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Abstract. Given a dissimilarity map δ on finite set X, the set of ultrametrics (equidis-
tant tree metrics) which are l∞-nearest to δ is a tropical polytope. We give an internal
description of this tropical polytope which we use to derive a polynomial-time checkable
test for the condition that all ultrametrics l∞-nearest to δ have the same tree structure.
It was shown by Ardila and Klivans [4] that the set of all ultrametrics on a finite set of
size n is the Bergman fan associated to the matroid underlying the complete graph on n
vertices. Therefore, we derive our results in the more general context of Bergman fans
of matroids. This added generality allows our results to be used on dissimilarity maps
where only a subset of the entries are known.
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1. Introduction

A fundamental problem in phylogenetics is to infer the evolutionary history among a set
of genes or species from data. One approach is to use distance-based methods. The data
required for such an approach is some measure of distance between each pair of species. If
these distances are computed using some property that is expected to change in propor-
tion to time elapsed, then one often assumes that the pairwise distances approximate an
ultrametric. Finding a best-fit ultrametric to an arbitrary dissimilarity map is therefore
an important computational problem. For background, see [21, Chapter 7].

A major source of difficulty in this endeavor stems from the fact that two of the most
basic sets with which one would reason about distance-based phylogenetics, namely the
set of tree metrics and the set of ultrametrics, do not interact with Euclidean geometry in
a clean way, thus making naive application of traditional statistical methods problematic.
Beginning with work of Billera, Holmes, and Vogtman [6], the past two decades have seen
much research into developing and studying geometric theories that interact nicely with
the sets of tree metrics and ultrametrics, with the hope that reinterpreting traditional sta-
tistical theory and methods in these new geometries will lead to something useful. Speyer
and Sturmfels [22] and Ardila and Klivans [4] showed that the sets of tree metrics and
ultrametrics are tropical varieties, thus giving the first indication that tropical geometry
might offer useful tools for phylogenetics.

Since then, researchers have been exploring tropical geometry’s potential as a fundamen-
tal theory on which to develop statistical methods designed specifically for phylogenetic
applications. Tropical geometry is a geometric theory that one naturally obtains when
redefining arithmetic over R ∪ {−∞} so that the sum of two numbers is their maximum
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and the product is their sum (in the usual sense). The natural choice for a metric in
tropical geometry is the l∞-metric. A recent preprint of Lin, Monod, and Yoshida [16]
shows that the set of phylogenetic trees endowed with the tropically projectivized l∞-
metric, which they call palm tree space, has many features of Euclidean space that enable
classical statistical theory to work. In particular, palm tree space supports probability
measures and a reasonable theory of linear algebra. In [17], Lin, Sturmfels, Tang, and
Yoshida compare tropical convexity to the convexity theory of Billera, Holmes, and Vogt-
man [6] with regard to their potential as theoretical frameworks for developing algorithms
to reduce the complexity of a dataset consisting of several ultrametrics on the same taxa.
They show that in the convexity theory of [6], a triangle (i.e. the convex hull of three
points) can have arbitrarily high dimension, whereas triangles are always two-dimensional
in the projective tropical setting [9]. In [23], Yoshida, Zhang, and Zhang develop a theory
of tropical principal component analysis.

A recurring frustration one encounters when tropicalizing a classical object is that
uniqueness guarantees may disappear. In order for tropical geometry to be considered
a reasonable mathematical foundation for phylogenetic analysis, failures of uniqueness
must be understood when they have potential to cause problems. Lin and Yoshida [18]
studied non-uniqueness of the tropical Fermat-Weber point, which is analogous to the
geometric mean from Euclidean geometry. They showed that the set of all tropical Fermat-
Weber points is a (classical) polytope, and gave a necessary condition for uniqueness of
the tropical Fermat-Weber point. In this paper, we provide analogous results for non-
uniqueness of the ultrametric that is nearest to a given dissimilarity map in the l∞-metric.
Colby Long and this author began a study of this, and other related phenomena, in [5].
The main mathematical results of [5] concern the non-uniqueness of the point in a (non-
tropical) linear subspace of Rn that is l∞-nearest to a given x ∈ Rn. In that paper, it is

also shown that there exist dissimilarity maps in R(n
2) whose set of l∞-nearest ultrametrics

contains 1
3
· (2n− 3)!! different tree topologies.

This paper builds on some of these observations. In particular, Proposition 3.3 says
that the set of ultrametrics l∞ nearest to a given dissimilarity map is a tropical polytope,
Theorem 3.6 provides an internal description, and Theorem 3.8 gives a polynomial-time
checkable condition, telling us exactly when all nearest ultrametrics have the same tree
structure. From an phylogenetics perspective, this is useful information since the tree
structure describes the evolutionary relationship among the species being studied.

We derive our results in a more general context. Ardila and Klivans showed that the
set of ultrametrics on n species is the Bergman fan associated to the matroid underlying
the complete graph on n vertices [4]. Therefore we can view the problem of finding
the set of l∞-nearest ultrametrics as a special case of the problem of finding the set of
l∞-nearest points in the Bergman fan of a matroid. This latter set is also a tropical
polytope (Proposition 5.2) and Theorem 5.10 provides an internal description. Feichtner
and Sturmfels describe a refinement of the Bergman fan underlying a matroid [11] which
can be used to generalize the concept of tree topology. In light of this, Theorem 5.10 is
the straightforward generalization of Theorem 3.6.
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The added generality of Bergman fans of matroids has a potential application in phy-
logenetics. Namely, if one wishes to reconstruct a phylogeny from partial distance data
where observed distances correspond to the edges of some graph G, then one can begin
by optimizing to the Bergman fan of G’s matroid which will give a partial ultrametric
(see Proposition 5.13). This reconstruction problem is a special case of the sandwich to
ultrametric problem studied by Farach, Kannan, and Warnow in [10]. The added gen-
erality is also interesting from a pure tropical geometry perspective. In particular, given
the Bergman fan B̃(M) of a matroidM, the question of describing points in B̃(M) that
are tropically nearest to a given x /∈ B̃(M) is in some sense the tropical analog of finding
the point of a (classical) linear space L that is Euclidean-nearest to a given x /∈ L.

Just as with ordinary polytopes, tropical polytopes admit external descriptions as the
intersection of tropical half-spaces, as well as internal descriptions [15]. Theorem 7.1 in [1]
can be used to obtain an external description of the tropical polytopes we are interested
in. However, an internal description is more advantageous for our purposes because it
gives us a way to check whether all ultrametics l∞-nearest to a given dissimilarity map
have the same tree topology (see Theorem 3.8 and Proposition 5.12).

