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Abstract

Stability and analysis of multi-agent network systems with state-dependent switching typologies have been
a fundamental and longstanding challenge in control, social sciences, and many other related fields. These
already complex systems become further complicated once one accounts for asymmetry or heterogeneity of the
underlying agents/dynamics. Despite extensive progress in analysis of conventional networked decision systems
where the network evolution and state dynamics are driven by independent or weakly coupled processes, most of
the existing results fail to address multi-agent systems where the network and state dynamics are highly coupled
and evolve based on status of heterogeneous agents. Motivated by numerous applications of such dynamics in
social sciences, in this paper we provide a new direction toward analysis of dynamic networks of heterogeneous
agents under complex time-varying environments. As a result we show how Lyapunov stability and convergence
of several challenging problems from opinion dynamics can be established using a simple application of our
framework. Moreover, we introduce a new class of asymmetric opinion dynamics, namely nearest neighbor
dynamics, and show how our approach can be used to analyze their behavior. In particular, we extend our results
to game-theoretic settings and provide new insights toward analysis of complex networked multi-agent systems
using exciting field of sequential optimization.

Index Terms

Lyapunov stability; multi-agent decision systems; state-dependent dynamics; switching network dynamics;
opinion dynamics, block coordinate descent, game theory.

I. INTRODUCTION

Researchers in a number of fields are currently finding a variety of applications for complex networks,
and distributed multi-agent network systems are currently the focal point of many new applications. Such
applications relate to the growing popularity of online social networks, the analysis of large network
data sets, the problems that arise from interactions among agents in complex networks such as formation
control, smart grids, political, economic, and biological systems, and the expansion of power and wireless
networks in our daily life.

There is ample evidence that decision making is often guided by heterogeneous agents interacting
in a complex time-varying environment. Perhaps one simple example is when a set of heterogeneous
robots with different communication capabilities want to rendezvous despite the fact that they are
simultaneously moving and yet have to maintain communication connectivity. However, it is often ob-
served that in practice the behavior of multi-agent decision systems under static symmetric/homogeneous
setting is fundamentally different from its dynamic asymmetric/heterogeneous counterpart. Unlike the
static homogeneous case, often any comprehensive analysis of dynamic heterogeneous multi-agent
systems is quite challenging, particularly in dynamic environments, and this class of problems has
eluded researchers for many years. New ideas and methodologies need to be developed to address
such shortcomings in which any progress can impact numerous applications in variety of domains
including opinion formation in social networks, formation control, cyber-physical security, dynamic
clustering, among many others. Since better understanding of such complex systems will allow us to
design novel or perhaps fundamentally different mechanisms, in this work we take some initial steps
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Fig. 1. The left figure depicts a complex network of global conflicts between countries (agents) due to their political or religious ties.
The middle figure represents a social network of individuals’ opinions for buying different cell-phone products. The right figure shows a
specific network formation taken by UAVs and drones. In all the figures the networks may dynamically change over time and the agents
can be heterogeneous (e.g., drones and UAVs have different communication capabilities).

toward extending the existing results on multi-agent network systems from the static homogeneous
setting to highly dynamic and heterogeneous environments.

A. Motivation
There are many motivating examples of relationships in political, social, and engineering applications,

which are governed by complex networks of heterogeneous agents. Agents may possibly belong to
multiple groups and be connected by multi-layered networks. The networks can also be dynamic in the
sense that they can vary over time depending on the agents’ status. As a few illustrative examples one
can consider (Figure 1):

• In social networks, there are often clear affinities among people based on shared political or cultural
beliefs. However, on specific issues, alliances form among people from different groups. Almost
every congressional vote provides an example of this phenomenon, where some representatives
break away from their respective parties to vote with the other party.

• In formation control a basic task is to design a distributed protocol so that a set of robots
collectively form a certain structure. Robots have different communication capabilities and can only
communicate with those in their local neighborhood. Consequently, the communication network
between them may vary depending on their relative distances from each other.

• Relationships between countries in the Middle East, and their ties to the US and Russia are nuanced,
with affiliations changing over time, and depending on context. Similarly, relationships among
terrorist organizations, such as ISIS, Al Qaeda, Taliban, and LeT, often change due to their battle
for supremacy, and their fight for the allegiance of their extremist followers.

• In opinion systems such as political election polls, individuals initially have different opinions about
a certain topic/candidate. Individuals frequently interact and become friend/unfriend depending on
how close their opinions are from each other. In particular, through such interactions their opinions
gradually form and a collective opinion eventually emerges.

Motivated by the above, and many other similar examples, our objective in this work is to provide
a simple framework to understand and analyze the behavior of networks of heterogeneous agents with
a rich dynamic network structure which may evolve or vary based on agents’ states. To this end, we
provide new connections between analysis of multi-agent network systems and some developed methods
in the mature fields of successive optimization and game theory. Utilizing such connections, we establish
Lyapunov stability and convergence of several classes of heterogeneous multi-agent network systems
with switching state-dependent dynamics.



B. Literature Review and Organization
There has been a rich body of literature on analysis of distributed multi-agent network systems, mainly

from the static point of view, in which a set of agents iteratively interact over a fixed communication
network so as to achieve a certain goal such as consensus or optimizing a global objective function. The
classical models of Degroot [1] and Friedkin& Johnsen [2] in social science are two special types of such
systems. As the literature on this area is quite vast, we refer interested readers for an overview to [3]
and [4]. However, a crucial assumption in almost all of these works is that the communication network
among the agents is fixed. Often these results can be generalized to time-varying networks by assuming
a certain “independency” between the network process and the state dynamics. For instance, one of the
commonly used assumptions is that the network dynamics are governed by an exogenous process which
is uncoupled from the state dynamics [5]–[10]. A generalization of this idea is to consider multi-agent
network dynamics where the network and state dynamics are allowed to be coupled, however a certain
condition such as network connectivity or communication symmetry must be satisfied at each time
instance [11]–[14]. A further extension of these results is the line of works in [15], [16] which shows
that any sequence of stochastic matrices viewed as update matrices of multi-agent network dynamics
admits a “Lyapunov” type function. Unfortunately, such Lyapunov functions are based on another so-
called adjoint dynamics which depend on the future instances of the original dynamics. Thus, unless
there is a strong inherent property in the underlying stochastic matrices [14], [17], it seems unlikely to
leverage the co-evolution of original and adjoint dynamics so as to establish meaningful convergence
results.

While the above techniques can properly address a large class of multi-agent network systems, there
are still many examples which do not fit into any of the aforementioned frameworks (or the application
of the above techniques provides very poor results on the behavior of the multi-agent system). One
of the main reasons is that most of the developed frameworks for analysis of multi-agent network
systems aim to isolate the evolution of network dynamics from those of state dynamics in which case
one derives a conclusion about local time instances (e.g. one time slot or a window of time instances)
and then generalizes this behavior to the entire trajectories. But the main question here is that what if
the network and state dynamics are completely determined endogenously so that no local property can
be assumed or checked a priori? In other words, if we do not take into account the actual correlation
between network and state dynamics (or how they evolve in terms of each other), it seems hopeless
to have a good understanding of the overall behavior of the dynamics. This shortcoming is even more
pronounced once we take into account agents heterogeneity or asymmetric communication among them.
In this work we show that despite these challenges it is still possible to capture the co-evolution of
network-state dynamics for several (and perhaps many other) multi-agent network dynamics even under
asymmetric or heterogeneous environment. While the evolution of state dynamics are commonly captured
by difference/differential equations, one of the key novelties of our work is to explicitly derive analogous
equations for network dynamics by explicitly introducing network variables and couple them with the
state variables. This allows us to derive network topology from state dynamics and vice versa and even
incorporate other constraints into the system behavior.

The rest of the paper is organized as follows: In Section II we provide a general framework which
we use frequently throughout the paper. In Section III we apply this framework to a well-known
state-dependent switching dynamics from social sciences, known as Hegselmann-Krause (HK) opinion
dynamics, and extend it to an edge-heterogeneous setting with additional communication constraints. In
particular, we show how this approach can handle up to some extent asymmetric communication among
the agents in the HK model. In section IV we introduce a new class of asymmetric opinion dynamics,
namely nearest neighbor dynamics, and show that our framework can also be applied suitably to these
models despite the fact that the underlying communication networks suffer from asymmetry. In Section
V, we provide an application of our framework to game-theoretic settings and show how the existing



results in game theory can be leveraged to analyze heterogeneous multi-agent network dynamics. We
conclude the paper by identifying some future directions of research in Section VI.

Notations
We adopt the following notations throughput the paper: We use bold symbols for vectors. Given

a vector v we let diag(v) be a diagonal matrix with vector v as its diagonal elements and zero,
everywhere else. Moreover, we denote the transpose of v by vT . For a positive integer n ∈ Z+ we set
[n] := {1, 2, . . . , n}. We let 1 be a column vector of all ones. Given a positive-definite matrix Q and a
vector v ∈ Rn, we let ‖v‖2

Q = vTQv, and ‖v‖ to be the Euclidean norm of v. Given a real number
x ∈ R we set (x)− := min{0, x}. We denote the cardinality of a finite set S by |S|.

II. A SEQUENTIAL OPTIMIZATION FRAMEWORK

Often multi-agent dynamical systems which commonly arise in control or social sciences are images
of optimization algorithms which are commonly used in machine learning literature. To make this
connection more clear, let us first consider the following iterated block successive minimization process
which is frequently used in the machine learning literature for minimizing a smooth/non-smooth function
[18]. Consider the optimization problem:

min f(y1,y2, . . . ,yn), yi ∈ Yi,∀i,

where Yi ⊆ Rmi is a closed convex set, and f :
∏n

i=1 Yi → R is a continuous function. A popular
approach to solve the above optimization problem is the block coordinate descent (BCD) method. At
each iteration of this method, the objective function is minimized with respect to a single block of
variables while the rest of the blocks are held fixed. More specifically, at iteration t = 0, 1, . . . of the
algorithm, the block variable yi is updated by solving the following subproblem:

yti = arg min
zi∈Yi

f(yt1, . . . ,y
t
i−1, zi,y

t
i+1, . . . ,y

t
n), i ∈ [n].

