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Abstract

Dynamical systems with a network structure can display anomalous
bifurcations as a generic phenomenon. As an explanation for this it has
been noted that homogeneous networks can be realized as quotient net-
works of so-called fundamental networks. The class of admissible vector
fields for these fundamental networks is equal to the class of equivariant
vector fields of the regular representation of a monoid. Using this insight,
we set up a framework for center manifold reduction in fundamental net-
works and their quotients. We then use this machinery to explain the
difference in generic bifurcations between three example networks with
identical spectral properties and identical robust synchrony spaces.

1 Introduction

Network dynamical systems play an important role in many of the sciences,
with applications ranging from population dynamics to neuron networks and
from electrical circuits to the world wide web. Although they have sparked an
overwhelming amount of research, many questions on network systems remain
open or have unsatisfactory answers. This is partly due to the fact that net-
work structure, although perfectly well-defined, often seems to deny a versatile
geometric description. Most striking in this respect is the fact that a specific
network structure is not usually preserved under coordinate changes.

A remarkable phenomenon that distinguishes network dynamical systems
from arbitrary dynamical systems is synchronisation [21]. Synchronisation oc-
curs when the agents of a network behave in unison. An example is the simulta-
neous firing of neurons. This paper is concerned with synchrony breaking. This
is the phenomenon that less synchronous states may emerge from synchronous
states as model parameters vary. It has been observed that synchrony breaking
is often governed by very unusual bifurcation scenarios [1, 2, 4, 5, 6, 10, 11, 13,
14, 19, 26]. It is a major challenge to explain why this occurs, and to provide
an efficient methodology for the computation of these bifurcations.
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One successful method for the analysis of synchrony in networks is based on
the so-called groupoid formalism. This formalism was developed by Golubitsky
and Stewart et al. [16, 18, 25, 27] and recently reformulated in the language of
graph fibrations by Deville and Lerman [3]. See also [8] for results in a similar
spirit. We shall work with a different framework though, that appears more
suitable for bifurcation theory. In fact, we shall use the language of hidden
symmetry as described in [20, 23, 24]. This is inspired by the fact that many
of the characteristics of synchrony breaking, including the existence of robust
invariant spaces, degenerate eigenvalues and anomalous generic bifurcations,
are quite prevalent in the setting of ODEs with symmetry. More precisely, our
formalism exploits the fact that every homogeneous coupled cell network can be
realised as the quotient network of a so-called fundamental network. This latter
network admits a purely geometric characterisation, as its admissible vector
fields are exactly the equivariant vector fields of the regular representation of a
monoid (a monoid is a semigroup with unit).

It is well-known that all the bounded solutions that emerge from a syn-
chronous steady state through a synchrony breaking bifurcation, are contained
in a so-called local center manifold. The main result of this paper is a center
manifold theorem for homogeneous networks. It states that network structure
can somehow be preserved under center manifold reduction. This means in
particular that the dynamics on the center manifold is restricted by symmetry.
Theorem 1.1 will be formulated more precisely as theorems 5.1 and 6.1.

Theorem 1.1. Let Γ be an admissible vector field for a fundamental network
with symmetry monoid Σ and let x0 be a fully synchronous steady state of Γ.
Then there exists a Σ-invariant local center manifold Mc for Γ near x0.

The restriction Γ|Mc to this local center manifold is Σ-equivariant and can
therefore be interpreted as an admissible vector field in an appropriate way.

A center manifold of each quotient of the fundamental network is contained
in the center manifold of the fundamental network as a robust synchrony space.

Theorem 1.1 is reminiscent of the well-known fact that the local center manifold
of an ODE with a compact symmetry group can be assumed symmetric [7, 9,
12, 15, 17, 28]. The proof of this latter result strongly depends on the fact that
every compact group has an invariant measure, and hence this proof does not
apply to semigroups and monoids. Our proof of theorem 1.1 shows that this
technical problem can be overcome for fundamental networks.

The remainder of this paper is organised as follows. In Section 2 we illustrate
the impact of hidden network symmetry at the hand of three examples. In
Section 3 we introduce our general setup, and recall some basic theorems on
which this paper builds. In Section 4 we prove a center manifold theorem for
fundamental networks. After this, Sections 5 and 6 are concerned with the
symmetry and synchrony properties that are preserved under center manifold
reduction. Finally, in Section 7 we apply our general results to three examples.
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2 Three examples

To illustrate the impact of hidden symmetry, let us consider the following three
networks. They will be the leading examples of this paper.

1 2

3

A
1 2

3

B
1 2

3

C

Networks A, B and C give rise to the following ordinary differential equations.

ẋ1 = f(x1, x2, x3, λ)

A : ẋ2 = f(x2, x3, x3, λ)

ẋ3 = f(x3, x3, x3, λ)

ẋ1 = f(x1, x2, x2, x3, λ)

B : ẋ2 = f(x2, x3, x2, x3, λ)

ẋ3 = f(x3, x3, x2, x3, λ)

ẋ1 = f(x1, x2, x1, x3, x2, λ)

C : ẋ2 = f(x2, x3, x1, x3, x2, λ)

ẋ3 = f(x3, x3, x1, x3, x2, λ)

(2.1)

Here, x1, x2, x3 ∈ R describe the states of the cells in the network, while λ ∈ R
is a parameter. We shall assume that the “response function” f : R3×R→ R is
smooth. Note that the network structure does not change as λ varies. Instead,
one could think of the response function f as being variable in λ.

The ODEs in (2.1) have several properties that distinguish them from arbi-
trary three-dimensional dynamical systems. First of all, one can observe that
setting x1 = x2 = x3 in (2.1) yields that ẋ1 = ẋ2 = ẋ3, and similarly that
x2 = x3 implies ẋ2 = ẋ3. This means that in all three networks the polydiago-
nal subspaces or synchrony subspaces

{x1 = x2 = x3} and {x2 = x3}

are preserved under the dynamics (i.e. they are flow-invariant). In particular,
this is true for any choice of response function f , so that these invariant sub-
spaces only depend on the network structure of the ODEs. One therefore calls
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them robust synchrony spaces. It can also be checked that the above two syn-
chrony spaces are the only such robust synchrony spaces (in all three examples).

One may now ask how synchronous solutions emerge or disappear in a local
bifurcation. We will answer this question in Section 7 by means of center man-
ifold reduction, but we shall indicate a few important aspects of this method
already here. First of all, let us assume that

f(0, 0) = 0 ,

so that x = 0 is a fully synchronous steady state for the parameter value λ =
0. Center manifold reduction starts with computing the center subspace at
(x, λ) = (0, 0). This space is determined by the Jacobian matrices of the ODEs
in (2.1). Let us write γif (x, λ) (i = A,B,C) for the vector fields at the right hand
side of (2.1), and let us set a := Dx1f(0, 0), b := Dx2f(0, 0), c := Dx3f(0, 0),
d := Dx4

f(0, 0) and e := Dx5
f(0, 0). In terms of these quantities, the Jacobian

matrices are given by

Dxγ
A
f (0, 0) =

a b c
0 a b+ c
0 0 a+ b+ c

 Dxγ
B
f (0, 0) =

a b+ c d
0 a+ c b+ d
0 c a+ b+ d



Dxγ
C
f (0, 0) =

a+ c b+ e d
c a+ e b+ d
c e a+ b+ d

 (2.2)

We may now observe the remarkable fact that all three Jacobian matrices in
(2.2) have a double real eigenvalue equal to a. If we furthermore assume that
b 6= 0 and that b + c 6= 0 (for network A), b + c + d 6= 0 (for network B),
b+c+d+e 6= 0 (for network C), then this eigenvalue a has algebraic multiplicity
two and geometric multiplicity one (this is again true in all three examples).
Such a degeneracy in the spectrum is very exceptional among Jacobian matrices
of arbitrary ODEs, but here it is forced by the network structure. In particular,
it implies that the center manifold of the ODEs is two-dimensional as soon as a =
0, which in turn indicates that a quite complicated bifurcation may occur. Using
center manifold reduction we shall verify in Section 7 that networks A, B and
C can generically support precisely one type of steady state bifurcation when
the eigenvalue a crosses zero. It is a so-called synchrony breaking bifurcation in
which a fully synchronous branch, a partially synchronous branch and a fully
non-synchronous branch of steady states emerge. Table 2 lists the asymptotic
growth rates of these branches in λ, and their possible stability types. Note that
although network C has identical synchrony and spectral properties as networks
A and B, it admits a totally different generic synchrony breaking steady state
bifurcation. In particular, in network C the stability of the fully synchronous
branch may be transferred either to the partially synchronous branch or to the
fully non-synchronous branch. Another curiosity is that the non-synchronous
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Branches in examples A and B
Synchrony Asymptotics λ < 0 λ > 0
Full ∼ λ −− ++
Partial ∼ λ +− −+