This paper is organized as follows. Section 2 gives the necessary background on tropical
convexity. Section 3 contains Theorem 3.6, which is an internal description of the trop-
ical polytope consisting of the ultrametrics that are l∞-nearest to a given dissimilarity
map. A proof is deferred until Section 5. Section 3 also states and proves Theorem 3.8,
which provides a polynomial-time method for checking that all ultrametrics l∞-nearest to
a given dissimilarity map have the same tree topology. Section 4 uses results of Feichtner
and Sturmfels [11] to generalize the tree structure underlying an ultrametric to a similar
combinatorial structure underlying an element of the Bergman fan of an arbitrary ma-
troid. This combinatorial structure is used in Section 5 to generalize Theorem 3.6 to get
Theorem 5.10. Section 6 applies Theorem 3.6 to a biological dataset.

Acknowledgments

The author is grateful to Colby Long and Seth Sullivant for many helpful conversations
and for feedback on early drafts, and to several anonymous referees who provided thought-
ful feedback that greatly improved this manuscript. This work was partially supported
by the US National Science Foundation (DMS 0954865 and 1802902) and the David and
Lucille Packard Foundation.

2. Preliminaries on Tropical Convexity

This section reviews the necessary concepts from tropical convexity. There are at least
two different sets of basic definitions related to tropical convexity. One is used in [9], and
the other in [2]. We adhere to the conventions of the latter, as their definition of tropical
polytope is more natural in our context.

The tropical semiring, also known as the max-plus algebra, is the set R∪{−∞} together
with the operations a ⊕ b := max{a, b} and a � b := a + b. We denote this semiring by
Rmax. The additive identity of Rmax is −∞ and the multiplicative identity is 0. The set
Rn

max is an Rmax-semimodule where for x, y ∈ Rn
max and α ∈ Rmax, (x⊕ y)i := xi ⊕ yi and
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(α� x)i := α+ xi. If A ∈ Rm×n
max is a matrix and x ∈ Rn

max, then the product A� x is the
usual matrix product, but with multiplication and addition interpreted tropically. That
is, if A has columns a1, . . . , an, then

A� x :=
n⊕
j=1

xj � aj.

Several notions from ordinary convexity theory have tropical analogs. We say that
P ⊆ Rmax is a tropical cone if whenever x, y ∈ P and λ, µ ∈ Rmax, λ � x ⊕ µ � y ∈ P .
If this only holds with the restriction that λ ⊕ µ = 0, then we say that P is tropically
convex. A tropical polyhedron is a set of the form

{x ∈ Rn
max : A� x⊕ b ≥ C � x⊕ d}

where A,C ∈ Rm×n
max and b, d ∈ Rm

max. We denote this set P (A, b, C, d). It follows from the
discussion below that P (A, b, C, d) is tropically convex. When b = d = (−∞, . . . ,−∞)T

then P (A, b, C, d) is a tropical cone and we call it a tropical polyhedral cone. Bounded
tropical polyhedra are called tropical polytopes. Given V ⊆ Rmax, tconv(V ) is the tropical
convex hull of V . That is,

tconv(V ) := {λ� x+ µ� y : x, y ∈ V, λ⊕ µ = 0}.

We define the tropical conic hull tcone(V ) similarly. Gaubert and Katz showed in [14]
that any tropical polytope (cone) P can be expressed as the tropical convex (conic)
hull of a finite set V . Conversely, Gaubert showed that if V ⊆ Rn is a finite set and
P = tcone(V ), then P is a tropical polyhedral cone [13, Corollary 1.2.5] The analogous
result for P = tconv(V ) follows from results in [14]. There exists a minimal such V (see
[7, Theorem 18] or [14, Theorem 3.1]) called the tropical vertices (extreme rays) of P . See
also [15, Theorem 2].

3. Results for phylogenetics: l-infinity nearest ultrametrics

This section presents the results of Section 5 in the context of our main motivation. In
particular, Theorem 3.6 gives a combinatorial description of a finite set of ultrametrics
whose tropical convex hull is the set of ultrametrics nearest in the l∞-norm to a given
dissimilarity map. We also use Theorem 3.6 to derive Theorem 3.8, which gives a
polynomial-time checkable condition guaranteeing that all ultrametrics l∞ nearest to a
given dissimilarity map have the same tree topology. We begin by reviewing the necessary
background from [21] about ultrametrics, which are a special type of tree metric.

Let X = {x1, . . . , xn} be a finite set. A dissimilarity map on X is a function δ :
X × X → R such that δ(x, x) = 0 and δ(x, y) = δ(y, x) for all x, y ∈ X. Note that
we allow dissimilarity maps to take negative values. We can express a dissimilarity map
d as a matrix D where Dij = δ(xi, xj). Note that D is symmetric with zeros along the
diagonal. A rooted X-tree is a tree with leaf set X where one interior (i.e. non-leaf) vertex
has been designated the “root.” We use the notation root(T ) for the root of a rooted
X-tree T . A descendant of a vertex v in a rooted tree T is a node u 6= v such that the
unique path from u to root(T ) contains v. Note that all non-root vertices are descendants
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A B C D

A 0 5 7 9
B 5 0 7 9
C 7 7 0 9
D 9 9 9 0


A B C D

5
7

9

Figure 1. An ultrametric on {A,B,C,D} and its representation on a
rooted tree.

of root(T ). The set of descendants of a vertex v in a rooted tree T is denoted DesT (v).
We let T ◦ denote the set of interior vertices of T .

Let T be a rooted X-tree and let α : T ◦ → R be a weighting of the internal nodes of T .
We say that α is compatible with T if α(u) ≤ α(v) whenever u ∈ DesT (v). The pair (T, α)
gives rise to a dissimilarity map δT,α on X defined by δT,α(xi, xj) := α(v) where v ∈ T ◦
is the vertex nearest to root(T ) in the unique path from xi to xj. Given a dissimilarity
map δ on X, if we can express δ as δT,α for some X-tree T and compatible internal node
weighting α, then δ is said to be an ultrametric. If we require that α(u) < α(v) whenever
u ∈ DesT (v), then the rooted X-tree T is unique and called the (tree) topology of δ. Some
readers from other areas of mathematics take issue with this use of the word “topology,”
but it is standard in the phylogenetics literature [21]. Figure 1 shows an ultrametric along
with an interior-vertex-weighted tree displaying it.

Some readers may be familiar with a seemingly different definition of ultrametric which
says that δ : X × X → R is an ultrametric if and only if for every triple x, y, z ∈ X of
distinct elements, the maximum of δ(x, y), δ(x, z), δ(y, z) is attained twice. This is equiv-
alent to the definition given above. Sometimes the requirement that x, y, z be distinct
is relaxed. This gives the more restricted class of ultrametrics, consisting only of ultra-
metrics representable as δT,α for nonnegative α compatible with T . See [21, Chapter 7]
for details. We use the more inclusive definition of an ultrametric because it simplifies
connections with tropical geometry.

A polytomy of a rooted tree is either a non-root internal node of degree at least four,
or the root node if it has degree at least three. We say that a rooted tree is binary if it
does not have any polytomy. A resolution of a tree T is a binary tree T ′ such that T can
be obtained from T ′ via a (possibly empty) series of edge contractions [21]. Note that
if the topology underlying δ is not binary, then there will be multiple resolutions of the
topology of δ. Figure 2 illustrates these concepts by representing a single ultrametric in
three ways - on its topology and on two different resolutions.

