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ALEXANDROS GROSDOS KOUTSOUMPELIAS AND MARKUS WAGERINGEL

Abstract. In this paper we study ideals arising from moments of local Dirac
measures and their mixtures. We provide generators for the case of first order lo-
cal Diracs and explain how to obtain the moment ideal of the Pareto distribution
from them. We then use elimination theory and Prony’s method for parameter
estimation of finite mixtures. Our results are showcased with applications in sig-
nal processing and statistics. We highlight the natural connections to algebraic
statistics, combinatorics and applications in analysis throughout the paper.

1. Introduction

Moments of statistical and stochastic objects have recently gained attention from
an algebraic and combinatorial point of view; see [AFS16; IS17; KSS18]. In this
paper, we extend those methods to the study of moment ideals of mixture models
coming from Dirac measures.

Finite mixture models appear in a wide range of applications in statistics and
possess a nice underlying geometric structure as in [Lin83]. They are of use when a
population consists of a finite number of homogeneous subpopulations each having
its own distribution with density function φj(x). Then the whole population follows
a distribution with p.d.f. given by

φ(x) =
r∑
j=1

λjφj(x),

where 0 ≤ λj ≤ 1 and
∑r

j=1 λj = 1. A central problem associated with mixture
models is identifying the parameters involved in the distributions of the components
as well as the mixing parameters λj from a sample. A common approach to this
problem is computing the moments of the observed sample and finding the mixture
model that best fits the observations.

The moments mi of a distribution with probability density function φ are given by
the integrals

mi =

∫
xiφ(x)dx.

Moments of mixture distributions are therefore convex combinations of the moments
of the components. Despite the integral in the definition, it turns out that for many
of the commonly used distributions (Gaussian, Poisson, binomial, . . . ), the moments
are polynomials in the parameters. This allows for a number of algebraic techniques
to be used, such as studying determinants of moment matrices in [Lin89], or using
polynomial algebra for the Gaussian distribution in work that started with Pearson
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[Pea94], continued with [Mon03] and [Laz04] and was given a systematic algebraic
and computational treatment in [AFS16].

In the case when the moments are polynomials or, more generally, rational func-
tions in the parameters, one can study the (projective) variety containing all the
points [m0 : m1 : · · · : md] ∈ Pd. Using Gröbner basis methods to compute the ideals
quickly becomes a computationally intractable problem because these methods are
very sensitive to the increase of the number of variables as more mixture components
are added. On the geometric side, taking mixtures of a distribution corresponds
to obtaining the secants of the moment variety of this distribution, see for exam-
ple [DSS09, Chapter 4]. Aside from the statistical context, secant varieties play an
important role in many other areas, such as in tensor rank and tensor decompo-
sition problems; see [Lan12]. A particular example of this is the symmetric tensor
decomposition problem, which can be formulated in terms of homogeneous polynomi-
als and is classically known as Waring’s problem: Given a homogeneous polynomial
f ∈ k[x0, . . . , xn] of degree d, find a decomposition f = Ldξ1 + · · ·+Ldξr into powers of
linear forms Lξj := ξj0x0 + · · ·+ ξjnxn, j = 1, . . . , r, for the smallest possible natural
number r. From a measure-theoretic point of view, this involves a mixture of Dirac
measures δξj supported at points ξj ∈ Pn.

Local mixtures are similar to mixture models and they have a fascinating under-
lying geometric theory; see [Mar02; AM07b]. A finite local mixture of a distribution
depending on a parameter ξ with density function φξ(x) involves adding some varia-
tion to the distribution through its derivatives

φξ(x) +
l∑

i=1

αiφ
(i)
ξ (x)

for local mixing coefficients αi. We define l to be the order of a local mixture if αl
is non-zero. Adding to the statistics-to-geometry dictionary, the moments of local
mixtures of order 1 correspond to taking the tangent variety of the moment variety.
Moments of higher-order local mixtures correspond to varieties known as osculating
varieties [BCGI07].

In this paper we consider the local mixtures of univariate Dirac measures. We
study the varieties associated to their moments and provide a generating set for the
first order case in Theorem 3.1 similar to the one in [Eis92]. We use techniques from
commutative algebra and combinatorics to prove this result. After reparametrizing
the moments of the Pareto distribution, one observes that they are inverses of the
first order local Dirac moments, as shown in Section 4. Exploiting this fact and the
generators we found, we obtain generators for the moment ideal of the Pareto as well.

In Section 5, we study the problem of identifying the parameters of mixtures of
first-order local Dirac distributions. We use the equivalent cumulant coordinates that
often simplify the varieties under consideration. In the case of a mixture of two local
Diracs the moments are given by

mi = λ(ξi1 + iα1ξ
i−1
1 ) + (1− λ)(ξi2 + iα2ξ

i−1
2 ),

for a pair of parameters (ξi, αi) from each mixture and a mixing parameter λ. We
are able to show that the moment (respectively cumulant) map

(ξ1, ξ2, α1, α2, λ) 7−→ [m0 : m1 : · · · : md]
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is finite-to-one for d = 5 and one-to-one for d = 6. In addition to providing specific
polynomials, we also formulate two algorithmic strategies for recovering the parame-
ters of local mixtures. The second algorithm is an extension of Prony’s method, which
is a tool used in signal processing for recovering mixtures of Dirac distributions; see
[PT14] for a survey.

In Section 6, we illustrate the content of the paper numerically by providing an
application to the reconstruction of piecewise-polynomial functions from Fourier sam-
ples. For smooth functions, the truncated Fourier series provides a good approxima-
tion of a signal due to rapid uniform convergence, but in the presence of disconti-
nuities, uniform convergence is lost owing to the occurence of oscillations known as
Gibbs’ phenomenon near the singularities. Possible approaches to circumvent this
include auto-adaptive spectral approximation [MP09] and Gegenbauer approxima-
tion [AG02]. In contrast, we adopt a piecewise-polynomial model, which accounts
for discontinuities. Such models are frequently employed in schemes for detection of
discontinuities from sampled data [Lee91; Wri10]. Applying our results on parameter
recovery of Section 5 allows for the reconstruction of piecewise-polynomial functions
from the minimal number of Fourier samples.

The second application comes from local mixture models in statistics [AM07a;
AM07b]. These are used for samples whose variation has mostly – but not entirely –
been explained by the model. The local components added to the model account for
the remaining variation. We express local mixture models as convolutions of a basic
model with a local Dirac. We then proceed to present a numerical example where
we estimate the mixing parameters using moments coming from a sample of local
Gaussians.

2. Preliminaries

2.1. Moments. The k-th moment of the l-th order local mixture of a univariate
Dirac measure δξ is given by

ml,k = ξk +

min{l,k}∑
i=1

αi
k!

(k−i)!ξ
k−i

for some given parameters ξ and α1, . . . , αl; see [Sch73, Chapter 2]. For example, for
the first order mixture with α := α1, we obtain m0 = 1, m1 = ξ+α, m2 = (ξ+ 2α)ξ,
m3 = (ξ + 3α)ξ2, and so on. Since models focus on some predetermined order l, we
omit the l in the subscript whenever the order is clear.

In statistics one has m0 = 1, which leads to the restriction
∑l

j=0 λi = 1. For a local
mixture, this translates to the condition that the coefficient of the main component,
in this case the coefficient of ξk, is one; see also [AM07b]. Note that since the
components of a local mixture are not necessarily probability distributions one does
not require αi ≥ 0, but other semialgebraic restrictions are necessary for statistics,
see for instance Section 6.2 and [Mar02].

Definition 2.1. Let f0, . . . , fd ∈ k(x1, . . . , xs) be rational functions. The Zariski-
closure of the set parametrized by

{ [m0 : · · · : md] ∈ Pd | mi = fi(x) for x ∈ ks, 0 ≤ i ≤ d}
is a projective variety of dimension at most s. If the fi are expressions for the moments
of a family of distributions with s parameters, every point in the parametrically given
set is a moment vector of an element of the family and the variety is called moment
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variety with respect to d of the family of distributions, which we commonly denote
by Xd.

Throughout this paper, we will denote the homogeneous ideal of Xd by Id. Since
in statistics the zeroth moment m0 is equal to 1, we will often work with the corre-
sponding dehomogenized version of the ideal which we denote by Ĩd.

