
 
 

University of Birmingham

Optimal k-thresholding algorithms for sparse
optimization problems
Zhao, Yun-Bin

DOI:
10.1137/18M1219187

License:
None: All rights reserved

Document Version
Publisher's PDF, also known as Version of record

Citation for published version (Harvard):
Zhao, Y-B 2020, 'Optimal k-thresholding algorithms for sparse optimization problems', SIAM Journal on
Optimization, vol. 30, no. 1, 25, pp. 31-55. https://doi.org/10.1137/18M1219187

Link to publication on Research at Birmingham portal

Publisher Rights Statement:
First Published in SIAM Journal on Optimisation, volume 30, issue 1, published by the Society for Industrial and Applied Mathematics
(SIAM). Copyright © by SIAM. Unauthorized reproduction of this article is
prohibited

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the
copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes
permitted by law.

•Users may freely distribute the URL that is used to identify this publication.
•Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private
study or non-commercial research.
•User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
•Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.
Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been
uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to
the work immediately and investigate.

Download date: 26. Apr. 2024

https://doi.org/10.1137/18M1219187
https://doi.org/10.1137/18M1219187
https://birmingham.elsevierpure.com/en/publications/5b4e74be-60da-47cc-9dd3-76424889d3ee


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

SIAM J. OPTIM. c© 2020 Society for Industrial and Applied Mathematics
Vol. 30, No. 1, pp. 31–55

OPTIMAL k-THRESHOLDING ALGORITHMS FOR SPARSE
OPTIMIZATION PROBLEMS∗

YUN-BIN ZHAO†

Abstract. The simulations indicate that the existing hard thresholding technique independent
of the residual function may cause a dramatic increase or numerical oscillation of the residual. This
inherent drawback of the hard thresholding renders the traditional thresholding algorithms unstable
and thus generally inefficient for solving practical sparse optimization problems. How to overcome
this weakness and develop a truly efficient thresholding method is a fundamental question in this field.
The aim of this paper is to address this question by proposing a new thresholding technique based
on the notion of optimal k-thresholding. The central idea for this new development is to connect
the k-thresholding directly to the residual reduction during the course of algorithms. This leads
to a natural design principle for the efficient thresholding methods. Under the restricted isometry
property, we prove that the optimal thresholding based algorithms are globally convergent to the
solution of sparse optimization problems. The numerical experiments demonstrate that when solving
sparse optimization problems, the traditional hard thresholding methods have been significantly
transcended by the proposed algorithms which can even outperform the classic `1-minimization
method in many situations.

Key words. sparse optimization, convex optimization, optimal k-thresholding, hard threshold-
ing, iterative algorithms, restricted isometry property
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1. Introduction. Let A ∈ Rm×n (m < n) be a given matrix, y ∈ Rm be a given
vector, and ε ≥ 0 be a given parameter. Let ‖x‖0 denote the “`0-norm” counting the
number of nonzero entries of the vector x ∈ Rn. The sparse optimization problem is
to find a sparse (or the sparsest) vector, denoted by x∗, such that Ax∗ can best fit
the vector y. This problem can be formulated as the minimization problem with a
sparsity constraint

(1.1) min
x
{‖Ax− y‖22 : ‖x‖0 ≤ k},

where k is a prescribed integer number, or formulated as the so-called `0-minimization
problem

(1.2) min
x
{‖x‖0 : ‖Ax− y‖2 ≤ ε}.

Both (1.1) and (1.2) are the central models for sparse signal recovery and sparse
representation of data on their redundant bases. These models provide an essential
basis for the development of the theory and algorithms for compressed sensing (see,
e.g., [12, 25, 26, 32, 53]). The problem (1.1) has also been widely used in the fields of
statistical regressions and wireless communications (see, e.g., [45, 4, 41]).

The problems (1.1) and (1.2) are NP-hard in general [46]. The plausible algo-
rithms for such problems can be briefly categorized into the following classes: (i)
convex optimization methods (e.g., `1-minimization [19], reweighed `1-minimization
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32 YUN-BIN ZHAO

[16, 31, 56], and dual-density-based reweighted `1-minimization [53, 54, 55]); (ii)
heuristic methods (such as matching pursuit [43], orthogonal matching pursuit [44, 52],
compressive sampling matching pursuit [47], and subspace pursuit [20]); (iii) thresh-
olding methods (e.g., soft thresholding [21, 22, 24], hard thresholding [6, 7, 8, 30],
graded hard thresholding pursuits [10, 11], and the “firm” thresholding [51]); (iv)
integer programming methods [4].

The use of thresholding techniques for signal denoising problems can be dated
back to the seminal paper by Donoho and Johnstone [23]. Since then, various thresh-
olding algorithms were proposed for sparse recovery or sparse approximation (see,
e.g., Reeves and Kingsbury [49], Kingsbury and Reeves [39], Figueiredo and Nowak
[27], Starck, Nguyen, and Murtagh [50], Herrity, Gilbert, and Tropp [35], Blumensath
and Davies [7, 8, 9], and Beck and Teboulle [3]). The thresholding algorithms can
be derived from different perspectives such as minimizing certain surrogate functions
related to the residual function ‖y − Ax‖22 (see, e.g., [7, 21, 37]) and the necessary
optimality conditions for minimization with sparsity constraints [1, 2]. The algorithms
can be classified as soft thresholdings or hard thresholdings according to the nature of
thresholding operators. The soft ones are closely related to the optimality condition
of certain convex optimization (e.g., [24, 51]) and have been widely analyzed in the
literature (e.g., [21, 24, 28, 35, 51]). The hard thresholding ones for compressed sens-
ing were analyzed by Blumensath and Davies [7, 8, 9], Foucart [29, 30], and Foucart
and Rauhut [32].

For convenience of discussion, we focus on the problem (1.1) in this paper. Given
z ∈ Rn, let Hk(z) denote the vector obtained by retaining the k largest magnitudes
of z and zeroing out the remaining entries of z. The operator Hk(·) is referred to
as the hard thresholding operator. Since the k largest magnitudes of z may not be
unique (see Theorem 2.3 for details), Hk(z) might contain more than one vector in
some situations. The iterative hard thresholding (IHT) algorithm takes the scheme

(1.3) xp+1 ∈ Hk
(
xp + τAT (y −Axp)

)
to search the solution of (1.1), where AT is the transpose of A and τ > 0 is a
stepsize which can be iteratively updated or a fixed number (such as τ ≡ 1). The
iterative scheme (1.3) can be dated back to Landweber [36]. The Landweber iteration
zp+1 = zp+ τAT (y−Azp) is essentially the gradient method for minimizing the func-
tion ‖y − Ax‖22. Thus an intuitive idea for possibly solving the problem (1.1) is to
perform the hard thresholding on the Landweber iteration, leading to the iterative
scheme (1.3).

The analyses in [7, 8, 29, 30, 42] show that the convergence of the IHT algo-
rithm can be guaranteed under the restricted isometry property (RIP) or a mu-
tual coherence condition. The RIP was first introduced by Candès and Tao [15]
(see also Candès [14]) to study the signal recovery via the `1-minimization method.
However, the empirical evidences indicate that the efficiency of the IHT is actu-

ally low. For instance, taking A = [ 1 2 3 4
5 6 7 8 ] and y = [ 1

5 ], it is evident that

x∗ = (1, 0, 0, 0)T is the solution to the problem (1.1). However, the IHT starting from
x0 = 0 generates the following sequence: x1 = H1(u0) = (0, 0, 0, 44), x2 = H1(u1) =
(0, 0, 0,−3432), x3 = H1(u2) = (0, 0, 0,−271170), . . . , where up := xp+AT (y−Axp).
The sequence {xp} diverges, and the corresponding sequence of r(xp) = ‖y − Axp‖2
(i.e., r(x0) =

√
26, r(x1) = 388.6309, r(x2) = 3.0702e+04, r(x3) = 2.4254e+06, . . . )

also diverges so quickly. Thus there is a huge gap between the theoretical efficiency
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and practical performance of the IHT. This stimulates the study of various accelera-
tion and stabilization techniques for this sort of algorithm.

The first idea for acceleration is using a stepsize as in (1.3). The algorithm
with a fixed stepsize was called gradient descent with sparsification in [33]. See also
[1, 6, 17]. With iteratively updated stepsizes, the algorithm is called the normalized
IHT in [9]. See also the so-called conjugate gradient IHT algorithm in [5]. Another
idea is to minimize the residual over the support determined by the hard thresholding.
With this idea, Foucart [30] proposed the following algorithm called hard thresholding
pursuit (HTP):

(1.4) Sp+1 = supp(ẑ), ẑ ∈ Hk(xp +AT (y −Axp)),

(1.5) xp+1 ∈ arg min
x

{
‖y −Ax‖22 : supp(x) ⊆ Sp+1

}
.

The step (1.5) is used to chase a better vector than ẑ that can best fit the vector y.
This idea is also used in compressive sensing matching pursuit proposed by Needell
and Tropp [47] and in subspace pursuit proposed by Dai and Milenkovic [20]. As
a generalization of the HTP, the graded HTP [10, 11] combines the step (1.5) and
orthogonal matching pursuit. Other acceleration versions of the IHT based on Nes-
terov’s techniques [48] can be found in [17, 38, 40].