None ∼
√
λ +−, −−

Branches in example C
Synchrony Asymptotics λ < 0 λ > 0 λ < 0 λ > 0 λ < 0 λ > 0
Full ∼ λ −− ++ −− ++ −− ++
Partial ∼ λ ++ −− +− −+ +− −+
None ∼ λ +− −+ ++ −− +− −+

Table 1: Asymptotics in λ of the three branches of steady states that emerge
from a synchrony breaking steady state bifurcation in networks A, B and C.
The table also indicates their stability through the signs of two out of three
eigenvalues, where for network C there are three possible scenarios.

branch of network C is tangential to the space {x2 = x3}, i.e. it is partially
synchronous to first order in λ (this will be shown in Section 7).

We remark that non-trivial invariant subspaces, spectral degeneracies and
anomalous bifurcations are all very common in the setting of equivariant dy-
namics [15, 17], where they are forced by symmetry. On the one hand, it is
obvious that networks A, B and C are not symmetric under any permutation
of cells. As a result, none of the ODEs in (2.2) is equivariant under a linear
group action. On the other hand, it was shown in [22] that the robust synchrony
spaces, the degenerate spectrum and the unusual bifurcations of networks A, B
and C can all be explained from hidden semigroup symmetry.

For example, the differential equations of network A are equivariant under
the noninvertible linear map

S : (x1, x2, x3) 7→ (x2, x3, x3)

that transforms solutions of the ODEs into solutions. In fact, every vector field
that commutes with S is necessarily an admissible vector field for network A.
This is because network A is a so-called fundamental network, see Section 3.
Moreover, it is not hard to check that any ODE that admits the symmetry S
must have the invariant subspaces {x1 = x2 = x3} and {x2 = x3}, and that any
matrix that commutes with S must have a double eigenvalue. We will also prove
in Section 5 that the symmetry S is inherited by the center manifold of network
A. The restrictions that symmetry imposes on the center manifold dynamics
force the remarkable synchrony breaking bifurcation of network A.

Similar things can be said for networks B and C, even though one can show
that γBf and γCf commute with no linear maps other than the identity. On the
other hand, networks B and C can be realised as quotient networks of networks
with semigroup symmetry. In particular, network B is the restriction to the
robust synchrony space {X2 = X3} of the network differential equations

5



B̃ :

Ẋ1 = f(X1, X2, X3, X4, λ)

Ẋ2 = f(X2, X4, X3, X4, λ)

Ẋ3 = f(X3, X4, X3, X4, λ)

Ẋ4 = f(X4, X4, X3, X4, λ)

(2.3)

2 1

43

B̃

These differential equations commute with the two noninvertible linear maps

(X1, X2, X3, X4) 7→ (X2, X4, X3, X4) ,

(X1, X2, X3, X4) 7→ (X3, X4, X3, X4) .
(2.4)

Conversely, every ODE that is equivariant under these two symmetries is nec-
essarily of the form (2.3) for some f(X,λ), i.e. it is admissible for network B̃.

We call network B̃ the fundamental network of network B. It was shown in [20]
that every homogeneous network is the quotient of such a fundamental network
with a semigroup of symmetries. We will recover this fact in Section 3.

It turns out that the fundamental network of C is given by

C̃ :

Ẋ1 = f(X1, X2, X3, X4, X5, λ)

Ẋ2 = f(X2, X4, X3, X4, X5, λ)

Ẋ3 = f(X3, X5, X3, X4, X5, λ)

Ẋ4 = f(X4, X4, X3, X4, X5, λ)

Ẋ5 = f(X5, X4, X3, X4, X5, λ)

(2.5)

1

5

3 4

2 C̃

Indeed, network C arises as the restriction of network C̃ to the robust synchrony
space {X1 = X3, X2 = X5}. Moreover, the equations of motion (2.5) of network

C̃ are precisely the equivariant ODEs for the noninvertible linear maps

(X1, X2, X3, X4, X5) 7→ (X2, X4, X3, X4, X5) ,

(X1, X2, X3, X4, X5) 7→ (X3, X5, X3, X4, X5) .
(2.6)

The symmetries of networks B̃ and C̃ are inherited by their center manifolds.
We will see in Sections 6 and 7 how they in turn affect the center manifolds of B
and C, thus forcing the anomalous bifurcations in these two original networks.
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3 Homogeneous and fundamental networks

In this section we give a short overview of the results and definitions in [20, 23,
24]. We shall be concerned with ODEs of the general form

ẋ1 = f(xσ1(1), . . . xσn(1))

ẋ2 = f(xσ1(2), . . . xσn(2))

...

ẋN = f(xσ1(N), . . . xσn(N))

. (3.1)

Here, every variable xj takes values in the same vector space V and can be
though of as the state of cell #j in a network. For every i ∈ {1, . . . n},

σi : {1, . . . N} → {1, . . . N}

is a function from the collection of cells of the network to itself. Intuitively,
these functions may be thought of as representing the different types of input
in the network. In particular, if i ∈ {1, . . . n} and j, k ∈ {1, . . . N} are such that
σi(j) = k, then this is to be interpreted as cell #j receiving an input of type i
from cell #k. Note that there is no reason to assume that any of the functions
σi is a bijection.

The way the inputs of a cell are processed is determined by the properties
of the response function f : V n → V , whose different arguments distinguish
different types of input. Note that the same response function appears in every
component of (3.1), meaning that every cell responds equally to its inputs. This
may be interpreted as the cells being identical. We therefore say that (3.1)
represents a homogenous coupled cell network. Another assumption we will
make is that the total set of input functions

Σ := {σ1, . . . , σn}

is closed under composition of maps. This is no restriction because one may
add compositions of input functions to Σ until this process terminates, see [24].
Furthermore, enlarging Σ only enlarges the class of admissible vector fields.
Being closed under composition, Σ has the structure of a semigroup. To model
internal dynamics, we will moreover assume without loss of generality that σ1

is the identity on {1, . . . N}, making Σ in fact a monoid. For f : V n → V , we
will then denote the vector field at the right hand side of equation (3.1) by

γf : V N → V N .

Example 3.1. Networks A, B and C are examples of homogeneous networks.
The maps σ1, σ2, σ3, σ4, σ5 are given in this case by

A 1 2 3
σ1 1 2 3
σ2 2 3 3
σ3 3 3 3

B 1 2 3
σ1 1 2 3
σ2 2 3 3
σ3 2 2 2
σ4 3 3 3

C 1 2 3
σ1 1 2 3
σ2 2 3 3
σ3 1 1 1
σ4 3 3 3
σ5 2 2 2

.
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For all three networks, these maps are closed under composition, i.e. they form
a semigroup Σ. 4

Definition 3.2. Let P = {Pi}ri=1, Pi ⊂ {1, 2, . . . , N} be a partition of the col-
lection of nodes of a homogeneous network. The synchrony space or polydiagonal
space corresponding to the partition P is the subspace

SynP := {xi = xj if i and j are in the same element of the partition P} ⊂ V N .

A synchrony space is called robust if for every f : V n → V we have γf (SynP ) ⊂
SynP , i.e. that it is an invariant space for every γf .

It was shown in [24] that adding compositions σi ◦ σj to Σ so as to make Σ
closed under composition does not affect the set of robust synchrony spaces of
the network.

The idea is now to define a bigger network that contains the original network
(3.1) as a robust synchrony space. It turns out that the admissible vector fields
of this so-called fundamental network are precisely the equivariant vector fields
for the regular representation of the monoid Σ.