Even though the distributions we consider are usually defined over the real num-
bers R, since the moments are polynomials or rational functions in the parameters,
it is often convenient to work with the complexification of the moment varieties, or
more generally, to work over any algebraically closed field. Therefore, unless specified
otherwise, we will assume k to be an algebraically closed field of characteristic 0.

2.2. Difference functions. For describing the generators of the moment ideal, the
following notion is useful. We define ∆r as the Vandermonde determinant

∆r = det
(
Xk
j

)
0≤k,j≤r =

∏
0≤i<j≤r

(Xj −Xi),

considered as an element of the polynomial ring k[X0, . . . , Xr]. Thus, for r = 1, the
powers of ∆1 are just the higher order differences

∆1 = X1 −X0,

∆2
1 = X2

1 − 2X0X1 +X2
0 ,

∆3
1 = X3

1 − 3X0X
2
1 + 3X2

0X1 −X3
0 .

We define E to be the k-linear map between polynomial rings

(2.1)
E : k[X0, . . . , Xr] −→ k[M0,M1, . . . ],

Xa0
0 · · ·Xar

r 7−→Ma0 · · ·Mar ,

in which we interpret X0, . . . , Xr as abstract random variables which are viewed as
independent replicates of a distribution, that is,

E(Xa
jX

a′

j′ ) = E(Xa
j )E(Xa′

j′ ) = MaMa′ .

The map E can then be understood as the expectation of random variables, mapping
any random variable that is a polynomial expression in the variablesX0, . . . , Xr to the
abstract moments, which are polynomial expressions in Ma, a ∈ N. More formally,
this interpretation is captured by the concept of Umbral Calculus; see, e. g., [RS00]
for a brief overview.

With this notation,
E(Xa0

0 · · ·Xar
r ∆n

r )

is a homogeneous polynomial of degree r+1 in the momentsMa, a ∈ N. For example,
for r = 1, we get

E(Xa0
0 X

a1
1 ∆n

1 ) =
n∑
k=0

(−1)k
(
n

k

)
Ma0+kMa1+n−k.

Note that, in the notation of [Eis92], we have E(Xa0
0 X

a1
1 ∆1) = ∆a0,a1 as well as

E(Xa0
0 X

a1
1 ∆3

1) = Γa0,a1 .
When working with finitely many variables M0, . . . ,Md, we will assume that the

map E is restricted to a suitable subspace.
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3. Ideals of local mixtures

3.1. Generators of the first order moment ideal. In this section, we focus on
the case of local mixtures of order l = 1. Our main goal is to find a generating set for
the ideal Id := I(Xd), the homogeneous (with respect to the standard grading) ideal
of the moment variety. Note that this ideal is also homogeneous with respect to the
grading induced by the weight vector (0, 1, . . . , d). The main result we prove here is
the following:

Theorem 3.1. For d ≥ 6, let Jd be the ideal generated by the
(
d−2

2

)
relations

fi,j := (j − i+ 3)MiMj − 2(j − i+ 2)Mi−1Mj+1 + (j − i+ 1)Mi−2Mj+2,

for 2 ≤ i ≤ j ≤ d− 2. Then Jd is equal to Id, the homogeneous ideal of the moment
variety.

We remark here that an alternative equivalent set of generators was given in [Eis92,
Section 3]:

Theorem 3.2. For d ≥ 6,

Id = 〈E(Xa0
0 X

a1
1 ∆3

1) | 0 ≤ a0 < a1 ≤ d− 3〉
is the ideal generated by

(
d−2

2

)
relations coming from the third powers of Vandermonde

determinants.

More explicitly, Theorem 3.2 means that the moment ideal is generated by the(
d−2

2

)
quadratic relations

(3.1) MiMj+3 − 3Mi+1Mj+2 + 3Mi+2Mj+1 −Mi+3Mj for 0 ≤ i < j ≤ d− 3.

The proof in Eisenbud’s paper employs multilinear algebra and representation the-
ory to find the generators of the ideal of the variety. Our proof relies heavily on
combinatorics in order to compute the Hilbert functions of the ideals involved, as
explained below.

In order to prove Theorem 3.1, we employ the following strategy. First, we work
with the dehomogenized version J̃d and Ĩd of the ideals, where we set M0 = 1. The
ideal J̃d can be seen to be contained in Ĩd, which is shown in Equation (3.4) below.
Then, we use the grading of the polynomial ring k[M1,M2, . . . ,Md] given by the
vector (1, 2, . . . , d) as well as combinatorics to show that the ideals in question have
the same Hilbert series.

Lemma 3.3. Let ≺ be the monomial order on k[M1,M2, . . . ,Md] that compares
monomials with the reverse lexicographical order with M1 ≺ M2 ≺ · · · ≺ Md. Then
the monomial ideal Sd generated by

〈MiMj | 2 ≤ i ≤ j ≤ d− 2〉+ 〈M1MiMd−1 | 2 ≤ i ≤ d− 2〉+ 〈M2
1M

2
d−1〉

is contained in in≺ Jd.

Proof. The degree 2 monomials of Sd are precisely the leading terms of the generators
of Jd with respect to ≺. For the degree 3 monomials in the generating set of Sd,
one obtains M1MiMd−1 for i = 2, 3, . . . , d − 3 as the leading term of the S-pair
S(f2,i, f2,d−2) reduced by the elements in the generating set of Jd. Similarly, the
monomial M1Md−2Md−1 arises as the leading term of the S-pair S(f2,d−2, fd−2,d−2)
after reducing. Finally, M2

1M
2
d−1 is the leading term of a polynomial in the ideal

〈f2,d−2, f2,d−3, fd−2,d−2〉. One obtains this polynomial by taking the S-pair of f2,d−2
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and fd−2,d−2, reducing by f2,d−3, and then taking the S-pair of the resulting polynomial
with f2,d−2. �

Our goal now is to show that the ideal Sd has the same Hilbert series as Ĩd from
which we conclude that it is indeed its initial ideal.

Lemma 3.4. The ideal Sd defined in Lemma 3.3 has a primary decomposition

(3.2) 〈MiMj | 1 ≤ i ≤ j ≤ d− 2〉 ∩ 〈MiMj | 2 ≤ i ≤ j ≤ d− 1〉.

Proof. Set C = 〈MiMj | 2 ≤ i ≤ j ≤ d− 2〉. Then we want to show that

Sd = (〈M1Mi | 1 ≤ i ≤ d− 2〉) + C) ∩ (C + 〈MiMd−1 | 2 ≤ i ≤ d− 1〉).
Inclusion of Sd in the other ideal follows by checking that each generator of Sd is

divided by some monomial in each part of the decomposition.
For the other inclusion, take a monomial m in the intersection. If the monomial is

divided by some monomial in C, it is clearly in Sd. If not, there are two possibilities.
The first one is that m is divided by both M2

1 and M2
d−1, in which case it is divided

by the single generator M2
1M

2
d−1 of Sd. The other one is that m is divided by two

monomials M1Mi and MjMd−1, with j ≥ 2 and i ≤ d − 2. In this case, M1MiMd−1

and M1MjMd−1 both divide m and at least one of them must be in Sd. �

Consider the polynomial moment map

(3.3)
momd : k[M1,M2, . . . ,Md] −→ k[A,X]

Mi 7−→ (X + iA)X i−1.

From now on, we consider the grading given by degMi = i on k[M1,M2, . . . ,Md] and
the standard grading degA = degX = 1 on k[A,X]. The moment map becomes
graded this way. The ideal Ĩd is the kernel of this map. Using the lemmata above,
we are able to compare the Hilbert series of the ideals.

Proof of Theorem 3.1. We show first the equality of the dehomogenized ideals Ĩd and
J̃d. The inclusion J̃d ⊆ Ĩd follows from the fact that, for each of the generators of J̃d,
substituting Mi with its image given by the moment map evaluates to zero. Indeed,
we have
(3.4)

momd((j − i+ 3)MiMj − 2(j − i+ 2)Mi−1Mj+1 + (j − i+ 1)Mi−2Mj+2)

= ((j − i+ 3)− 2(j − i+ 2) + (j − i+ 1))((X i+j + (i+ j)AX i+j−1 + ijA2X i+j−2)

= 0.

We now show equality. Let momd be the moment map (3.3) and consider the short
exact sequences

0 −→ Ĩd −→ k[M1,M2, . . . ,Md] −→ im momd −→ 0

and
0 −→ Sd −→ k[M1,M2, . . . ,Md] −→ k[M1,M2, . . . ,Md]/Sd −→ 0.