In particular, an important question here is whethere or not the generated sequence {yt}∞t=0 where
yt = (yt1, . . . ,y

t
n) will converge to a local/global minimizer of the objective function f(·). Due to its

particular simple implementation, the BCD method has been widely used for solving problems such
as power allocation in image denoising and image reconstruction, wireless communication systems,
clustering, and dynamic programming [18]–[20]. On the other hand, since in practice finding the exact
minimum in each iteration with respect to a block variable might be expensive, one can consider different
variants of the BCD method, such as inexact BCD method, where one adds a smooth regularizer to
the objective function or approximates it by a smooth upper bound function. In either case, and under
some mild assumptions, it can be shown that the BCD method will converge to a stationary point of
the objective function f(·) [18].

To see how BCD method can be used toward stability analysis of multi-agent network systems, let
us consider a special case of the above minimization where there are only two block variables, namely
a state block variable y := (y1, . . . ,yn) ∈ Rn×d, where yi ∈ Rd denotes the state of agent i, and a
network block variable λ := (λij) ∈ Λ ⊆ [0, 1]n×n, where λij = 1 if there is a directed edge from
agent (node) i to agent j so that yi can be influenced by yj , and λij = 0 if no such an edge exists. In
other words, an integral block variable λ encodes the adjacency matrix of the communication network
among agents. Note that we also allow the network to contain self-loops whenever λii = 1 for some i.

Now let us consider a class of multi-agent network dynamics with n agents evolving over discrete
time instances t = 0, 1, 2, . . . as:

x(t+ 1) = g1(x(t),λ(t)),

λ(t+ 1) = g2(x(t+ 1)), (1)



where x(t) := (x1(t), . . . , xn(t)) ∈ X ⊆ Rn×d denotes agent i’s state at time t, and λ(t) = (λij(t))ij ∈
Λ ⊆ [0, 1]n×n identifies the communication links between each pair of agents at that time. Here g1(·)
and g2(·) are two functions which capture the update rule of the underlying dynamics. As it can be seen
from (1), the state of the dynamics at the next time instance x(t + 1) is determined by the joint pair
of state-network at time t, i.e., (x(t),λ(t)), while the network structure at time t+ 1 is determined by
the state variable at time t.

Proposition 1: Let (S,≤S) be a totally ordered set.1 Moreover, assume that there exists a function
Φ(y,λ) : X × Λ→ S, such that given any fixed network λ∗ ∈ Λ, Φ(y,λ∗) : X → S is nonincreasing
(with respect to ≤S) along the image of g1(·), i.e.,

Φ
(
g1(y,λ∗),λ∗

)
≤S Φ

(
y,λ∗

)
, ∀y ∈ X. (2)

If there exists a function f1 : Λ→ S such that for any fixed state y ∈ X ,

g2(y) ∈ arg min
λ∈Λ
{f(y,λ) := Φ(y,λ) + f1(λ)}, (3)

then f(y,λ) is nonincreasing (with respect to ≤S) along the trajectories of (1).
Proof: Using the definition of joint dynamics (1) we can write:

f(x(t+ 1),λ(t+ 1)) = f(x(t+ 1), g2(x(t+ 1)))

= min
λ∈Λ

f(x(t+ 1),λ)

≤S f(x(t+ 1),λ(t))

= Φ
(
g1(x(t),λ(t)),λ(t)

)
+ f1(λ(t))

≤S Φ
(
x(t),λ(t)

)
+ f1(λ(t))

= f(x(t),λ(t)),

where the second equality is due to (3), and the last inequality holds by (2) given the fixed λ∗ = λ(t).
As a result, the coupled dynamics in (1) can be replicated by applying the BCD method to the objective
function f(y,λ) = Φ(y,λ) + f1(λ) with constraint sets λ ∈ Λ and x ∈ X , where at each iteration
we fix either network or state variable and optimize the objective function f with respect to the other
variable.

Definition 1: Let (S,≤S) be a totally ordered set. A function V : Rm → S is called a Lyapunov
function for the discrete time dynamical system z(t + 1) = h(z(t)), if it is nonincreasing along the
trajectories of the dynamics, i.e., V (z(t+1)) ≤S V (z(t)). We refer to a dynamical system which admits
a Lyapunov function as Lyapunov stable.

Intuitively, Proposition 1 states that if trajectories of the projected state dynamics in (1) over a fixed
network λ∗ admit a Lyapunov function Φ(y,λ∗), while minimizing f(y,λ) = Φ(y,λ) + f1(λ) with
respect to λ ∈ Λ accurately captures the network associated to the fixed state y, then the joint state-
network dynamics (1) admit a Lyapunov function. In particular, V (y) = minλ∈Λ f(y,λ) serves as a
Lyapunov function for the dynamics {x(t), t = 0, 1, . . .} generated by (1). In what follows next we
show how this simple framework can be used to establish Lyapunov stability and convergence of several
important state-dependent multi-agent network dynamics.

1In most applications of this paper (with an exception of Section IV) we set (S,≤S) to be the set of real numbers endowed by its
natural order.



III. HEGSELMANN-KRAUSE OPINION DYNAMICS

To show effectiveness of the proposed framework in Section II toward stability and convergence
analysis of multi-agent network systems, in this section we consider a well-known model from opinion
dynamics known as Hegselmann-Krause (HK) model [21]. A natural question that commonly arises in
social sciences is the extent to which one can predict the outcome of the opinion formation of entities
under some complex interaction process running among these social actors [1], [21]–[25]. In this regard,
one of the first studies was undertaken by Hegselmann and Krause in [21] with many applications in
the robotics rendezvous [26], [27], linguistic formation [28], social networks [29], trust and marketing
[30], among many others [25]. In the HK model, a finite number of agents frequently update their
opinions where the opinion of each agent is captured by a scalar (or vector) quantity in one (or higher)
dimension.2 Because of the conservative nature of social entities, each agent in this model communicates
only with those whose opinions are closer to him and lie within a certain level of his confidence.

In the homogeneous HK model, there are a set of [n] agents. It is assumed that at each time instance
t = 0, 1, 2, . . ., the opinion (state) of agent i ∈ [n] can be represented by a scalar xi(t) ∈ R. Each agent
i updates its value at time t by taking the arithmetic average of its own value and those of all the others
that are in its ε-neighborhood at time t. Here the parameter ε > 0 is a constant which captures the
confidence bound. More precisely, the evolution of opinion vectors x(t) := (x1(t), . . . , xn(t)) ∈ Rn can
be modeled by the following discrete-time dynamics:

x(t+ 1) = A(t)x(t),

Aij(t) =

{
1

|Ni(t)| if j ∈ Ni(t),

0 else,
(4)

where Ni(t) is the set of neighbors of agent i, i.e.,

Ni(t) = {j ∈ [n] : |xi(t)− xj(t)| ≤ ε}.

In the node heterogeneous HK dynamics everything remains as above except that different agents
can have different confidence bounds εi, i ∈ [n]. The node heterogeneous model reflects the fact that
some agents are very open minded (large εi) and are willing to communicate with many others before
updating their opinions, while some agents are closed-minded (small εi) and are biased towards their
own opinions. For instance εi = 0 means that agent i is stubborn and will not change its opinion at all.
Although at first glance the differences between homogeneous and node-heterogeneous HK dynamics
may seem negligible, their outcomes are substantially different, such that most of the results from one
cannot be carried over to the other [31]–[34]. In this regard, one of the fundamental questions concerning
HK dynamics is whether or not they eventually converge to a final outcome.

A. Homogeneous HK Model
Let us first focus on the homogeneous HK model. Although convergence and detailed analysis of the

homogeneous HK model have been established and studied extensively in the past literature (see, e.g.,
[25] for a comprehensive survey), in this subsection we provide a simple argument to show why this
model fits into our framework. This will allow us to generalize stability of homogeneous HK model to
account for higher degrees of heterogeneity or asymmetry among the agents.

Let us define Gt = ([n], Et) to be the communication graph at a generic time t such that there is
an edge between agents i and j at time t, i.e., (i, j) ∈ Et if and only if j ∈ Ni(t). Note that in the
homogeneous HK model the communication graph is undirected as if agent j is a neighbor of agent i,
the converse is also true. In fact, what makes the analysis of HK dynamics challenging is the strong

2For simplicity of presentation, in this section we only consider one dimensional HK model. However, all the results can be extended
in a straightforward manner to higher dimensions.



coupling between the evolution of the network Gt and the state x(t). This is because at any time t the
state vector x(t) determines the network topology Gt, and this new network determines the state vector
at the next time step x(t + 1). This puts HK dynamics to the class of complex time-dependent and
state-dependent network dynamics [35]–[40]. In particular, the communication network Gt may switch
many times depending on how the opinion vectors evolve which brings additional complication to the
analysis.

Now let us consider the following objective function comprised of two block variables, namely y ∈ Rn

and λ = (λij) ∈ [0, 1]n×n,

f(y,λ) :=
∑
i,j

λij

(
(yi − yj)2 − ε2

)
. (5)

This function can also be written in a compact form as f(y,λ) = yTLy − tr(L)ε2, where L :=
diag(λ1)−λ, and tr(·) denotes the trace function. Intuitively, the block variable λ is meant to capture
the communication network Gt, and the block variable y captures the opinion states. Note that if we
restrict λijs to binary variables in {0, 1}, then λ simply represents the adjacency matrix of a network of
n agents where λij = 1 if there is a directed edge (i, j) from node i to node j, and λij = 0 otherwise.
Moreover, for such a binary block variable λ, the matrix L is precisely the Laplacian matrix of the
communication network associated with λ. Although we still need to assume that λ ∈ {0, 1}n×n, to
avoid complication of handling integral variables, for now we allow λijs to vary continuously in the
interval [0, 1]. As we shall see soon the integrality of network variables will be automatically achieved
during iterations of the BCD method.