Definition 3.3. Assume that Σ has been completed to a monoid, let n = #Σ,
and let f : V n → V . The fundamental network vector field Γf of the network
vector field γf is the vector field on

⊕
σi∈Σ V = V n defined by

(Γf )σi = f ◦Aσi . (3.2)

Here the linear maps Aσi : V n → V n are defined by

(AσiX)σj := Xσj◦σi . (3.3)

It was shown in [20] that Γf is an admissible vector field for the homogeneous
network that has the elements of Σ as its cells, and an arrow of type i from cell
σk to cell σj if σi ◦ σj = σk. This latter network can be thought of as a Cayley
graph of Σ, see [20].

Theorem 3.4. The linear maps {Aσi}σi∈Σ form a representation of the monoid
Σ. That is, we have Aσi ◦Aσj = Aσi◦σj for all σi, σj ∈ Σ and Aσ1 = Id.

Proof. Because σ1 ◦ σi = σi ◦ σ1 = σi for all σi ∈ Σ, it is clear that Aσ1
= Id.

Furthermore, given σi, σj ∈ Σ we have

(AσiAσjX)σk = (Aσi [AσjX])σk =

(AσjX)σk◦σi = X(σk◦σi)◦σj =

Xσk◦(σi◦σj) = (Aσi◦σjX)σk ,

(3.4)

for all X ∈ V n. This proves the statement.

Theorem 3.5. A vector field F : V n → V n is of the form F = Γf for some
f : V n → V if and only if we have F ◦Aσi = Aσi ◦ F for all σi ∈ Σ.
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Proof. We will first show that Γf ◦ Aσi = Aσi ◦ Γf for all f : V n → V and
σi ∈ Σ. We see that on the one hand side we have

[(Γf ◦Aσi)(X)]σk = [Γf (AσiX)]σk = (f ◦Aσk ◦Aσi)(X) . (3.5)

On the other, we see that

[(Aσi ◦ Γf )(X)]σk = [Γf (X)]σk◦σi =

(f ◦Aσk◦σi)(X) = (f ◦Aσk ◦Aσi)(X) ,
(3.6)

where in the last step we have used the result of theorem 3.4. This proves the
first part of the theorem.

As for the second, suppose that F ◦Aσi = Aσi ◦ F for all σi ∈ Σ. Using the
definition of Aσi and the fact that σ1 ◦ σi = σi for all σi ∈ Σ, we see that

[F (X)]σi = [(Aσi ◦ F )(X)]σ1
=

[(F ◦Aσi)(X)]σ1
= (Fσ1

◦Aσi)(X) ,
(3.7)

for all X ∈ V n. Hence we see that F = Γf for f = Fσ1
. This proves the second

part of the theorem.

The following theorem provides the relation between the original network γf
and the new network Γf .

Theorem 3.6. For any node p ∈ {1, . . . N}, define the map πp : V N → V n by

πp(x)σj := xσj(p) .

Then πp is a semiconjugacy between γf and Γf . That is, we have

πp ◦ γf = Γf ◦ πp .

To prove theorem 3.6 we need the following lemma.

Lemma 3.7. For any node p ∈ {1, . . . N} and input function σi, we have

Aσi ◦ πp = πσi(p) .

Proof. For any x ∈ V N we have

[(Aσi ◦ πp)(x)]σj = [Aσi [πp(x)]]σj =

[πp(x)]σj◦σi = x(σj◦σi)(p) =

xσj(σi(p)) = [πσi(p)(x)]σj .

(3.8)

This proves the statement.

Proof of theorem 3.6. Recall that (γf (x))p = f(xσ1(p), . . . xσn(p)) by definition,
from which it follows that we may in fact write (γf )p = f ◦ πp.

On the one hand side we therefore have
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[(πp ◦ γf )(x)]σi = (γf )σi(p)(x) = (f ◦ πσi(p))(x) . (3.9)

On the other hand, we see by lemma 3.7 that

[(Γf ◦ πp)(x)]σi = (f ◦Aσi)(πp(x)) =

(f ◦Aσi ◦ πp)(x) = (f ◦ πσi(p))(x) .
(3.10)

This proves the theorem.

Remark 1. Note that the map πp is injective if and only if

{σi(p) : σi ∈ Σ} = {1, . . . N} .

This is to be interpreted as the cell p being influenced by every other cell in the
network. In particular, it is natural to assume that at least one such cell exists
in the (original) network. In that case, the dynamics of γf is embedded in that
of Γf as the restriction of Γf to the space

{Xσi = Xσj if σi(p) = σj(p)}

for any such node p for which πp is injective. Note that this space is a polydi-
agonal space. Furthermore, since it is invariant for every f , we conclude that
this space is in fact a robust synchrony space of the fundamental network. 4

4 Center manifold reduction for networks

In this section we shall describe the main result of this paper. We start with
a well-known theorem on the existence of a local invariant manifold near every
steady state of an ODE. The most important feature of this so-called center
manifold is that it contains all bounded (small) solutions, such as steady state
points and (small) periodic orbits. We then generalise this result to the setting
of fundamental networks, in a way that allows us to retain their symmetries.
Because we know from theorem 3.5 that these symmetries completely describe
the fundamental network vector field, this will in turn allow us to give a full
description of the vector fields that one obtains after restricting to the center
manifold.

Let us first consider differential equations of the general form

ẋ = F (x) , (4.1)

where F : Rn → Rn is of class Ck for some k ≥ 1 and satisfies F (0) = 0.
Without loss of generality, we may write

ẋ = Ax+G(x) . (4.2)

Here, A = DF (0), from which it follows that G : Rn → Rn is again of class Ck

and satisfies G(0) = 0 and DG(0) = 0. Let us furthermore denote by Xc the
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center subspace of A. That is, Xc is the span of the generalized eigenvectors cor-
responding to the purely imaginary eigenvalues of A. Likewise, we denote by Xh

the hyperbolic subspace of A, which corresponds to the remaining eigenvalues.
These two spaces complement each other in Rn, i.e. we have

Rn = Xc ⊕Xh . (4.3)

Finally, let πc and πh be the projections onto Xc respectively Xh corresponding
to this decomposition. The following theorem is well-known.

Theorem 4.1 (Center Manifold Reduction). Given A ∈ L(Rn) and k ∈ N,
there exists an ε = ε(A, k) > 0 such that the following holds: If G : Rn → Rn is
of class Ck with G(0) = 0 and DG(0) = 0 and furthermore satisfies

• sup
x∈Rn

||DjG(x)|| <∞ for 0 ≤ j ≤ k,

• sup
x∈Rn

||DG(x)|| < ε,

then there exists a function ψ : Xc → Xh of class Ck such that its graph in Rn
is an invariant manifold for the system (4.1). More precisely, we have

Mc := {xc + ψ(xc) : xc ∈ Xc} = {x ∈ Rn : sup
t∈R
||πhφt(x)|| <∞} . (4.4)

Here φt denotes the flow of equation (4.1). The function ψ satisfies ψ(0) = 0
and Dψ(0) = 0.

Mc is called the (global) center manifold of (4.1). In particular, it contains
all bounded solutions to (4.1), such as steady state points and periodic solutions.

A comprehensive proof of this theorem can be found in [28]. This reference
also describes a way around the seemingly strict conditions on the size of the
nonlinearity G and its derivatives: if G does not satisfy these conditions, then
one simply multiplies it by a real-valued bump function with small enough
support. Since in bifurcation theory one is generally only interested in orbits
close to the bifurcation point, this is often a viable solution.