In many situations, however, directly using the operator Hk(·) is not attractive
from the perspective of the residual ‖y−Ax‖22. The thresholding step (1.4) is actually
independent of the residual reduction (see section 3 for details) in the sense that it
does not include any mechanism to reduce the residual in the course of iterations. It
actually causes the divergence of the IHT in numerous situations, or significantly slows
down the convergence of the algorithm. Even aided with (1.5), numerical experiments
demonstrate that the values of the residual at the iterates generated by the HTP may
still oscillate dramatically, rendering the algorithm inefficient in many situations. Such
an oscillation phenomenon (see Figure 5.1(a) in section 5) was caused by the hard
thresholding operator which often increases instead of decreasing the residual. To our
knowledge, the existing ideas for acceleration do not serve the purpose of eliminating
such an inherent drawback of the operator Hk.

In this paper, retaining k entries of a vector and zeroing out its remaining entries
is referred to as a k-thresholding of the vector. Motivated by the above observation,
we explore the following idea in order to develop efficient thresholding methods: The
k-thresholding should be performed to serve the purpose of residual reduction. Link-
ing the thresholding with residual reduction enables us to introduce the notion of
optimal k-thresholding. More specifically, it enables us to select a set of k entries
of a vector that achieves the least residual among all possible selections of k entries.
Clearly, the optimal k entries is not necessarily the k largest magnitudes of the vector.
Based on this notion, we propose the optimal k-thresholding (OT) algorithm and the
optimal k-thresholding pursuit (OTP). Since the subproblems in OT and OTP are
binary quadratic minimization problems which are usually not convenient to solve
directly, we propose the relaxed optimal k-thresholding (ROT) and the relaxed opti-
mal k-thresholding pursuit (ROTP) which naturally result from the tightest convex
relaxation of the binary optimization problem in OT and OTP. The ROTP and its
further enhanced versions (ROTP2 and ROTP3) turn out to be a new and power-
ful generation of thresholding algorithms which significantly reverse the adversity of
using the traditional hard thresholding.
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34 YUN-BIN ZHAO

The OT and OTP algorithms are shown to have the guaranteed success for sparse
signal recovery under the RIP bound δ2k < 0.5349 (see Theorem 4.3 for details). This
bound is largely theoretical by assuming that the binary subproblems in OT or OTP
can be successfully solved by certain methods. The guaranteed success of the ROT
and ROTP is also proved in this paper under the RIP bound δ3k < 1/5. The empirical
results collected from random examples of sparse optimization problems show that
the ROTP and its enhanced versions remarkably outperform the IHT and HTP as
anticipated, and the ROTP2 and ROTP3 are efficient enough to outperform the
`1-minimization in numerous situations (see section 5 for details). Simulations also
demonstrate that the proposed algorithms are stable in the sense that the residual is
steadily reduced during the course of iterations.

The paper is organized as follows. Section 2 provides some notations, definitions,
and properties of the hard thresholding operator. The new thresholding methods are
described in section 3. The theoretical performance of several proposed algorithms
is rigorously shown under the RIP condition in section 4. Numerical results for the
ROTP and its enhanced versions are reported in section 5.

2. Preliminary.

2.1. Notation. Rn denotes the n-dimensional Euclidean space, and Rm×n stands
for the set of m × n metrics. The set of n-dimensional binary vectors is denoted by
{0, 1}n. All vectors are column vectors unless otherwise specified. We use e to de-
note the vector of ones and I to denote the identity matrix. For a vector x ∈ Rn,
‖x‖2, ‖x‖1, and ‖x‖∞ denote the `2-, `1-, and `∞-norms, respectively, and |x| de-
notes the absolute vector of x, i.e., |x|i = |xi| for i = 1, . . . , n. The support of x
is denoted by supp(x) which is the index set {i : xi 6= 0}. The nonnegative vector
x is written as x ≥ 0. For two vectors x and y, the inequality x ≥ y means x − y
is a nonnegative vector. Given a set S ⊆ {1, 2, . . . , n}, |S| denotes the cardinality
of S, and S = {1, 2, . . . , n}\S denotes the complement set of S. Given x ∈ Rn and
S ⊆ {1, . . . , n}, xS ∈ Rn denotes the vector obtained by retaining the components of
x indexed by S and zeroing out the remaining components of x. That is, for every
i = 1, . . . , n, (xS)i = xi if i ∈ S; otherwise, (xS)i = 0. For x, y ∈ Rn, the vector x⊗ y
is the Hadamard product of x and y, i.e., x⊗ y = (x1y1, . . . , xnyn)T . A vector is said
to be k-sparse if ‖x‖0 ≤ k.

2.2. Characteristics of hard thresholding operator Hk(·). Given an inte-
ger number k, a vector w ∈ {0, 1}n with exactly k nonzero entries can be represented
as w ∈ {0, 1}n and eTw = k. Denote the set of such vectors by

(2.1) W(k) =
{
w : w ∈ {0, 1}n, eTw = k

}
.

Note that the Hadamard product z̃ = z ⊗ w, where z ∈ Rn and w ∈ W(k), is the
vector thresholded from z by retaining zi corresponding to wi = 1 and zeroing out
the remaining ones. We introduce the following definition.

Definition 2.1. Given z ∈ Rn and w ∈ W(k), the vector z̃ = z⊗w is called a k-
thresholding vector of z, and the associated vector w ∈ W(k) is called a k-thresholding
indicator. If the k-thresholding retains the k largest magnitudes of z, it is referred to
as the hard k-thresholding of z.

Clearly, Hk(z) is the set of z ⊗ w#, where w# ∈ W(k) is an indicator for the
k largest magnitudes of z. Denote by W∗(z) ⊆ W(k) the set of indicators for the k
largest magnitudes of z. Then W∗(z) = {w# ∈ W(k) : z ⊗ w# ∈ Hk(z)}. We also

D
ow

nl
oa

de
d 

01
/2

4/
20

 to
 1

47
.1

88
.1

08
.9

7.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

OPTIMAL THRESHOLDING ALGORITHMS 35

note that Hk(z) is the set of vectors which are the best k-term approximation of z,
namely,

Hk(z) = arg min
u
{‖z − u‖1 : ‖u‖0 ≤ k}.

Denote by σk(z)1 the error of the best k-term approximation of z, i.e.,

σk(z)1 = min
u
{‖z − u‖1 : ‖u‖0 ≤ k}.

Clearly, σk(z)1 = 0 if and only if z is k-sparse. In this paper, z is said to be k-
compressible if σk(z)1 is small. Note that σk(z)1 = ‖z − ẑ‖1 for any ẑ ∈ Hk(z). By
the definition of W∗(z) and W(k), we see that for any w# ∈ W∗(z)

(2.2) σk(z)1 = ‖z − (z ⊗ w#)‖1 = ‖z ⊗ (e− w#)‖1 = |z|T (e− w#).

Since ‖z ⊗ w‖0 ≤ k for any w ∈ W(k), by the definition of σk(z)1, we have

(2.3) σk(z)1 ≤ ‖z − (z ⊗ w)‖1 = |z|T (e− w) for any w ∈ W(k).

It follows from (2.2) and (2.3) that every hard k-thresholding indicator w# ∈ W∗(z)
is exactly the solution to the following 0-1 integer programming problem:

(2.4) min
w

{
|z|T (e− w) : eTw = k, w ∈ {0, 1}n

}
.

This problem is very easy to solve via the linear programming (LP) relaxation

(2.5) min
w

{
|z|T (e− w) : eTw = k, 0 ≤ w ≤ e

}
,

as indicated by the following lemma.

Lemma 2.2. Given z ∈ Rn, let γ̂(z) be the optimal objective value of (2.5), and

let Ŝ be the set of optimal solutions of (2.5) that are extreme points of the feasible set.

Then γ̂(z) = σk(z)1 and Ŝ =W∗(z). Thus w# ∈ Ŝ if and only if z ⊗ w# ∈ Hk(z).

Proof. Consider the feasible set of the problem (2.5)

(2.6) P := {w ∈ Rn : eTw = k, 0 ≤ w ≤ e}.

Let V denote the set of extreme points of this polyhedron. By introducing the non-
negative variable u ∈ Rn, the linear system in P can be written as eTw = k, w+u =

e, w ≥ 0 and u ≥ 0, that is, [ eT 0
I I

][ w
u ] = [ k

e ] and [ w
u ] ≥ 0, where I is the

n × n identity matrix. Note that the matrix [ eT 0
I I

] is totally unimodular, and

the right-hand-side vector [ k
e ] of the above system is an integer vector. The total-

unimodularity theory implies that every extreme point of the polyhedron P is an
integer vector. Therefore, by the structure of P, every extreme point of P must be a
binary vector with k entries being ones. This means V ⊆ W(k). By the LP theory, at
least one of the extreme points of P must be optimal. Thus ∅ 6= Ŝ ⊆ V ⊆ W(k). It
follows from (2.3) that σk(z)1 ≤ γ̂(z) = |z|T (e− ŵ) for ŵ ∈ Ŝ ⊆ W(k). Let w̃ ∈ W∗(z)
which is contained in the feasible set of (2.5). By optimality and (2.2), we have
γ̂(z) ≤ |z|T (e − w̃) = σk(z)1. Therefore σk(z)1 = γ̂(z), from which it is not difficult
to see that W∗(z) is exactly the set of optimal solutions of (2.5) that are extreme

points of the feasible set, and hence Ŝ = W∗(z). Therefore w# ∈ Ŝ if and only if
z ⊗ w# ∈ Hk(z).
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It is well known that finding the hard k-thresholding of a vector is very easy and
can be done in several ways. The equivalence of (2.4) and (2.5) implies that solving the
LP problem (2.5) is an alternative way. We now point out that the condition forHk(z)
being a singleton can be completely characterized. Denote by z∗ the nonincreasing
rearrangement of |z|, i.e., z∗1 ≥ z∗2 ≥ · · · ≥ z∗n ≥ 0, and π is a permutation of {1, . . . , n}
such that z∗j = |zπ(j)| for j = 1, . . . , n. The following theorem claims that Hk(z) is a
singleton if and only if the kth largest absolute entry of z is strictly larger than the
(k + 1)th largest absolute entry.