Given two dissimilarity maps δ1, δ2 on X with associated matrices D1, D2, we define
the l∞ distance between δ1 and δ2, denoted ‖δ1 − δ2‖∞, to be the greatest absolute value
among entries in D1−D2. An important question that comes up in phylogenetics is then:
given a dissimilarity map δ, which ultrametrics are nearest to δ in the l∞ metric? Chepoi
and Fichet [8] give an algorithm for producing a single ultrametric l∞-nearest to a given
dissimilarity map which we now describe. We denote the all-ones vector or dissimilarity
map by 1.
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A B C D E

1

2

A B C D E

1 2
1

2

A BC D E

1
1

2
2

Figure 2. An ultrametric whose topology has two polytomies. Above, we
see it represented on its topology and on two different resolutions.


A B C D

A 0 2 4 6
B 2 0 8 10
C 4 8 0 12
D 6 10 12 0


A B C D

5
7

9

A C B D

4
5

9

Figure 3. A dissimilarity map and two l∞-nearest ultrametrics with dif-
ferent topologies.

Theorem 3.1 ([8, Corollary 1. See also discussion on p. 607]). Let δ be a dissimilarity
map on a finite set X. Then the following algorithm produces an ultrametric on X that
is nearest to δ in the l∞ norm.

(1) Draw the complete graph on vertex set X.
(2) Label the edge between x and y by δ(x, y).
(3) Define δu : X ×X → R so that for each x, y ∈ X ×X,

δu(x, y) := min
P

(
max

edges (i,j) of P
δ(i, j)

)
where the minimum is taken over all paths P from x to y.

(4) Define d := ‖δu − δ‖∞. Then δu + d
2
1 is an ultrametric that is l∞-nearest to δ.

Although the algorithm given by Theorem 3.1 produces only one ultrametric, there can
be multiple ultrametrics that are l∞-nearest to a given dissimilarity map. Figure 3 shows
a dissimilarity map alongside two l∞-nearest ultrametrics with differing topologies.

Definition 3.2. We call the ultrametric given by Theorem 3.1 the maximal closest ultra-
metric to δ and denote it symbolically as δm.

That δm issue coordinatewise-maximal among ultrametrics nearest to δ is shown in [8],
and also follows from Lemma 5.4(3).

Proposition 3.3. Let δ be a dissimilarity map on a finite set X. The set of ultrametrics
that are nearest to δ in the l∞-norm is a tropical polytope.

We will prove Proposition 3.3 in a more general setting later (see Proposition 5.2). Given
a dissimilarity map δ : X × X → R, Theorem 3.6 describes a finite set of ultrametrics
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whose tropical convex hull is the set of ultrametrics l∞-nearest to δ. The statement of
Theorem 3.6 requires the following definition.

Definition 3.4. Let δ : X ×X → R be a dissimilarity map and let u be an ultrametric
that is closest to δ in the l∞-norm. Let T be a resolution of the topology of u and let
α : T ◦ → R be a compatible weighting of T ’s internal nodes such that δT,α = u. An
internal node v of T is said to be mobile if there exists an ultrametric û 6= u, expressible
as û = δT,α̂ for α̂ : T ◦ → R such that

(1) û is also nearest to δ in the l∞-norm,
(2) α̂(x) = α(x) for all internal nodes x 6= v, and
(3) α̂(v) < α(v).

In this case, we say that û is obtained from u by sliding v down. If moreover v is no
longer mobile in δT,α̂, i.e. if α̂(v) = max{α(y) : y ∈ DesT (v)}, or α̂(v) is the minimum
value such that δT,α̂ is nearest to δ in the l∞-norm, then we say that û is obtained from
from u by sliding v all the way down.

Example 3.5. Let δ be the dissimilarity map shown on the left in Figure 3 and consider
the l∞-nearest ultrametrics u1, u2, and u3 shown in Figure 4. Note that u2 is obtained
from u1 by sliding the node with weight 7 all the way down, and u3 is obtained from u1
by sliding the node with weight 5 all the way down.

Theorem 3.6. Let δ : X ×X → R be a dissimilarity map. Let S0 = {δm}, and for each
i ≥ 1 define Si to be the set of ultrametrics obtained from some u ∈ Si−1 by sliding a
mobile internal node of a resolution of the topology of u all the way down. Then

(1)
⋃
i Si is a finite set, and

(2) the tropical convex hull of
⋃
i Si is the set of ultrametrics l∞-nearest to δ, and

(3) every vertex of this tropical polytope has at most one mobile internal node.

Theorem 3.6 is a special case of Theorem 5.10, which will be proven later. We now
illustrate Theorem 3.6 on an example.

Example 3.7. Let δ be the dissimilarity map given in Figure 3 on the left. We will make
reference to ultrametrics u1, . . . , u5 which are shown in Figure 4. Using Theorem 3.1, we
can see that δm = u1. Let v1 be the internal node of u1’s topology with weight 5. Then
v1 is mobile and sliding it all the way down yields u3. Let v2 be the internal node of u1’s
topology with weight 7. Then v2 is mobile and sliding it all the way down yields u2. The
topology of u4 is a resolution of the topology of u2. Letting v3 be the internal node of
u4’s topology with weight 1, we can see that u4 is obtained from u2 by sliding v3 all the
way down. The topology of u5 is also a resolution of the topology of u2. Letting v4 be
the internal node of u5’s topology with weight −1, we can see that u5 is obtained from u2
by sliding v4 all the way down. Beyond v3 and v4, no internal nodes of any resolution of
the topology of u2 are mobile. The only mobile node of u3 is the node labeled 7; denote
this v5. Then sliding v5 all the way down gives us u5 once again.

Using the notation of Theorem 3.6, we have S0 = {u1}, S1 = {u2, u3} and S2 = {u4, u5}.
Note that no internal nodes of u4 and u5 are mobile. Hence Si is empty for all i ≥ 3.
Since u1 and u2 each have two mobile internal nodes, Theorem 3.6 implies that the set
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of ultrametrics l∞-nearest to δ is the tropical convex hull of {u3, u4, u5}. This tropical

polytope is contained in the three-dimensional affine subspace {δ̃ ∈ R([4]
2 ) : δ̃(1, 4) =

δ̃(2, 4) = δ̃(3, 4) = 9} ⊂ R([4]
2 ). Therefore, we can visualize it as in Figure 5.

u1 =

A B C D

5
7

9

u2 =

A B C D

5
9

u3 =

A B C D

−1
7

9

u4 =

A C B D

1
5

9

u5 =

A B C D

−1
5

9

Figure 4. By Theorem 3.6, the tropical convex hull of the ultrametrics
above is the set of ultrametrics l∞-nearest to the dissimilarity map given
on the left side of Figure 3.