Moreover, if the vector fields F and G are equivariant under the action of
some compact group G, then this bump function can be chosen invariant under
this action. As a result, the center manifold is G-invariant. To make this more
precise, let us assume that the action of G is by linear maps {Ag : g ∈ G}. This
will for example be the case after applying Bochner’s linearisation theorem. Let
us furthermore denote by Br an open ball of radius r > 0 in Rn centered around
the origin and by χ a smooth “bump function” from Rn to R that takes the
value 1 inside B1 and 0 outside B2. It can then be shown that the vector field

G̃ρ(x) := χ(ρ−1x)G(x) (4.5)

satisfies the necessary bounds of theorem 4.1 for small enough ρ > 0. However,
this function will in general not be G-equivariant anymore, as the bump function
χ may not be G-invariant. Instead, we may define a new bump function

11



χ(x) :=

∫
G
χ(Agx)dµ , (4.6)

where dµ denotes the normalised Haar measure on G (or simply the normalised
counting measure, if G is finite). The function χ is now G-invariant by construc-
tion. From this it follows that

Gρ(x) := χ(ρ−1x)G(x) (4.7)

is G-equivariant, because

Gρ(Agx) = χ(ρ−1Agx)G(Agx) = χ(Agρ
−1x)AgG(x) =

χ(ρ−1x)AgG(x) = Agχ(ρ−1x)G(x) = AgGρ(x) .
(4.8)

By the compactness of G we may also assume without loss of generality that G
acts by isometries. That is, we have ||Agx|| = ||x|| for all g ∈ G and x ∈ Rn.
In particular, we see that χ again takes the value 1 inside B1 and vanishes
outside B2. Hence, as is the case for G̃ρ, we may conclude that Gρ satisfies
the necessary bounds of theorem 4.1 for small enough ρ > 0. It then follows
from the equivariance of F and Gρ that center manifold reduction can in fact
be done in an equivariant manner, meaning that the function ψ : Xc → Xh is
equivariant and that Mc is invariant under the symmetries.

Unfortunately we cannot apply the same procedure in the setting of networks
and fundamental networks, as it relies heavily on the symmetries Ag being
invertible (for example in the existence of an invariant measure). As an example,
we note that any function χ : R3 → R that is invariant under the symmetry
(X1, X2, X3) 7→ (X2, X3, X3) of example A would necessarily be constant along
the line {X2 = X3 = 0}. It is clear that this would exclude any non-trivial
bump function centered around the origin. Instead, we will show that one can
replace the function f in Γf in a way to make Γf satisfy the necessary bounds.
Note that in this way the symmetries of Γf are not broken.

To formalise this procedure, let us first describe our setting a bit more ac-
curately. We want to study bifurcation problems, so we will assume from now
on that the response function f depends on parameters, i.e. we assume that

f : V n × Ω→ V with Ω ⊂ Rl

is a smooth function of the network states and of parameters λ ∈ Ω. For the
purpose of center manifold reduction, it is useful to view these parameters as
variables of the ODEs, i.e. to consider the augmented network equations(

ẋ

λ̇

)
=

(
Γf (x, λ)

0

)
, (4.9)

with Γf defined as before by

Γf (x, λ)σi := f(Aσix, λ) .
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We will set x := (x, λ) ∈ V n × Ω and Γf := (Γf , 0) : V n × Ω → V n × Ω, and
will henceforth abbreviate equation (4.9) as

ẋ = Γf (x) . (4.10)

It is clear that this system is now equivariant under symmetries of the form

Aσi : (x, λ) 7→ (Aσix, λ) for i ∈ {1 . . . n} .

Furthermore, note that in this notation we also have

(Γf )i = f ◦Aσi for i ∈ {1 . . . n} ,
(Γf )i = 0 for i = n+ 1 ,

(4.11)

where we denote by xn+1 the λ-part of the vector x = (x, λ) ∈ V n×Ω. Following
the setting of theorem 4.1, we can write Γf (x) as

Γf (x) = DΓf (0)x+G(x) , (4.12)

where G : V n ×Ω→ V n ×Ω satisfies G(0) = 0 and DG(0) = 0. The first thing
to note is that DΓf (0)x is again of the form Γh(x), namely for

h(x) = Df(0)x =

n+1∑
k=1

Dkf(0)xk . (4.13)

Indeed, for i ∈ {1, . . . n} we have

(DΓf (0)x)i =

n+1∑
j=1

DΓf (0)
i,j
xj =

n+1∑
j=1

Dj(f ◦Aσi)(0)xj =

n+1∑
j=1

n+1∑
k=1

Dkf(0)(Aσi)k,jxj =

n+1∑
k=1

Dkf(0)(Aσix)k = (Γh(x))i ,

(4.14)

whereas

(DΓf (0)x)n+1 =

n+1∑
j=1

DΓf (0)
n+1,j

xj = 0 . (4.15)

It follows that we may write G(x) = Γf (x)− Γh(x) = Γg(x), where g(x) equals
f(x)− h(x) = f(x)−Df(0)x. In particular, assuming that f(0) := f(0, 0) = 0,
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we see that g(0) = 0 and Dg(0) = 0. Summarising, we have the following
equivalent of (4.2):

Γf (x) = DΓf (0)x+ Γg(x) with g(0) = 0 and Dg(0) = 0 . (4.16)

We can now proceed to adapt Γg(x) so as to make it satisfy the conditions of
theorem 4.1. To this end, we define Br to be an open ball in V n×Ω with radius
r centered around the origin. Furthermore, let χ(x) be a smooth function from
V n × Ω to R that takes the value 1 inside B1 and 0 outside B2. Analogous
to the procedure for general vector fields, we now set gρ(x) := χ(ρ−1x)g(x)
for ρ ∈ R>0, which equals g inside Bρ and which vanishes outside B2ρ. The
following two theorems assure us that the system given by

ẋ = DΓf (0)x+ Γgρ(x) (4.17)

satisfies the necessary conditions of theorem 4.1 for small enough ρ, yet agrees
with our initial system 4.10 in a small enough neighborhood around the origin.

Theorem 4.2. For any function g : V n × Ω → V and any ρ > 0, there exists
an open neighborhood in V n×Ω centered around the origin on which Γg(x) and
Γgρ(x) agree.

Proof. Remember that we have Γg(x)n+1 = Γgρ(x)n+1 = 0 for every x ∈ V n×Ω,
hence there is nothing to check here. For i 6= n+1, the i-th component of Γg(x)
equals g ◦ Aσi(x), whereas that of Γgρ(x) equals gρ ◦ Aσi(x). Because g and

gρ agree on Bρ, these components are equal on the set A−1
σi

(Bρ), which by the
linearity of Aσi is an open set containing 0. The required neighborhood is then
obtained by taking the intersection of these sets for the different values of i.

Theorem 4.3. Let g : V n × Ω → V be of class Ck for some k > 0. For all
ρ > 0 and 0 ≤ j ≤ k we have

sup
x∈V n×Ω

||DjΓgρ(x)|| <∞ . (4.18)

If g furthermore satisfies g(0) = 0 and Dg(0) = 0, then

lim
ρ↓0

sup
x∈V n×Ω

||DΓgρ(x)|| = 0 . (4.19)

Proof. We start with the claim on boundedness. It is clear that we only need to
show this for the separate components of Γgρ(x) and their derivatives. However,
writing gρ = H we see that every (non-trivial) component of Γgρ(x) can be
written in the general form

Γgρ(x)i = (H ◦Aσi)(x) , (4.20)

where H is a Ck-function with compact support in V n × Ω. It is clear that
any function that can be written in this way is uniformly bounded. Moreover,
taking the derivative gives

D(H ◦Aσi)(x) = DH(Aσix) ·Aσi = ((DH ·Aσi) ◦Aσi)(x) , (4.21)
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which is again of the form (4.20), where our new H is now given by the Ck−1-
function DH ·Aσi . We conclude by induction that indeed the first k derivatives
of Γgρ are uniformly bounded. This proves the first part of the theorem.