Theorem 2.3. Let z ∈ Rn be a given vector and z∗ be the nonincreasing arrange-
ment of |z|. The following three statements are equivalent: (a) Hk(z) is a singleton;
(b) the solution of the LP problem (2.5) is unique; (c) z∗k > z∗k+1.

Proof. The equivalence of (a) and (b) follows from Lemma 2.2 straightaway. It is
sufficient to show the equivalence of (c) and (a). First we note that when z∗k = z∗k+1,
there are at least two distinct sets of the k largest magnitudes of z, so Hk(z) is not
unique. Thus (a) implies (c). We now show that (c) also implies (a). Assume that
z∗k > z∗k+1 and denote by the set Lk(z) = {π(i) : |zπ(i)| = z∗i , i = 1, . . . , k}, which is
the set of indices for the k largest magnitudes of z. Let w∗ be an arbitrary optimal
solution of (2.5) which is an extreme point of its feasible set. Note that

∑
i/∈Lk(z)

|zi|w∗i ≤
[

max
i/∈Lk(z)

|zi|
] ∑
i/∈Lk(z)

w∗i = z∗k+1

k − ∑
i∈Lk(z)

w∗i

 = z∗k+1

∑
i∈Lk(z)

(1−w∗i ).

From Lemma 2.2, we have σk(z)1 = |z|T (e − w∗). This together with the inequality
above implies

σk(z)1 =
∑

i∈Lk(z)

|zi|(1− w∗i ) +
∑

i/∈Lk(z)

|zi|(1− w∗i )

=
∑

i/∈Lk(z)

|zi|+
∑

i∈Lk(z)

|zi|(1− w∗i )−
∑

i/∈Lk(z)

|zi|w∗i

≥ σk(z)1 +
∑

i∈Lk(z)

|zi|(1− w∗i )− z∗k+1

∑
i∈Lk(z)

(1− w∗i )

= σk(z)1 +
∑

i∈Lk(z)

(|zi| − z∗k+1)(1− w∗i ).

With the fact 0 ≤ w∗ ≤ e and |zi| > z∗k+1 for every i ∈ Lk(z), the inequality above
implies that w∗i = 1 for all i ∈ Lk(z). By the constraints of (2.5), the remaining n− k
components of w∗ are equal to 0. So w∗ is uniquely determined. This means the set
of the optimal solutions of (2.5) which are extreme points of its feasible set contains
only a single vector, and thus Hk(z) is unique (by Lemma 2.2).

The link between Hk, P, and σk(·)1 indicates that performing Hk(·) on a vector
is nothing but minimizing the error of the k-term approximation of the vector, which
is independent of the residual function ‖y − Az‖22. This motivates us to consider a
new thresholding strategy in the next section.

3. Optimal k-thresholding algorithms and their relaxations. The classic
steepest descent method for minimizing the residual ‖y − Ax‖22 is deeply rooted in
the following theoretical basis: When the current iterate is not a minimizer of the
function, moving from the iterate in the direction of negative gradient of the function
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(with a certain stepsize if necessary) leads to the decrease in the value of this function.
This theoretical basis, however, is generally lost when the operator Hk(·) is applied
to the vector up := xp + AT (y − Axp). As we have pointed out in section 2, the
selection of the k largest magnitudes of this vector is independent of the residual
‖y − Ax‖22. Thus the hard k-thresholding may cause the increase of the residual at
û ∈ Hk(up), i.e., ‖y − Aû‖2 > ‖y − Axp‖2. This is the main reason for the iterative
scheme xp+1 ∈ Hk(up) being unstable and inefficient for solving sparse optimization
problems, unless up is k-compressible (in which case Hk (up) ≈ up) so that the scheme
xp+1 ∈ Hk (up) is close to the steepest descent method.

To overcome the drawback of the hard thresholding, we may link the k-thresholding
with a residual function and perform thresholding and residual reduction simultane-
ously. This stimulates the following thresholding of a vector z ∈ Rn :

(3.1) α∗(u) := min
w
{‖y −A(u⊗ w)‖22 : eTw = k, w ∈ {0, 1}n}.

In this model, performing a k-thresholding of u is directly related to the residual
function. The k-thresholding of u resulting from (3.1) admits the least residual, and
thus it is better than other k-thresholdings of u, including Hk(u). We use w∗(u) to
denote the optimal solution of (3.1). Clearly, the solution w∗(u) relies on the choice
of the objective function, which may take other forms different from the one in (3.1).
For instance, we may minimize the `1-norm of the gradient of ‖y − Ax‖22, leading to
the following model:

min
w

{
‖AT (y −A(u⊗ w))‖1 : eTw = k, w ∈ {0, 1}n

}
.

For simplicity, however, we only focus on the model (3.1) and its convex relaxations
in this paper. We introduce the following definition.

Definition 3.1. Given u ∈ Rn, the solution of (3.1), denoted by w∗(u), is called
the optimal k-thresholding indicator, and the vector u ⊗ w∗(u) is called the optimal
k-thresholding of u. The operator

Z#
k (u) := {u⊗ w∗(u) : w∗(u) is an optimal solution of (3.1)}

is called the optimal k-thresholding operator.

The solution of (3.1) may not be unique, and thus Z#
k (u) might contain more than

one vector. Since α∗(u) = ‖y−Av‖22 for any v ∈ Z#
k (u), we may simply write this as

α∗(u) = ‖y − AZ#
k (u)‖22 no matter if Z#

k (u) is a singleton or not. By optimality, we
have

(3.2)
∥∥∥y −AZ#

k (u)
∥∥∥

2
≤ ‖y −A(u⊗ w)‖2 for any w ∈ W(k),

where W(k) is given in (2.1). This implies that

(3.3)
∥∥∥y −AZ#

k (u)
∥∥∥

2
≤ min
û∈Hk(u)

‖y −Aû‖2.

Thus the optimal k-thresholding is never worse than the hard k-thresholding from the
perspective of residual reduction. In terms of optimal k-thresholding, we obtain the
following iterative scheme:

(3.4) xp+1 ∈ Z#
k

(
xp +AT (y −Axp)

)
.
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This method is referred to as the optimal k-thresholding (OT) algorithm, which by

the definition of Z#
k (·) is described explicitly as follows.

OT algorithm. Input (A, y, k). Give an initial point x0 ∈ Rn and repeat the
following steps until a stoping criterion is satisfied:

S1. At xp, set up = xp +AT (y −Axp) and solve the problem

(3.5) min
w

{
‖y −A(up ⊗ w)‖22 : eTw = k, w ∈ {0, 1}n

}
.

S2. Let w∗(up) be the solution to the problem (3.5), and set

xp+1 := up ⊗ w∗(up).

In general, the input vector up in S1 is not k-sparse, but the output up ⊗w∗(up)
of S1 is a compressed (in fact, k-sparse) vector. So the step S1 above can be called
a “compressing step.” The binary optimization problem (3.5) is known to be NP-
hard [18] (see also [13]). This problem is similar to the best subset selection model
in statistics [45], and Bertsimas, King, and Mazumder [4] developed a mixed-integer
optimization formulation to deal with similar binary optimization problems. Their
study indicates that in many cases the problem like (3.5) can be directly solved by
exploiting the integer programming structure, and thus it might not be always nec-
essary to consider a convex relaxation of the problem (see the numerical results in [4]
for more details).

In this paper, however, we focus on the convex relaxation of the binary problem
(3.5). The convex relaxation turns out to be a very efficient technique for the develop-
ment of practical thresholding algorithms based on the above OT framework. To relax
the problem (3.5), an immediate idea is to replace the binary constraint w ∈ {0, 1}n
with the simple restriction w ∈ [0, 1]n. In other words, we replace the feasible setW(k)

of (3.5) with the polytope P defined in (2.6). From the proof of Lemma 2.2, we see
that P is the convex hull, i.e., the tightest convex relaxation of W(k). This leads to
the following convex relaxation counterpart of (3.5):

(3.6) γ∗(up) := min
w

{
‖y −A(up ⊗ w)‖22 : eTw = k, 0 ≤ w ≤ e

}
,

which can be solved efficiently by interior-point methods or other optimization meth-
ods. Let wp be the solution of (3.6). Since wp may not be exactly k-sparse, we apply
Hk to the vector up⊗wp to produce the next k-sparse iterate. This leads to following
relaxed optimal k-thresholding method termed the “ROT” algorithm.

ROT algorithm. Input (A, y, k). Give an initial point x0 and repeat the follow-
ing steps until a stoping criterion is satisfied:

S1. At xp, set up = xp+AT (y−Axp) and solve the convex optimization problem
(3.6) to obtain wp.

S2. Set
xp+1 ∈ Hk(up ⊗ wp).