Theorem 3.6 implies that the elements of
⋃
i Si that have at most one mobile internal

vertex are a superset of the vertex set of the tropical polytope consisting of the ultrametrics
l∞-nearest to a given dissimilarity map. A recent preprint of Luyan Yu shows that this
containment can be strict for dissimilarity maps with at least four elements [24]. A
complete characterization of the vertices of this tropical polytope is still open.

We now describe a polynomial-time checkable condition that is equivalent to the condi-
tion that all ultrametrics l∞-nearest to a given dissimilarity map have the same topology.

Figure 5. The tropical polytope consisting of ultrametrics that are l∞-
nearest to δ. The large points are the tropical vertices.
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Theorem 3.8. All ultrametrics l∞-nearest to a given dissimilarity map δ on n elements
have the same topology if and only if the ultrametrics in S0 ∪ S1 from Theorem 3.6 all
have the same topology. This condition can be checked in O(n2) time.

Proof. The second claim follows from the fact that Chepoi and Fichet’s algorithm in
Theorem 3.1 runs in O(n2) time (c.f. [8]), and that δm has at most n−1 internal vertices.

If we were to replace S0 ∪S1 with
⋃
i Si in the statement of the theorem, then it would

immediately follow from Proposition 5.12. So it suffices to show that if all trees in S0∪S1

have the same topology, then all trees in
⋃
i Si do as well.

Assume that all ultrametrics in S0 ∪ S1 have the same topology T . For the sake of
contradiction, let i ≥ 2 be minimal such that there exists u ∈ Si such that the topology
of u is not T . This means that there exists some u′ ∈ Si−1 with topology T such that an
internal node v of T is mobile in u′ and sliding v all the way down in u′ yields u. Let
αm, α, α

′ : T ◦ → R be internal edge weightings of T expressing δm, u, and u′ respectively
(i.e., δm = δT,αm , u = δT,α, and u′ = δT,α′). Since u is obtained from u′ by sliding v all the
way down, α(y) = α′(y) unless y = v, in which case α(v) = max{α′(y) : y ∈ DesT (v)}.
Since max{αm(y) : y ∈ DesT (v)} ≥ max{α′(y) : y ∈ DesT (v)}, δm and u′ both have
topology T , and all internal nodes of T that are mobile for u′ are also mobile for δm,
we can slide v all the way down in δm to get an element of S1 with the topology of u,
contradicting that all elements of S1 have topology T . �

4. Bergman fans and nested sets

The goal of this section is to generalize the notion of tree topology for ultrametrics to
elements of Bergman fans of arbitrary matroids. Nested sets of matroids, as described
in [11], will play the role of rooted trees in this more general context. Familiarity with
matroid connectivity is assumed; for this we refer the reader to [19, Chapter 4]. We begin
by defining the Bergman fan of a matroid. Equivalent cryptomorphic definitions exist.
The one we provide is due to Ardila (see [3, Proposition 2]).

Definition 4.1. LetM be a matroid on ground set E. A vector w ∈ RE is said to be an
M-ultrametric if for each circuit C ofM, the cardinality of {x ∈ C : wx = maxy∈C wy} is

at least two. The set ofM-ultrametrics, denoted B̃(M), is called the Bergman fan ofM.

As the name suggests, M-ultrametrics generalize the ultrametrics discussed in Sec-
tion 3. In particular, letting Kn denote the complete graph on n vertices and M(G)
denote the matroid underlying a graph G, the following theorem of Ardila and Klivans
tells us that ultrametrics are M(Kn)-ultrametrics.

Theorem 4.2 ([4], Theorem 3). A dissimilarity map on the set {1, . . . , n} is an ultra-
metric if and only if it is an M(Kn)-ultrametric.

We would like to generalize Theorem 3.6, i.e. describe a generating set of the tropical
polytope consisting of the M-ultrametrics that are l∞-nearest to a given x ∈ RE. To
do this, we need to generalize the notion of tree topology for arbitrary M-ultrametrics.
Definition 4.3 below provides the desired generalization. It is essentially the special case
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of Definition 3.2 in [11] where the required lattice is the lattice of flats of a connected
matroid M and the required building set is the set of connected flats of M.

Definition 4.3. Given a connected matroid M on ground set E, a nested set of M is a
set S of connected nonempty flats ofM such that E ∈ S and whenever F1, . . . , Fk ∈ S are
pairwise incomparable with respect to the containment order, the closure of F1 ∪ · · · ∪Fk
is disconnected. If M is disconnected with connected components M1, . . . ,Mk, then a
nested set of M is the union of nested sets S1, . . . ,Sk of M1, . . . ,Mk.

Example 4.4. Let M be the uniform matroid of rank three on ground set {a, b, c, d}.
The nested sets of M are the sets of any of the following forms

{{a, b, c, d}} {{x}, {a, b, c, d}} {{x}, {y}, {a, b, c, d}}
where x, y ∈ {a, b, c, d}. If N is the uniform matroid of rank two on ground set {e, f, g},
then the nested sets of the direct sum M⊕N are sets of the form

S ∪ {{e, f, g}} S ∪ {{x}, {e, f, g}}
where S is a nested set of M and x ∈ {e, f, g}.

We remind the reader that 1 denotes the all-ones vector.

Definition 4.5. Let M be a connected matroid on ground set E and let S be a nested
set of M. For each F ∈ S, let vF ∈ RE denote −1 times the characteristic vector of F .
Define KS to be the cone spanned by the vF and ±1. The nested set fan of M, denoted
Ñ(M) is the polyhedral fan consisting of all the polyhedral cones KS as S ranges over
all nested sets of M. When M is disconnected, we define its nested set fan to be the
cartesian product of the nested set fans of its connected components.

Note that Ñ(M) is indeed a polyhedral fan since KS is simplicial, and KS ∩ KS′ =
KS∩S′ . Also note that the lineality space of Ñ(M) is spanned by the characteristic vectors
of the connected components of M.

Definition 4.3 is slightly more restrictive than Definition 3.2 of [11]. Namely, a nested
set in the sense of [11] does not require that each connected component of a matroid be
present, nor that the entire ground set of a disconnected matroid not be present. For
example, using M and N as in Example 4.4, Definition 3.2 of [11] would allow us to
remove {a, b, c, d} from any nested set of M, or add {a, b, c, d, e, f, g} to any nested set
of M⊕N . However, this is not an issue because these differences in definitions do not
affect the nested set fan. Under the less restrictive definition, if E ∈ S for some nested
set S, then KS = KS\{E}. We use this more restrictive definition to avoid this ambiguity

when indexing cones of Ñ(M).

Proposition 4.6. The nested set fan Ñ(M) is a refinement of the Bergman fan B̃(M).

Proof. When M is connected, this follows from Theorem 4.1 in [11]. The rest of the
proposition follows by noting that the Bergman fan of a disconnected matroid is the
cartesian product of the Bergman fans of its connected components. �

In light of Proposition 4.6, we can make the following definition.
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Definition 4.7. Let w be anM-ultrametric. Let T (w) denote the unique nested set of
of M such that w lies in the relative interior of KT (w). We call T (w) the topology of w.

