ 1→ 6→ 1→ · · · → 6→ 1→ 3.

⇒ Yη = a + 3(1 − a) for k = 0 and Yη = a
∑k

i=0(1 − a)i(1 − b)i + 6b
∑k−1

i=0 (1 − a)i+1(1 − b)i +

3(1 − a)k+1(1 − b)k for k ≥ 1. Then Yη = d(1 − (1 − a)k(1 − b)k) + (3 − 2a)(1 − a)k(1 − b)k with

probability 2× 0.22k+2 for k ≥ 0.

Case 7: X : 6→ 1→ 6→ 1→ · · · → 6→ 1→ 10.

⇒ Yη = a + 10(1 − a) for k = 0 and Yη = a
∑k

i=0(1 − a)i(1 − b)i + 6b
∑k−1

i=0 (1 − a)i+1(1 − b)i +

10(1− a)k+1(1− b)k for k ≥ 1. Then Yη = d(1− (1− a)k(1− b)k) + (10− 9a)(1− a)k(1− b)k with

probability 0.22k+2 for k ≥ 0.

Case 8: X : 6→ 1→ 6→ 1→ · · · → 6→ 10.

⇒ Yη = 10 for k = 0 and Yη = a
∑k−1

i=0 (1−a)i(1−b)i+6b
∑k−1

i=0 (1−a)i+1(1−b)i+10(1−a)k(1−b)k
for k ≥ 1. Then Yη = d(1− (1− a)k(1− b)k) + 10(1− a)k(1− b)k with probability 0.8× 0.22k for
k ≥ 0.

From the above, we can conclude that

(1) When X0 = 1,

P1(Yη = c− ctk) = 0.22k+1, k ≥ 0,

P1(Yη = c+ (3− c)tk) = 2× 0.22k+1, k ≥ 0,

P1(Yη = c+ (10− c)tk) = 0.22k+1, k ≥ 0,

P1(Yη = c+ (10− 4b− c)tk) = 0.8× 0.22k+1, k ≥ 0,

where t = (1− a)(1− b), and

E1[Yη] = c+
4.8− 0.96c− 0.64b

1− 0.04t
,

E1[Y
2
η ] = c2 +

−1.92c2 + 9.6c− 1.28cb

1− 0.04t
+

0.96c2 − 9.6c+ 39.6− 12.8b+ 1.28bc+ 2.56b2

1− 0.04t2
.

(2) When X0 = 6,

P6(Yη = d+ (a− d)tk) = 0.22k+2, k ≥ 0,

P6(Yη = d+ (3− 2a− d)tk) = 2× 0.22k+2, k ≥ 0,

P6(Yη = d+ (10− 9a− d)tk) = 0.22k+2, k ≥ 0,

P6(Yη = d+ (10− d)tk) = 0.8× 0.22k, k ≥ 0,
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where t = (1− a)(1− b), and

E6[Yη] = d+
8.64− 0.96d− 0.48a

1− 0.04t
,

E6[Y
2
η ] = d2 +

−1.92d2 + 17.28d− 0.96ad

1− 0.04t
+

0.96d2 − 17.28d+ 84.72 + 3.6a2 + 0.96ad− 8.16a

1− 0.04t2
.

Then we will obtain the result in Example 2.3.

A.2. The first example in Proposition 2.5. Since the transition matrix in this example is the
same as Example 2.3, by following a similar analysis of X’s trajectories, we have

(1) When X0 = 1,

P1(Yη = c− ctk) = 0.22k+1, k ≥ 0,

P1(Yη = c+ (2− c)tk) = 2 · 0.22k+1, k ≥ 0,

P1(Yη = c+ (9− c)tk) = 0.22k+1, k ≥ 0,

P1(Yη = c+ (9− 2b− c)tk) = 0.8 · 0.22k+1, k ≥ 0,

where c = a+7b−ab
1−(1−a)(1−b) and t = (1− a)(1− b). Then we have

E1[Yη] = c+
0.2(20.2− 4.8c− 1.6b)

1− 0.04t
,

E1[Y
2
η ] = c2 +

0.4(−4.8c2 + 20.2c− 1.6cb)

1− 0.04t
+

0.2(c2 + 2(2− c)2 + (9− c)2 + 0.8(9− 2b− c)2)
1− 0.04t2

.