The first step above can still be called a “compressing step” since the output
up⊗wp is more compressible than up in the sense that σk(up⊗wp)1 ≤ σk(up)1 which
follows from the fact 0 ≤ wp ≤ e. In fact, for a given vector z ∈ Rn, σk(z)1 is the
sum of the n− k smallest components of |z|. Let Λ denote the index set of the n− k
smallest components of |up|. Then σk(up)1 = ‖(up)Λ‖1. Therefore,

σk(up ⊗ wp)1 ≤ ‖(up ⊗ wp)Λ‖1 ≤ ‖(wp)Λ‖∞‖(up)Λ‖1 ≤ σk(up)1,
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where the last inequality follows from the fact ‖(wp)Λ‖∞ ≤ 1. When k � n (which is
typical in compressed sensing scenarios), most components of wp are very small, and
thus σk(up⊗wp)1 might be much smaller than σk(up)1. In particular, σk(up⊗wp)1 = 0
when wp ∈ W(k). The difference between the ROT and traditional hard thresholding
methods is obvious. Traditional ones directly apply the hard k-thresholding to up

without making any effort to reduce the residual. When up is not compressible, the
hard thresholding Hk(up) might dramatically raise the value of the residual function,
causing divergence or very slow convergence of the iterates. By contrast, the ROT
improves the efficiency of thresholdings by simultaneously compressing the vector up

and decreasing the residual. The ROT integrates these two efforts to overcome the
drawback of performing Hk(·) directly onto noncompressible vectors. We now point
out an advantage of applying Hk(·) to a compressible vector.

Lemma 3.1. Let u be an arbitrary vector in Rn. Then for any û ∈ Hk(u),

(3.7)
∣∣‖y −Aû‖22 − ‖y −Au‖22∣∣ ≤ 2‖AT (y −Au)‖∞σk(u)1 + λmax(ATA)(σk(u)1)2.

Proof. Let û ∈ Hk(u). Note that

‖y −Aû‖22 = ‖y −Au‖22 + 2[AT (y −Au)]T (û− u) + (û− u)TATA(û− u).

Thus,∣∣‖y −Aû‖22 − ‖y −Au‖22∣∣ ≤ 2‖AT (y −Au)‖∞‖û− u‖1 + λmax(ATA)‖û− u‖22,

which together with ‖û− u‖2 ≤ ‖û− u‖1 = σk(u)1 implies the inequality (3.7).

This lemma shows that if σk(u)1 is small (i.e., u is k-compressible), then ‖y −
Aû‖22 ≈ ‖y − Au‖22 for any û ∈ Hk(u). Thus performing a hard k-thresholding on a
compressible vector will not dramatically raise the value of the residual. Since the
output, up ⊗ wp, of the first step of ROT is more compressible than the input vector
up, the way for generating xp+1 in ROT is believed to be more sensible than the way
in IHT and HTP. The next result interprets further why a hard k-thresholding should
apply to compressible vectors instead of noncompressible ones.

Theorem 3.2. Let xp ∈ Rn be given and up = xp+AT (y−Axp). Let γ∗(up) and
wp be the optimal value and the optimal solution of (3.6), respectively, and let xp+1 ∈
Hk(up ⊗ wp). Denote by α∗(up) the optimal value of (3.5). Then the following two
statements hold: (i) γ∗(up) ≤ α∗(up) ≤ minû∈Hk(up) ‖y−Aû‖22; (ii) ‖y−Axp+1‖22 ≤
α∗(up) provided that

σk(up ⊗ wp)1 ≤
√
ϕ(up, wp)2 + 4(α∗(up)− γ∗(up))λmax(ATA)− ϕ(up, wp)

2λmax(ATA)
,

where ϕ(up, wp) = 2‖AT (y −A(up ⊗ wp))‖∞.
Proof. The statement (i) is obvious, following directly from (3.3) and the opti-

mality of wp. Let ϕ(up, wp) be defined as above. Consider the following quadratic
function (in variable t): ϑ(t) = γ∗(up) + ϕ(up, wp)t+ λmax(ATA)t2. By Lemma 3.1,

‖y −Axp+1‖22 ≤ ‖y −A(up ⊗ wp)‖22 + 2‖AT (y −A(up ⊗ wp))‖∞σk(up ⊗ wp)1

+ λmax(ATA)(σk (up ⊗ wp)1)
2

= γ∗(up) + ϕ(up, wp)σk(up ⊗ wp)1 + λmax(ATA)(σk(up ⊗ wp)1)2

= ϑ(σk(up ⊗ wp)1).(3.8)
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It is easy to verify that ϑ(t) ≤ α∗(up) provided that t is smaller than or equal to the
following root of the quadratic equation ϑ(t) = α∗(up) :

Ω(up, wp) :=
−ϕ(up, wp) +

√
ϕ(up, wp)2 + 4(α∗(up)− γ∗(up))λmax(ATA)

2λmax(ATA)
.

Thus when σk(up⊗wp)1 ≤ Ω(up, wp), we must have ϑ(σk(up⊗wp)1) ≤ α∗(up). This,
combined with (3.8), implies that ‖y −Axp+1‖22 ≤ α∗(up).

This result shows that if σk(up ⊗ wp)1 is small enough, then

max
ū∈Hk(up⊗wp)

‖y −Aū‖2 ≤ ‖y −AZ#
k (up)‖2 ≤ min

û∈Hk(up)
‖y −Aû‖2,

which means the iterates generated by the ROT will never be worse than the tradi-
tional hard thresholding algorithms from the perspective of residual reductions. The
OT and ROT algorithms can be further enhanced by using the pursuit step (1.5).
The OT combined with (1.5) is referred to as the optimal k-thresholding pursuit
(OTP), and the ROT algorithm combined with (1.5) is called the relaxed optimal
k-thresholding pursuit (ROTP), which are described, respectively, as follows.

OTP algorithm. Input (A, y, k). Given an initial point x0 ∈ Rn, repeat the
following steps until a stoping criterion is satisfied:

S1. At xp, set up = xp +AT (y−Axp) and solve the binary optimization problem
(3.5); let w∗(up) be a solution of this problem.

S2. Set Sp+1 := supp(up ⊗ w∗(up)), and let xp+1 be a solution to the problem

min
x
{‖y −Ax‖22 : supp(x) ⊆ Sp+1}.

ROTP algorithm. Input (A, y, k). Given an initial point x0 ∈ Rn, repeat the
following steps until a stoping criterion is satisfied:

S1. At xp, set up = xp+AT (y−Axp), and solve the convex optimization problem

min
w
{‖y −A(up ⊗ w)‖22 : eTw = k, 0 ≤ w ≤ e }

to generate a solution wp of this problem.
S2. Let v ∈ Hk(up ⊗ wp), Sp+1 = supp(v), and let xp+1 be a solution to the

problem

min
x
{‖y −Ax‖22 : supp(x) ⊆ Sp+1}.

The vector wp generated by the “compressing step” of the ROTP might not be
sparse enough. This motivates the following enhanced versions of the ROTP called
ROTP2 and ROTP3 which perform compressions of the data up two and three times,
respectively, before the operator Hk is applied to the resulting compressible vector.
As shown by numerical experiments (see section 5 for details), the aforementioned
drawback of the hard thresholding will be remarkably overcome through compressing
up more than once.

ROTP2 algorithm. Input (A, y, k). Given an initial point x0 ∈ Rn, repeat the
following steps until a stoping criterion is satisfied:

S1. At xp, set up = xp +AT (y −Axp) and solve the problem

min
w
{‖y −A(up ⊗ w)‖22 : eTw = k, 0 ≤ w ≤ e }
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to get a solution w(1) to this problem. Then solve the problem

min
w
{‖y −A(up ⊗ w(1) ⊗ w)‖22 : eTw = k, 0 ≤ w ≤ e }

to get a solution w(2) to this problem.
S2. Let v ∈ Hk(up ⊗w(1) ⊗w(2)) and Sp+1 = supp(v). Let xp+1 be a solution to

the problem
min
x
{‖y −Ax‖22 : supp(x) ⊆ Sp+1}.

ROTP3 algorithm. Input (A, y, k). Given an initial point x0 ∈ Rn, repeat the
following steps until a stoping criterion is satisfied:

S1. At xp, set up = xp +AT (y −Axp) and solve the problem

min
w
{‖y −A(up ⊗ w)‖22 : eTw = k, 0 ≤ w ≤ e }

to get a solution w(1). Then solve

min
w
{‖y −A(up ⊗ w(1) ⊗ w)‖22 : eTw = k, 0 ≤ w ≤ e }

to obtain a solution w(2), and then solve

min
w
{‖y −A(up ⊗ w(1) ⊗ w(2) ⊗ w)‖22 : eTw = k, 0 ≤ w ≤ e }

to obtain a solution w(3).
S2. Let v ∈ Hk(up ⊗ w(1) ⊗ w(2) ⊗ w(3)) and Sp+1 = supp(v). Let xp+1 be the

solution to the problem

min
x
{‖y −Ax‖22 : supp(x) ⊆ Sp+1}.

Before discussing numerical results, we prove the convergence of the basic algo-
rithms presented in this section.

4. Theoretical performance. In this section, we establish the bound for the
error of approximating the solution of (1.1) with the iterates generated by the OT,
OTP, ROT, or ROTP under the RIP. In compressed sensing language, we prove the
success of signal recovery via these algorithms under the RIP. Our analysis allows
the measurements of the signal to be inaccurate, and we will point out at the end of
this section that our analysis is also valid when the target signal x∗ is not precisely
k-sparse. In particular, if the measurements are accurate and the target signal is k-
sparse, our results claim that the sequences generated by OT, OTP, ROT, or ROTP
converge to the target signal under the RIP. Let us first recall the restricted isometry
constant δK introduced by Candès and Tao [15].

Definition 4.1 (see [15, 14]). Given a matrix A ∈ Rm×n with m < n, the Kth
restricted isometry constant, denoted by δK , is the smallest number δ ≥ 0 such that

(1− δ)‖x‖22 ≤ ‖Ax‖22 ≤ (1 + δ)‖x‖22
holds for all K-sparse vector x ∈ Rn.

The following properties will be frequently used in later analysis.