Definition 4.7 might be unsettling to some readers since it appears to have nothing to
do with topology in the usual sense. We use it because, as Proposition 4.8 below shows,
it generalizes the notion of tree topology of an ultrametric in the phylogenetics sense.

Proposition 4.8 ([11, Remark 5.4]). Let w, u be M(Kn)-ultrametrics. Then the tree
topologies of w, u are equal if and only if T (w) = T (u).

The following proposition tells us that topology ofM-ultrametrics is well-behaved with
respect to tropical convexity.

Proposition 4.9. The set ofM-ultrametrics that have a particular topology S is tropically
convex.

Proof. The lineality space of Ñ(M) contains 1 so the topology of an M-ultrametric is
preserved under tropical scalar multiplication. We now show that topology is preserved
under tropical sums. To this end, let u,w be M-ultrametrics that lie in the relative in-
terior of the same cone KS . Modulo the lineality space of Ñ(M), u =

∑
F∈S λ

u
FvF and

w =
∑

F∈S λ
w
FvF where the sums are taken over the flats in S that are not connected com-

ponents ofM, and λuF , λ
w
F are all strictly positive. Then (u⊕w) =

∑
F (max{λuF , λwF})vF .

So (u⊕ w) also lies in the relative interior of KS and so T (u⊕ w) = S. �

Lemma 4.10 below implies that the Hasse diagram of the containment partial ordering
on a nested set of a matroid M is a forest with a tree for each connected component of
M. Proposition 4.12 implies that each M-ultrametric can be displayed on this forest in
the same way that an ultrametric can be displayed on its tree topology.

Lemma 4.10. Let S be a nested set of a matroidM. Then for any pair F,G ∈ S, F ⊆ G
or G ⊆ F or G ∩ F = ∅.

Proof. Assume F and G are connected flats of M and that F ∩ G 6= ∅. We will show
that the closure K of F ∪ G is connected. It will then follow from the definition of a
nested set that either F ⊆ G or G ⊆ F . Let ∼ be the relation on K where a ∼ b if
and only if there exists a circuit C ⊆ K containing both a and b. It suffices to show
that there is only one equivalence class of K under ∼ [19, Chapter 4.1]. Both F and
G are connected, so each must lie entirely within one equivalence class. Moreover, their
intersection is nontrivial so F ∪G lies in a single equivalence class. Since K is the closure
of F ∪G, each e ∈ K \ (F ∪G) must also lie in this equivalence class. �

Note that Lemma 4.10 implies that if S is a nested set of a matroid M, then for each
e in the ground set of M, there is a unique minimal flat in S that contains e.

Definition 4.11. Let M be a matroid on ground set E and let S be a nested set of M.
A function α : S → R is said to be compatible with S if F ⊆ G implies α(F ) ≤ α(G) for
all F,G ∈ S. For α compatible with S, define wS,α ∈ RE by wS,αe = α(F ) where F is the
minimal flat in S that contains e. If w = wS,α, then we call the pair (S, α) a nested set
representation of w on S.
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a

b

c

d

e

f

g

1

3

2

3

2
3

2

3

3

1

3 {ab, ac, ad, bd, cd}

2 {ab, ad, bd}

1 {ab}

3 {de, df, ef, eg, fg}

2 {df} 1 {fg}

Figure 6. An M(G)-ultrametric w, displayed as an edge-weighting of G
and using the α : T (w)→ R as described in Proposition 4.12.

Proposition 4.12. LetM and S be as in Definition 4.11 and let α : S → R be compatible
with S. Then wS,α is an M-ultrametric. Every M-ultrametric w has a unique nested set
representation w = wT (w),α on its topology.

Proof. It is sufficient to prove the proposition in the case where M is connected, so
assume M is connected. We first show that wS,α is indeed an M-ultrametric. Define
λE := −α(E) and for each F ∈ S \E, define λF := −α(F )+α(G) where G is the minimal
element of S strictly containing F (Lemma 4.10 implies that a unique such G exists).
For each F ∈ S, let vF be as in Definition 4.5. Then wS,α =

∑
F∈S λFvF . Since α is

compatible with S, F 6= E implies that λF is nonnegative. This shows that wS,α is in the
nested set fan. Proposition 4.6 then implies that wS,α is a M-ultrametric.

Now let w be an arbitrary M-ultrametric. By Proposition 4.6 and Definition 4.7,
w =

∑
F∈T (w) λFvF for some choice of coefficients λF satisfying λF > 0 when F 6= E. Set

α(E) := −λE, and for each F ∈ T (w)\{E} inductively set α(F ) := −λF +α(G) where G
is the minimal element of T (w) containing F . Note that α(F ) < α(F ′) whenever F ( F ′

and that w = wT (w),α. Uniqueness of α follows from the fact that this map from the λF ’s
to the α(F )’s is invertible and that {vF : F ∈ T (w)} is a linearly independent set. �

Proposition 4.12 gives us a way to display an M-ultrametric that generalizes the way
we can display an ultrametric on its tree topology. Namely, if w is anM-ultrametric and
α : T (w)→ R is such that w = wT (w),α, we can specify w by drawing the Hasse diagram
for T (w) (which is a forest by Lemma 4.10) and labeling each F ∈ T (w) with α(F ). We
now show this in an example.

Example 4.13. The left side of Figure 6 displays a M(G)-ultrametric w as an edge
weighting of the graph G. On its right is T (w) where each flat F ∈ T (w) is labeled by
α(F ) where α : T (w) → R satisfies w = wT (w),α. Since the graph G is not biconnected,
the matroid M(G) is disconnected and so T (w) is disconnected.

We now generalize the concepts of polytomy and resolution from rooted trees repre-
senting ultrametrics to nested sets representing M-ultrametrics.

Definition 4.14. Let M be a matroid on ground set E and let S be a nested set of M.
A polytomy of S is an element F ∈ S such that rank(F/

⋃
GG) > 1 where the union is

taken over all G ∈ S such that G ( F . A resolution of S is another nested set S ′ without
polytomies such that S ⊆ S ′.
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If T (w) has a polytomy, then the nested set representation of w is not unique. In
particular, w can be represented on any nested set S that is a resolution of T (w).

Example 4.15. On the left side of Figure 7, we see a nested set S1 of the matroidM(K4)
underlying the complete graph on vertex set {a, b, c, d}. Since M(K4)/{ab} is a matroid
of rank 2, the set {ab, ac, ad, bc, bd, cd} is a polytomy of S1. To its right are the two
possible resolutions S2 and S3. Each Si is shown with a compatible αi : Si → R, thus
giving us the M(K4)-ultrametrics wSi,αi . Note that wS1,α1 = wS2,α2 = wS3,α3 and that
the topology of this M(K4)-ultrametric is S1.