Claim 3.5. Let d ≥ 3. For n ≥ 1, the vector space in degree n in the image of the
moment map has dimension n. Thus, the Hilbert series of the image of the moment
map is

HS(im momd) =
1− t+ t2

(1− t)2
.
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Claim 3.6. Let d ≥ 6. The Hilbert series of the graded algebra k[M1,M2, . . . ,Md]/Sd
is

HS(k[M1,M2, . . . ,Md]/Sd) =
1− t+ t2

(1− t)2
.

Since Sd ⊆ in≺ J̃d ⊆ in≺ Ĩd, for all n we have the inequalities

(3.5) HF(Sd)(n) ≤ HF(in≺ J̃d)(n) ≤ HF(in≺ Ĩd)(n) = HF(Ĩd)(n).

Since the two Hilbert functions of im momd and k[M1,M2, . . . ,Md]/Sd coincide, it
follows from the two exact sequences above that HF(Sd)(n) and HF(Ĩd)(n) are also
equal. Thus, all inequalities in (3.5) are in fact equalities, implying that J̃d = Ĩd.

By [CLO15, Section 8.4, Theorem 4], it follows that the Gröbner basis of Id is
the homogenized version of the Gröbner basis for Ĩd. This can be obtained in both
cases by using the Buchberger algorithm on the corresponding generating set given
by Theorem 3.1 to obtain polynomials whose initial terms are the ones given by
Lemma 3.3. The homogeneous version follows, i. e., Id is equal to Jd. �

We finally show the two claims we used in the proof of the Theorem.

Proof of Claim 3.5. We use induction to show that, for each degree n (recall that
we are using the standard grading here), the corresponding vector space has n basis
elements Xn + nAXn−1 and AiXn−i for i = 2, 3, . . . , n and n ≥ 2.

For n = 1, the corresponding vector space is generated by X + A.
For n = 2, the only generators are (X+A)2 and the image ofM2, that is X2+2AX.

It follows that the vector space in degree 2 is generated by X2 + 2AX and A2.
For n = 3, there are three generators X3 + 3AX2, (X +A)A2 and (X +A)3. One

checks that (X + A)3 − (X3 + 3AX2) = 3A2X + A3 and (X + A)A2 = XA2 + A3,
which implies the vector space has a basis consisting of the elements X3 + 3AX2,
A2X and A3.

Now assume that the inductive hypothesis is true in degrees n and n+1. Then the
basis elements AiXn+2−i for i = 4, 5, . . . , n in degree n + 2 arise by multiplying the
corresponding terms in degree n with A2. Further, multiplying the terms A3Xn−2,
A2Xn−1 and Xn+1 + (n + 1)AXn of degree n + 1 with X + A, we obtain A3Xn−1 +
A4Xn−2, A2Xn +A3Xn−1 and Xn+2 + (n+ 2)AXn+1 + (n+ 1)A2Xn, which give rise
to the remaining three required terms.

It remains to show that there exists no combination other thanXn+2+(n+2)AXn+1

that involves the terms Xn+2, AXn+1. Indeed, any such combination can only arise
in the following way: we choose k and l between 0 and n + 2 such that k + l =
n + 2 and we form the product (Xk + kAXk−1)(X + A)l. But this is equal to
Xn+2 + (n + 2)AXn+1 + sum of lower terms. Thus the given set of polynomials is
indeed a vector space basis. �

Proof of Claim 3.6. We use the primary decomposition of the monomial ideal Sd
given by Lemma 3.4 to compute the Hilbert series. By inclusion-exclusion on the
primary decomposition, we obtain that HS(k[M1,M2, . . . ,Md]/Sd) is equal to

HS(k[M1,M2, . . . ,Md]/〈MiMj | 1 ≤ i ≤ j ≤ d− 2〉)
+ HS(k[M1,M2, . . . ,Md]/〈MiMj | 2 ≤ i ≤ j ≤ d− 1〉)
− HS(k[M1,M2, . . . ,Md]/〈MiMj | 1 ≤ i ≤ j ≤ d− 1〉).

We compute the three Hilbert series separately.
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For the first one, note that the vector space in degree n is spanned by monomials
in degree n that use the indeterminates Md−1, Md and maybe one of the Mi for
1 ≤ i ≤ d − 2 at most once (indeed, any pairwise product of them vanishes in the
quotient.) Thus, the cardinality of the vector space is equal to the number of ways
of partitioning the number n as a sum using only the numbers d− 1, d and at most
one of the numbers 1, 2, . . . , d− 2 at most once. Hence, the first Hilbert series is

1

1− td−1

1

1− td
(1 + t+ · · ·+ td−2).

A similar argument for the second part yields the series
1

1− t
1

1− td
(1 + t2 + t3 + · · ·+ td−1),

while for the third one we obtain
1

1− td
(1 + t+ · · ·+ td).

Summing up gives :
1

1− td

(
1

1− td−1
(1 + · · ·+ td−2) +

1

1− t
(1 + t2 + t3 + · · ·+ td−1)− (1 + · · ·+ td)

)
=

1

1− td
1

(1− t)2

(
(1− t) + (1− t) + t2 − td − (1− t)(1− td+1)

)
=

1− t+ t2

(1− t)2
.

This finishes the proof of the claimed result. �

Remark 3.7. We have computed above the Hilbert series of our ideals for a special
grading. Eisenbud in [Eis92] proved the equivalent result for the standard grading.
For d ≥ 6, the Hilbert series of the ideal Id is

1 + (d− 2)t+ (d− 2)t2 + t3

(1− t)3
.

Remark 3.8. We apply the methods of [Cil+16] on Cremona linearizations to sim-
plify the description of the moment ideal. For this, let y0 := M0 = 1 as before and
define a polynomial transformation as

yi :=

{
Mi if i ≤ 3,

Mi − zi otherwise,

where

zi :=


Mi if i ≤ 3,
1
2
k(k + 1)zk−1zk+2 − 1

2
(k − 1)(k + 2)zkzk+1 if i > 3 and i = 2k + 1,

k2zk−1zk+1 − (k − 1)(k + 1)z2
k if i > 3 and i = 2k.

This map is triangular and thus invertible. Further, one checks that in these variables,
if d ≥ 3, the moment variety is defined by the quartic polynomial equation

(3.6) 3y2
1y

2
2 − 4y3

1y3 − 4y3
2 + 6y1y2y3 − y2

3 = 0

and the equations 0 = y4 = y5 = · · · = yd. This means that the variety is mapped
isomorphically to a surface in a three-dimensional linear subspace.
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Note that the polynomial in Equation (3.6) is, up to a constant factor, the discrim-
inant of the polynomial

1 + 3y1X + 3y2X
2 + y3X

3.

Since the discriminant of a polynomial vanishes whenever it has at least one double
root, the moment variety X3 is thus parametrized by cubics with a double root. Recall
that this is the tangent variety of the Veronese curve. It is depicted in Figure 1.

Figure 1. The surface defined by Equation (3.6)

More generally, up to a projective linear transformation, the tangent variety of the
Veronese curve has the parametrization

{
[
ud−1v

]
∈ Pd : u, v linear forms}.

We refer to [OR14, Corollary, p. 305] for the general description of the generators for
the tangential variety of the Veronese variety that also covers the multivariate case,
as well as a generalization to tangential varieties of Segre-Veronese varieties.

3.2. Conjectures for higher orders. Note that by replacing i with i + 2, the
generators of the polynomial in Theorem 3.1 can be written in the more symmetric
form (j−i+1)Mi+2Mj−2(j−i)Mi+1Mj+1+(j−i−1)MiMj+2. Computer experiments
with Macaulay2 [GS18] seem to suggest the following extrapolation for a 2-local
mixture:

Conjecture 3.9. Let I2,d be the ideal of the moments of the second-order local
mixture. Then for d ≥ 12 this ideal is generated by

c0Mi+3Mj + c1Mi+2Mj+1 + c2Mi+1Mj+2 + c3MiMj+3

for i ≥ 0, j ≥ 0 and i ≥ j − 3, where

c0 = (j − i+ 1)(j − i+ 2) c1 = −3(j − i− 1)(j − i+ 2)

c2 = 3(j − i+ 1)(j − i− 2) c3 = −(j − i− 1)(j − i− 2).