Now let us consider the BCD method applied to the objective function (5) with block variables x
and λ. For a generic time t, let us fix the state variable to y = x(t). Minimizing (5) with respect to
the network variable λ ∈ Λ = [0, 1]n×n we obtain,

λt := arg min
λ∈[0,1]n2

∑
i,j

λij

(
(xi(t)− xj(t))2 − ε2

)
, (6)

where

(λt)ij = (λt)ji =

{
1 if |xi(t)− xj(t)| ≤ ε,

0 else.
(7)

This simply follows because the objective function f(x(t),λ) is a linear function of the network variable
λ and achieves its minimum in an extreme point of [0, 1]n×n. In particular, the optimal extreme point
can be found by an easy inspection as given in (7). But note that λt is precisely the adjacency matrix of
the communication graph Gt in the homogeneous HK model (recall that in the homogeneous HK model
two agents are each others’ neighbors at time t if and only if their distance is at most ε). Therefore,
fixing the state variable to x(t) and minimizing (5) with respect to the network variable exactly delivers
the adjacency matrix of the communication network Gt in the homogeneous HK model at that time.

Now let us fix the network variable to the minimizer λt which represents an undirected graph with
associated Laplacian matrix Lt. It is well-known that given a fixed undirected graph with Laplacian
matrix Lt and arbitrary values {yi, i ∈ [n]} at its n verticies, the quadratic function Φ(y,λt) := yTLty
is nonincreasing if each node updates its value to the average value of its neighbors [41], [42]. In other
words, defining y′ = Aty where At := (diag(λt1))−1λt, we have (y′)TLty′ ≤ yLty. But note that
At is precisely the update matrix of the homogeneous HK model given in (4), which means that for
the specific choice of y = x(t) we have y′ = x(t + 1). Thus the evolution of the homogeneous HK
dynamics is governed by the application of BCD method to the objective function (5). Appealing to
Proposition 1, this shows that f(x(t + 1),λ(t + 1)) ≤ f(x(t),λ(t)), implying that homogeneous HK
dynamics admit a Lyapunov function.



Remark 1: Adapting the same notation as in Section II we have

g1(y,λt) = Aty, g2(y) = (1{|yi−yj |≤ε})ij,

Φ(y,λ) := yTLy, f1(λ) = −tr(L)ε2,

and f(y,λ) = yTLy − tr(L)ε2 so that the first term yTLy captures the internal coupling between
network and opinion states in the HK model.

B. Restricted Edge Heterogeneous HK Dynamics
In this part we show how the framework of Section II can extend the analysis of homogeneous

HK model by capturing higher degrees of heterogeneity or constraints. For this purpose, we consider
restricted edge-heterogeneous HK model which is a variant of the homogeneous HK model with the
following two additional changes:

1) Edge Heterogeneity: Consider the same dynamical system as in the homogeneous HK model
(4), except that the distance between every pair of nodes is measured based on possibly a different
confidence bound. More precisely, let {εij = εji > 0,∀i 6= j} be a set of fixed thresholds (one for
each pair of agents) so that agents i and j at time instance t can communicate if and only if their
distance at that time is less than εij , and thus Ni(t) = {j ∈ [n] : |xi(t)−xj(t)| ≤ εij}. This captures the
heterogeneous relationship among individuals due to family or other social ties. For instance two family
members will still continue to communicate even if their opinions are relatively far from each other,
while two strangers are more likely to terminate their interactions as soon as their opinions slightly
deviate from each other. As before we assume that at each time instance agents update their opinions
by taking the arithmetic average of their neighbors’ opinions, determined based on the heterogeneous
thresholds εij . Note that the homogeneous HK dynamics is a special case of the edge heterogeneous
setting where εij = ε,∀i 6= j.

2) Communication Restrictions: Other than closeness in opinion, often there are other important
factors which determine whether or not two agents should communicate. For instance, individuals often
communicate with those who have closer opinion to them and are within small geographic distance
from them. One direct way of handling such restriction is to add an extra component to each agent’s
opinion where this new component encodes the geographic location of that agent. As a result, in this
higher dimensional opinion space two agents are each others’ neighbors if each component of their
opinion vectors (and in particular the geographic component of their opinion vector) are close to each
other. This implies that two agents are eligible to communicate if they are close to each other both
opinionwise and geographic-wise.3 An alternative approach however for imposing new constraints is to
consider a predefined underlying network G which restricts the agents’ interactions to only those who
are both connected through the edges of G and have closer opinion to each other. Intuitively, one can
imagine running HK dynamics over the graph G. Thus, denoting the communication network of the
edge-heterogeneous HK dynamics at time t by G(t), the actual communication graph at time t is given
by the intersection of edges which appear in both G and G(t). This second approach is particularly
more suitable when there are certain hard communication constraints among individuals due to age
gaps, gender restrictions, or other social laws.

Theorem 2: The restricted edge-heterogeneous HK model over an undirected graph G = ([n], E) is
Lyapunov stable. Moreover, in the absence of edge heterogeneity (i.e., when all pairs have the same
confidence bound), the restricted HK model converges to an equilibrium point geometrically fast.

3Although this approach increases the dimension of the opinion space, yet most of the results such as convergence of the dynamics can
be extended to this higher dimensional setting [43].



Proof: Given a set of pairwise thresholds {εij = εji > 0 : i, j ∈ [n]}, and an undirected restricting
graph G = ([n], E), let us consider the BCD method applied to the following minimization problem:

min f(y,λ) :=
∑
i,j

λij

(
(yi − yj)2 − ε2ij

)
λ ∈ Λ, y ∈ Rn,

where Λ = {(λij) ∈ [0, 1]n×n : λij = 0,∀{i, j} /∈ E , λij = λji ∀i, j} is the constraint set for the block
variable λ. The above minimization problem can be rewritten as

min
∑
{i,j}∈E

λij

(
(yi − yj)2 − ε2ij

)
,

λij ∈ [0, 1],∀{i, j} ∈ E , y ∈ Rn. (8)

Now given a fixed state variable y = x(t) at a generic time t, minimizing (8) with respect to block
variable λ gives us λt where

(λt)ij = (λt)ji =

{
1 if |xi(t)− xj(t)| ≤ εij, {i, j} ∈ E
0 else.

In other words, minimizing (8) with respect to λ ∈ Λ precisely captures the communication structure
in the restricted edge-heterogeneous HK model. Now let us fix the network variable to λt. Since λt
represents the adjacency matrix of an undirected graph with corresponding Laplacian Lt, as before
Φ(y,λt) := yTLty is nonincreasing for the HK update rule over this fixed network λt. Thus for
any y ∈ Rn, if we denote the update matrix of the restricted edge-heterogeneous HK model on the
undirected graph λt by At, we have (Aty)TLt(Aty) ≤ yTLy. In particular, by choosing y = x(t),
where x(t) denotes the state vector of the restricted edge-heterogeneous HK model at time t, we have
x(t+ 1)TLtx(t+ 1) ≤ xT (t)Ltx(t). Therefore, BCD method applied to (8) replicates the dynamics of
the restricted edge-heterogeneous HK model. In particular, this shows that V (y) := minλ∈Λ f(y,λ) =∑
{i,j}∈E

(
(yi − yj)2 − ε2ij

)−
serves as a Lyapunov function for the restricted edge-heterogeneous HK

model.
In what follows next, we use the above Lyapunov function to establish asymptotic convergence of

the restricted HK model to an equilibrium point in the absence of edge heterogeneity (i.e., when all εij
are the same which by rescaling from now we may assume εij = 1,∀i, j). To lower bound the decrease
of Lyapunov function V (·) at a given time step t, we note that this decrease is lower bounded by the
decrease amount which is achieved due to the state update. Thus

V (x(t))− V (x(t+ 1)) ≥ xT (t)Ltx(t)− x(t+ 1)TLtx(t+ 1)

= xT (t)(Lt − ATt LtAt)x(t)

= xT (t)(I − At)T (diag(λt1) + λt)(I − At)x(t)

= (x(t)− x(t+ 1))T (diag(λt1) + λt)(x(t)− x(t+ 1))

≥ ‖x(t)− x(t+ 1)‖2, (9)

where the first equality is obtained by using x(t + 1) = Atx(t), and the second equality is valid by a
simple matrix multiplication and noting that diag(λt1)At = λt. Finally the last inequality holds because
λt is the adjacency matrix of a connected undirected graph,4 and hence diag(λt1) + λt is a positive

4Here, without loss of generality we may assume λt to be connected, otherwise for the rest of analysis we can restrict our attention to
one of its connected components.



definite matrix whose eigenvalues are greater than or equal to 1. By summing (9) for all τ ≤ t, and
rearranging the terms we get

t∑
τ=0

‖x(τ)− x(τ + 1)‖2 ≤ V (x(0))− V (x(t)) ≤ V (x(0)) + n2,

where the second inequality is valid since by the definition of V (·) we always have V (·) ≥ −n2. Thus∑∞
τ=0 ‖x(τ) − x(τ + 1)‖2 =

∑∞
τ=0

∑n
i=1(xi(τ) − xi(τ + 1))2 is a convergent series, and hence for

any δ2 > 0, there exists a sufficiently large time tδ such that
∑∞

τ=tδ

∑n
i=1(xi(τ) − xi(τ + 1))2 < δ2.

On the other hand, it is shown in Lemma 1 that if δ < 1
n2 , no switch in the communication network

can occur after time tδ. Thus after at most finite time tδ the communication network of the restricted
HK model remains unchanged. This implies that from time tδ onward the evolution of the dynamics
is governed by powers of a fixed stochastic matrix which is well-known to converge to an equilibrium
point geometrically fast.