As for the second claim, let i ∈ {1, . . . n}, j ∈ {1, . . . n+ 1} and ρ > 0. Then

sup
x∈V n×Ω

||DΓgρ(x)i,j || =

sup
x∈V n×Ω

||Dj(Γgρ)i(x)|| =

sup
x∈V n×Ω

||Dj(gρ ◦Aσi)(x)|| =

sup
x∈V n×Ω

||
n+1∑
k=1

Dkgρ(Aσi(x))(Aσi)k,j || ≤

n+1∑
k=1

sup
x∈V n×Ω

||Dkgρ(Aσi(x))|| · ||(Aσi)k,j || ≤

n+1∑
k=1

sup
x∈V n×Ω

||Dkgρ(x)|| · ||(Aσi)k,j || ≤

n+1∑
k=1

sup
x∈V n×Ω

||Dkgρ(x)|| ,

(4.22)

where in the last step we have used the fact that every component of Aσi is either
some identity matrix or a zero-matrix, from which it follows that ||(Aσi)k,j || ≤ 1
for all 1 ≤ k, j ≤ n+ 1. From the above we see that it is sufficient to prove that

lim
ρ↓0

sup
x∈V n×R

||Dgρ(x)|| = 0 . (4.23)

The proof of this fact can directly be copied from [28], the only difference being
that gρ(x) does not map V n × Ω to itself. Nevertheless, we will reproduce it
here for the sake of completeness. For all ρ > 0 we have

sup
x∈V n×Ω

||Dgρ(x)|| = sup
||x||≤2ρ

||Dgρ(x)|| =

sup
||x||≤2ρ

||χ(ρ−1x)Dg(x) + ρ−1g(x)Dχ(ρ−1x)|| ≤

sup
||x||≤2ρ

||χ(ρ−1x)|| sup
||x||≤2ρ

||Dg(x)||+ ρ−1 sup
||x||≤2ρ

||g(x)|| sup
||x||≤2ρ

||Dχ(ρ−1x)|| ≤

sup
||x||≤2ρ

C1||Dg(x)||+ ρ−1C2 sup
||x||≤2ρ

||g(x)|| ,

(4.24)

where we have set
C1 := sup

x∈V n×Ω
||χ(x)|| , (4.25)
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and
C2 := sup

x∈V n×Ω
||Dχ(x)|| . (4.26)

By the mean value theorem we have, whenever ||x|| ≤ 2ρ,

||g(x)|| = ||g(x)− g(0)|| ≤ ||x|| sup
||x||≤2ρ

||Dg(x)|| . (4.27)

Combining inequalities (4.24) and (4.27), we get

sup
x∈V n×Ω

||Dgρ(x)|| ≤

sup
||x||≤2ρ

C1||Dg(x)||+ ρ−1C2 sup
||x||≤2ρ

||x|| sup
||x||≤2ρ

||Dg(x)|| =

sup
||x||≤2ρ

C1||Dg(x)||+ ρ−1C2 · 2ρ sup
||x||≤2ρ

||Dg(x)|| =

(C1 + 2C2) sup
||x||≤2ρ

||Dg(x)|| .

(4.28)

Because g(x) is at least C1 and Dg(0) = 0, it follows that

lim
ρ↓0

sup
x∈V n×Ω

||Dgρ(x)|| = (C1 + 2C2) lim
ρ↓0

sup
||x||≤2ρ

||Dg(x)|| = 0 . (4.29)

This proves the theorem.

Theorem 4.3 implies that the system

ẋ = DΓf (0)x+ Γgρ(x) (4.30)

admits a global center manifold for small enough ρ > 0. Recall that the vector
field on the right hand side of (4.30) can be written as

DΓf (0)x+ Γgρ(x) = Γh(x) + Γgρ(x) = Γh+gρ(x) , (4.31)

where h(x) = Df(0)x. It follows that this vector field is again {Aσi}-equivariant.
Moreover, by theorem 4.2 it agrees with our initial vector field Γf on an open
neighborhood around the origin. In the coming sections we shall investigate the
properties of the center manifold of equation (4.30).

5 Symmetry and the center manifold

Recall that the global center manifold of an ODE at a steady state point contains
all its bounded solutions, such as the steady state points and periodic orbits
near the steady state. Therefore, when studying local bifurcations one is often
only interested in the dynamics on this manifold. We will now show that the
center manifold dynamics inherits the symmetries of the original fundamental
network. Moreover, we show that every possible equivariant vector field on the
center manifold may arise after center manifold reduction.
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We begin by fixing some notation. Given a smooth function f : V n×Ω→ V ,
we may view the restriction Γf (•, 0) of Γf to {λ = 0} as a function from V n to
itself. Let us denote this function by

Γf,0 : V n → V n .

We will then write

Wc,Wh ⊂ V n

for respectively the center subspace and the hyperbolic subspace of DΓf,0(0).
Recall that we have

V n = Wc ⊕Wh , (5.1)

and let us denote by Pc and Ph respectively the projection on Wc and Wh

corresponding to this decomposition. The spaces Wc and Wh are invariant
under the action of {Aσi}ni=1. More generally, given any differentiable function
F : Rn → Rn and linear function B : Rn → Rn such that

F ◦B = B ◦ F , (5.2)

we also have that

DF (0) ◦B = B ◦DF (0) . (5.3)

From this it follows that B maps the center and hyperbolic subspaces of DF (0)
into themselves. The following theorem states that the dynamics of Γf , re-
stricted to its center manifold, is conjugate to a Σ-equivariant system on Wc.

Theorem 5.1. Let k ≥ 1 and let f : V n × Ω → V be of class Ck. Assume
that the vector field Γf (x) satisfies the conditions of theorem 4.1, so that its
center manifold Mc exists. Then the projection P : V n × Ω → Wc × Ω, given
by P (x, λ) := (Pc(x), λ) has the property that its restriction P |Mc

bijectively
conjugates Γf |Mc

to an ODE on Wc × Ω of the form

ẋ = R(x, λ) ,

λ̇ = 0 .
(5.4)

Here, R : Wc × Ω→Wc is a Ck-function satisfying

• R(0, 0) = 0.

• The center subspace of DR0(0) is the full space Wc, where we have set
R0 = R(•, 0) : Wc →Wc as the restriction of R to {λ = 0}.

• R(Aσix, λ) = AσiR(x, λ) for all i ∈ {1, . . . n} and (x, λ) ∈ Wc × Ω. Here
Aσi denotes the restriction of Aσi to Wc.

17



We will call the map R : Wc × Ω → Wc of the preceding theorem the reduced
vector field of the network vector field Γf . Note that the statement of theorem
5.1 is not that any vector field R that satisfies the conclusions of theorem 5.1
can be obtained as the reduced vector field of a network vector field. This issue
will be addressed in theorems 5.4 and 5.5 and remarks 2 and 3, where it is shown
that indeed theorem 5.1 exactly describes all possible reduced vector fields.

The result of theorem 5.1 hinges mostly on a corollary of theorem 4.1, which
states that symmetries of a vector field are passed on to its center manifold.
More precisely, we have the following result.

Lemma 5.2. Let F be an arbitrary vector field on Rn satisfying the conditions
of theorem 4.1. Keeping with the notation, let ψ : Xc → Xh be the map whose
graph is the center manifold. Given a linear map B : Rn → Rn such that
F ◦B = B ◦ F , we also have ψ ◦B = B ◦ ψ. Furthermore, the center manifold
is invariant under B, i.e. we have Bx ∈Mc whenever x ∈Mc.

Proof. We will begin by showing the invariance of Mc. We remarked earlier
that DF (0) commutes with B whenever F does, and that both Xc and Xh are
B-invariant spaces. From this it follows that the projections πc and πh with
respect to the decomposition

Rn = Xc ⊕Xh (5.5)

commute with B as well. Recall that the center manifold is given by

Mc = {x ∈ Rn :
t∈R

sup ||πhφt(x)|| <∞} , (5.6)

where φt(x) denotes the flow of F . Moreover, we have the following equality for
the flow, valid for all x ∈ Rn and t ∈ R,

φt(Bx) = Bφt(x) . (5.7)

This follows directly from the symmetry of F . Now suppose x ∈Mc. Then

||πhφt(Bx)|| =
||πhBφt(x)|| =
||Bπhφt(x)|| ≤
||B||||πhφt(x)|| .

(5.8)

From this it follows that

t∈R
sup ||πhφt(Bx)|| <∞ . (5.9)

Hence, Bx is an element of Mc as well.
To show that ψ ◦B = B ◦ψ, note that the center manifold is (also) given by

Mc = {xc + ψ(xc) : xc ∈ Xc} . (5.10)
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In other words, given an element x ∈Mc we may write x = xc +ψ(xc) for some
xc = πc(x) ∈ Xc. From this we see that

πh(x) = ψ(xc) = ψ(πc(x)) . (5.11)

Now given xc ∈ Xc, we know that xc+ψ(xc) is an element of Mc. Hence by our
first result, so is Bxc +Bψ(xc). Applying equation (5.11) to the latter gives

πh(Bxc +Bψ(xc)) = ψ(πc(Bxc +Bψ(xc))) . (5.12)

Hence, since ψ(xc) is an element of Xh and B leaves both Xc and Xh invariant,
equation (5.12) reduces to

Bψ(xc) = ψ(Bxc) . (5.13)

This proves the equivariance of ψ.