(2) When X0 = 7,

P7(Yη = d+ (a− d)tk) = 0.22k+2, k ≥ 0,

P7(Yη = d+ (2− a− d)tk) = 2× 0.22k+2, k ≥ 0,

P7(Yη = d+ (9− 8a− d)tk) = 0.22k+2, k ≥ 0,

P7(Yη = d+ (9− d)tk) = 0.8× 0.22k, k ≥ 0,

where d = a+7b−7ab
1−(1−a)(1−b) and t = (1− a)(1− b). Then we have

E7[Yη] = d+
0.04(193− 24d− 9a)

1− 0.04t
,

E7[Y
2
η ] = d2 +

0.08(−24d2 + 193d− 9ad)

1− 0.04t
+

0.04((a− d)2 + 2(2− a− d)2 + (9− 8a− d)2 + 20(9− d)2)

1− 0.04t2
.

Furthermore, we can find that for any a, b ∈ [0, 1], g1(a, b) > 1, which implies that a = 0. By
plotting the graphs of g1(0, b) and g7(0, b) as functions of b ∈ [0, 1], we obtain
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which follows the discussion in part (i) of the proof of Proposition 2.5.

A.3. The second example in Proposition 2.5. It can be computed directly that there are three
equilibrium stopping times. They can be written in the form of liquidation strategies: (a, b) =
(1, 1), (a, b) = (0, 1), and (a, b) = (1, 0). To check they are indeed equilibria, compute

g11(1, 1) = 10.8330 < 11, g17(1, 1) = 16.9912 < 17,

g11(0, 1) = 11.1515 > 11, g17(0, 1) = 16.9774 < 17,

g11(1, 0) = 10.8330 < 11, g17(1, 0) = 17.0022 > 17,

where g11(a, b) = E11[Yη] − 0.1(E11[Y
2
η ] − E11[Yη]

2)1/2 and g17(a, b) = E17[Yη] − 0.1(E17[Y
2
η ] −

E17[Yη]
2)1/2.

Also notice that (a, b) = (0, 0) is not a equilibrium liquidation strategy since g17(0, 0) = 16.9934 <
17.

To find all equilibrium liquidation strategies, we need to analyze all the possible trajectories of
this Markov chain when starting from 11 and 17.

Case 1: X : 11→ 11→ · · · → 11→ 0.

Then Yη = 0 with probability 0.1 and Yη = 11a
∑k−1

i=0 (1−a)i with probability 0.1 ·0.7k for k ≥ 1.

Case 2: X : 11→ 11→ · · · → 11→ 18.

Then Yη = 18 with probability 0.2 and Yη = 11a
∑k−1

i=0 (1 − a)i + 18(1 − a)k with probability

0.2 · 0.7k for k ≥ 1.

Case 3: X : 17→ 17→ · · · → 17→ 18.

Then Yη = 18 with probability 0.8 and Yη = 17b
∑k−1

i=0 (1 − b)i + 18(1 − b)k with probability

0.8 · 0.1k for k ≥ 1.

Case 4: X : 17→ 17→ · · · → 17→ 11→ 11→ · · · → 11→ 0.

Then Yη = 11a
∑m

j=0(1− a)j with probability 0.01 · 0.7m for m ≥ 0 and Yη = 17b
∑k−1

i=0 (1− b)i +

(1− b)k11a
∑m

j=0(1− a)j with probability 0.01 · 0.7m · 0.1k for k ≥ 1,m ≥ 0.

Case 5: X : 17→ 17→ · · · → 17→ 11→ 11→ · · · → 11→ 18.
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Then Yη = 11a
∑m

j=0(1 − a)j + 18(1 − a)m+1 with probability 0.02 · 0.7m for m ≥ 0 and Yη =

17b
∑k−1

i=0 (1− b)i + (1− b)k(11a
∑m

j=0(1− a)j + 18(1− a)m+1) with probability 0.02 · 0.7m · 0.1k for
k ≥ 1,m ≥ 0.

From the above, we can conclude that

(1) When X0 = 11,

P11(Yη = 11− 11(1− a)k) = 0.1 · 0.7k, k ≥ 0,

P11(Yη = 11 + 7(1− a)k) = 0.2 · 0.7k, k ≥ 0,

and

E11[Yη] = 11 +
0.3

0.3 + 0.7a
,

E11[Y
2
η ] = 112 +

6.6

0.3 + 0.7a
+

21.9

1− 0.7(1− a)2
.

(2) When X0 = 17,

P17(Yη = 17 + (1− b)k) = 0.8 · 0.1k, k ≥ 0

P17(Yη = 17− (6 + 11(1− a)m+1)(1− b)k) = 0.01 · 0.7m · 0.1k, k ≥ 0,m ≥ 0,

P17(Yη = 17− (6− 7(1− a)m+1)(1− b)k) = 0.02 · 0.7m · 0.1k, k ≥ 0,m ≥ 0,

and

E17[Yη] = 17 + (0.2 +
0.03(1− a)

0.3 + 0.7a
)

1

0.9 + 0.1b
,

E17[Y
2
η ] = 172 + (0.2 +

0.03(1− a)

0.3 + 0.7a
)

34

0.9 + 0.1b
+

(4.4− 0.36(1− a)

0.3 + 0.7a
+

2.19(1− a)2

1− 0.7(1− a)2
)

1

1− 0.1(1− b)2
.