Lemma 4.2 (see [15, 47, 30]). Given u ∈ Rn and the set S ⊆ {1, 2, . . . , n}, one
has

(i) ‖((I −ATA)v)S‖2 ≤ δt‖u‖2 if |S ∪ supp(v)| ≤ t.
(ii) ‖(ATu)S‖2 ≤

√
1 + δt‖u‖2 if |S| ≤ t.
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4.1. Analysis of OT and OTP algorithms. We first analyze the theoretical
performance of the OT and OTP which provide a basic framework for the development
of the ROT and ROTP and their variants. The main result for OT and OTP is
summarized as follows.

Theorem 4.3. For every k-sparse vector x satisfying y = Ax+ν, if the restricted
isometry constant of the matrix A satisfies δ2k < τ∗ ≈ 0.5349, where τ∗ is the real
root of the univariate equation τ3 + τ2 + τ = 1, then the iterates {xp} generated by
OT or OTP satisfy that

(4.1) ‖xp − x‖2 ≤ ρp‖x0 − x‖2 + C‖ν‖2,

where ρ and C are constants given by

ρ = δ2k

√
1 + δ2k
1− δ2k

< 1, C =
3 + δ2k

(1− ρ)
√

1− δ2k
.

In particular, when ν = 0, i.e., y = Ax, the iterates {xp} generated by OT or OTP
converge to x.

Proof. Let xp be the current iterate, generated by OT or OTP, which is k-sparse.
Denote by up = xp + AT (y − Axp) and W(k) = {w : eTw = k, w ∈ {0, 1}n}. Note
that y = Ax+ ν. So

(4.2) x− up = (I −ATA)(x− xp)−AT ν.

(I) We first analyze the OT algorithm. Note that w∗(up) ∈ W(k) is a minimizer
of the problem (3.5). Thus

(4.3) ‖y −A[up ⊗ w∗(up)]‖2 ≤ ‖y −A(up ⊗ w)‖2 for any w ∈ W(k).

By the structure of the OT algorithm, xp+1 = up ⊗ w∗(up), and thus xp+1 is a k-
sparse vector with supp(xp+1) ⊆ supp(w∗(up)). Since x is a k-sparse vector, there
exists a k-sparse binary vector ŵ ∈ W(k) such that supp(x) ⊆ supp(ŵ), and hence
x⊗ (e− ŵ) = 0. Then it follows from (4.3) that

(4.4) ‖y −Axp+1‖2 ≤ ‖y −A(up ⊗ ŵ)‖2.

Note that xp+1 − x is a (2k)-sparse vector. By Lemma 4.2, we have ‖A(x− xp+1)‖ ≥√
1− δ2k‖x− xp+1‖. Thus

‖y −Axp+1‖2 = ‖A(x− xp+1) + ν‖2 ≥
√

1− δ2k‖x− xp+1‖2 − ‖ν‖2.

Merging this inequality with (4.4) leads to

(4.5) ‖xp+1 − x‖2 ≤
1√

1− δ2k
(‖y −A(up ⊗ ŵ)‖2 + ‖ν‖2).

We now estimate the right-hand side of (4.5). By the choice of ŵ and noting that
supp(x) ⊆ supp(ŵ), we see that |supp(ŵ) ∪ supp(x − xp)| ≤ 2k. Therefore, by (4.2)
and Lemma 4.2, we have

‖(x− up)⊗ ŵ‖2 =
∥∥[(I −ATA)(x− xp)]⊗ ŵ − (AT ν)⊗ ŵ

∥∥
2

≤
∥∥[(I −ATA)(x− xp)]supp(ŵ)

∥∥
2

+ ‖(AT ν)supp(ŵ)‖2
≤ δ2k‖x− xp‖2 +

√
1 + δk‖ν‖2.(4.6)

D
ow

nl
oa

de
d 

01
/2

4/
20

 to
 1

47
.1

88
.1

08
.9

7.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

OPTIMAL THRESHOLDING ALGORITHMS 43

As (x− up)⊗ ŵ is a k-sparse vector, we obtain

‖y −A(up ⊗ ŵ)‖2 = ‖ν +A(x− up ⊗ ŵ)‖2
= ‖ν +A[(x− up)⊗ ŵ + x⊗ (e− ŵ)]‖2
= ‖ν +A[(x− up)⊗ ŵ]‖2
≤ ‖ν‖2 +

√
1 + δk‖(x− up)⊗ ŵ‖2

≤ δ2k
√

1 + δk‖x− xp‖2 + (2 + δk)‖ν‖2.(4.7)

The third equality above follows from the fact x ⊗ (e − ŵ) = 0. The first inequality
above follows from Definition 4.1 with the fact (x− up)⊗ ŵ being k-sparse. The last
inequality follows from (4.6). Note that δk ≤ δ2k. Combining (4.5) and (4.7) yields
(4.8)

‖xp+1−x‖2 ≤ δ2k
√

1 + δk
1− δ2k

‖x−xp‖2 +
3 + δk√
1− δ2k

‖ν‖2 ≤ ρ‖x−xp‖2 +
3 + δ2k√
1− δ2k

‖ν‖2,

where ρ := δ2k

√
1+δ2k
1−δ2k < 1 which is ensured by δ2k < τ∗, where τ∗ (≈ 0.5349) is the

positive real root of the univariate equation τ3 + τ2 + τ = 1. The result (4.1) follows
immediately from (4.8) and the fact

∑∞
i=1 ρ

i = 1
1−ρ .

(II) We now consider the OTP algorithm, which generates the next iterate xp+1

by performing the orthogonal project step

min
z
{‖y −Az‖22 : supp(z) ⊆ supp(up ⊗ w∗(up))},

which implies that

‖y −Axp+1‖2 ≤ ‖y −A(up ⊗ w∗(up))‖2 ≤ ‖y −A(up ⊗ ŵ)‖2,

where the last inequality follows from (4.3) by setting w = ŵ. Therefore, the iterate
xp+1 generated by the OTP also satisfies the relation (4.4). Repeating the same proof
above for the OT algorithm, we see that (4.8) remains valid for the OTP with the
same constant ρ < 1.

In particular, when ν = 0, it follows immediately from (4.1) that the sequence
{xp} generated by OT or OTP converges to x.

The result above is shown under the condition δ2k < τ∗. The RIP condition has
been widely used in the theoretical analysis of various thresholding algorithms. For
instance, the convergence of the HTP was shown under the condition δ3k < 1/

√
3 (see

[30, 32]), and that of the IHT algorithm with a stepsize taken in ( 1
2(1−δ2k) ,

1
1+δ2k

) was

shown under the condition δ2k < 1/3 (see [33, 9, 6, 32]).
In the case ν = 0, the convergence rate of {xp} in Theorem 4.3 can be further

enhanced, as shown by the next corollary.

Corollary 4.4 (local convergence rate). For every k-sparse vector x with y =
Ax, under the same condition of Theorem 4.3, there exists an integer number p̂ such
that for all p ≥ p̂,

‖xp − x‖2 ≤ (ρ∗)p‖x0 − x‖2,

where

(4.9) ρ∗ := δk

√
1 + δk
1− δk

≤ ρ = δ2k

√
1 + δ2k
1− δ2k

< 1.
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Proof. By Theorem 4.3, when ν = 0, the sequence {xp} generated by OT or OTP
algorithm converges to x. Thus there is a sufficiently large integer number p̂ such
that supp(x) ⊆ supp(xp) for any p ≥ p̂. In fact, if there is an index i0 ∈ supp(x)
such that i0 /∈ supp(xp), then ‖x − xp‖2 ≥ |xi0 |, contradicting the fact xp → x as
p → ∞. Therefore, x − xp+1 and x − xp must be k-sparse for all p ≥ p̂. The left-
hand side of (4.3) is larger than or equal to

√
1− δk‖x − xp+1‖2. For p ≥ p̂, pick

a vector in W(k), denoted by ŵp, which satisfies that supp(xp) ⊆ supp(ŵp). This
implies that supp(x) ⊆ supp(ŵp) for all p ≥ p̂. Therefore, x ⊗ (e − ŵp) = 0 for all
p ≥ p̂. Replacing the vector ŵ in the proof of Theorem 4.3 with ŵp, the inequality
(4.6) can be improved to ‖(x − up) ⊗ ŵp‖2 ≤ δk‖x − xp‖2 due to the fact ν = 0 and
|supp(ŵp) ∪ supp(x− xp)| ≤ k. The estimation (4.7) can be improved to

‖y −A(up ⊗ ŵp)‖2 ≤ δk
√

1 + δk‖x− xp‖2.

Therefore, from the proof of Theorem 4.3, we have

‖xp+1 − x‖2 ≤ δk
√

1 + δk
1− δk

‖x− xp‖2, p ≥ p̂.

Since δk ≤ δ2k < τ∗, we immediately see the relation in (4.9).

This result indicates that the local convergence speed of the OT and OTP may
actually be faster than what Theorem 4.3 claims.

4.2. Analysis of ROT and ROTP algorithms. We now analyze the ROT
and ROTP algorithms which are the tightest convex relaxation counterparts of the
OT and OTP, respectively. Note that the solution wp of the relaxation problem in
(3.6) may not be exactly binary (and hence may not be k-sparse). So the analysis in
section 4.1, based on the optimal k-thresholding indicator w∗(up), does not apply to
the ROT and ROTP for which a nontrivial analysis will be provided in this section.
We first give a few useful lemmas.

Lemma 4.5. Let z ∈ Rn be a given vector. Then for any ẑ ∈ Hk(z), one has

‖z − ẑ‖22 ≤ ‖z − x‖22 − ‖(z − x)S‖22

for any k-sparse vector x ∈ Rn with S = supp(x).