Since we want to apply center manifold reduction to Γf , let us denote by

W c,Wh ⊂ V n × Ω

The center and hyperbolic subspaces of DΓf (0). These spaces are invariant
under the action of {Aσi}

n
i=1, as follows from the equivariance of DΓf (0). We

write P c and Ph for the projections corresponding to

V n × Ω = W c ⊕Wh . (5.14)

The following lemma relates the center and hyperbolic subspaces of DΓf (0) to
those of DΓf,0(0).

Lemma 5.3. The space Wh satisfies

Wh = (Wh, 0) ⊂ V n × Ω . (5.15)

Furthermore, setting l := dim Ω, there exist vectors {wi}li=1 in Wh and a basis
{λi}li=1 for Ω, such that the vectors wi := (wi, λi) ∈ V n × Ω satisfy

W c = (Wc, 0)⊕ span{wi : i = 1, . . . l} . (5.16)

Proof. By definition of Γf , we see that its linearisation is of the form

DΓf (0) =

(
DΓf,0(0) v

0 0

)
, (5.17)

corresponding to the natural decomposition of V n ×Ω. Here, v is a linear map
from Ω to V n that is of no further importance to us. Now suppose that vκ ∈ V n
is a generalized eigenvector of DΓf,0(0) corresponding to the eigenvalue κ ∈ R.
It can then be seen from the above matrix that (vκ, 0) ∈ V n×Ω is a generalized
eigenvector of DΓf (0) corresponding to the same eigenvalue. This likewise holds
for complex eigenvalues. In particular, we conclude that

(Wc/h, 0) ⊂W c/h . (5.18)
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Next, we note that the spectrum of DΓf (0) can be obtained from that of
DΓf,0(0) by l times adding the eigenvalue 0. Since 0 is a purely imaginary
number, it follows that we have in fact

(Wh, 0) = Wh . (5.19)

Moreover, we see that there exist vectors {w′i}li=1 in V n × Ω such that

W c = (Wc, 0)⊕ span{w′i : i = 1, . . . l} . (5.20)

In fact, these w′i are generalised eigenvectors of DΓf (0) for the eigenvalue 0 that
are not in (Wc, 0). Writing w′i = (wi,c + wi,h, λi) for wi,c/h ∈Wc/h and λi ∈ Ω,
and noting that

V n × Ω = W c ⊕Wh , (5.21)

we may conclude that {λi}li=1 forms a basis for Ω. If we now set wi :=
(wi,h, λi) =: (wi, λi), we see that indeed

(Wc, 0)⊕ span{wi : i = 1, . . . l} =

(Wc, 0)⊕ span{w′i : i = 1, . . . l} = W c .
(5.22)

This proves the lemma.

We are now in the position to prove theorem 5.1. In any center manifold, the
projection πc : Mc ⊂ Rn → Xc gives rise to a conjugate system on the center
subspace Xc. However, since the space W c is in general not equal to Wc × Ω,
some more work has to be done. Recall that we denote by Pc and Ph respectively
the projections on Wc and Wh, corresponding to the decomposition

V n = Wc ⊕Wh . (5.23)

Likewise, we denoted by P c and Ph the projections on W c and Wh for

V n × Ω = W c ⊕Wh . (5.24)

Because the spaces Wc/h and W c/h are {Aσi} and {Aσi}-invariant, respectively,
it follows that Pc/h and P c/h commute with Aσi respectively Aσi .

Proof of theorem 5.1. We begin by constructing a vector field on W c conjugate
to Γf |Mc , satisfying an analogue of the three bullet points in theorem 5.1. From
it, we then construct the required vector field on Wc × Ω.

It is clear that the projection P c|Mc
: Mc →W c defines a global chart for the

manifold Mc. Hence, by taking the pushforward of Γf |Mc
we get a Ck-vector

field R1 on W c defined by

R1(xc) = P cΓf (xc + ψ(xc)) for xc ∈W c . (5.25)

We note that it has the following properties: First of all, because ψ(0) = 0 and
Γf (0) = 0, we see that

R1(0) = P cΓf (0) = 0 . (5.26)
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Next, the derivative of R1 at the origin satisfies

DR1(0)v = P cDΓf (0)(v +Dψ(0)v) = P cDΓf (0)v (5.27)

for all v ∈ W c, where we have used that Dψ(0) = 0. Hence, we have the
identity DR1(0) = P cDΓf (0)|W c

. From this it follows that the spectrum of
DR1(0) lies entirely on the imaginary axis. Finally, the vector field R1 shares
the symmetries of Γf . Indeed, by using lemma 5.2 we get

R1(Aσixc) = P cΓf (Aσixc + ψ(Aσixc)) =

P cΓf (Aσixc +Aσiψ(xc)) =

P cAσiΓf (xc + ψ(xc)) =

AσiP cΓf (xc + ψ(xc)) =

AσiR1(xc) ,

(5.28)

for all i ∈ {1, . . . n} and xc ∈W c.
Next, we define the linear map

P ′ : W c →Wc × Ω , (x, λ) 7→ (Pc(x), λ) . (5.29)

By lemma 5.3, we know that the space W c can be written as

W c = (Wc, 0)⊕ span{wi : i = 1, . . . l} , (5.30)

for vectors wi = (wi, λi) with wi ∈ Wh and {λi}li=1 a basis for Ω. Because P ′

is the identity on (Wc, 0) and sends the elements wi = (wi, λi) to (0, λi), we
conclude that it is a bijection. Furthermore, the map P ′ is {Aσi}-equivariant,
as

P ′ ◦Aσi(x, λ) = P ′(Aσix, λ) = (Pc(Aσix), λ) =

(AσiPc(x), λ) = Aσi(Pc(x), λ) = Aσi ◦ P
′(x, λ) ,

(5.31)

for all i ∈ {1, . . . n} and (x, λ) ∈ W c. Note that this also implies the {Aσi}-
invariance of Wc × Ω. Taking the pushforward of R1 under P ′ now yields a
Ck-vector field R2 on Wc × Ω given by

R2(x) = P ′ ◦R1 ◦ P ′−1(x) = P ′ ◦ P c ◦ Γf [P ′−1(x) + ψ(P ′−1(x))] , (5.32)

for x in Wc×Ω. From the properties of R1 it follows that R2 maps 0 to 0, that
DR2(0) has a purely imaginary spectrum and that R2 is {Aσi}-equivariant.

Finally, we want to show that the conjugacy P := P ′◦P c : V n×Ω→Wc×Ω
is as stated in theorem 5.1, i.e. that P (x, λ) = (Pc(x), λ). However, we know
that P c vanishes on Wh = (Wh, 0), hence so does P . Likewise, we may conclude
that P is the identity on (Wc, 0), as both P c and P ′ are. Moreover, for any of
the elements wi := (wi, λi) ∈W c we have that P (wi, λi) = P ′(wi, λi) = (0, λi),
where we have used that wi ∈Wh. This proves that P is indeed of the required
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form. In particular, since it is the identity on the Ω-component, and since Γf (x)
has Ω-component 0, we conclude that

R2(x) =P ′ ◦ P c ◦ Γf [P ′−1(x) + ψ(P ′−1(x))] =

P ◦ Γf [P ′−1(x) + ψ(P ′−1(x))]
(5.33)

has vanishing Ω-component as well. Therefore, we may write it as

R2(x, λ) = (R(x, λ), 0) , (5.34)

and it follows from the properties of R2 that R(0, 0) = 0, that DR0(0) has a
purely imaginary spectrum, where we have set R0 := R(•, 0), and that R0 is
{Aσi}-equivariant. This proves the theorem.

Next we want to describe all the reduced vector fields R that can be obtained
after center manifold reduction in a fundamental network vector field through
the procedure of theorem 5.1. We start with the linear part of R.