The equivalent generators in the notation of Theorem 3.2 are

E(X i
0X

j
1∆5

1) =

MiMj+5 − 5Mi+1Mj+4 + 10Mi+2Mj+3 − 10Mi+3Mj+2 + 5Mi+4Mj+1 −Mi+5Mj.

Although the second set of generators seems more natural than the first one above,
it appears that the methods in [Eis92] do not immediately extend to the higher order
case. On the other hand, one could retrace the steps of the proof of Theorem 3.1 to
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prove this Conjecture. The main difficulty here is finding the dimension of the vector
spaces in the image of the moment map Mi 7→ X i + AiX i−1 +B2i(i− 1)X i−2.

One can generalize this set of generators for higher orders of mixtures:

Conjecture 3.10. Let Il,d be the ideal of the moments of the l-th order local mixture.
Then for d sufficiently large, this ideal is generated by the polynomials

E(Xa0
0 X

a1
1 ∆2l+1

1 ) =
2l+1∑
k=0

(−1)k
(

2l + 1

k

)
Ma0+kMa1+2l+1−k.

4. Pareto distribution

The Pareto distribution was introduced by Vilfredo Pareto as a model for income
distribution, see [Arn83]. It is a heavy-tailed continuous probability distribution that
finds a wide range of applications, especially in econometrics. In the univariate case,
its probability density function is

ϕ(x) :=
αξα

xα+1
1{x≥ξ},

where α, ξ ∈ R>0. The moments of this distribution are given by

mi =

{
α
α−iξ

i, i < α,

∞, i ≥ α;

see [Arn83]. We show below how to reparametrize them so that the moments of the
Pareto are the inverses of the first order local mixture of Diracs and exploit this fact
to obtain generators of the Pareto moment ideal.

4.1. Ideal generators. Algebraically, we are interested in the cases for which the
moments are finite, which are described by the image of the map

R>d × R>0 −→ Pd,

(α, ξ) 7−→ [m0 : · · · : md] =

[
α

α− i
ξi
]

0≤i≤d
,

for a given d ∈ N, where Pd denotes the projective space over C. We define the
moment variety of the Pareto distribution as the Zariski-closure over C of the image
of the above map. Since R>d is Zariski-dense in C, we may extend the domain of the
parametrization to (C \ {0, . . . , d})×C× without changing the Zariski-closure of the
image. Let ρ be the corresponding map ρ : (C \ {0, . . . , d})× C× → Pd.

Proposition 4.1. Let Y := im(ρ) ⊆ Pd be the Pareto moment variety and X ⊆ Pd
the moment variety of 1-local mixtures, that is, the tangent variety of the Veronese
curve. Then X and Y are birationally equivalent via the rational map

ψ : Pd 99K Pd, [m0 : · · · : md] 7−→
[
m−1

0 : · · · : m−1
d

]
.

Proof. We change the parametrization of the Pareto moment variety via the bijective
map

η : {(α, ξ) ∈ C× × C× | −ξα−1 6= 1, . . . , d} −→ (C \ {0, . . . , d})× C×,
(α, ξ) 7−→

(
−ξα−1, ξ−1

)
,
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which leaves Y as the closure of the image of ρ◦η unchanged. With this parametriza-
tion, the moments are of the form

[m0 : · · · : md] = ρ(η(α, ξ)) =

[
−ξα−1

−ξα−1 − i
ξ−i
]

0≤i≤d
=

[
1

ξi + iαξi−1

]
0≤i≤d

,

so ψ maps points from the image of ρ ◦ η to moment vectors of 1-local mixtures, that
is, to points on X . Then ψ|Y : Y 99K X is a rational map that is an isomorphism on
the dense subset im(ρ ◦ η) of Y , as im(ρ ◦ η) ⊆ {mi 6= 0}. Being the tangent variety
of an irreducible variety, X is irreducible by [Lan12, Section 8.1]. Thus, the image of
ψ|Y is dense in X which proves the claim. �

Theorem 4.2. For d ≥ 6, let Ĩ inv
d ⊆ R := C[M1, . . . ,Md] be the ideal generated by

the
(
d−2

2

)
polynomials

(j−i+3)Mi−2Mi−1Mj+1Mj+2−2(j−i+2)Mi−2MiMjMj+2+(j−i+1)Mi−1MiMjMj+1

for 2 ≤ i ≤ j ≤ d − 2, where we assume M0 = 1. Then the affine Pareto moment
ideal is equal to the saturation

Ĩ inv
d : (M1 · · ·Md)

∞.

Proof. Let Ĩd ⊆ C[M1, . . . ,Md] be the dehomogenization of the moment ideal of local
mixtures of Diracs which was studied in Section 3.1. In order to restrict to the
algebraic torus where the rational map ψ given in Proposition 4.1 is defined, consider
J := R[y]Ĩd + 〈M1 · · ·Mdy − 1〉 ⊆ R[y]. The restriction of the map ψ to the torus
agrees with the torus automorphism induced by the homomorphism

ψ̄ : R[y] −→ R[y],

y 7−→M1 · · ·Md,

Mi 7−→M1 · · ·Mi−1Mi+1 · · ·Mdy.

Note that we can choose an ideal I ′ ⊆ R such that ψ̄(J) = R[y]I ′+ 〈M1 · · ·Mdy − 1〉
by observing that, for any f ∈ Ĩd, we can choose a suitable k ∈ N such that
(M1 · · ·Md)

kψ̄(f) ≡ f ′ (mod 〈M1 · · ·Mdy − 1〉) for some f ′ ∈ R. In particular, this
construction establishes a bijection between the generating set of Ĩd given in Theo-
rem 3.1 and the generating set of Ĩ inv

d . Therefore, we choose I ′ := Ĩ inv
d . In order to

describe the affine closure of the image of ψ, we intersect ψ̄(J) with R, which is equal
to

ψ̄(J) ∩R = Ĩ inv
d : (M1 · · ·Md)

∞

by [CLO15, Theorem 4.4.14] from which we conclude. �

The statement of the Theorem also holds for the ideal we get if, in the construction,
we replace the generators of Theorem 3.1 by those in (3.1). Taking the saturation in
the construction is necessary in order to prevent the variety from containing additional
irreducible components that are supported on the boundary of the algebraic torus,
which cannot be part of the Pareto moment variety. In computations we carried out,
the ideal Ĩ inv

d has a smaller primary decomposition and performs faster with computer
algebra systems when compared with its counterpart implied by (3.1).
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5. Recovery of Parameters

In this section we use the method of moments [BS06] to estimate the parameters
of mixtures of Dirac local mixture distributions. In statistics, one often starts with a
measurement from a population or a sample following a particular distribution. From
this, one can compute the empirical moments (or equivalently the cumulants) and
try to deduce the original parameters of the underlying distribution. By contrast,
in signal processing, one usually obtains the moments of a measure directly using
Fourier methods.

5.1. Cumulants. So far in this paper, we focused on moment coordinates. Cumu-
lants are an alternative set of associated quantities that are well-known to statisticians
and have recently become an object of study for algebraists. The cumulants ki of a
distribution can be given as an invertible polynomial transformation of the moments
and they carry the same information. However, for many interesting distributions
studied in the literature, they have a simpler form than the moments and doing com-
putations with them empirically turns out to be faster, which becomes very useful
when Gröbner basis computations are involved. In the univariate case, let

M(t) =
∞∑
i≥0

mi
ti

i!
and K(t) =

∞∑
i≥0

ki
ti

i!

be the moment and cumulant generating functions respectively. One can symbolically
compute the relationship between moments and cumulants using the relations

M(t) = expK(t) and K(t) = logM(t).

For example, up to degree 5, we obtain

(5.1)

k0 = 0,

k1 = m1,

k2 = m2 −m2
1,

k3 = m3 − 3m1m2 + 2m3
1,

k4 = m4 − 4m1m3 − 3m2
2 + 12m2

1m2 − 6m4
1,

k5 = m5 − 5m1m4 − 10m2m3 + 20m2
1m3 + 30m1m

2
2 − 60m3

1m2 + 24m5
1,

and more generally kd = md + pd(m1,m2, . . . ,md−1), where pd is some polynomial.
In particular, the first cumulant is the mean and the second cumulant the variance
of the distribution.

Notice that the cumulants are given in a triangular form and can therefore be
inverted to give the moments as functions thereof. Precise (and in our opinion beau-
tiful) combinatorial formulas giving the cumulants as functions of the moments can
be found in Chapter 4 of [Zwi15].