Proof. Since Hk(z) retains the largest k magnitudes of z, for any ẑ ∈ Hk(z),
‖z − ẑ‖22 is the sum of the squares of the n− k smallest magnitudes of z, which must
be smaller than or equal to the sum of the squares of any n− k components of z. So
‖z − ẑ‖22 ≤ ‖zS‖22 for any set S ⊆ {1, . . . , n} with |S| ≤ k, where S = {1, . . . , n}\S.
Let x be any k-sparse vector with S = supp(x). As xS = 0 and |S| ≤ k, by setting
S = supp(x) in the inequality above, we immediately have

‖z − ẑ‖22 ≤ ‖zS‖
2
2 = ‖(z − x)S‖

2
2 = ‖z − x‖22 − ‖(z − x)S‖22,

as desired.

Lemma 4.6. Let up ∈ Rn be a given vector, and let x ∈ Rn be a k-sparse vector
with S = supp(x). Let wp be a solution to the problem (3.6). Then for any vector
v ∈ Hk(up ⊗ wp) with Sp+1 = supp(v), one has

‖x− v‖2 ≤ ‖(up ⊗ wp − x)Sp+1∪S‖2 + ‖(up ⊗ wp − x)Sp+1\S‖2.
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Proof. Let x ∈ Rn be a k-sparse vector with S = supp(x). By setting z = up⊗wp
in Lemma 4.5, for any v ∈ Hk(up ⊗ wp), we have

‖up ⊗ wp − v‖22 ≤ ‖up ⊗ wp − x‖22 − ‖(up ⊗ wp − x)S‖22.

The left-hand side can be written as

‖up ⊗ wp − v‖22 = ‖up ⊗ wp − x‖22 + ‖x− v‖22 + 2(x− v)T (up ⊗ wp − x).

Note that supp (x− v) ⊆ supp(v) ∪ supp(x) = Sp+1 ∪ S, where Sp+1 = supp(v).
Combining the two relations above yields

‖x− v‖22 ≤ −‖(up ⊗ wp − x)S‖22 − 2(x− v)T (up ⊗ wp − x).

= −‖(up ⊗ wp − x)S‖22 − 2[(x− v)Sp+1∪S ]T [up ⊗ wp − x]Sp+1∪S

≤ −‖(up ⊗ wp − x)S‖22 + 2‖x− v‖2‖[up ⊗ wp − x]Sp+1∪S‖2.(4.10)

Note that the positive root of the quadratic function (in variable t)

t2 − 2t‖(up ⊗ wp − x)Sp+1∪S‖2 + ‖(up ⊗ wp − x)S‖22 = 0

is given as follows:

t∗ =
2‖(up ⊗ wp − x)Sp+1∪S‖2 +

√
4‖(up ⊗ wp − x)Sp+1∪S‖22 − 4‖(up ⊗ wp − x)S‖22

2
= ‖(up ⊗ wp − x)Sp+1∪S‖2 + ‖(up ⊗ wp − x)Sp+1\S‖2

The inequality (4.10) implies that ‖x− v‖2 ≤ t∗, as desired.

The next lemma has been shown in the proof of Theorem 4.3. See (4.7) for details.

Lemma 4.7. Let x ∈ Rn be a k-sparse vector satisfying y = Ax+ ν. Let xp ∈ Rn
and up = xp +AT (y−Axp). Then for any ŵ ∈ W(k) satisfying supp(x) ⊆ ŵ, one has

‖y −A(up ⊗ ŵ)‖2 ≤ δ2k
√

1 + δk‖x− xp‖2 + (2 + δk)‖ν‖2.

We now prove the main result for ROT and ROTP algorithms.

Theorem 4.8. Let x be a k-sparse vector satisfying y = Ax + ν. Suppose that
the restricted isometry constant of the matrix A satisfies δ3k ≤ 1/5. Then the iterates
{xp}, generated by ROT or ROTP, approximate x with error

(4.11) ‖xp − x‖2 ≤ %p‖x0 − x‖2 + C∗‖ν‖2,

where, for ROT, the constants % and C∗ are given as

% := (δ2k + 2δ3k)

√
1 + δk
1− δ2k

+ δ3k < 1, C∗ =
1

1− %

(
5 + 3δk√
1− δ2k

+
√

1 + δk

)
,

and for ROTP the constants % and C∗ are given as

(4.12) % =
1√

1− δ2
2k

(
(δ2k + 2δ3k)

√
1 + δk
1− δ2k

+ δ3k

)
< 1,

(4.13) C∗ =
1

1− %

(
5 + 3δk

(1− δ2k)
√

1 + δ2k
+

√
1 + δk√
1− δ2

2k

+

√
1 + δk

1− δ2k

)
.

In particular, when ν = 0 (i.e., y = Ax), the sequence {xp} generated by ROT or
ROTP converges to x.
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Proof. (I) We first analyze the ROT. At xp, the ROT generates the vector wp by
solving the optimization problem (3.6) with up = xp + AT (y − Axp). Then the next
iterate is given by xp+1 ∈ Hk(up ⊗ wp). Denote by Sp+1 = supp(xp+1). Since x is a
k-sparse vector with S = supp(x), by Lemma 4.6, we have

(4.14) ‖x− xp+1‖2 ≤ ‖(up ⊗ wp − x)Sp+1∪S‖2 +
∥∥(up ⊗ wp − x)Sp+1\S

∥∥
2
.

We now estimate the upper bound for the right-hand side of the above inequality. By
using (4.2) and noting that xSp+1\S = 0 and 0 ≤ wp ≤ e, we have∥∥(up ⊗ wp − x)Sp+1\S

∥∥
2

=
∥∥(up ⊗ wp)Sp+1\S

∥∥
2

= ‖[(up − x)⊗ wp]Sp+1\S‖2
=
∥∥[(AT ν − (I −ATA)(x− xp))⊗ wp]Sp+1\S

∥∥
2

≤
∥∥[(I −ATA)(x− xp)]Sp+1\S

∥∥
2

+ ‖(AT ν)Sp+1\S‖2
≤ δ3k‖xp − x‖2 +

√
1 + δk‖ν‖2,(4.15)

where the last inequality follows from Lemma 4.2 due to the fact |supp(x − xp) ∪
(Sp+1\S)| ≤ 3k and |Sp+1\S| ≤ k. Using y = Ax+ ν, we have

‖y −A(up ⊗ wp)‖2
= ‖A(up ⊗ wp − x)− ν‖2
=
∥∥A[(up ⊗ wp − x)Sp+1∪S ] +A[(up ⊗ wp − x)

Sp+1∪S ]− ν
∥∥

2

≥ ‖A[(up ⊗ wp − x)Sp+1∪S ]‖2 −
∥∥A[(up ⊗ wp − x)

Sp+1∪S ]
∥∥

2
− ‖ν‖2

≥
√

1− δ2k‖(up ⊗ wp − x)Sp+1∪S‖2 −
∥∥A[(up ⊗ wp − x)

Sp+1∪S ]
∥∥

2
− ‖ν‖2,

and thus

(4.16) ‖(up ⊗ wp − x)Sp+1∪S‖2 ≤
1√

1− δ2k
(‖y −A(up ⊗ wp)‖2 + T + ‖ν‖2) ,

where
T := ‖A[(up ⊗ wp − x)

Sp+1∪S ]‖2.

Let ŵ ∈ W(k) be a vector such that S = supp(x) ⊆ supp(ŵ), which implies that
x⊗ (e− ŵ) = 0. Since wp is an optimal solution to (3.6), we have

(4.17) ‖y−A(up⊗wp)‖2 ≤ ‖y−A(up⊗ ŵ)‖2 ≤ δ2k
√

1 + δk‖xp−x‖2 +(2+δk)‖ν‖2,

where the last inequality follows from Lemma 4.7. Combining (4.14), (4.15), (4.16),
and (4.17), we have

‖x− xp+1‖2 ≤
1√

1− δ2k

[
δ2k
√

1 + δk‖xp − x‖2 + T
]

+

[
3 + δk√
1− δ2k

+
√

1 + δk

]
‖ν‖2

+δ3k‖xp − x‖2.(4.18)

In the remainder of the proof, we estimate the term T . Since x
S∪Sp+1 = 0, T can be

written as

T = ‖A[(up ⊗ wp)
Sp+1∪S ]‖2 = ‖A[(up − x)⊗ wp]

Sp+1∪S‖2.

Let |Sp+1 ∪ S| = (n̂− 1)k + `, where n̂ and ` are integer numbers and 0 ≤ ` < k. Let

Sp+1 ∪ S = S1 ∪ S2 ∪ · · · ∪ Sn̂−1 ∪ Sn̂
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be the disjoined partition of Sp+1 ∪ S, satisfying the following properties:
(i) Si ∩ Sj = ∅ for i 6= j, and |Si| = k for all i = 1, . . . , n̂− 1 and |Sn̂| = ` < k.

(ii) S1 is the index set for the k largest elements in the set {(wp)i : i ∈ Sp+1 ∪ S},
S2 is the index set for the second k largest elements in this set, and so on.

Thus the vector (wp)
Sp+1∪S is decomposed as

(wp)
Sp+1∪S = (wp)S1

+ · · ·+ (wp)Sn̂−1
+ (wp)Sn̂

.