Theorem 5.4. Let Γf be a fundamental network vector field satisfying the
conditions of theorem 4.1 and let R : Wc×Ω→Wc be its corresponding reduced
vector field. Then the linear part of R is given explicitly by

DxR(0, 0) = DΓf,0(0)|Wc

DλR(0, 0) = Pc ◦DλΓf (0, 0) .
(5.35)

Moreover, let

V n = W1 ⊕W2 (5.36)

be any decomposition of V n into {Aσi}-invariant spaces and suppose that we
are given a linear map

R̃ : W1 × Ω→W1 (5.37)

such that R̃|W1×{0} has a purely imaginary spectrum. Assume furthermore that

R̃ intertwines the action of {Aσi} on W1×Ω with that of {Aσi} on W1, i.e. that
R(Aσixc, λ) = AσiR(xc, λ) for all (xc, λ) ∈ Wc × Ω and all σi ∈ Σ. Then there
exists a fundamental network vector field Γg such that the center and hyperbolic
subspaces of DΓg,0(0) are equal to W1 respectively W2 and such that (the linear

part of) its reduced vector field is equal to R̃.

Proof. Recall from the proof of theorem 5.1 that we have

DR2(0, 0) = P ′ ◦ P c ◦DΓf (0)|W c
◦ P ′−1 , (5.38)

where R2 = (R, 0) : Wc × Ω → Wc × Ω and where P ′ : W c → Wc × Ω is given
by P ′(x, λ) = (Pc(x), λ). The linear map P ′ is the identity on (Wc, 0) and sends
the elements (wi, λi) ∈W c from lemma 5.3 to (0, λi), from which it follows that
we may write
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P ′−1(xc, λ) = (xc +Q(λ), λ) (5.39)

for a linear map Q : Ω→Wh. Explicitly this map is given by

Q(λi) = wi (5.40)

for (wi, λi) an element as described in lemma 5.3 and where we use that {λi}li=1

forms a basis for Ω. From this we see that

DR2(0, 0)(xc, λ) =

P ′ ◦ P c ◦DΓf (0)(xc +Q(λ), λ) =

P ′[ (DΓf,0(0)(xc +Q(λ)) +DλΓf (0, 0)(λ), 0 ) ] =

(Pc[DΓf,0(0)(xc +Q(λ)) +DλΓf (0, 0)(λ)], 0 ) =

(DΓf,0(0)(xc) + Pc ◦DλΓf (0, 0)(λ), 0 ) ,

(5.41)

where in the second step we have used that the linearisation of Γf is given by

DΓf (0) =

(
DΓf,0(0) DλΓf (0, 0)

0 0

)
. (5.42)

As R is defined by R2 = (R, 0), we see that indeed

DxR(0, 0) = DΓf,0(0)|Wc

DλR(0, 0) = Pc ◦DλΓf (0, 0) .
(5.43)

This proves the first part of the theorem.
As for the second part, if W1, W2 and R̃ are given as in the statement of the

theorem, then we may define a linear vector field on V n×Ω = W1⊕W2⊕Ω by
the matrix

A :=

R̃|W1
0 R̃|Ω

0 (−) IdW2
0

0 0 0

 . (5.44)

We claim that A is a λ-family of fundamental network vector fields. Indeed, it
follows from the invariance of W1 and W2 and from the equivariance of R̃ that
A commutes with Aσi = (Aσi , IdΩ) for all σi ∈ Σ. Note in particular that this
implies that the map

v :=

(
R̃|Ω

0

)
: Ω→ V n (5.45)

from the right hand corner of A satisfies Aσiv = v. From this it follows that
vσi = (Aσiv)σ1 = vσ1 for all σi ∈ Σ, where σ1 denotes the unit in Σ. Hence the
n components of v(λ) ∈ V n are all equal. This latter fact is necessarily the case
for a λ-family of fundamental network vector fields, since it is only the response
function and not the network structure that depends on λ. We will therefore
write A = Γg.
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It is clear that (−) IdW2 has a purely hyperbolic spectrum, whereas R̃|W1 is
given to have only eigenvalues on the imaginary axis. Hence we conclude that
the center and hyperbolic subspaces of DΓg,0(0) are equal to W1 respectively
W2. Furthermore, it follows from the first part of the theorem that the reduced
vector field of A = Γg is indeed equal to R̃. This concludes the proof.

Theorem 5.4 tells us that any linear map satisfying the bullet points of theorem
5.1 can occur as the linear part of the reduced vector field of a fundamental net-
work vector field. The following result tells us that furthermore any equivariant
nonlinear part can be realised in a reduced vector field.

Theorem 5.5. Let A : V n×Ω→ V n×Ω be a (fixed) linear fundamental network
vector field and let W c, Wh, Wc and Wh be the invariant spaces determined by
A and A|V n . It follows from theorem 5.4 that the linear part of the reduced
vector field R of a fundamental network vector field Γf is completely determined
by the linear part of Γf . In particular, if DΓf (0) = A then we will denote the
linear part of R by

Ã := DR(0) : Wc × Ω→Wc . (5.46)

Let G : Wc × Ω → Wc be a C1 map satisfying G(0) = 0 and DG(0) = 0 and
assume furthermore that G ◦ Aσi = Aσi ◦G for all σi ∈ Σ. Then there exists a
fundamental network vector field Γf with linear part A satisfying the conditions

of theorem 4.1 and with reduced vector field given locally by Ã+G.

Proof. Given G : Wc×Ω→Wc we may define the vector field (G, 0) on Wc×Ω
by

(G, 0)(xc, λ) := (G(xc, λ), 0) . (5.47)

Next, we define the vector field on Wc given by

G̃ := P ′−1 ◦ (G, 0) ◦ P ′ . (5.48)

Note that G̃ is {Aσi}-equivariant by construction and satisfies G̃(0) = 0 and

DG̃(0) = 0. We furthermore see that G̃ has vanishing λ-component, as this is
the case for (G, 0) and because P ′ respects the λ-component. These properties
likewise hold for the vector field (G̃, 0) on Wc ⊕Wh = V n × Ω, from which it

follows that the vector field A + (G̃, 0) is a fundamental network vector field
with linear part A.

Finally, let Γf be a fundamental network vector field satisfying the conditions

of theorem 4.1 and agreeing locally with A + (G̃, 0) around the origin. The
dynamics on the center manifold of Γf is then conjugate to

P cΓf (xc + Ψ(xc)) = P [A+ (G̃, 0)](xc + Ψ(xc)) =

P cA(xc + Ψ(xc)) + G̃(xc) = A(xc) + G̃(xc) =

(A+ G̃)(xc)

(5.49)
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for xc ∈W c sufficiently close to the origin. Conjugating by P ′ we get the system

ẋ = (Ãx+G(x), 0) (5.50)

on a neighborhood around the origin in Wc × Ω, from which we conclude that
the reduced vector field of Γf is indeed given locally by Ã+G. This proves the
theorem.

Combining theorems 5.4 and 5.5 we see that any vector field R satisfying the
bullet points of theorem 5.1 can be achieved as the reduced vector field of
some fundamental network vector field Γf . The linear part of R is completely
determined by the linear part of Γf , and we see that the nonlinear part of R
can be any equivariant map on Wc (which is determined once the linear part of
Γf is fixed). This last observation will be important in the following remark.

Remark 2. It is well known that a center manifold for the general ODE ẋ = F (x)
satisfies the tangency equation

Dψ(xc) · πcF (xc + ψ(xc)) = πhF (xc + ψ(xc)) , (5.51)

for xc ∈ Xc, and where the graph of ψ : Xc → Xh equals the center manifold.
In particular, keeping πc and πh, that is Xc and Xh fixed, one can use this
formula to express any Taylor coefficient of ψ around 0 as a rational function
of a finite set of Taylor coefficients of F around 0. See for example [28] or [29].
This phenomenon is known as finite determinacy.