Another useful property of cumulants is translation invariance: Adding a quantity
q to each element in a sample only increases the first cumulant by q, while all higher
cumulants remain the same. One often exploits this property by assuming that the
mean m1 = k1 is zero.

5.2. Identifiability of finite mixtures by elimination theory. In this subsection
we apply elimination theory [CLO15] to recover the parameters of a mixture distri-
bution. We transform polynomials into their cumulant versions instead of moments
because computations are significantly faster. We present an algorithm to do this
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and explicitly perform computations in the case of a mixture with two components
using the computer algebra system Macaulay2 [GS18].

In this case, the i-th moment is given by

mi = λ(ξi1 + iα1ξ
i−1
1 ) + (1− λ)(ξi2 + iα2ξ

i−1
2 ).

Transforming into cumulants by using the equations (5.1), we obtain polynomials

(5.2)

f1 = −k1 + λ(ξ1 + α1) + (1− λ)(ξ2 + α2),

f2 = −k2 + λ(ξ2
1 + 2α1ξ1) + (1− λ)(ξ2

2 + 2α2ξ2)

− (λ(ξ1 + α1) + (1− λ)(ξ2 + α2))2,

f3 = −k3 + λ(ξ3
1 + 3α1ξ

2
1) + (1− λ)(ξ3

2 + 3α2ξ
2
2)

− 3(λ(ξ1 + α1) + (1− λ)(ξ2 + α2))(λ(ξ2
1 + 2α1ξ1) + (1− λ)(ξ2

2 + 2α2ξ2))

+ 2(λ(ξ1 + α1) + (1− λ)(ξ2 + α2))3,

and so on. Instead of using elimination theory directly on the variables ξi, we rather
look at their symmetric polynomials ξ1ξ2 and ξ1 + ξ2, as was done in [AFS16].

Define a polynomial fs = s − (ξ1 + ξ2) and consider the ideal generated by
〈f1, . . . f5, fs〉. By eliminating the variables α1, α2, ξ1, ξ2, λ, we obtain an ideal gener-
ated by the single polynomial

gs = (4k3
2 + k2

3)s4

− (32k1k
3
2 + 24k2

2k3 + 8k1k
2
3 + 4k3k4)s3

+ (96k2
1k

3
2 + 24k4

2 + 144k1k
2
2k3 + 24k2

1k
2
3 + 36k2k

2
3 + 20k2

2k4 + 24k1k3k4 + 4k2
4

+ 2k3k5)s2

− (128k3
1k

3
2 + 96k1k

4
2 + 288k2

1k
2
2k3 + 32k3

1k
2
3 + 80k3

2k3 + 144k1k2k
2
3 + 80k1k

2
2k4

+ 48k2
1k3k4 + 8k3

3 + 40k2k3k4 + 16k1k
2
4 + 8k2

2k5 + 8k1k3k5 + 4k4k5)s

+ (64k4
1k

3
2 + 96k2

1k
4
2 + 192k3

1k
2
2k3 + 16k4

1k
2
3 + 160k1k

3
2k3 + 144k2

1k2k
2
3 + 80k2

1k
2
2k4

+ 32k3
1k3k4 + 72k2

2k
2
3 + 16k1k

3
3 + 80k1k2k3k4 + 16k2

1k
2
4 + 16k1k

2
2k5 + 8k2

1k3k5

+ 4k2
3k4 + 16k2k3k5 + 8k1k4k5 + k2

5)

that has degree 4 as a polynomial in the variable s over k[k1, . . . , k5].
If we substitute numerical values of the first five cumulants, we can algebraically

identify the parameters of the distribution. Indeed, for every solution for s of the
polynomial gs above, we uniquely recover the original parameters as follows. First,
we eliminate the variables (α1, α2, ξ1, ξ2, λ) from the ideal 〈f1, . . . , f5, fs, fp〉, where
fp = p− ξ1ξ2. Inside the generators, we find the polynomial

(2sk2 − 2k3)p+ 6sk2
2 − s2k3 − 10k2k3 + 2sk4 − k5

which is linear in p and thus we can substitute all values to identify p, which allows
us to obtain a pair of values for ξ1 and ξ2.

In order to determine the remaining parameters λ, α1, α2, define

λ′1 := λα1, λ′2 := (1− λ)α2

and observe that, in these new parameters, the moments depend only linearly on
λ, λ′1, λ

′
2, as we have

mi = λξi1 + λ′1iξ
i−1
1 + (1− λ)ξi2 + λ′2iξ

i−1
2 .
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Thus, from a computational point of view, the main difficulty lies in finding the points
ξ1, ξ2.

This procedure also implies that the cumulant (respectively moment) map sending
(α1, α2, ξ1, ξ2, λ) to (k1, . . . , k5) is generically four-to-one.

What is further, using the first six cumulants allows us to rationally identify the
parameters. Indeed, let f6 be the polynomial as in Equation (5.2) that contains the in-
formation about the sixth cumulant. By eliminating the five variables α1, α2, ξ1, ξ2, λ
from 〈f1, . . . , f6, fs〉 we obtained an ideal that contains a polynomial of degree 1 in
s. This polynomial has 412 terms and is too long to report here. In this case the
cumulant map is one-to-one.

Using the polynomials in this section, one can substitute the values of the cumulants
coming from any sample of a two component mixture and recover the parameters.
The process we describe above can potentially be adjusted for mixtures of Dirac local
mixtures with any number of components and local mixture depth.

We phrase the above process for a mixture of two first order local Diracs as an
algorithmic strategy for parameter estimation. We remark here that that we write
down the following primarily as an experimental process and we do not provide a
proof that it works in all cases.

Algorithm 1 Parameter recovery for local Dirac mixtures with r components of
order l
Input: The order l ≥ 0 of the mixture components, the number of mixture compo-

nents r ≥ 1 and the moments m0 = 1,m1, . . . ,m(l+2)r.
Output: The parameters ξj, λj and αjk for 1 ≤ j ≤ r, 1 ≤ k ≤ l.
1: Let f1, . . . , f(l+2)r−1 be polynomials whose zeros give the first (l+2)r−1 moments

(or cumulants) as functions of the parameters, as for example in Equation (5.2).
2: Let hpi be the i-th elementary symmetric polynomial on ξj for i = 1, 2, . . . , r, so

for example hp1 = ξ1 + · · ·+ ξr and hpr = ξ1 . . . ξr, and set fpi = pi − hpi .
3: Eliminate the parameter variables ξj, λj and αjk from the ideal

〈f1, . . . , f(l+2)r−1, fp1〉
to obtain a polynomial g1 in k[m1, . . . ,m(l+2)r−1][p1].

4: Using separately each of fp2 , fp3 , . . . , fpr , obtain polynomials g2, g3, . . . , gr in
k[m1, . . . ,m(l+2)r−1][p1, pi] for i = 2, 3, . . . , r.

5: Substitute the values for the moments (or cumulants) from a sample and solve
the equations to get a list of potential values for the pi.

6: Use the values of the pi to obtain the ξj. From those, the rest of the parameters
can be obtained.

7: Use some method to choose the parameters that best fit the sample, such as the
additional moment m(l+2)r.

In case of a probability distribution, a practical thing to do in Step 7 would be
to check, for which ((l + 2)r − 1)-tuples of ξj, λj and αjk, the λj are real numbers
between 0 and 1 and discard the rest of the solutions. Then one can check which
parameter set gives an (l + 2)r-th moment that is closest to the empirical moment
m(l+2)r.

5.3. Prony’s method. In the following, we describe an algorithm for parameter
recovery that is motivated by Prony’s method. Prony’s method is a widely used tool
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in signal processing that is useful for recovering sparse signals from Fourier samples
and dates back to [Pro95]. Here, we closely follow the discussion of Prony’s method
in [Mou18] because it covers the case of multiplicities. The variant that we use is
summed up in Theorem 5.1 below.

We first fix some notation. Denote by k[X]≤a the vector subspace of polynomials
of degree at most a ∈ N and let k[X]∗ := Hom(k[X],k) be the dual k-vector space
of the polynomial ring k[X]. Given any sequence (mi)i∈N, mi ∈ k, define σ ∈ k[X]∗

to be the k-linear functional

σ : k[X] −→ k, X i 7−→ mi.