Sort the components of wp supported on Si (i = 1, . . . , n̂− 1) into descending order,

and denote such ordered components by α
(i)
1 ≥ α

(i)
2 ≥ · · · ≥ α

(i)
k , and denote the

ordered components of wp supported on Sn̂ by α
(n̂)
1 ≥ α

(n̂)
2 ≥ · · · ≥ α

(n̂)
` . Thus α

(i)
1

denotes the largest entries of wp on the support Si for i = 1, . . . , n̂, α
(i)
k denotes the

smallest entry of wp on the support Si for i = 1, . . . , n̂ − 1, and α
(n̂)
` denotes the

smallest component of wp supported on Sn̂. By this notation, sorting the components
of the vector (wp)

Sp+1∪S supported on Sp+1 ∪ S into descending order, we obtain the
sequence as follows:︷ ︸︸ ︷
α

(1)
1 ≥ α(1)

2 ≥ · · · ≥ α(1)
k ≥

︷ ︸︸ ︷
α

(2)
1 ≥ α(2)

2 ≥ · · · ≥ α(2)
k ≥ · · · ≥

︷ ︸︸ ︷
α

(n̂)
1 ≥ α(n̂)

2 ≥ · · · ≥ α(n̂)
` .

We now prove that

(4.19) ∆ :=

n̂∑
i=1

α
(i)
1 ≤ 2− 1

k
< 2.

For each i, the largest entry of (wp)Si+1
is smaller than or equal to the smallest entry

of (wp)Si
, i.e., α

(i)
k ≥ α

(i+1)
1 for i = 1, . . . , n̂− 1. So we immediately see that

∆ = α
(1)
1 + α

(2)
1 + · · ·+ α

(n̂)
1 ≤ α(1)

1 + α
(1)
k + · · ·+ α

(n̂−1)
k ≤ 1 +

n̂−1∑
i=1

α
(i)
k ,

where the last inequality follows from α
(1)
1 ≤ 1 due to the fact 0 ≤ wp ≤ e. Note that

α
(i)
k ≤ α

(i)
k−1 ≤ · · · ≤ α

(i)
2 . Thus

n̂−1∑
i=1

α
(i)
k ≤

n̂−1∑
i=1

α
(i)
k−1 ≤ · · · ≤

n̂−1∑
i=1

α
(i)
2 .

So it follows from the inequalities above that ∆ ≤ 1 +
∑n̂−1
i=1 α

(i)
j for j = 2, . . . , k.

Adding these k − 1 inequalities to the equality ∆ =
∑n̂
i=1 α

(i)
1 yields

k∆ ≤ k − 1 +

n̂∑
i=1

α
(i)
1 +

n̂−1∑
i=1

α
(i)
2 + · · ·+

n̂−1∑
i=1

α
(i)
k ≤ k − 1 +

∑
j∈Sp+1∪S

(wp)j

≤ k − 1 + ‖wp‖1
= 2k − 1,

where the last inequality follows from the fact ‖wp‖1 = eTwp = k. Thus (4.19) holds.
Define the vector v(i) := [(up − x)⊗ wp]Si

; then

[(up − x)⊗ wp]
Sp+1∪S = v(1) + v(2) + · · ·+ v(n̂).
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So the vector [(up−x)⊗wp]
Sp+1∪S is decomposed into k-sparse vectors v(i) ∈ Rn, i =

1, . . . , n̂. Therefore,

(4.20) T =

∥∥∥∥∥A
n̂∑
i=1

v(i)

∥∥∥∥∥
2

≤
n̂∑
i=1

‖Av(i)‖2 ≤
√

1 + δk

n̂∑
i=1

‖v(i)‖2,

where the last inequality follows from Definition 4.1 and the fact that every v(i) is

k-sparse. We now estimate the term
∑n̂
i=1 ‖v(i)‖2. Note that

‖v(i)‖2 = ‖[(up − x)⊗ wp]Si‖2
= ‖[(AT ν)⊗ wp − ((I −ATA)(x− xp))⊗ wp]Si‖2
≤ ‖[(I −ATA)(x− xp)]Si ⊗ (wp)Si‖2 + ‖(AT ν)Si ⊗ (wp)Si‖2

≤
(

max
i∈Si

(wp)i

)
‖[(I −ATA)(x− xp)]Si

‖2 +

(
max
i∈Si

(wp)i

)
‖(AT ν)Si

‖2

≤ α(i)
1 δ3k‖x− xp‖2 + α

(i)
1

√
1 + δk‖ν‖2,

where the last inequality follows from the fact α
(i)
1 being the largest entry of (wp)Si

and Lemma 4.2 with |Si ∪ supp(x− xp)| ≤ 3k. Thus

n̂∑
i=1

‖v(i)‖2 ≤ ∆δ3k‖x− xp‖2 + ∆
√

1 + δk‖ν‖2 ≤ 2δ3k‖x− xp‖2 + 2
√

1 + δk‖ν‖2.

Merging (4.20) and the inequality above leads to

T ≤ 2δ3k
√

1 + δk‖x− xp‖2 + 2(1 + δk)‖ν‖2.

Combining (4.18) and the above bound of T yields

(4.21) ‖x− xp+1‖2 ≤ %‖x− xp‖2 +

[
5 + 3δk√
1− δ2k

+
√

1 + δk

]
‖ν‖2,

where

(4.22) % := (δ2k + 2δ3k)

√
1 + δk
1− δ2k

+ δ3k < 1

under the condition δ3k ≤ 1/5. In fact, since δk ≤ δ2k ≤ δ3k, we see that % ≤
3δ3k

√
1+δ3k
1−δ3k + δ3k < 1 which is ensured by the condition δ3k ≤ 1/5. The bound (4.11)

immediately follows from (4.21) and (4.22).
(II) We now analyze the ROTP algorithm under the same assumption. The

ROTP solves the same optimization problem (3.6) to obtain the vector wp. Let v be
an arbitrary vector inHk(up⊗wp). In ROT, v is directly taken as the next iterate xp+1.
The bound (4.21), which is shown for ROT, holds for any vector v in Hk(up ⊗ wp).
Therefore,

(4.23) ‖x− v‖2 ≤ %‖x− xp‖2 + C ′‖ν‖2,

where % is given by (4.22) and C ′ = 5+3δk√
1−δ2k

+
√

1 + δk. The ROTP uses v as the

intermediate point to compute the iterate xk+1 which is the solution to the orthogonal
projection problem

min
z
{‖y −Az‖22 : supp(z) ⊆ Sp+1 = supp(v)}.
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Thus by optimality, the solution xp+1 to this problem must satisfy that [AT (y −
Axp+1)]Sp+1 = 0 which, by using y = Ax+ ν, can be written as

[(I −ATA)(x− xp+1)]Sp+1 = (x− xp+1)Sp+1 + (AT ν)Sp+1 .

This implies that

‖(x− xp+1)Sp+1‖2 ≤ ‖[(I −ATA)(x− xp+1)]Sp+1‖2 + ‖(AT ν)Sp+1‖2
≤ δ2k‖x− xp+1‖2 +

√
1 + δk‖ν‖2.

The last equality follows from Lemma 4.2 due to the fact |supp(x−xp+1)∪Sp+1| ≤ 2k
and |Sp+1| ≤ k. Noting that (xp+1)

Sp+1 = 0 and v
Sp+1 = 0, we have

‖x− xp+1‖22 = ‖(x− xp+1)Sp+1‖22 + ‖(x− xp+1)
Sp+1‖22

= ‖(x− xp+1)Sp+1‖22 + ‖(x− v)
Sp+1‖22

≤ δ2
2k‖x− xp+1‖22 + 2δ2k

√
1 + δk‖x− xp+1‖2‖ν‖2 + (1 + δk)‖ν‖22

+ ‖(x− v)
Sp+1‖22,

and hence

(1− δ2
2k)‖x−xp+1‖22 ≤ 2δ2k

√
1 + δk‖x−xp+1‖2‖ν‖2 + (1 + δk)‖ν‖22 + ‖(x− v)

Sp+1‖22.

This implies that

‖x− xp+1‖2 ≤
2δ2k
√

1 + δk‖ν‖2 +
√

4(1 + δk)‖ν‖22 + 4(1− δ2
2k)‖(x− v)

Sp+1‖22
2(1− δ2

2k)

≤
2δ2k
√

1 + δk‖ν‖2 + 2
√

1 + δk‖ν‖2 + 2
√

1− δ2
2k‖(x− v)

Sp+1‖2
2(1− δ2

2k)

≤
√

1 + δk
1− δ2k

‖ν‖2 +
1√

1− δ2
2k

‖(x− v)
Sp+1‖2

≤
√

1 + δk
1− δ2k

‖ν‖2 +
1√

1− δ2
2k

‖x− v‖2.

Combining this inequality with (4.23) yields

‖x− xp+1‖2 ≤
%‖x− xp‖2√

1− δ2
2k

+

[
C ′√

1− δ2
2k

+

√
1 + δk

1− δ2k

]
‖ν‖2 = %′‖x− xp‖2 + C ′′‖ν‖2,

where

C ′′ =
5 + 3δk

(1− δ2k)
√

1 + δ2k
+

√
1 + δk√
1− δ2

2k

+

√
1 + δk

1− δ2k
and

%′ :=
1√

1− δ2
2k

[
(δ2k + 2δ3k)

√
1 + δk
1− δ2k

+ δ3k

]
≤ 3δ3k

1− δ3k
+

δ3k√
1− δ2

3k

< 1,

where the first inequality follows from the fact δk ≤ δ2k ≤ δ3k, and the last one follows
from the condition δ3k ≤ 1/5. Thus the error bound (4.11), with constants (4.12) and
(4.13), holds for ROTP.