2 {ab, ac, ad, bc, bd, cd}

1 {ab}

S1

2 {ab, ac, ad, bc, bd, cd}

2 {cd}1 {ab}

S2

2 {ab, ac, ad, bc, bd, cd}

2 {ab, ac, bc}

1 {ab}

S3

Figure 7. A nested set S1 of the complete graph on vertex set {a, b, c, d}
with a polytomy and its two resolutions S2 and S3. The weightings on each
nested set all give rise to the same M(K4)-ultrametric.

5. L-infinity optimization to Bergman fans of matroids

The first important result of this section is Proposition 5.2, which says that the subset
of a Bergman fan B̃(M) ⊆ RE consisting of all points l∞-nearest to a given x ∈ RE is
a tropical polytope. The main result of this section is Theorem 5.10, which describes
a generating set of this tropical polytope. In light of Proposition 5.13, Theorem 5.10
is applicable for ultrametric reconstruction in cases where the data consists only of a
subset of all pairwise distances. We begin by recalling a result of Ardila, establishing a
connection between ultrametric reconstruction and tropical convexity.

Proposition 5.1 ([3], Proposition 4.1). The Bergman fan B̃(M) is a tropical polyhedral
cone.

We introduce some notation. Given points x, y ∈ RE and a set S ⊆ RE, we denote the
l∞-distance between x and y by d(x, y) and infy∈S d(x, y) by d(x, S). Given some x ∈ RE,

we define the subset of B̃(M) consisting of the M-ultrametrics that are l∞-nearest to x
by C(x, B̃(M)). That is, C(x, B̃(M)) = {w ∈ B̃(M) : d(x,w) = d(x, B̃(M))}. The next
proposition says that this set is a tropical polytope.

Proposition 5.2. If M is a matroid on ground set E and x ∈ RE, then the subset of the
Bergman fan of M consisting of elements l∞-nearest to x is a tropical polytope.

Proof. Let C denote the cube of side-length d(x, B̃(M)) centered at x. Therefore we
can express C(x, B̃(M)) = B̃(M) ∩ C. Proposition 5.1 tells us that B̃(M) is a tropical
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polyhedron and C is clearly a tropical polytope. Their intersection is again a tropical
polyhedron. Since it is bounded it is by definition a tropical polytope. �

Much of the remainder of this section is devoted to describing the set of tropical vertices
of C(x, B̃(M)). Now we recall the concept of a subdominantM-ultrametric, the existence
of which was proven by Ardila in [3].

Definition 5.3 ([3]). Let M be a matroid on ground set E and let x ∈ RE. Let xM

denote the unique coordinate-wise maximum M-ultrametric which is coordinate-wise at
most x. We call xM the subdominant M-ultrametric of x.

Given some x ∈ RE, Ardila shows how the first three steps of the algorithm from
Theorem 3.1 can be extended to compute the subdominant M-ultrametric of x. Then
the subdominant ultrametric can be shifted to obtain an l∞-nearest ultrametric that is
coordinate-wise maximal among all l∞-nearest ultrametrics.

Lemma 5.4. Let M be a matroid on ground set E, x ∈ RE, and δ = 1
2
d(x, xM). Then

(1) The l∞-distance from x to B̃(M) is δ,
(2) xM + δ · 1 is an M-ultrametric, l∞-nearest to x,
(3) xM + δ · 1 is maximal among M-ultrametrics l∞-nearest to x.

Proof. The existence of xM + δ · 1 shows that d(x, B̃(M)) ≤ δ. Suppose there exists
w ∈ B̃(M) such that d(x,w) < δ. Then w − d(x,w) · 1 is coordinate-wise at most
x. There exists e ∈ E such that xe − xMe = 2δ and so xMe < we − d(x,w). Thus,
w − d(x,w) · 1 is an ultrametric coordinate-wise at most x but not coordinate-wise at
most xM, contradicting that xM is the subdominantM-ultrametric. So (1) is proven and
(2) immediately follows.

If (3) were false and there existed some M-ultrametric y ∈ C(x, B̃(M)) such that
y ≥ xM + δ · 1 with inequality somewhere, then y− δ · 1 would not be coordinate-wise at
most xM. However, it would be coordinate-wise at most x, thus contradicting that xM is
the subdominant M-ultrametric. �

Definition 5.5. Given x ∈ RE, we denote by xm the l∞-nearest ultrametric xM +
d(x, B̃(M)) · 1 and call it the maximal closest M-ultrametric to x.

Example 5.6. Let G be the graph displayed in Figure 8 and denote its edge set by E.
Let x ∈ RE be as on the left of Figure 8. Then the subdominant M(G)-ultrametric xM

and its translation giving the l∞-nearest M(G)-ultrametric xm are shown to the right.

Definition 5.7 below introduces a way to decrease certain coordinates of anM-ultrametric
w that is l∞-nearest to a given x ∈ RE to produce another M-ultrametric l∞-nearest to
x. The coordinates of w that can be decreased are determined by what we will call mobile
flats. We call the process of decreasing these coordinates sliding mobile flats (all the way)
down. Theorem 5.10 uses these concepts to describe a generating set of C(x, B̃(M)).

Definition 5.7. Let M be a matroid on ground set E. Let x ∈ RE and let w ∈ B̃(M)
be l∞-nearest to x. Let S be a resolution of T (w) and α : S → R be compatible with S
satisfying w = wS,α. We say that F ∈ S is mobile if there exists anM-ultrametric ŵ 6= w
expressible as ŵ = wS,α̂ with α̂ compatible with S such that
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x : a

b

d

c

2

4

5

106

xM : a

b

d

c

2

4

4

66

xm : a

b

d

c

4

6

6

88

Figure 8. An element x ∈ RE alongside its subdominant M(G)-
ultrametric xM and the l∞-nearest M-ultrametric xm.

(1) ŵ is also nearest to x in the l∞-norm
(2) α̂(G) = α(G) for all G 6= F , and
(3) α̂(F ) < α(F ).

In this case, we say that ŵ is obtained from w by sliding F down. If moreover F is no
longer mobile in wS,α̂, i.e. if α̂(F ) = max{α(G) : G ∈ S and G ( F} or α̂(F ) is the
minimum value such that wS,α̂ is l∞-nearest to x, then we say that ŵ is obtained from w
by sliding F all the way down.

Remark 5.8. Given some x ∈ RE and some wS,α that is l∞-nearest to x, one can
determine that a given F ∈ S is mobile by decreasing α(F ) by some small ε > 0 and
seeing that the resulting M-ultrametric is still l∞-nearest to x.

Remark 5.9. If S is a resolution of T (w) and F ∈ S\T (w) is mobile, then F is contained
in a polytomy of T (w) and all elements of S covered by F are also in T (w).