Hence, σ is the composition of the map E of (2.1) and the evaluation map Mi 7→ mi.
Further, let Mσ be the k-linear operator

Mσ : k[X] −→ k[X]∗, p 7−→ (q 7→ σ(pq)).

In the k-vector space basis X i and the dual basis (Xj)∗, this map is described by an
infinite Hankel matrix with entries mi+j; see [Mou18, Remark 2.1]. Denote by Ma,b

the truncation of Mσ to degrees a, b

(5.3) Ma,b : k[X]≤b −→ k[X]∗≤a.

The matrix Ma,b = (mi+j)0≤i≤a, 0≤j≤b is of size (a + 1) × (b + 1). If (mi)i∈N is a
sequence of moments of some distribution, Ma,b is called moment matrix.

Assume now we are given an r-mixture of local Dirac mixture distributions of the
form

∑r
j=1 λj0δξj +λj1δ

′
ξj

+ · · ·+λj,ljδ
(lj)
ξj

for some ξj, λj,kj ∈ k, 0 ≤ kj ≤ lj, 1 ≤ j ≤ r.
Then its moments are of the form

(5.4) mi =
r∑
j=1

lj∑
kj=0

λj,kj
i!

(i−kj)!
ξ
i−kj
j =

r∑
j=1

(Λj(∂)(X i))(ξj) ∈ k, i ∈ N,

where Λj(∂) :=
∑lj

k=0 λj,k∂
k ∈ k[∂] is a polynomial of degree lj in ∂ that is applied to

the monomial X i as a differential operator. We cite the following theorem in order
to rephrase it in our language. In particular, we specialize it to the univariate case.
We remark that the theorem can also be understood in terms of the canonical form
of a binary from. For a detailed treatment of this viewpoint, we refer to [IK99] and
the references therein.

Theorem 5.1 ([IK99, Theorem 1.43], [Mou18, Theorem 4.1]). Let k be an al-
gebraically closed field of characteristic 0 and let m0,m1, . . . ,m2s ∈ k for some
s ∈ N. Let Ms−1,s−1,Ms,s be the corresponding Hankel matrices as in (5.3). As-
sume rk Ms−1,s−1 = rk Ms,s = r′. Then there exists a unique mixture of local mixtures
of Diracs

µ :=
r∑
j=1

Λj(∂)δξj

for some r ∈ N, ξj ∈ k, 0 6= Λj ∈ k[∂], such that
∑r

j=1 1 + deg(Λj) = r′ and its
moments up to degree 2s coincide with m0, . . . ,m2s. Further, as ideals of k[X], it
holds that

k[X] · ker Ms−1,s =
r⋂
j=1

〈X − ξj〉1+deg Λj .
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Note that the condition
∑r

j=1 1 + deg(Λj) = r′ is due to the fact that deg(Λj) + 1
is the dimension of the vector space spanned by Λj and all its derivatives, as we
specialized to the univariate case.

This leads to a two-step algorithm for recovering the parameters of µ from finitely
many moments: first, compute the points ξ1, . . . , ξr from ker Ms−1,s for s sufficiently
large; next, determine the weights Λj from (5.4). If deg Λj = 0 for all j = 1, . . . , r,
this algorithm is classically known as Prony’s method, and is also referred to as
Sylvester’s algorithm in the classical algebraic geometry literature. See for instance
[IK99; Lan12] and the references therein.

In the following, we refine this algorithm for the case of mixtures of local mixtures
of Diracs of fixed order l := l1 = · · · = lr where lj = deg Λj for j = 1, . . . , r. In this
case, it is usually possible to recover the parameters from significantly fewer moments.

Proposition 5.2. Let k be a field of characteristic 0 and let µ :=
∑r

j=1 Λj(∂)δξj be
an r-mixture of l-th order local mixtures of Diracs, i. e., ξj ∈ k and Λj ∈ k[∂] with
deg(Λj) = l, 1 ≤ j ≤ r. Then, the parameters Λj, ξj of µ can be recovered from the
moments m0,m1, . . . ,m2(l+1)r−1 of µ using Algorithm 2.

Proof. Let σ and Mσ be defined as above. Then, by [Mou18, Theorem 3.1], we have
rkMσ = (l+ 1)r. It follows from [Mou18, Proposition 3.9] that rk Ma,b = (l+ 1)r for
all a, b ≥ (l + 1)r − 1. In particular, for s := (l + 1)r, we have

rk Ms−1,s−1 = rk Ms,s = (l + 1)r.

The algorithm is based on the following observation. Let p be the polynomial
p :=

∏r
j=1(X−ξj) = Xr+

∑r−1
i=0 piX

i, noting that knowledge of p is enough to recover
the points ξj. By the addendum of Theorem 5.1, we have pl+1 ∈ (k[x]·ker Ms−1,s)⊗k k̄
where k̄ is the algebraic closure of k. Since also pl+1 ∈ k[x], it follows in particular
that p is mapped to 0 under the composition of the maps

k[X]≤r k[X]≤(l+1)r k[X]∗≤r−1,

q ql+1 Mr−1,(l+1)rq
l+1,

where the second map is the k-linear map given by the moment matrix Mr−1,(l+1)r,
which is a submatrix of Ms−1,s. The first map however is non-linear, defined by taking
the (l + 1)-th power of q viewed as a polynomial.

For the polynomial p, this yields the following polynomial system of r equations of
degree l + 1 in r variables p0, . . . , pr−1 which are the monomial coefficients of p:

(5.5) Mr−1,(l+1)rp
l+1 = 0.

By Bézout’s theorem, this system of equations either has infinitely many or at most
(l + 1)r solutions. If the solution set is infinite, we need to add more algebraic
constraints to the system in order to determine p, which is done by adding more rows
to the moment matrix.

By hypothesis, we have ξ1, . . . , ξr ∈ k. Therefore, termination of this algorithm
and correct recovery of the points ξ1, . . . , ξr follow from Theorem 5.1.

As for computation of the weights λjk in Step 5, note that, once the roots ξj have
been computed, the moments are a linear combination of the monomials ξij and their
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derivatives given by (5.4), so to compute the weights λjk, we solve the linear system

(V1, . . . , Vr)


λ10
...
λ1l
...
λrl

 =

m0
...
md



for d ≥ s, where (V1, . . . , Vr) is a confluent Vandermonde matrix, for which each block
is given by

Vj =
(
(∂kX i)(ξj)

)
0≤i≤d,
0≤k≤l

=


1 0 · · · 0
ξj 1 · · · 0
...

...
...

ξdj dξd−1
j · · · d!

(d−l)!ξ
d−l
j

 .

Since the system is linear, uniqueness of the solution follows from the claim that the
confluent Vandermonde matrix is of full rank s. Without loss of generality, we can
assume the confluent Vandermonde matrix to be of size s× s by choosing a suitable
submatrix. Then the claim follows from the fact that the Hermite interpolation
problem has a unique solution if the points ξ1, . . . , ξr are distinct or, equivalently,
from the product formula for the determinant of a square confluent Vandermonde
matrix; see [HJ94, Problem 6.1.12]. �

Algorithm 2 Parameter recovery for mixtures with r components of order l
Input: The (maximum) order l ≥ 0 of the mixture components, the number of

mixture components r ≥ 1 and the moments m0, . . . ,m(l+2)r, . . .
Output: The parameters ξj and λjk for 1 ≤ j ≤ r, 0 ≤ k ≤ l, satisfying Equa-

tion (5.4).
1: Solve the polynomial system Mr−1,(l+1)rp

l+1 = 0 for p.
2: If the solution set is infinite, increase the number of rows of the moment matrix

and repeat.
3: If there is more than one solution, use further information, such as the additional

moment m(l+2)r, to restrict to a single solution p.
4: Compute the roots ξ1, . . . , ξr of p.
5: Compute the weights λjk by solving a confluent Vandermonde system.

Note that the algorithm is designed to use as few moments as possible. See also
Remark 5.4 for a discussion of the number of moments used by this algorithm.

Example 5.3. For r = 2, l = 1, let m0, . . . ,m5 be the moments of a corresponding
distribution and write p = p0 + p1X + X2. Then the system of equations (5.5) is
given by the quadratic equations

(
m0 m1 m2 m3 m4

m1 m2 m3 m4 m5

)
p2

0

2p0p1

2p0 + p2
1

2p1

1

 = 0.(5.6)
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If ξ1, ξ2 are the points of the underlying distribution, one solution of this system
is given by p = (X − ξ1)(X − ξ2), that is, p1 = −(ξ1 + ξ2) and p0 = ξ1ξ2. Hence,
computing p1 by eliminating p0 from System (5.6), and vice versa, is equivalent to the
process of recovering the parameters from elementary symmetric polynomials outlined
in Section 5.2. However, with the presented new approach, we need to eliminate only
a single variable instead of 5, which makes this much more viable computationally.