Remark 2: The update matrix At of the HK model is the transition matrix of a lazy simple random
walk on its underlying network λt. However, Φ(y,λt) := yTLty serves as a Lyapunov function for any
irreducible random walk on the undirected graph λt. As a result, one can allow more general update
weights {wij > 0, i, j ∈ [n]} than original weights { 1

k
, k ∈ [n]} appearing in the update matrices of the

HK model, and still use the above analysis to show that the generated dynamics are Lyapunov stable.
This can be done by replacing variables λij by wijλij in the above proof.

C. Asymmetric 0-1 HK Dynamics
Finally, in this subsection we take one step further and consider a special case of the node-heterogeneous

HK model. As we mentioned earlier, the dynamics of node-heterogeneous HK model follow exactly
the same update rule as homogeneous HK model given in (4) except that different agents might have
different confidence bounds εi, i ∈ [n]. Unfortunately, up to the time of writing this paper there is
no general result which either proves or disproves convergence of the node-heterogeneous HK model
(although some partial results concerning stability of these dynamics are known [32], [43], [44]). In
particular, in the recent work [35], the authors have used an algorithmic approach to show convergence
of a special case of the node-heterogeneous HK model, namely 0-1 HK model, in which the confidence
bound of each node is restricted to be either 0 or ε = 1 (i.e., εi ∈ {0, 1},∀i ∈ [n]). It is worth noting
that due to heterogeneous confidence bounds, the communication network in the 0-1 HK model is no
longer undirected (symmetric). While the proof in [35] is fairly long and algorithmic, here we provide a
simple argument based on the BCD framework to establish Lyapunov stability of the 0-1 HK dynamics.
An important advantage of our approach is that i) it provides an improved Lyapunov drift which can be
useful towards convergence rate analysis, and ii) it provides a clear explanation of why the asymmetric
0-1 HK dynamics can still be treated as the symmetric homogeneous HK model.

Theorem 3: The 0-1 HK dynamics are Lyapunov stable.
Proof: Let us consider the same function f(y,λ) as in (5). We show that this function is

nonincreasing over the trajectories of the 0-1 HK. Let S0 and S1 = [n] \ S0 denote the set of agents
with confidence bounds 0 and ε = 1, respectively. As before, given a fixed state variable y := x(t),
minimizing f with respect to λ ∈ Λ := [0, 1]n×n we obtain (λt)ij = (λt)ji = 1 if |xi(t)−xj(t)| ≤ ε, and
(λt)ij = (λt)ji = 0, otherwise. This correctly captures the communication links adjacent to the agents
in S1 of the actual communication network in the 0-1 HK model at time t. However, it is possible that
λt incorrectly sets (λt)ij = 1 for an agent i ∈ S0 so that λt and the actual 0-1 HK communication
network at time t can only deviate from each other on edges {(i, j), i ∈ S0}. Nevertheless, as far as it
concerns the agents in S0, this will not be an issue since the agents in S0 will never use their adjacent
links to update their states (these agents are always fixed). Therefore, we are only left to show that



for fixed undirected graph λt with corresponding Laplacian Lt, Φ(y,λt) = yTLty still serves as a
Lyapunov function for the 0-1 HK update rule.

Given an arbitrary state vector y, let us decompose it into y = (y0,y1), where y0 and y1 are associated
to the agents in S0 and S1, respectively. Define R0 := λt[S0] and R1 := λt[S1] to be the adjacency
matrices induced by λt over the agents in S0 and S1, respectively. Moreover, let M := λt[S1, S0] be
the adjacency matrix of the bipartite graph induced by λt between agents in S0 and S1. Therefore, we
can write

λt =

[
R0 MT

M R1

]
, Lt =

[
D0 −R0 −MT

−M D1 −R1

]
,

where D0 = diag(R01) and D1 = diag(R11). Moreover, the actual 0-1 HK update rule at time t can
be written as x(t+ 1) = Atx(t), where

At =

[
I 0

D−1
1 M D−1

1 R1

]
.

Since Aty = (y0, D
−1
1 My0 +D−1

1 R1y1), we can write

yTLty = yT0 (D0−R0)y0 + yT1 (D1−R1)y1−2yT1My0,

yTATt LtAty=yT0 (D0−R0)y0−2(D−1
1 My0+D−1

1 Ry1)
TMy0

+(D−1
1 My0+D−1

1 Ry1)T (D1−R1)(D−1
1 My0+D−1

1 Ry1).

Subtracting these two expressions from each other, using the fact that RT
1 = R1, and simplifying the

terms we obtain

yTLty − yTATt LtAty = yT0

(
2MTD−1

1 M −MTD−1
1 (D1 −R1)D−1

1 M
)
y0

+ yT1

(
D1 −R1 −R1D

−1
1 (D1 −R1)D−1

1 R1

)
y1

+ 2yT1

(
R1D

−1
1 R1D

−1
1 M −M

)
y0. (10)

Now a straightforward calculation shows that the right-hand side of (10) can be factorized as P T (D1 +
R1)P , where P := (I−D−1

1 R1)y1−D−1
1 My0. Finally, since y−Aty = (0, (I−D−1

1 R1)y1−D−1
1 My0),

we can rewrite (10) as

yTLty−(Aty)TLt(Aty)=(y−Aty)T
[
I 0
0 D1+R1

]
(y−Aty). (11)

Therefore, if we define Q to be the middle matrix in (11), Q would be a positive definite matrix (as its
diagonal elements are strictly positive and dominate the row-sums) and thus yTLty− (Aty)TLt(Aty) =
‖y − Aty‖2

Q ≥ 0. Finally, choosing y = x(t) we get,

xT(t)Ltx(t)−xT(t+1)Ltx(t+1)=‖x1(t)−x1(t+1)‖2
Q.

Therefore, V (y) := minλ∈[0,1]n2 f(y,λ) =
∑

i,j

(
(yi − yj)2 − ε2

)− serves as a Lyapunov function for
the 0-1 HK model so that V (x(t))− V (x(t+ 1)) ≥ ‖x1(t)−x1(t+1)‖2

Q.
Remark 3: One can view the update matrix At of the 0-1 HK model at a given time t as the transition

matrix of a lazy simple random walk with absorbing states S0 on the fixed actual communication graph
at time t. Therefore, in the second part of the proof of Theorem 3 we have shown that although the
actual graph might have one-sided directed edges from S1 to the absorbing states S0, yTLty still serves
as a Lyapunov function for such absorbing random walks where Lt is the Laplacian of the symmetrized
actual network λt (i.e., viewing one-sided edges as undirected edges).



As we close this section, we would like to mention that unlike homogeneous HK model which is
known to converge to an equilibrium point after finitely many steps [21], it may take arbitrarily long
time until the 0-1 HK dynamics converge. In fact, it seems impossible to show that the drift of the above
Lyapunov function is bounded below by a time-invariant quantity (as is the case for homogeneous HK
model [43]). As an example, consider a set of n = 3 agents initially positioned at x1(0) = −1 + 1

22m
,

x2(0) = 0, and x3(0) = 1 where m can be any arbitrary large integer. Also assume ε1 = ε2 = 0,
and ε3 = 1 so that agent 3 is the only moving agent. Then it takes 2m steps until a switch in the
communication network occurs so that agent 3 be able to observe agent 1. In particular, the drift of the
above Lyapunov function during iteration t ∈ {1, . . . , 2m} is 1

2t
− 1

2t+1 = 1
2t+1 which can be arbitrarily

small.

IV. NEAREST NEIGHBOR OPINION DYNAMICS

In general, loosing symmetry in communication networks of multi-agent systems can substantially
complicate their stability analysis which in turn requires novel techniques. In fact, unlike the symmetric
case, existing results concerning stability of state-dependent networks of multi-agent systems with
asymmetric communication typologies are quite limited. Nevertheless, this shall not eliminate the
possibility of convergence of asymmetric dynamics to an equilibrium point, as it is shown in this
section for a special class of nearest neighbor dynamics. More specifically, in this section we establish
convergence of a class of nearest neighbor dynamics under both asynchronous and synchronous settings,
where in the former at each time instance only one of the agents updates its opinion (state), while in
the latter at each iteration all the agents simultaneously update their opinions.

A. Asynchronous Nearest Neighbor Dynamics
Consider a set of [n] agents where the opinion of agent i ∈ [n] at time t = 0, 1, 2, . . . is given by a

vector xi(t) ∈ Rd. At each iteration t one agent i ∈ [n] is selected based on some selection rule (e.g.
uniformly at random) and updates its opinion at the next time step to xi(t+1) = µixi(t)+(1−µi)xr(i)(t),
where here r(i) := arg minj∈[n]\{i} ‖xi(t)− xj(t)‖ denotes the closest agent to i with respect to profile
x(t) ∈ Rn×d, and µi ∈ (0, 1) is an agent-specific parameter. For all other agents j 6= i, we set
xj(t+ 1) = xj(t).

The rationale behind introducing nearest neighbor dynamics is that often individuals get influenced
by their closest friend/partner/leader so that depending on their stubbornness (captured by µi) they
are willing to compromise in order to get closer to their friend/partner/leader. It is important to note
that the communication network in the nearest neighbor dynamics is asymmetric so that if r(i) is the
closest agent to i, it does not imply that i is also the closest agent to r(i) (i.e., in general r(r(i)) 6= i).5

Moreover, the communication network which determines the “closest relationships” evolves as a function
of agents’ opinions which can switch many times based on trajectory of the dynamics. Nevertheless, as
we shall see in Theorem 4 such heterogeneous asymmetric state-dependent dynamics will converge to
an equilibrium point as defined below:

Definition 2: An ε-equilibrium for the nearest neighbor dynamics is an opinion profile where the
maximum distance between every agent’s opinion and its closest neighbor is at most ε > 0. Moreover,
given an initial opinion profile x(0), we let tε be the first time instance when x(tε) becomes an ε-
equilibrium.