The sets {(a, b) ∈ [0, 1] × [0, 1] : g11(a, b) = 11} and {(a, b) ∈ [0, 1] × [0, 1] : g17(a, b) = 17} are
shown as the following.
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This graph shows that the curves g11(a, b) = 11 and g17(a, b) = 17 do not intersect. So the
candidates for equilibrium liquidation strategies only lie on the boundary of [0, 1]× [0, 1]. From the
graph, we can observe that there exist 0 < a1 < a2 < a3 < a4 < 1 and 0 < b0 < 1 such that

g17(a1, 0) = 17, g17(a2, 1) = 17, g17(a4, 1) = 17;

g11(a3, 0) = g11(a3, 1) = 11;

g17(1, b0) = 17.

Also from the graph we know that g11(a1, 0) 6= 11, g11(a2, 1) 6= 11 and g11(a4, 1) 6= 11, so
they cannot be equilibrium liquidation strategies. To find out whether (a3, 0), (a3, 1) and (1, b0)
are equilibrium liquidation strategies. We plot the graphs of g11(a, b0), g17(a, 0) and g17(a, 1) as
functions of a ∈ [0, 1].

These graphs show that g11(1, b0) < 11, g17(a3, 0) > 17, and g17(a3, 1) > 17. So there are five
equilibrium liquidation strategies as discussed in part (ii) of the proof of Proposition 2.5.

A.4. The third example in Proposition 2.5 : We first analyze all the possible trajectories of
Markov chain X when starting from 1.

Case 1: X : 1→ 1→ · · · → 1→ 1→ 0.

⇒ Yη = 0 for k = 0 and Yη = a
∑k−1

i=1 (1− a)i for k ≥ 1. Then Yη = 1− (1− a)k with probability

0.1× 0.8k for k ≥ 0.

Case 2: X : 1→ 1→ · · · → 1→ 1→ 4.

⇒ Yη = 4 for k = 0 and Yη = a
∑k−1

i=1 (1 − a)i + 4(1 − a)k for k ≥ 1. Then Yη = 1 + 3(1 − a)k

with probability 0.1× 0.8k for k ≥ 0.

By computation, we have

E1[Yη] = 1 +
0.2

0.2 + 0.8a
, E1[Y

2
η ] = 1 +

0.4

0.2 + 0.8a
+

1

1− 0.8(1− a)2

Then the explicit expression for h(a) = E1[Yη] − cVarx[Yη] can be obtained and we have the
results in part (iii) of the proof of Proposition 2.5.
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A.5. Equilibrium liquidation strategies for the mean-variance problems in Examples 4.1
and 4.2. If η is an equilibrium liquidation strategy in the mean-variance problem, then

Jl(x, η) = sup
ξ∈L

Jl(x, ξ ⊗ η), ∀x ∈ X.

Recall that Ex[θξ⊗η(X)] = xξ(x) + (1 − ξ(x))Ex[Yη] and Varx[θξ⊗η(X)] = (1 − ξ(x))2Varx[Yη].
Therefore,

Jl(x, ξ ⊗ η) = −cVarx[Yη]ξ(x)2 + (2cVarx[Yη]− Ex[Yη] + x)ξ(x) + Ex[Yη]− cVarx[Yη],

is a quadratic function of ξ(x) when η is fixed. We then have

η(x) =


1, if hx(η) ∈ [1,∞);

hx(η), if hx(η) ∈ (0, 1);

0, if hx(η) ∈ (−∞, 0].

where hx(η) =
2cVar[Yη ]−Ex[Yη ]+x

2cVarx[Yη ]
.

In Example 4.1, Ei[Yη] and Ei[Y 2
η ] for i = 1, 7 have been computed in Appendix A.2, so we

obtain the explicit expressions of h1(η) and h7(η) as functions of a := η(1) and b =: η(7). Then
we observe that hi(a, b) ∈ (0, 1), for all (a, b) ∈ [0, 1] × [0, 1], i = 1, 7, and there is exactly one
intersection of the curve {(a, b) : h1(a, b) = a} and the curve {(a, b) : h7(a, b) = 7}, which is the
equilibrium liquidation strategy for mean-variance problem in Example 4.1. Similarly we can find
the equilibrium liquidation strategy for mean-variance problem in Example 4.2. The corresponding
graphs are shown below.
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