Remark 5.4. We discuss some of the steps involved in Algorithm 2. Solving the
system in Step 1 can be done using symbolic methods, as outlined in the previous
sections, or using numerical tools. In Example 6.2 for instance, we use a numerical
solver for this which is based on homotopy continuation methods.

Restricting from finitely many solutions to a single one using the additional mo-
mentm(l+2)r in Step 3 works by observing that Mr,(l+1)rp

l+1 = 0. If a numerical solver
is used, the computed solution will only be approximately zero, and one should as-
sert that the selected solution is significantly closer to zero than all other possible
choices. Another common approach to check uniqueness of the solution is to perform
monodromy loop computations using a homotopy solver.

In the worst case, this algorithm makes use of momentsm0, . . . ,m2(l+1)r−1 as stated
in Proposition 5.2. Then solving the polynomial system in Algorithm 2 simplifies,
since the solution is in the kernel of M(l+1)r−1,(l+1)r which is a linear problem. In this
case, the algorithm performs the same computation as [Mou18, Algorithm 3.2], so
this guarantees termination.

However, as Algorithm 2 solves a more specific problem, it can usually recover the
parameters using a smaller number of moments. The polynomial system in Step 1
consists of r equations of degree l+1 in r unknowns, so, generically, we expect finitely
many solutions in Step 2 already in the first iteration of the algorithm. This means we
expect to algebraically identify the parameters from the moments m0, . . . ,m(l+2)r−1

and to rationally identify them using one additional moment, so usually we do not
need all the moments up to m2(l+1)r−1. This is also what we observe in practice,
so we do not get infinitely many solutions for generic input if we use the moments
up to m(l+2)r−1. By a parameter count, we cannot expect to be able to recover the
parameters from fewer moments, so the number of moments we use in practice is the
minimal number possible.

We use the term algebraic identifiability in the same way as in [ARS17], that is,
meaning that the map from the parameters to the moments is generically finite-
to-one. In this case, the identifiability degree is the cardinality of the preimage of
a generic point in the image of the moment map (up to permutation). Similarly,
rational identifiability means that the moment map is generically one-to-one.

Proposition 5.5. Let d ≥ (l + 2)r − 1. Then algebraic identifiability holds for
the moment map sending the parameters ξj,Λj to the moments m0, . . . ,md, where
deg Λj = l, 1 ≤ j ≤ r.

Proof. By [CGG02, Proposition 3.1], the secant varieties of the tangent variety of
the Veronese curve are non-defective, that is, for l = 1, the dimension of the mo-
ment variety in Pd for mixtures with r components of order l is the expected one:
min(3r − 1, d). In particular this means that the moment variety fills the ambient
space sharply if d = 3r − 1 and does not fill the ambient space if d > 3r − 1. Thus,
the moment map is generically finite-to-one if d ≥ 3r − 1. Note that for d < 3r − 1
the cardinality of the preimage of a generic point is infinite for dimension reasons.
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Similarly, for l ≥ 2, the moment variety is a secant variety of the l-th osculating
variety to the Veronese curve which is non-defective by [BCGI07, Section 4], so the
moment map is generically finite-to-one for d ≥ (l + 2)r − 1. �

We do not currently know whether rational identifiability holds as soon as d ≥
(l + 2)r, although we expect this to be true as discussed in Remark 5.4.

Open Problem 5.6. The computations we have done in this section suggest that the
algebraic identifiability degree for a mixture with r components of order l is (l+ 1)r,
which is the expected number of solutions of Equation (5.5).

Remark 5.7. It would be interesting to generalize Algorithm 2 to the multivariate
setting. Note that in this case [Mou18, Algorithm 3.2] can be used to find the
decomposition. However, since this does not take into account the special structure
of our input, namely that all the mixture distributions have the same order l, this
approach might use more moments than necessary. This is similar to the univariate
case as explained in Remark 5.4.

Further, the algorithm in [BT18a, Section 6] also computes a generalized decom-
position from a given set of moments. This algorithm differs from our Algorithm 2 in
that it computes parameters of any generalized decomposition explaining the given
moments, rather than the unique decomposition in which each term corresponds to
the same order l. In the one-dimensional case, when using as few moments as pos-
sible, this usually leads to a non-generalized decomposition, which does not recover
the parameters we are interested in. See also the related discussion in [BT18a, Sec-
tion 7.1].

Remark 5.8. We briefly discuss how the problem of parameter recovery of a mixture
of 1-local mixtures simplifies, if the mixture components δξj + αjδ

′
ξj
, 1 ≤ j ≤ r, are

known to differ only in the parameters ξj, but have a constant parameter α := α1 =
· · · = αr. For this, letX be a distribution with moments E(X i) =

∑r
j=1 λj(ξ

i
j+αiξ

i−1
j )

with a fixed parameter α. Further, let Y be the distribution with moments E(Y i) =∑r
j=1 λjξ

i
j. Then we have

E(X i) = E(Y i) + αiE(Y i−1)

and conversely

E(Y i) =
i∑

k=0

i!

k!
(−α)i−kE(Xk).

Hence, if α is known, this allows to recover the mixing distribution Y from the
moments of X. The parameters of Y can then be recovered, e. g., using Prony’s
method.

In case α is fixed, but unknown, treating α as a variable in the moment matrix
Mr(Y ) = (E(Y i+j))0≤i,j≤r, it can be determined as one of the roots of det Mr(Y ),
which is a polynomial of degree r(r + 1) in α.

6. Applications

6.1. Moments and Fourier coefficients. In this section, we show how the tools
developed in this paper can be applied to the problem of recovering a piecewise-
polynomial function supported on the interval [−π, π[ from Fourier samples; see
[PT14]. For this, we describe how moments of a mixture of local mixtures arise as the



20 ALEXANDROS GROSDOS KOUTSOUMPELIAS AND MARKUS WAGERINGEL

Fourier coefficients of a piecewise-polynomial function and illustrate this numerically.
For simplicity, we focus on the case l = 1 of piecewise-linear functions.

Let tj ∈ [−π, π], 1 ≤ j ≤ r, be real points and let f : [−π, π[→ C be the piecewise-
linear function given by

(6.1) f(x) :=
r−1∑
j=1

(
fj + (x− tj)f ′j

)
1[tj ,tj+1[(x),

where fj, f ′j ∈ C. In particular, splines of degree 1 are of this form, but we do not
require continuity here. The Fourier coefficients of f are defined to be

ck :=
1

2π

∫ π

−π
f(x)e−ikxdx, k ∈ Z.

from which we obtain

ck =
1

2π(ik)2

r∑
j=1

(
ik(fj − fj−1 + (tj−1 − tj)f ′j−1) + (f ′j − f ′j−1)

)
e−iktj ,

for k ∈ Z \ {0}, where f0, f
′
0, fr, f

′
r := 0. Further, let

(6.2)

ξj := e−itj ,

λj := ξ−sj
(
f ′j − f ′j−1 − is(fj − fj−1 + (tj−1 − tj)f ′j−1)

)
,

λ′j := ξ1−s
j i(fj − fj−1 + (tj−1 − tj)f ′j−1).

Assume now, we are given finitely many Fourier coefficients c−s, . . . , cs for some s ∈ N.
Then, for 0 ≤ k ≤ 2s, k 6= s, we define

(6.3) mk := 2π(i(k − s))2ck−s =
r∑
j=1

λjξ
k
j + λ′jkξ

k−1
j .

Thus, from the knowledge of Fourier coefficients c−s, . . . , cs of f , we can compute
mk, k 6= s, which we interpret as the moments of a mixture of 1-local mixtures with
support points ξj on the unit circle. Extending the definition to ms, by construction
we have

ms :=
r∑
j=1

λjξ
s
j + λ′jsξ

s−1
j =

r∑
j=1

f ′j − f ′j−1 = 0.

All in all, we know the moments m0, . . . ,m2s of this 1-local mixture. Recovering the
parameters ξj, λj, λ′j via Algorithm 2 generically requires the momentsm0, . . . ,m3r, so
we need to choose 2s ≥ 3r. Subsequently retrieving the original parameters tj, fj, f ′j
from (6.2) is straightforward.