Theorem 5.10. LetM be a matroid on ground set E and let x ∈ RE. Define S0 := {xm}
and for each i ≥ 1, define Si to be the set ofM-ultrametrics obtained from some w ∈ Si−1
by sliding a mobile flat in a resolution of T (w) all the way down. Then

(1)
⋃
i Si is a finite set,

(2) the tropical convex hull of
⋃
i Si is C(x, B̃(M)), and

(3) each tropical vertex v of C(x, B̃(M)) has at most one mobile flat across all reso-
lutions of T (v).

Proof. We first prove that
⋃
i Si is a finite set. Let w ∈ Si for some i ≥ 0. Then each

coordinate we is either xmf or xmf − d(x, B̃(M)) for some f ∈ E, not necessarily equal to
e. So as w ranges over

⋃
i Si, there are only finitely many values that each we can take

and so
⋃
i Si is a finite set.

We now prove that each tropical vertex has at most one mobile flat. Let v ∈ C(x, B̃(M)).
Let α be such that v = wT (v),α (recall Definition 4.11). If S1 and S2 are resolutions of
T (v) and Fi ∈ Si is mobile, then there exist αi : Si → R compatible with Si such that
wSi,αi ∈ C(x, B̃(M)), and wSi,αi

e = ve − ε for a fixed small ε > 0 whenever e ∈ Fi \
⋃
F F

where the union is taken over all F ∈ Si such that F ( Fi, and wSi,αi
e = ve for all

other e ∈ E. We claim that wS1,α1
e 6= ve implies wS2,α2

e = ve. When F1 and F2 are
disjoint, the claim is obvious. When F1 and F2 are not disjoint, they must be subsets
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of the same polytomy F ∈ T (v). Let U be the union of all the flats covered by F in
T (v). Then U ⊆ F1 ∩ F2. Moreover, U = F1 ∩ F2 because if e ∈ F1 ∩ F2 \ U , then
rank(F1/U) > rank((F1 ∩F2)/U) ≥ rank((U ∪ {e})/U) = 1). In light of Remark 5.9, this
is a contradiction because then F1 would be a polytomy in S1. The claim then follows
because wSi,αi

e 6= ve if and only if e ∈ Fi \ U . Now we have v = wS1,α1 ⊕ wS2,α2 and so v
is not a tropical vertex of C(x, B̃(M)).

Now we prove that the tropical convex hull of
⋃
i Si is C(x, B̃(M)) by showing that

each vertex of C(x, B̃(M)) is a member of some Si. So let v be a tropical vertex of
C(x, B̃(M)). We construct a sequence xm = w0 ≥ w1 ≥ · · · ≥ v such that wi ∈ Si and
wi 6= wi+1. Since

⋃
i Si is finite, this sequence must eventually terminate and so the final

wi is equal to v. Assuming wi has been constructed and satisfies wi ≥ v and wi 6= v, we
show how to construct wi+1 satisfying wi ≥ wi+1 ≥ v and wi+1 6= wi.

First assume T (wi) ⊆ T (v). Let S be a resolution of T (v). Then S is also a resolution
of T (wi). Let αwi , αv be such that wi = wS,αwi and v = wS,αv . Let F ∈ S be a minimal
element such that αv(F ) < αwi(F ). We can choose such an F to be non-mobile in v.
Otherwise, the unique mobile flat in S of wi would be F , which would also be the unique
mobile flat of S in v and so for all G ∈ S \ {F}, αwi(G) = αv(G). Since F is mobile
in v, there exists some α : S → R compatible with S such that α(G) = αv(G) for
G 6= F but α(F ) < αv(F ) and wS,α ∈ C(x, B̃(M)). This contradicts v being a vertex
of C(x, B̃(M)) because v = (αv(F ) − αwi(F )) � wi ⊕ wS,α. So we can choose F to be
mobile in wi and not in v. Define αwi+1 : S → R by αwi+1(G) = αwi(G) when G 6= F and
αwi+1(F ) = αv(F ). Define wi+1 := wS,αwi+1 . Then wi ≥ wi+1 ≥ v and wi+1 is obtained
from wi by sliding F down. Since F was chosen to be minimal such that αv(F ) < αwi(F )
and αwi+1(G) = αwi(G) when G 6= F , non-mobility of F in v implies non-mobility of F in
wi+1. Hence wi+1 is obtained from wi by sliding F all the way down and so wi+1 ∈ Si+1.

Now assume T (wi) * T (v). Denote vt := (t� wi)⊕ v. Since C(x, B̃(M)) is tropically

convex, vt ∈ C(x, B̃(M)) whenever t < 0. Let t0 < 0 maximum such that T (wi) \ T (vt0)
is nonempty and let G ∈ T (wi) \ T (vt0) be maximal. Note that for small ε > 0, T (wi) ⊆
T (vt0+ε) and the minimal H ∈ T (vt0+ε) that strictly contains G is also a member of
T (vt0). Let S be a resolution of T (vt0+ε) and therefore also a resolution of T (wi). Choose
K ∈ S such that G ( K ⊆ H and let wi+1 be the result of sliding K all the way down in
wi. Then wi+1 ∈ Si+1 and wi ≥ wi+1 ≥ vt ≥ v. �

As with Theorem 3.6, the set of M-ultrametrics specified by Theorem 5.10(3) is, in
general, a strict superset of the set of tropical vertices; see [24].

Example 5.11. Let G be the graph from Figure 8 and let x be the edge-weighting
displayed. We now describe how to use Theorem 5.10 to obtain a generating set of the
tropical polytope consisting of the M(G)-ultrametrics that are l∞-nearest to x. Figure
9 shows the M(G)-ultrametrics in each nonempty Si, displayed on their topologies. The
mobile flats of the unique element xm of S0 are {ab, ac, bc} and {ab}. Sliding {ab} all the
way down yields the element of S1 shown on the left, and sliding {ab, ac, bc} all the way
down yields the element of S1 shown on the right. The only mobile flat of the element of S1

shown on the left is {ab, ac, bc}. Sliding this all the way down yields the left-most element
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displayed in S2. The element of S1 shown on the right has {ab, ac, bc} as a polytomy.
There are three possible resolutions, the first obtained by adding the flat {ab}, the second
by adding {ac} and the third by adding {bc}. Each such flat is mobile, and the elements
of S2 obtained by sliding each all the way down are shown second, third, and fourth from
the left in S2. Continuing in this way yields the elements shown in S3 and S4. Note that
there are no mobile flats in any element of S4 so Si is empty for i ≥ 5. The leftmost
element of S2 also appears in S3 and S4. A subset of

⋃
i Si whose tropical convex hull

is C(x, B̃(M(G))) is shown in red. Note that we’ve omitted elements with two or more
mobile flats, as well as repeated elements.

The following proposition tells us that if all the M-ultrametrics in the generating set
of C(x, B̃(M)) indicated by Theorem 5.10 have the same topology, then all elements of
C(x, B̃(M)) have the same topology.

Proposition 5.12. Let M be a matroid on ground set E and let x ∈ RE. Then set of all
M-ultrametrics that are l∞-nearest to x have the same topology if and only if all tropical
vertices of C(x, B̃(M)) have the same topology.