It is worth noting that the definition of ε-equilibrium implies that each agent will lie within a distance
of at most εn from its limit point. This is because if the communication network in an ε-equilibrium
is connected, the maximum distance between every two nodes is at most εn so that the convex hull of
all the opinions can have diameter at most εn. Since the nearest neighbor dynamics evolve inside of

5In fact, one can show that the communication network at each time instance is comprised of disjoint directed trees where the out-degree
of each node is equal to 1.



this convex hull for all the future iterations, the limit point (if it exists) will also lie in this convex hull.
Similarly, if an ε-equilibrium contains more than one connected component, then either the distance
between their convex hulls is less than ε, in which case a similar argument as above for the convex hull
of the union of those components can be applied, or the distance between those components is more
than ε, in which case those components evolve separately from each other so that the limit points of
each component lie within its own convex hull (and again the above argument applies).

Definition 3: Given two vectors u,v ∈ Rn, we say u is lexicographically smaller than v (u <Lex v),
if there exists some k ≤ n for which u1 = v1, . . . , uk−1 = vk−1, and uk < vk. Note that there is no
specific relation between components of u and v for indices larger than k.

Theorem 4: The asynchronous nearest neighbor dynamics are Lyapunov stable and asymptotically
converge to an equilibrium point. Moreover, if at each iteration an agent is selected uniformly at random
to update its opinion, then the expected number of steps until the dynamics reach an ε-equilibrium is
bounded above by E[tε] ≤ n2nD0

(1−µmax)ε
, where D0 = maxi,j ‖xi(0)− xj(0)‖ and µmax = maxi µi.

Proof: Given a vector v, let sort(v) be a vector obtained by sorting all the components of v in a
nondecreasing order. Let f : [0, 1]n

2×Rn×d → Rn be the vector function f(λ,y) := sort
(∑n

j=1 λij‖yi−

yj‖, i ∈ [n]
)

, and consider the lexicographical minimization problem, minLex{f(λ,y) : y ∈ Rn×d,λ ∈
Λ}, where Λ = {(λij) ∈ [0, 1]n

2
:
∑n

j=1 λij = 1, λii = 0,∀i ∈ [n]}.6 Now given a fixed block variable
y = x(t) at a generic time t, minimizing f(λ,x(t)) lexicographically with respect to λ ∈ Λ gives us,

(λt)ij =

{
1 if j = r(i),

0 else.
(12)

This is because minimizing f(λ,x(t)) over λ ∈ Λ decomposes into minimizing f(·) componentwise,
and it is achieved by setting the coefficient λij corresponding to the smallest term ‖xi(t)− xr(i)(t)‖ of
the ith component equal to 1, and to 0, otherwise. As a result, given a fixed state y = x(t), minimizing
f(λ,x(t)) with respect to λ ∈ S accurately captures the directed communication network λt of the
nearest neighbor dynamics for the state x(t). Next let us fix the communication network to λt so that

f(λt,x(t)) = sort
(
‖xi(t)− xr(i)(t)‖, i ∈ [n]

)
=
(
‖x1(t)− xr(1)(t)‖, . . . , ‖xn(t)− xr(n)(t)‖

)
,

where in the second equality and without loss of generality (by relabeling the agents if necessary) we
have assumed that ‖x1(t)− xr(1)(t)‖ ≤ . . . ≤ ‖xn(t)− xr(n)(t)‖.

To study the effect of state update on f(λt,x(t)), let us assume that at time t agent ` ∈ [n] is selected
to update its opinion. Then we obtain x(t + 1) for which x`(t + 1) = µ`x`(t) + (1 − µ`)xr(`)(t), and
xj(t+ 1) = xj(t),∀j 6= `. In particular,

‖x`(t+1)− xr′(`)(t+1)‖ ≤ ‖x`(t+1)− xr(`)(t+1)‖
= ‖x`(t+1)− xr(`)(t)‖ = µ`‖x`(t)− xr(`)(t)‖
< ‖x`(t)− xr(`)(t)‖, (13)

where r′(`) denotes the closest agent to ` with respect to the opinion profile x(t+ 1). Furthermore, for
every i < ` we have two possibilities: Case I) r(i) 6= `, in which case

‖xi(t+1)−xr′(i)(t+1)‖ = min{‖xi(t)−xr(i)(t)‖, ‖xi(t)−x`(t+1)‖} ≤ ‖xi(t)−xr(i)(t)‖.

6In terms of Proposition 1 terminology, here we have (S,≤S) = (Rn, <Lex).



Case II) r(i) = `, in which case by definition of r(`) we must have ‖x`(t)−xr(`)(t)‖ ≤ ‖x`(t)−xi(t)‖ =
‖xr(i)(t)− xi(t)‖. However, as i < ` (and thus ‖xr(i)(t)− xi(t)‖ ≤ ‖x`(t)− xr(`)(t)‖), one can see that
Case II cannot happen unless ‖x`(t)− xr(`)(t)‖ = ‖xi(t)− xr(i)(t)‖. As a result r(`) = i, and we can
write

‖xi(t+1)− xr′(i)(t+1)‖ = ‖xi(t)− x`(t+1)‖
= ‖xi(t)− µ`x`(t)− (1− µ`)xr(`)(t)‖
= ‖xi(t)− µ`xr(i)(t)− (1− µ`)xi(t)‖
= µ`‖xi(t)− xr(i)(t)‖ < ‖xi(t)− xr(i)(t)‖.

Therefore, we have shown that ‖xi(t+1) − xr′(i)(t+1)‖ ≤ ‖xi(t) − xr(i)(t)‖,∀i < `, and moreover
‖x`(t+1)−xr′(`)(t+1)‖ < ‖x`(t)−xr(`)(t)‖. In other words, after agent `’s update, f(λt,x(t)) decreases
lexicographically, i.e., f(λt+1,x(t+ 1)) <Lex f(λt,x(t)). In particular, V (y) := minλ∈Λ f(λ,y) =

sort
(
‖yk − yr(k)‖, k ∈ [n]

)
serves as a Lyapunov function for the asynchronous nearest neighbor

dynamics.
To show convergence of the asynchronous dynamics to an equilibrium point, let us convert V (y)

into a scalar function V̂ (y) :=
∑n

i=1 mini({‖yk − yr(k)‖, k ∈ [n]})2n−i by giving appropriate weights
to its coordinates, where here mini(S) denotes the ith smallest element of a finite set S.7 As before,
let us assume that at time t agent ` is selected to update its opinion, and mini({‖xk(t)− xr(k)(t)‖, k ∈
[n]}) = ‖xi(t)− xr(i)(t)‖. For any i ≤ `, we have

min
i

(
{‖xk(t+ 1)− xr′(k)(t+ 1)‖, k ∈ [n]}

)
≤ max{‖xk(t+ 1)− xr′(k)(t+ 1)‖, k ∈ [i]}
≤ max{‖xk(t)− xr′(k)(t)‖, k ∈ [i]} = ‖xi(t)− xr(i)(t)‖, (14)

where the last inequality is by ‖xk(t + 1) − xr′(k)(t + 1)‖ ≤ ‖xk(t) − xr(k)(t)‖, ∀k ≤ `. Now we can
write,∑

i≤`

(
min
i

(
{‖xk(t)− xr(k)(t)‖, k ∈ [n]}

)
−min

i

(
{‖xk(t+ 1)−xr′(k)(t+ 1)‖, i ∈ [n]}

))
2n−i

=
∑
i≤`

(
‖xi(t)− xr(i)(t)‖ −min

i

(
{‖xk(t+ 1)−xr′(k)(t+ 1)‖, k ∈ [n]}

))
2n−i

≥ 2n−`
∑
i≤`

(
‖xi(t)− xr(i)(t)‖ −min

i
({‖xk(t+ 1)−xr′(k)(t+ 1)‖, k ∈ [n]})

)
= 2n−`

(∑
i≤`

‖xi(t)− xr(i)(t)‖ −
∑
i≤`

min
i

({‖xk(t+ 1)−xr′(k)(t+ 1)‖, k ∈ [n]})
)

≥ 2n−`
(∑

i≤`

‖xi(t)− xr(i)(t)‖ −
∑
i≤`

‖xi(t+ 1)−xr′(i)(t+ 1)‖
)

= 2n−`
∑
i≤`

(
‖xi(t)− xr(i)(t)‖ − ‖xi(t+ 1)−xr′(i)(t+ 1)‖

)
≥ 2n−`(1− µ`)‖x`(t)− xr(`)(t)‖, (15)

where the first inequality is due (14), and the second inequality holds because sum of ` smallest elements
of a set is always smaller than sum of any ` elements in that set. Finally, the last inequality is valid

7This conversion encodes lexicographical decrease of V (y) into a scalar decrease in V̂ (y). This will allow us to quantify a convergence
rate for the asynchronous nearest neighbor dynamics.



since the first ` − 1 summands are nonnegative and by (13) the `th summand is greater than or equal
to (1− µ`)‖x`(t)− xr(`)(t)‖.