Remark 6.1. The piecewise-linear function f is viewed as a periodic function on the
interval [−π, π[, in the discussion above. For simplicity in presentation, we assumed
that f is constantly zero outside of [t1, tr[, representing a constant line segment. More
generally, one can adapt the computation to account for an additional (non-zero) line
segment there, without changing the number of jumping points or required samples.
Thus, the function f consists of r line segments and has r discontinuities.

Example 6.2. We apply the process described above to a piecewise-linear function
with r = 10 line segments on the interval [−π, π[. The parameters tj, fj, f ′j defining
the function as in (6.1) are listed in Table 1. The random jump points tj are chosen
uniformly on the interval. The jump heights fj and slopes f ′j are chosen with respect
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to a Gaussian distribution. The function as well as the sampling data are visualized
in Figure 2. By Fourier transform, the Fourier coefficients carry the same information
as the evaluations of the Fourier partial sum at equidistantly-spaced sampling points.
The number of sampling points equals the number of Fourier coefficients needed for
reconstruction, namely 3r+1 = 31. From 2s ≥ 3r, we determine s = 15. We compute
the Fourier coefficients c−s, . . . , cs from the given data and add some noise to each
of these coefficients, sampled from a Gaussian distribution with standard deviation
10−12.

j tj fj f ′
j

1 -2.814030328751694 -0.20121264876344414 -0.775069863870378
2 -2.457537611167516 -0.35221920435611676 -0.9795392068942285
3 -1.4536804635810938 -0.9254256123988903 0.26040229778962753
4 -1.1734228328971805 0.4482105605664995 -0.46848914917290574
5 -0.6568874684874002 1.11978779941218 -0.8808972481620518
6 0.54049294753688 0.3012272070859375 0.2777255506414151
7 1.0213620344785337 -0.8357295816882367 1.5239161501048377
8 1.0930147137662223 -0.2071744440917742 -1.7777276640658903
9 1.6867064885416054 0.8681006042361324 -2.9330595087256466
10 2.7678373800858678

Table 1. The parameters of the piecewise-linear function of Example 6.2.

−π −1
2
π 0 1

2
π π

−2

−1

0

1

Figure 2. The piecewise-linear function of Example 6.2 with r = 10
line segments; the Fourier partial sum approximation of order s = 15
and 2s+ 1 = 31 equidistantly-spaced sampling points.

In order to reconstruct the piecewise-linear function from the Fourier coefficients,
we compute the moments m0, . . . ,m3r via Equation (6.3) and apply Algorithm 2 us-
ing numerical tools. From the momentsm0, . . . ,m3r−1, we get a system of r quadratic
equations in r unknowns, which we solve using the Julia package HomotopyContinu-
ation.jl [BT18b], version 0.3.2, from which we obtain up to 2r finite solutions. From
these, we choose the one that best solves the equation system Mr,2rp

2 = 0 induced
by the additional moment m3r. In this example, we obtain 1024 solutions, the best
of which has error 1.54 · 10−10 in the `2-norm; the second best solution has error
3.70 · 10−4, which is significantly larger, so we accept the solution.

Next, we compute the points ξj using the Julia package PolynomialRoots.jl [SG12],
version 0.2.0, and solve an overdetermined confluent Vandermonde system for the
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weights λj, λ′j, for which we use a built-in least-squares solver. Lastly, we use (6.2) to
compute the parameters tj, fj, f ′j. Julia code for these computations can be found in
the ancillary files of the ArXiv-version of this article. The numerical computations
were carried out using the Julia language [BEKS17], version 1.0.0.

In this example, the total error we get for the reconstructed points t1, . . . , t10 is
3.89 · 10−10 in the `2-norm, whereas for fj and f ′j, 1 ≤ j ≤ 9, we get 2.15 · 10−7 and
2.35 · 10−7, respectively. Even though, in this example, one of the line segments is
quite far off of the Fourier partial sum, as shown in Figure 2, the sampling data still
contains enough information to reconstruct it.

We observe that we cannot always reconstruct the randomly chosen points cor-
rectly using homotopy continuation, but many times reconstruction is successful. We
expect that the separation distance among the points plays a major part in numerical
reconstruction. If the randomly chosen points are badly separated, it will be difficult
to distinguish them numerically by just using the moments, as is the case if l = 0;
see [Moi15].

Further, we observe that, after having obtained the points, solving the confluent
Vandermonde system often induces additional errors of about three orders of magni-
tude, resulting from the possibly bad condition of the confluent Vandermonde matrix.
A detailed discussion of this condition number exceeds the scope of this paper, so we
leave it for further study.

Remark 6.3. If l > 1, one can adapt Algorithm 2 in a similar fashion to the recon-
struction of functions that are piecewisely defined by polynomials of degree l. As this
requires solving a system of polynomial equations of degree l, the involved computa-
tions are more challenging. Note however that, under additional assumptions on the
smoothness of the function, computations can be reduced to a polynomial system of
smaller degree. For example, if we let l = 3 and additionally impose C1-continuity,
the second derivative is piecewise-linear, so reconstruction can be accomplished by
applying the method outlined above.

6.2. Local mixture distributions. Local mixture models have been proposed as a
means of dealing with small variation that is unaccounted for when fitting data to a
model, see [AM07b] and the references therein. In this case the model is augmented
by truncating a Taylor-like expansion of the probability density function.

Definition 6.4. The local mixture model of a regular exponential family φξ(x) is

ψξ(x) := φξ(x) +
l∑

i=1

αiφ
(i)
ξ (x),

for parameters α1, . . . , αl such that ψξ(x) ≥ 0 for all x.

The local mixture model defined this way is a convolution of a local Dirac mixture
with the member of the exponential family centered at 0, i. e.,

ψξ = φ0 ∗

(
δξ +

l∑
i=1

αiδ
(i)
ξ

)
.
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Remark 6.5. Let M1(t),M2(t) be the moment generating functions of the two dis-
tributions in the convolution, respectively, i. e., M2(t) :=

∑
k≥0mk

tk

k!
where

mk = ξk +

min{l,k}∑
i=1

(−1)iαi
k!
k−i!ξ

k−i.

Note that the sign changes are due to the property of the derivative of the Dirac
distribution that ∫

φ(x)dδ
(i)
ξ (x) = (−1)iφ(i)(ξ).

Then the product M1(t)M2(t) is the moment generating function corresponding to
ψξ, so the moments mk of the underlying local Dirac mixture can be computed if the
moments of a random variable with density ψξ as well as the moments corresponding
to φ0 are known. Thus, we can reduce the problem of parameter inference to the
problem of parameter recovery of a local Dirac mixture.

Example 6.6 (A mixture of two local Gaussians with known common variance). We
numerically apply the process outlined above to a Gaussian distribution. For this, let
φ0 be the density of a standard Gaussian distribution and let ψ := λψξ1 + (1− λ)ψξ2
be a 2-mixture of local distributions of order 2, where ψξj = φξj + αj1φ

′
ξj

+ αj2φ
′′
ξj
.

We choose the parameters as follows: (ξ1, α11, α12) = (−1, 0.1, 0.4), (ξ2, α21, α22) =
(2,−0.2, 0.6) and λ = 0.6. Note that the ψξj are non-negative for this choice of
αji, so they are indeed probability density functions; see [Mar02, Example 4]. We
create a sample of size 20,000 from this probability distribution using Mathematica
[Wol18] and compute the empirical moments of that sample. Using that, we derive
the empirical moments of the underlying 2-mixture of local Dirac distributions as
explained in Remark 6.5 and then apply Algorithm 2 to infer the parameters. We
obtain the following values:

ξ1 = −0.98121, α11 = 0.14076, α12 = 0.39268, λ = 0.59457,

ξ2 = 1.95600, α21 = −0.20486, α22 = 0.62641.

Note that for this process the distribution φ0 is assumed to be known. In particular,
we need to know its standard deviation or have a way of estimating it. The recon-
structed parameters only provide a rough approximation to the original parameters.
Increasing the sample size can give a better approximation. The original distribution
and the reconstructed one are shown in Figure 3.

Figure 3. The 2-mixture of local Gaussian distributions of Exam-
ple 6.6 on the left, as well as its reconstruction on the right; the dotted
lines are the original distribution for comparison.
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