In particular, when ν = 0, i.e., y = Ax, the iterates {xp} generated by the ROT
and ROTP converge to the sparse vector x.
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Remark. In signal recovery scenarios, the target signal x is usually not exactly
k-sparse and the measurements y = Ax + φ are also inaccurate, where φ is a noise
vector. In such situations, we are interested in recovering the k largest magnitudes
of x (which usually carry the most important information of the signal). Our main
results (Theorems 4.3 and 4.8) can be immediately applied to such situations. In
fact, let S ⊆ {1, . . . , n} denote the index set for the k largest magnitudes of the target
signal x. Note that

y = Ax+ φ = AxS + (AxS + φ) = AxS + ν,

where ν = AxS + φ and S = {1, . . . , n}\S. The measurements y of the original signal
x with noise φ can be seen as the measurements of the k-sparse vector xS with noise
ν = AxS + φ. Therefore, Theorem 4.3 claims that if δ2k < τ∗ ≈ 0.5349, then the
iterates {xp} generated by OT or OTP approximate xS with error

(4.24) ‖xp − xS‖2 ≤ ρp‖x0 − xS‖2 + C‖AxS + φ‖2,

where ρ and C are constants given in Theorem 4.3. Also Theorem 4.8 shows that if
δ3k ≤ 1/5, then the iterate xp generated by ROT or ROTP approximates xS with the
error (4.24), where the constants ρ and C are replaced, respectively, with % and C∗

that are given in Theorem 4.8.

5. Numerical performance. Some preliminary experiments were performed
to demonstrate the numerical behavior of the proposed algorithms. All matrices and
sparse vectors are randomly generated. The entries of matrices are assumed to be
independently and identically distributed random variables which follow N (0, 1), the
standard normal distribution with zero mean and unit variance. The nonzero entries
of the sparse vectors realized in our experiments are also assumed to follow such a
distribution, and the random positions of nonzero entries are chosen according to a
uniform distribution. All experiments were performed on a PC with the processor
Intel(R) Core(TM) i5-3570 CPU @ 3.40 GHz and 8GB memory. All programs were
written in MATLAB, and the convex optimization problems were solved by using
CVX developed by Grant and Boyd [34] with solver “sedumi.”

The first experiment was performed to illustrate the stableness of the proposed
algorithms with respect to residual reduction. We generate a random matrix A ∈
R500×1000 and a random sparse vector x∗ ∈ R1000 with sparsity level k = 120 (i.e.,
‖x‖0 ≤ 120) and then set y := Ax∗. We perform the HTP, ROTP, ROTP2, and
ROTP3 up to 50 iterations, and the values of the residual ‖y−Axp‖2 with respect to
the number of iterations for these algorithms are described in Figure 5.1(a). It can
clearly be seen that our algorithms are stable in the sense that the residual is succes-
sively reduced to the prescribed tolerance ‖y −Axp‖2 ≤ 10−8 within a small number
of iterations. From Figure 5.1(a), however, the residuals at the iterates generated by
the HTP oscillate dramatically with no clear movement towards the solution of the
problem over the course of iterations. This oscillation phenomenon in HTPs was not
observed in the ROTP and its enhanced versions, although such experiments were
repeated a number of times on random examples of the problems. This experiment
also indicates that the number of iterations required by the ROTP2 and ROTP3 to
find the solution of a problem is lower than the number of iterations required by the
ROTP. This means compressing the vector up = xp + AT (y − Axp) more than once
does improve the stability and efficiency of the algorithm, as predicted in section 3.

The second experiment was performed to demonstrate the average number of
iterations required by the proposed algorithms to meet a prescribed recovery criterion.
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Fig. 5.1. Comparision of several algorithms in residual reduction and the average number of
iterations required for sparse recovery. The maximum number of iterations is set as 50.

In this experiment, we set n = 1000 and m = βn, where the ratio β = m/n is ranged
from 0.1 to 0.6 with stepsize 0.025. For every such ratio, a random k-sparse vector
x∗ with k = bm/10c and 50 random matrices A ∈ Rm×n were generated. We set
y := Ax∗ as the measurements of x∗ for every generated matrix A. The maximum
number of iterations was set to be 50 for all algorithms. The average numbers of
iterations required by the ROTP, ROTP2, and ROTP3 to meet the recovery criterion
‖xp − x∗‖/‖x∗‖2 ≤ 10−2 are summarized in Figure 5.1(b) which shows that the
ROTP3 needs on average a smaller number of iterations than the ROPT2, and both
need a smaller number of iterations than the ROTP to meet the recovery criterion.
When the ratio is relatively high, all these algorithms only require a small number of
iterations to meet the criterion. However, the average number of iterations required by
these algorithms increases as the ratio m/n decreases. When the ratio m/n drops to a
certain threshold, the number of iterations required by the ROTP to meet the recovery
criterion goes above and beyond the prescribed maximum number of iterations, and
thus the algorithm terminates after 50 iterations.

The other two experiments were carried out to compare our algorithms with sev-
eral existing ones in terms of success frequencies of signal recovery. The first compar-
ison was done for the k-sparse signal recovery with noisy measurements. The second
comparison was done for both noisy signals and noisy measurements. We use the al-
gorithms to recover, respectively, the sparse vectors x∗ ∈ R1000 with different sparsity
levels ‖x∗‖0 ≤ 4k, where k = 25, 26, . . . , 65, and their noisy counterparts x̃ which are
approximately k-sparse. For every such sparsity level, we performed 50 random trials
of the pair (A, x∗), where A ∈ R500×1000. In the first comparison, we set y = Ax∗+ εθ
as the measurements of x∗, where ε = 0.01 and θ ∈ Rn is a random noise vector
with each component following a N (0, 1) distribution. We applied the IHT, HTP, `1-
minimization, ROTP, ROTP2, and ROTP3 to these recovery problems, respectively,
and we adopted ‖xp−x∗‖/‖x∗‖2 ≤ 10−2 as the stopping criterion. When an iterate xp

satisfies this criterion, the algorithm terminates and a “success” is counted; otherwise
an “unsuccess” is counted. If the above criterion is not satisfied after the algorithm
has been performed 50 iterations (which was set as the maximum number of itera-
tions in our experiments), then the algorithm still terminates and an “unsuccess” is
counted. In the second comparison, we generated A in the same way as the first com-
parison. The nonsparse vectors x̃ were generated by adding the noises to the sparse
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Fig. 5.2. Comparison of the success frequencies of the algorithms for signal recovery with
inaccurate measurements. For every sparsity level, 50 random examples were realized.

vectors x∗, i.e., x̃ = x∗ + ε̃θ̃, where ε̃ = 0.001 and θ̃ is a random noise vector with
each entry having a N (0, 1) distribution. We then set y := Ax̃ + εθ as the measure-
ments of x̃, where ε = 0.01 and θ is a random noise vector with each entry following
N (0, 1). The stopping criterion for this case was chosen as ‖xp − x̃S‖/‖x̃S‖2 ≤ 10−2,
where S is the index set for the 4k largest magnitudes of x̃, where k = 25, . . . , 65.
The success rates of the algorithm are summarized in Figure 5.2, in which (a) is the
result for the case in which y is inaccurate and x∗ is k-sparse, and (b) is the result
for both noisy measurements and noisy signals. The experiments indicate that the
ROTP, ROTP2, and ROTP3 remarkably outperform the traditional IHT and HTP
that fail to recover the vectors with sparsity in the abovementioned ranges. More
interestingly, the ROTP2 and ROTP3 outperform the ROTP and remarkably out-
perform the `1-minimization method, especially in noise scenarios. The experiments
indicate that the success rates of `-minimization is somewhat sensitive to the noise
level of the signals. Our algorithms, however, are more robust than `-minimization
for noisy signal recovery.

6. Conclusions and future work. The oscillation phenomenon in HTPs can
be overcome by linking the k-thresholding with residual reductions. The optimal
thresholding technique introduced in this paper naturally leads to the relaxed optimal
k-thresholding pursuit (ROTP) and its enhanced counterparts, ROTP2 and ROTP3,
which turn out to be efficient numerical methods for sparse optimization problems.
The experiments indicate that the residual can be successively reduced in the course
of iterations of the proposed algorithms, and thus the iterates generated by these
algorithms move in a stable manner towards the solution of the sparse optimization
problems. The essential idea for this new development is that the hard thresholding
operator should be applied to a compressible vector, instead of any vector. The OT
and OTP provide a fundamental basis for the development of such efficient numeri-
cal methods. Motivated by this study, several research directions are worthwhile to
pursue in the near future. For instance, the recovery bound δ2k ≤ τ∗ in Theorem
4.3 goes beyond the bounds for traditional hard thresholding methods. However,
this bound remains largely theoretical from the perspective that directly solving the
binary quadratic optimization problem in OT or OTP remains challenging, especially
in high-dimensional settings. How to use the modern integer programming techniques
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to deal with the subproblems in OT and OTP without relying on the convex relax-
ation technique is one question for interesting future work. In addition, the study
in this paper demonstrates that the ROPT, ROPT2, and ROTP3 derived from con-
vex relaxation are very efficient thresholding methods compared with existing ones.
However, the first convergence result for the ROTP was shown in this paper under
the condition δ3k ≤ 1/5 which is relatively restrictive. Whether this result can be
improved is also a worthwhile question to address in the near future. Moreover, the
optimal thresholding technique introduced in this paper can be used to stabilize any
sparsity-seeking procedures provided that the hard thresholding operator is involved
in the procedure, such as compressed sampling matching pursuits, subspace pursuits,
and the graded HTPs. So a further development for these procedures can be antic-
ipated as well. We use this paper to develop a preliminary theory but a key step
towards such a further development.

Acknowledgments. We would like to thank two anonymous reviewers and the
Associate Editor for their helpful comments and suggestions which helped improve
this paper.
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