On the other hand, we note that for any agent k, ‖xk(t + 1)−xr′(k)(t + 1)‖ ≤ ‖xk(t)−xr′(k)(t)‖ +
(1 − µ`)‖xk(t)−xr′(k)(t)‖. This is because the amount of movement of agent ` at time t is equal to
‖x`(t + 1) − x`(t)‖ = (1 − µ`)‖x`(t) − xr(`)(t)‖. Therefore, by triangle inequality the distance of any
agent k to its nearest neighbor at the next time step can increase by at most (1− µ`)‖x`(t)− xr(`)(t)‖.
Now similar as in (14) we can write,

min
i

(
{‖xk(t+ 1)− xr′(k)(t+ 1)‖, k ∈ [n]}

)
≤ max{‖xk(t+ 1)− xr′(k)(t+ 1)‖, k ∈ [i]}
≤ max{‖xk(t)− xr′(k)(t)‖+ (1− µ`)‖x`(t)− xr′(`)(t)‖, k ∈ [i]}
= ‖xi(t)− xr(i)(t)‖+ (1− µ`)‖x`(t)− xr′(`)(t)‖. (16)

As a result we obtain,∑
i>`

(
min
i

({‖xk(t)− xr(k)(t)‖, k ∈ [n]})−min
i

({‖xk(t+ 1)−xr′(k)(t+ 1)‖, i ∈ [n]})
)

2n−i

=
∑
i>`

(
‖xi(t)− xr(i)(t)‖ −min

i
({‖xk(t+1)−xr′(k)(t+ 1)‖, k ∈ [n]})

)
2n−i

≥ −
∑
i>`

(1− µ`)‖x`(t)− xr′(`)(t)‖2n−i

= −(1− µ`)‖x`(t)− xr′(`)(t)‖(2n−` − 1), (17)

where the inequality is due to (16). Finally, summing (17) and (15), and using the definition of V̂ (·), we
obtain V̂ (x(t))− V̂ (x(t+ 1)) ≥ (1−µ`)‖x`(t)−xr′(`)(t)‖. As agent ` is selected uniformly at random,
this implies that as long as x(t) is not an ε-equilibrium, the expected decrease of V̂ (·) at time t is at
least,

E[V̂ (x(t))− V̂ (x(t+ 1))] ≥ 1

n

n∑
`=1

(1− µ`)‖x`(t)−xr′(`)(t)‖ ≥
(1− µmax)ε

n
. (18)

Finally, we note that V̂ (·) is a nonnegative function such that V̂ (x(0)) ≤ 2nD0. This in view of (18)
shows that the expected number of steps before the asynchronous dynamics reach an ε-equilibrium is
bounded above by 2nD0

(1−µmax)ε
n

.

B. Synchronous Nearest Neighbor Dynamics
In this part we consider the synchronous nearest neighbor dynamics whose formal definition is as

follows: Consider a set of [n] agents where the opinion of agent i ∈ [n] at time t = 0, 1, 2, . . . is given
by xi(t) ∈ Rd. Given the current opinion profile x(t), in the next iteration every agent i ∈ [n] updates its
opinion to xi(t+ 1) = µixi(t) + (1−µi)xr(i)(t), where as before r(i) := arg minj∈[n]\{i} ‖xi(t)−xj(t)‖
denotes the closest agent to i with respect to the opinion profile x(t), and µi ∈ (0, 1), i ∈ [n] are
mixing constants. As before, we note that the communication network of the synchronous dynamics is
asymmetric whose evolution depends on the opinion profiles.

In the following we show that if all the agents have the same mixing parameter µi = µ,∀i ∈ [n],
then the synchronous nearest neighbor dynamics reach an ε-equilibrium very fast.

Theorem 5: The synchronous nearest neighbor dynamics with µi := µ ∈ (0, 1), ∀i ∈ [n] converge to
an ε-equilibrium point after at most tε ≤ n(2D0

ε
+log|1−2µ|(

ε
2D0

)) iterations, where D0 = maxi,j ‖xi(0)−
xj(0)‖.



Proof: Consider BCD method for component-wise minimizing of the function:

min
{
f(y,λ) : =

( n∑
j=1

λ1j‖y1 − yj‖, . . . ,
n∑
j=1

λnj‖yn − yj‖
)
| λ ∈ Λ, y ∈ Rn×d

}
,

where Λ = {(λij) ∈ [0, 1]n
2

:
∑n

j=1 λij = 1, λii = 0,∀i}. As before, given a fixed opinion state
y = x(t), minimizing f(·) over λ ∈ Λ gives us (λt)ij = 1 if j = r(i), and (λt)ij = 0 otherwise,
where r(·) is defined with respect to the opinion profile x(t). Therefore, for a fixed state y = x(t),
the communication network is precisely captured by minimizing f(·) over λ ∈ Λ. Now by fixing the
network to this minimizer λt, we get f(x(t),λt) = (‖x1(t)− xr(1)(t)‖, . . . , ‖xn(t)− xr(n)(t)‖), which
we next evaluate the effect of opinion updates on it.

Let x(t + 1) be the updated opinion vector obtained from x(t), given the fixed network λt. By
definition of synchronous dynamics xi(t+ 1) = µxi(t) + (1− µ)xr(i)(t),∀i,

‖xi(t+1)−xr(i)(t+1)‖ = ‖µxi(t)+(1−µ)xr(i)(t)−
(
µxr(i)(t)+(1−µ)xr(r(i))(t)

)
‖

= ‖µ(xi(t)− xr(i)(t)) + (1− µ)
(
xr(i)(t)− xr(r(i))(t)

)
‖

≤ µ‖xi(t)− xr(i)(t)‖+ (1− µ)‖xr(i)(t)− xr(r(i))(t)‖
≤ µ‖xi(t)− xr(i)(t)‖+ (1− µ)‖xi(t)− xr(i)(t)‖
= ‖xi(t)− xr(i)(t)‖,

where the first inequality is due to the triangle inequality, and the last equality holds since by definition
of r(·) we have ‖xr(i)(t)− xr(r(i))(t)‖ ≤ ‖xi(t)− xr(i)(t)‖. Therefore,

f(x(t+1),λt)=(‖xi(t+1)−xr(i)(t+1)‖, i ∈ [n]) ≤ (‖xi(t)−xr(i)(t)‖, i ∈ [n])=f(x(t),λt).

where the above inequality is component-wise. As a result, we have

f(x(t+1),λt+1) = min
λ∈Λ

f(x(t+1),λ) ≤ f(x(t+1),λt) ≤ f(x(t),λt),

which shows that V (y) := minλ∈Λ f(λ,y) = (‖yi(t)− yr(i)(t)‖, i ∈ [n]) serves as a Lyapunov function
for the synchronous nearest neighbor dynamics.

To evaluate the convergence speed of the dynamics to an ε-equilibrium point, let us consider the
scalar function V̂ (x) =

∑n
i=1 ‖xi−xr(i)‖. Let Ct be a connected component of the communication

graph at time t which contains the longest edge Dt := maxi ‖xi(t)− xr(i)(t)‖, and define dt to be the
length of the shortest edge in Ct. A similar analysis as above shows that

V̂ (x(t))− V̂ (x(t+ 1)) ≥
n∑
i=1

(
‖xi(t)− xr(i)(t)‖ − ‖xi(t+ 1)− xr(i)(t+ 1)‖

)
≥
∑
i∈Ct

(
‖xi(t)− xr(i)(t)‖ − ‖xi(t+ 1)− xr(i)(t+ 1)‖

)
≥ (1− µ)

∑
i∈Ct

(
‖xi(t)− xr(i)(t)‖ − ‖xr(i)(t)− xr(r(i))(t)‖

)
≥ (1− µ)

∑
i∈Pt

(
‖xi(t)− xr(i)(t)‖ − ‖xr(i)(t)− xr(r(i))(t)‖

)
= (1− µ)(Dt − dt), (19)

where as before r(·) is associated with state x(t), and Pt is the unique directed path connecting the
longest edge to the shortest edge in Ct. Note that the last equality in (19) holds due to the telescopic
sum over the nodes of Pt.



On the other hand, by definition of tε we know that Dt ≥ ε,∀t < tε. We claim that for at most
n log|1−2µ|(

ε
2D0

) time instances t ∈ {0, . . . , tε} we can have dt ≥ ε
2
. This is because whenever an agent

i is an endpoint of the shortest edge in Ct, we get r(r(i)) = i, and thus:

‖xi(t+ 1)− xrt+1(i)(t+ 1)‖ ≤ ‖xi(t+ 1)− xr(i)(t+ 1)‖
= ‖µxi(t) + (1− µ)xr(i)(t)− (µxr(i)(t)− (1− µ)xi(t))‖
= |1− 2µ|‖xi(t)− xr(i)(t)‖.

As a result the distance between agent i and its nearest neighbor in the next time step will reduce by
a factor of |1 − 2µ| ∈ (0, 1), and as we saw earlier, for each i ∈ [n] this distance can only decrease
in the future iterations of the dynamics. This implies that agent i ∈ [n] can be incident to the shortest
edge in Ct for at most log|1−2µ|(

ε
2D0

) time instances before its distance to its closest neighbor shrinks
below ε

2
. As there are in total n agents, the claim follows. Therefore, for at least tε − n log|1−2µ|(

ε
2D0

)

time instances we have dt <
ε
2

and Dt ≥ ε. By (19), for such instances the function V̂ (·) must
decrease by at least Dt− dt ≥ ε

2
. Since V̂ (·) is always nonnegative and V̂ (x(0)) ≤ nD0, we must have

(tε − n log|1−2µ|(
ε

2D0
)) ε

2
< nD0, as desired.

V. APPLICATIONS TO GAME THEORY

In this section we provide a game-theoretic application of our successive optimization framework
and show how it can be leveraged to establish convergence of natural best response dynamics (or its
other variants) towards equilibrium points of the underlying game. For this purpose let us consider a
Stackelberg game with one leader (network designer) and n followers (players). At each stage the leader
decides about the network structure and the followers best respond to the leader’s action. The leader’s
action is to choose a matrix λ := (λij) ∈ Λ, where λij indicates the amount by which the cost of player
i is influenced by the action of player j. After that each follower i ∈ [n] incurs a cost of

ci(xi,x−i,λ) =
n∑
j=1

λijφi(xi, xj),

where xi ∈ Xi denotes the action taken by player i, x−i denotes the actions of all players other than
i, and φi(xi, xj) is a player-specific function which captures the coupling cost incurred by player i
due to the action of player j. For each player i ∈ [n], we assume that φi(xi, xj) is a continuous and
strictly convex function of its own action xi, given fixed actions of all others (including the leader).
Finally, in this game we assume that the leader’s objective is to minimize the social cost defined by
c(x,λ) =

∑n
i=1 ci(x,λ). This fully determines a Stackelberg game between the leader and the followers

where the leader first determines the network structure and the followers best respond to it by playing
a noncooperative game among themselves.