Proof. This follows immediately from Proposition 4.9. �

When M := M(G) is the matroid underlying some graph G, then Theorem 5.10 has
potential use for phylogenetics even when G is not the complete graph. In particular,
it sometimes happens that only a subset of the pairwise distances between n species
can be computed within a reasonable budget. Then one may ask the question of which
partial ultrametrics are l∞-nearest to the observed distances. Assuming that the observed
distances correspond to the edge set E of a graph G, the following proposition tells us
that the above question is equivalent to: given some partial dissimilarity map x ∈ RE,
which M(G)-ultrametrics are l∞-nearest to x?

Proposition 5.13. Let E (
(
[n]
2

)
, let G be the graph with vertex set [n] and edge set E,

and let x ∈ RE. Then we may extend x to some ultrametric x′ ∈ B̃(M(Kn)) if and only
if x is an M(G)-ultrametric.

Proof. First let x be a M(G)-ultrametric. Let e ∈
(
[n]
2

)
\ E. Let G′ be the graph

obtained by adding e to G. We can extend x to a M(G′)-ultrametric x′ by setting
x′e to be the maximum of all the minimum edge weights appearing in some cocircuit of
M(G′). That this is indeed an M(G′)-ultrametric follows from Ardila’s characterization
of M-ultrametrics in terms of M’s cocircuits [3]. By induction it follows that x may be
completed to an M(Kn)-ultrametric.

Now let x ∈ RE and assume that there exists some x′ ∈ B̃(M(Kn)) such that xe = x′e
for each e ∈ E. Since x′ is anM(Kn)-ultrametric, each e ∈ E appears in some x′-minimal
basis of M(Kn). As x′e = xe for each e ∈ E, it follows that each e ∈ E appears in some
x-minimal basis of M(G). Therefore x is an M(G)-ultrametric. �

6. Example on a biological dataset

Now that we understand how uniqueness of the l∞-nearest ultrametric can fail to be
unique, one might wonder if this is likely to happen for a dissimilarity map not explicitly
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S0

8 {ab, ac, ad, bd, cd}

6 {ab, ac, bc}

4 {ab}

S1

8 {ab, ac, ad, bd, cd}

6 {ab, ac, bc}

0 {ab}

8 {ab, ac, ad, bd, cd}

4 {ab, ac, bc}

S2

8 E

3 {ab, ac, bc}

0 {ab}

8 E

4 {ab, ac, bc}

0 {ab}

8 E

4 {ab, ac, bc}

2 {ac}

8 E

4 {ab, ac, bc}

3 {bc}

S3

8 {ab, ac, ad, bd, cd}

3 {ab, ac, bc}

0 {ab}

8 {ab, ac, ad, bd, cd}

3 {ab, ac, bc}

2 {ac}

8 {ab, ac, ad, bd, cd}

3 {ab, ac, bc}

S4

8 {ab, ac, ad, bd, cd}

3 {ab, ac, bc}

2 {ac}

8 {ab, ac, ad, bd, cd}

3 {ab, ac, bc}

0 {ab}

Figure 9. The nonempty Si’s from Theorem 5.10 for the edge-weighting
of the graph G in Figure 8.

constructed to break uniqueness. To this end, we now apply Theorem 3.6 to the dataset
displayed in Figure 10. It consists of pairwise immunological distances between the species
dog, bear, raccoon, weasel, seal, sea lion, cat, and monkey that were obtained by Sarich
in [20]. It is used in the textbook [12] to illustrate the UPGMA and neighbor joining
algorithms, which are two other distance-based methods for phylogenetic reconstruction.

Theorem 5.10 suggests an algorithm for computing a generating set of the set of ultra-
metrics l∞-nearest to a given dissimilarity map. This consists of computing all nonempty
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dog bear raccoon weasel seal sea lion cat monkey
dog 0 32 48 51 50 48 98 148
bear 32 0 26 34 29 33 84 136

raccoon 48 26 0 42 44 44 92 152
weasel 51 34 42 0 44 38 86 142

seal 50 29 44 44 0 24 89 142
sea lion 48 33 44 38 24 0 90 142

cat 98 84 92 86 89 90 0 148
monkey 148 136 152 142 142 142 148 0

Figure 10. Pairwise immunological distances between eight species.

M C D W B R S SL

26 24
37.5

39.5
45.8

89.8
144.3

Figure 11. Ultrametric returned by the UPGMA algorithm.

Si’s and removing all ultrametrics that have more than one mobile internal node. Apply-
ing this to the dataset in Figure 10 gives us the twenty ultrametrics displayed in Table 1.
Four different tree topologies appear; for example, note that the topologies of the first,
second, eighth, and fourteenth ultrametrics in the row-major order of Table 1 are distinct.

The UPGMA algorithm always returns an ultrametric. Figure 11 shows the ultrametric
computed by the UPGMA algorithm when applied to the dataset given in Figure 10 (see
[12, pp.162-166]). No ultrametric sharing the topology of the ultrametric shown in Figure
11 will be l∞-nearest to the data. To see this, note that among the ultrametrics displayed
in Table 1, the distance between weasel and seal is 42 or 43, and that the distance between
dog and seal is always 41. Since the set of l∞-nearest ultrametrics is tropically convex,
any ultrametric l∞-nearest to the data will have the distance between weasel and seal
strictly greater than the distance between dog and seal. However, the opposite relation
will be true in any ultrametric whose topology is the tree displayed in Figure 11.
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Table 1. A set of ultrametrics whose tropical convex hull is the set of
ultrametrics l∞-nearest to the dataset in Figure 10.

M C W D B R S SL

17 15
35

41
42

89
143

M C W D B R S SL

15
35

41
42

89
143

M C W D B R S SL

17 33
35

41
42

89
143

M C W D B R S SL

17 15
38

41
42

89
143

M C W D B R S SL

17 15
35

41
43

89
143

M C W D B R S SL

17 15
35

41
42

93
143

M C W D B R S SL

17 15
35

41
42

93
145

M C W D BR S SL

15
24

35
41

42
89

143

Continued on next page



L-INFINITY OPTIMIZATION TO BERGMAN FANS 21

Table 1 – continued from previous page

M C W D BR S SL

15
33

35
41

42
89

143

M C W D BR S SL

15
24

38
41

42
89

143

M C W D BR S SL

15
24

35
41

43
89

143

M C W D BR S SL

15
24

35
41

42
93

143

M C W D BR S SL

15
24

35
41

42
89

145

M C W D SLR B S

20
24

35
41

42
89

143

M C W D SLR B S

20
33

35
41

42
89

143

M C W D SLR B S

20
24

38
41

42
89

143

M C W D SLR B S

20
24

35
41

43
89

143

M C W D SLR B S

20
24

35
41

42
93

143

Continued on next page
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Table 1 – continued from previous page

M C W D SLR B S

20
24

35
41

42
89

145

M C W D SR B SL

24
33

35
41

42
89

143
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