Definition 4: Let X be a compact set, and consider a continuous function f(x, y) : X × X → R,
where for each x ∈ X the mapping Z(x) := arg miny∈X f(x, y) is singular value. f(·) is called min-
symmetric, if f(Z(x), Z(x)) ≤ f(x, Z(x)),∀x ∈ X .

Remark 4: Quadratic functions of the form f(x,y) := xTQ1x + yTQ2y − 2yTRx, where Q1, Q2

are positive definite matrices, and R = RT is a symmetric matrix, are a subclass of min-symmetric
functions (see, e.g., [40, Lemma 1]).

Theorem 6: Let Λ ⊆ [0, 1]n×n be a polytope, and Xi, i ∈ [n] be compact sets. Moreover, assume
that for every λ ∈ Λ, the function ρ(x,y,λ) :=

∑n
i=1 ci(yi,x−i,λ) is min-symmetric. Then every

limit point of the best response dynamics generated by the leader and followers will be a Stackelberg
equilibrium.

Proof: Given a generic time instance t, let us first fix leader’s action to λt and analyze the game
among followers. Note that for fixed λt, the cost function of each player i is continuous and strictly



convex function of its own action xi. Therefore, the unique best-response profile of all the followers at
time t + 1 is given by x(t + 1) = arg miny∈X ρ(x(t),y,λt), where X := X1× · · · ×Xn is a compact
set. By min-symmetric property of ρ(x,y,λt), we can write,

c(x(t+ 1),λt) = ρ(x(t+ 1),x(t+ 1),λt)

≤ ρ(x(t),x(t+ 1),λt)

= min
y∈X

ρ(x(t),y,λt)

≤ ρ(x(t),x(t),λt) = c(x(t),λt). (20)

Finally, the leader’s best action to the followers’ actions x(t+1) is given by λt+1 = arg minλ∈Λ c(x(t+
1),λ), which in view of (20) shows that for any time t we have,

c(x(t+ 1),λt+1) ≤ c(x(t),λt). (21)

Next we note that c(x,λ) is a linear function of λ which at each iteration is minimized over the
polytope Λ. Therefore, the set of leader’s best actions {λt}∞t=0 is a finite set comprised of at most all the
extreme points of Λ. Now let (x∗,λ∗) be an arbitrary limit point of the sequence {(x(t), λt)}∞t=0 (which
does exist since this sequence belongs to the compact set X×Λ). As {λt}∞t=0 is a finite set, this implies
that there exists a subsequence {x(tk)}∞k=0 which converges to x∗ under the fixed network topology
λtk = λ∗,∀k ≥ 0. To derive a contradiction, assume that λ∗ is not the best response of the leader to
the followers’ actions x∗. This means that there exists a λ̃ 6= λ∗ such that c(x∗, λ̃) < c(x∗,λ∗). By
continuity of c(x,λ) we have

lim
k→∞

c(x(tk), λ̃) = c(x∗, λ̃) < c(x∗,λ∗) = lim
k→∞

c(x(tk),λtk).

This means that there exists a sufficiently large integer r > 0 such that c(x(tr), λ̃) < c(x(tr),λtr).
But we already know that c(x(tr),λtr) = minλ∈Λ c(x(tr),λ) ≤ c(xtk , λ̃), which is in contrast with the
former inequality. This shows that λ∗ is the best response of the leader to followers’ actions x∗.

Similarly, given leader’s action λ∗, let us assume that x∗ is not a Nash equilibrium among the
followers. Define Z(x) := arg miny∈X ρ(x,y,λ∗) to be the best response function of the followers,
given the fixed leader’s action λ∗. Note that Z(x) : X → X is a continuous function due to uniform
continuity of ρ(·, ·,λ∗) over the compact set X × X . Since x∗ is not a Nash equilibrium, this means
that ρ(x∗, Z(x∗),λ∗) < ρ(x∗,x∗,λ∗). As before, let {x(tk)}∞k=0 be a subsequence converging to x∗

under the fixed leader’s action λtk = λ∗,∀k ≥ 0. By continuity of Z(x) and ρ(·, ·,λ∗), we get

lim
k→∞

ρ(x(tk), Z(x(tk)),λtk) = lim
k→∞

ρ(x(tk), Z(x(tk)),λ
∗)

= ρ(x∗, Z(x∗),λ∗) < ρ(x∗,x∗,λ∗). (22)

Let δ := ρ(x∗,x∗,λ∗)− ρ(x∗, Z(x∗),λ∗) > 0. From (22) and for sufficiently large integer r, we have
ρ(x(tr), Z(x(tr)),λtr) < ρ(x∗,x∗,λ∗)− δ

2
. By definition we know that x(tr + 1) = Z(x(tr)), thus by

following the same argument as in (20) and (21),

c(x(tr + 1),λtr+1) = ρ(x(tr + 1),x(tr + 1),λtr+1)

≤ ρ(x(tr + 1),x(tr + 1),λtr)

≤ ρ(x(tr), Z(x(tr)),λtr)

< ρ(x∗,x∗,λ∗)− δ

2
.



But from (21) we know that c(x(t),λt) is a nonincreasing sequence so that for all k > r, we must have
c(x(tk),λtk) ≤ c(x(tr + 1),λtr+1) < ρ(x∗,x∗,λ∗)− δ

2
. Thus,

ρ(x∗,x∗,λ∗) = c(x∗,λ∗) = lim
k→∞

c(x(tk),λtk) ≤ ρ(x∗,x∗,λ∗)− δ

2
.

This contradiction shows that x∗ is a Nash equilibrium among the followers, given the leader’s action
λ∗. Therefore, the limit point (x∗,λ∗) is a Stackelberg equilibrium.

Example 1: Consider a special case where φi(x, y) = (x − y)2 − ε2,∀i ∈ [n], and the leader’s best
response polytope is given by the symmetric matrices with self-loops, i.e., Λ := {λ ∈ [0, 1]n×n : λij =
λji,∀i, j, λii = 1,∀i}. In this case, we have

ρ(x,y,λ) =
n∑
i=1

n∑
j=1

λij
(
(yi − xj)2 − ε2

)
= yTQy + xTQx− 2yTλy − ε2(1Tλ1),

where again λ is a symmetric matrix, Q = diag(λ1) is positive definite, and hence by Remark 4,
ρ(x,y,λ) is min-symmetric. Therefore, the best response dynamics of the leader-followers converge
to a Stackelberg equilibrium. Interestingly, one can easily check that the best response of followers
are exactly governed by the homogeneous HK update rule which shows that the steady-state of the
homogeneous HK model is simply a Stackelberg equilibrium of the above game.
Example 2: Let us consider another special case where φi(x, y) = (x − y)2,∀i ∈ [n]. Assume that
at each instance the leader’s objective is to keep the communication network among the followers
(agents) connected, so that the followers can communicate with each other and eventually rendezvous
at a consensus point. Perhaps one can think of agents as robots, and the leader as a bandwidth provider
who aims to bring all the agents together with minimum bandwidth cost. In this case the leader’s action
set can be represent by the polytope

Λ := {λ ∈ [0, 1]n×n :
∑

i∈S,j /∈S

λij ≥ 1, ∀S ⊂ [n], λij = λji∀i, j}.

Note that the constraints
∑

i∈S,j /∈S λij ≥ 1,∀S ⊂ [n] guarantee that there is a communication path
between every pair of agents. It is worth noting that the best response of the leader over the polytope Λ
can be solved efficiently in polynomial time despite the fact that Λ contains exponentially many linear
constraints. This can be done using Ellipsoid algorithm where the separation oracle can be implemented
by solving at most n2 network-flow problems. On the other hand, we have

ρ(x,y,λ) =
n∑
i=1

n∑
j=1

λij(yi − xj)2 = yTQy + xTQx− 2yTλy,

where λ is a symmetric matrix, and Q = diag(λ1) is a diagonal matrix with diagonal elements
Qii =

∑
j λij ≥ 1,∀i ∈ [n]. Again using Remark 4 we conclude that ρ(x,y,λ) is a min-symmetric

function, which in view of Theorem 6 implies that the best response dynamics of the leader-followers
converge to a Stackelberg equilibrium. Now let us find an explicit form for the best response dynamics.
Given that at iteration t the followers are at locations x(t), and the current min-cost network designed
by the leader is λt, at the next time instance the followers move to the average point of their neighbors
given by x(t + 1) = arg miny ρ(x(t),y,λt) = (Q−1

t λt)x(t), or rewritten componentwise xi(t + 1) =∑n
j=1

(λt)ij
(λt1)i

xj(t),∀i ∈ [n]. Consequently, the leader looks at the current positions of the followers
x(t+ 1), and assuming that making a communication link between two followers at positions xi(t+ 1)
and xj(t + 1) is proportional to their Euclidean distance (xi(t + 1) − xj(t + 1))2, the leader decides
what links to make (i.e., selects λt+1 ∈ Λ) so that the network remains connected while the network



cost c(x(t+ 1),λt+1) is minimized. In other words, the leader solves the optimization problem c(x(t+
1),λt+1) = minλ∈Λ c(x(t + 1),λ). Clearly as the network remains connected at all the time instances
while the followers take average over it, the convergent Stackelberg equilibrium must be a consensus
point in which all the followers rendezvous at the same point.

As we close this section, we would like to note that in general, one can define different action polytopes
Λ for the leader and different influence functions φi(·) for the followers. This allows us to recover various
state-dependent network dynamics as the best response updates of leader-followers in a Stackelberg
game, which by Theorem 6 are guaranteed to converge to a Stackelberg equilibrium, assuming the min-
symmetric property. For instance, settings Λ := {λ ∈ [0, 1]n×n :

∑
j 6=i λij = 1,∀i ∈ [n], λij = λji∀i, j}

and quadratic influence functions φi(x, y) = (x−y)2 one can recover dynamics of a different variant of
the nearest neighbor model considered in Section IV, and establish their convergence to an equilibrium
point. In conclusion, game theory can provide alternative shortcuts for the analysis of dynamic networks
of multi-agent systems. An interesting fact about this approach is that many of the existing results
developed in the game-theory literature such as [45] do not require stringent homogeneity or symmetric
assumptions among the players. This provides ample room for analysis of heterogeneous multi-agent
network dynamics by bridging them to game-theoretic settings.

VI. CONCLUSIONS AND FURTHER DISCUSSSIONS

In this paper, we have studied Lyapunov stability and convergence of multi-agent network systems
with state-dependent switching dynamics. By incorporating the network structure into our framework
as a new variable, we have shown that how the evolution of multi-agent network dynamics can be
viewed as trajectories of successive optimization problems. Leveraging this framework, we were able
to establish Lyapunov stability and convergence of several well-known models from social science, and
extended our results to scenarios with asymmetric communication structures. In particular, we showed
how these results can be viewed from a game-theoretic perspective, so that convergence of multi-agent
network systems can be interpreted as selfish behavior of players in a well-designed Stackelberg game.

We believe that this work opens many new directions for stability analysis of multi-agent network
systems with rich state-dependent switching dynamics. In the following we have listed a few of such
directions:

1) Often in successive optimization framework one adds smooth proximal functions to the original
objective function (or approximates it with a smooth upper bound) in order to facilitates the minimization
sub-problems [46]. Incorporating this idea into our framework will give us perturbed multi-agent network
dynamics whose update rules are affected by the proximal term (while their convergence to a stationary
point is still guaranteed). For instance, one can add a proximal term to the objective function f(y,λ) of
the homogeneous HK model in terms of Bregman distance of a strongly convex function and recover
noisy versions of HK dynamics.

2) In Section III, for a fixed network λ∗ with associate Laplacian L∗, we only used the quadratic
Lyapunov function Φ(x,λ∗) = xTL∗x into our BCD framework. While this Lyapunov function seems
quite suitable when the network structure is symmetric (undirected), it cannot serve as a Lyapunov
function for general asymmetric (directed) networks. However, for a general fixed directed network
with adjacency matrix λ∗, one can choose an alternative Lyapunov function given by Φ(x,π∗) =
xT (diag(π∗)−π∗(π∗)T )x =

∑
i,j π

∗
i π
∗
j (xi−xj)2, where π∗ is the Perron-left eigenvector of the transi-

tion matrix of a simple random walk over λ∗, i.e., the Peron-left eigenvector of A = (diag(λ∗1))−1λ∗

so that (π∗)TA = (π∗)T . In this case, one can replace the network variable matrix λ∗ by its Perron-left
eigenvector π∗ in the BCD framework. Therefore, as far as minimizing π with respect to its constraint
set matches the left-Perron eigenvector of the actual network dynamics, one can use Proposition 1 with
Φ(x,π∗) = xT (diag(π∗) − π∗(π∗)T )x to show Lyapunov stability of joint state-network dynamics
under more general asymmetric (directed) environment. Therefore, it is interesting to study stability of



state-dependent multi-agent networks under highly asymmetric setting using π variables, rather than
simply the edge variables λ = (λij).

3) In Section V, we used a Stackelberg game where the followers’ cost functions are convex (i.e. the
noncooperative game among followers is a convex game [45]) and the leader’s objective function is to
minimize the social cost. These conditions can be generalized to other settings. For instance, one can
consider a Stackelberg network game where the game among followers is a potential game [47] whose
potential function can serve as the Lyapunov function Φ(x,λ∗) into our BCD framework, given a fixed
leader’s action λ∗.

Finally, in this paper we mainly focused on the stability and convergence analysis of the underlying
dynamics. Therefore, an interesting direction here is to characterize the structure of the equilibrium
points in more detail.
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VII. APPENDIX I

Lemma 1: Consider the restricted HK model and choose δ < 1
n2 . Let tδ be a time instance for which∑∞

τ=tδ

∑n
i=1(xi(τ + 1) − xi(τ))2 < δ2. Then for any t ≥ tδ the communication network λt remains

unchanged.
Proof: By contradiction, let us assume that the lemma does not hold and t ≥ tδ be a time instance

for which the communication network changes, i.e., λt 6= λt+1. We construct an undirected graph B,
so-called balanced graph, as follows:
• Nodes of B are the points {x1(t+1), x2(t+1), . . . , xn(t+1)} which are positioned on the real axis.

For simplicity, we refer to these nodes by their indicies such that i represents the node positioned
at xi(t+ 1). Note that in B both labels and geometric positions of the vertices are important.

• The edges of B are partitioned into two groups: solid and dashed. There is a solid edge between
two nodes i and j if and only if {i, j} ∈ E , |xi(t) − xj(t)| > 1, and |xi(t + 1) − xj(t + 1)| ≤ 1.
Thus a solid edge between nodes i and j in B indicates that agents i and j were not each others’
neighbors at time t (i.e., (λt)ij = 0), while they become neighbor at time t+ 1 (i.e., (λt+1)ij = 1).
There is a dashed edge between i and j if and only if {i, j} ∈ E , |xi(t) − xj(t)| ≤ 1, and
|xi(t+ 1)− xj(t+ 1)| > 1. Thus a dashed edge in B shows that agents i and j were each others’
neighbors at time t, but they separate at time t+ 1.

Next we show that if t ≥ tδ is a time instance for which the communication network changes, then
the following three facts must hold: Fact 1) For every two nodes i and j which are connected by an
edge in B, we have 1− 2δ < |xi(t+ 1)− xj(t+ 1)| < 1 + 2δ. This is an immediate consequence of the
edge definition given above together with the fact that no agent can move by a distance more than δ
from time t to t+ 1. Fact 2) The geometric distance between any two nodes which are connected by a
dashed edge is strictly greater than the distance between any other two nodes which are connected by
a solid edge. This is because the former is strictly greater than 1, while the later is at most 1. Fact 3)
Let sL(i) and dL(i) denote, respectively, the number of solid and dashed edges which are incident to
node i from left hand side. Similarly, let sR(i) and dR(i) be the number of solid/dashed edges which
are incident to node i from right hand side. Then a straightforward calculation as in [35, Equation 2]
shows that for sufficiently small δ ≤ 1

n2 , we must have sL(i)−dL(i) = sR(i)−dR(i),∀i. In other words,
every node in B must be balanced with respect to the ‘effective’ amount of change in its neighbors
from time t to t+ 1. Otherwise moving from time t+ 1 to t+ 2, an unbalanced agent will move by a
distance of at least δ, contradicting the fact that t ≥ tδ.8

To derive a contradiction, consider the time t ≥ tδ for which a switch in the communication network
occurs. This means that the associated balance graph B has at least one edge. Henceforth, and by some
abuse of notation, we denote a nontrivial connected component of this balanced graph by B (which
is a connected graph with at least one edge and no isolated vertex). Since Fact 1 holds, the vertices
of B can be covered by the union of some disjoint intervals {I` = (a`, b`) : ` = 1, . . . , k}, where
a1 < b1 < a2 < b2, . . . < bk. Moreover, each of these intervals has a very small length (at most
b` − a` < 4nδ), and any edge of B has its end points in two consecutive intervals I`, I`+1 (see Figure
2 for an illustration).9

Next let us consider the most left agent in the connected balance graph B and call it i1 (breaking
ties arbitrarily). By Fact 3 every node in B (and in particular i1) is balanced. Since i1 does not have
any edge incident to it from left hand side, it must have at least one solid edge incident to it from
the right hand side. Now starting from node i1, let us consider a maximal alternating walk W which
sequentially traverses over the edges of B from left to right using solid edges, and from right to left

8Intuitively, sL(i)− dL(i) measures the ‘effective’ change due to change of left-neighbors of agent i from time t to t+ 1. This must
be equal to sR(i)− dR(i) which is the effective change in the right-neighbors of i. Otherwise, agent i will move by a large distance at
the next time instance t+ 2.

9Note that this also implies that every two consecutive intervals are apart from each other by a large distance of at least 1− 2δ− 8nδ.



Fig. 2. An illustration of the balanced graph B with solid/dashed edges and covering intervals I1, I2, I3, and I4. Here a maximal
walk W = (e1, e2, e3, e4, e5, e6) with initial node i1 and endpoint i is represented by thick edges. Note that for node i1 we have
sL(i1) = dL(i1) = 0 and sR(i1) = dR(i1) = 1. Therefore, sL(i1)− dL(i1) = sR(i1)− dR(i1), which means that node i1 is balanced.
However for node i we have sL(i) = dL(i) = sR(i) = 0, and dR(i) = 1. Thus sL(i)− dL(i) = 0 6= −1 = sR(i)− dR(i), which means
that node i is not balanced.

using dashed edges (Figure 2). As we argued above, W is nonempty and contains at least one solid
edge. We claim that W must be a path, meaning that no vertex can be visited more than once by
W . Otherwise, consider the first time when W visits a vertex for the second time, which results to an
alternating cycle C. As each vertex of C lies in one of the disjoint intervals I`, and each edge of C
has its endpoints in two consecutive intervals, this implies that C must have the same number of solid
and dashed edges. This in view of Fact 2 shows that the sum of lengths of solid edges in C is strictly
less than the sum of lengths of dashed edges in C. However, we know that for any alternating cycle
the sum of lengths of solid edges (the total movement from left to right) must be equal to the sum of
lengths of dashed edges (the total movement from right to left). This contradiction shows that W must
be a path.

Finally, let us denote the other endpoint of path W by i. Either node i is reached through the path
W using a dashed edge (and hence from right to left), in which case dR(i) ≥ 1 and sR(i) = dL(i) = 0
(otherwise W can be extended and is not maximal). Or node i is reached using a solid edge (and hence
from left to right), in which case sL(i) ≥ 1 and sR(i) = dL(i) = 0. Now an easy calculation shows
that in either case sL(i)− dL(i) 6= sR(i)− dR(i), meaning that node i is not a balanced node. This is
in contradiction with Fact 3, which completes the proof.
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