Returning to the setting of networks, if DΓf (0) and therefore Wc/h and
W c/h are fixed, then the Taylor coefficients of the vector field on W c,

R1(xc) = P cΓf (xc + ψ(xc)) , (5.52)

as well as those of

R2(x) = P ′ ◦R1 ◦ P ′−1(x) for x ∈Wc × Ω , (5.53)

are given by rational functions of the Taylor coefficients of Γf . Combined with
theorems 5.5 and 5.4 that state that any reduced vector field can be realised
at least locally, we may conclude that if some rational function of the Taylor
coefficients of either of the two vector fields (5.52) or (5.53) is not forced zero by
the symmetry, then it will in general not vanish. More precisely, such a rational
function vanishing will be equivalent to some rational function of the coefficients
of Γf vanishing. Note that to verify the occurrence of some bifurcation, one
often needs to check that some rational functions of the Taylor coefficients of
the vector field do not vanish. Therefore, center manifold reduction allows us
to determine generic bifurcations in network vector fields. Of course, to verify
whether such a bifurcation really occurs in a particular network, one actually
has to compute and evaluate these rational functions, which may involve quite
a complicated computation. 4
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Remark 3. Which linear subspaces may occur as the center subspace Wc in a
generic parameter-family of network dynamical systems, is a much more subtle
question. The following partial answer is known. A representation of a semi-
group Σ is called “indecomposable” if its representation space cannot be written
as a non-trivial direct sum of invariant subspaces. A result known as the Krull-
Schmidt theorem states that every (finite dimensional) representation of Σ can
be written as the direct sum of indecomposable representations that is unique
up to isomorphism. It is furthermore known that an indecomposable represen-
tation can be classified as being of either real, complex or quaternionic type. It
was shown in [23] that under a specific condition on the representation of Σ, a
one-parameter steady state bifurcation can generically only occur if the center
subspace Wc is an indecomposable representation of real type. In particular,
this is the case for the fundamental networks of our three example networks A,
B and C. In these examples, the representation space splits as the direct sum of
two indecomposable representations of real type, both of which may therefore
occur as Wc, while the full space V 3 can generically not be equal to Wc. 4
From the above discussion we see that the problem of finding generic bifurcations
for homogenous coupled cell network vector fields is reduced to finding those
for a class of equivariant reduced vector fields. As it turns out, this latter class
admits a rather straightforward description which states that, roughly speaking,
they come with a network structure themselves. More precisely, we have the
following theorem.

Theorem 5.6. Let
V n = W1 ⊕W2 (5.54)

be a decomposition of the phase space of a fundamental network into {Aσi}-
invariant spaces, and denote by P1 : V n → W1 and i1 : W1 → V n respectively
the projection onto W1 and the inclusion of W1 into V n.

A map F : W1 →W1 is {Aσi}-equivariant if and only if the map

i1 ◦ F ◦ P1

is a fundamental network vector field.

Proof. Recall that both P1 and i1 are {Aσi}-equivariant maps. So if i1 ◦F ◦P1

commutes with Aσi for all i, then so does

F = P1 ◦ (i1 ◦ F ◦ P1) ◦ i1 . (5.55)

For the same reason, i1 ◦ F ◦ P1 is {Aσi}-equivariant when F is. Moreover, it
follows from theorem 3.5 that this property is equivalent to i1◦F ◦P1 having the
structure of a fundamental network. Here we use in particular that i1 ◦ F ◦ P1

is a vector field on V n. This concludes the proof.
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6 Synchrony and the center manifold

Until now we have focused on developing a center manifold theory for funda-
mental networks. However, out of our three leading examples, only example
A is conjugate to its own fundamental network, while networks B and C are
embedded in a fundamental network as a robust synchrony space. Moreover,
by theorem 3.6 this is true in general. The following theorem states that center
manifold reduction respects robust synchrony spaces in a natural way.

Theorem 6.1. Let SynP ⊂ V n be a robust synchrony space in a fundamental
network. For every λ0 ∈ Ω, the map P = (Pc, Id) : V n×Ω→Wc×Ω of theorem
5.1 maps the space

{(x, λ) ∈Mc : x ∈ SynP , λ = λ0}

bijectively onto the space

{(x, λ) ∈Wc × Ω : x ∈ SynP , λ = λ0} .

Proof. Recall from theorem 5.1 that P = P ′ ◦ P c is an {Aσi}-equivariant map
that sends a vector (x, λ) in V n × Ω to a vector in Wc × Ω with the same
λ-component. Therefore, keeping λ = λ0 fixed we may think of P as an {Aσi}-
equivariant map from V n to Wc. Let us likewise use Mc to denote what is
really {(x, λ) ∈ Mc : λ = λ0}. It follows from theorem 5.1 that, under these
identifications, P |Mc

: Mc → Wc is an {Aσi}-equivariant bijection between
{Aσi}-invariant sets. We will keep these identifications throughout this proof.
In particular, what we want to show in this notation is that P maps Mc ∩SynP
bijectively onto Wc ∩ SynP .

For this purpose, let us denote by ic : Wc → V n the inclusion of Wc into
V n = Wc ⊕Wh. The map ic ◦ P is now an {Aσi}-equivariant map from V n

into itself. Therefore, we may conclude by theorem 3.5 that it is a fundamental
network vector field. In particular, we see that it maps SynP into itself and
from this we conclude that P |Mc maps Mc ∩ SynP into Wc ∩ SynP .

On the other hand, it follows that (P |Mc)
−1 : Wc →Mc is {Aσi}-equivariant

as well. Therefore, so is the function iMc
◦ (P |Mc

)−1 ◦ Pc : V n → V n, where
we use iMc

: Mc → V n to denote the natural inclusion of Mc into V n. As
before, we conclude that iMc

◦ (P |Mc
)−1 ◦ Pc is a fundamental network vector

field and therefore sends SynP into itself. From this it follows that (P |Mc)
−1

maps Wc ∩ SynP into Mc ∩ SynP and we conclude that this happens in fact
bijectively. This proves the theorem.

Recall that the linearisation of a fundamental network vector field gives rise to
a decomposition of V n into invariant subspaces Wc and Wh. As the possible
dynamics on the former subspace is completely determined by the action of Σ
on this space, we may conclude that isomorphic splittings of V n into Wc and Wh

give rise to conjugate dynamics and therefore equivalent bifurcations. However,
this reasoning seems to lose sight of (robust) synchrony spaces, such as the
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one representing the original network vector field in its fundamental one. The
following theorem settles this, as it tells us that synchrony spaces do behave
well under choosing different decompositions of V n into invariant subspaces.

Theorem 6.2. Let {Wi}ki=1 and {W ′i}ki=1 be two sets of {Aσi}-invariant sub-
spaces of V n such that

V n =

k⊕
i=1

Wi =

k⊕
i=1

W ′i . (6.1)

Suppose furthermore that for every i, Wi and W ′i are isomorphic as {Aσi}-
invariant subspaces. Then, for any robust synchrony space SynP and any iso-
morphism φj : Wj → W ′j, it holds that φj restricts to a bijection between
SynP ∩Wj and SynP ∩W ′j. In particular, for every j there exists an isomor-
phism between Wj and W ′j respecting SynP in this way.

Proof. It is clear that if we have proven that any isomorphism between Wj and
W ′j respects SynP , that we have then shown that there exists an isomorphism
respecting this synchrony space. This is because Wj and W ′j are isomorphic,
i.e. there exists (at least one) isomorphism between them. Let φj now be an
isomorphism between Wj and W ′j . By choosing for every i 6= j an isomorphism
φi between Wi and W ′i , we can define the function Φ : V n → V n given by

Φ :

k∑
i=1

xi 7→
k∑
i=1

φi(xi) , (6.2)

for xi ∈ Wi. First of all, because this map is an {Aσi}-equivariant map by
construction, we conclude that it is in fact a fundamental network vector field. In
particular, it sends SynP to itself. Secondly, because it sends an element inWj to
an element in W ′j , we conclude that Φ sends the space SynP ∩Wj into the space
SynP ∩W ′j . Lastly, because Φ|Wj

= φj we conclude that φj sends SynP ∩Wj

into SynP ∩W ′j . By the same argument we see that φ−1
j sends SynP ∩W ′j into

SynP ∩Wj , from which it follows that this happens in fact bijectively. This
concludes the proof.

Remark 4. If we are given two decompositions of V n into invariant subspaces

V n = Wc ⊕Wh = W ′c ⊕W ′h (6.3)

and if we know that Wc and W ′c are isomorphic, then it follows that the same
holds true for Wh and W ′h. Namely, writing Wc, W

′
c, Wh and W ′h as the direct

sum of indecomposable representations, we get two indecomposable splittings
of V n. By the Krull-Schmidt theorem such a splitting is unique, from which it
follows that Wh and W ′h are indeed isomorphic as well. 4
We now have a recipe for classifying the generic bifurcations of a homogeneous
coupled cell network. One has to go through the following steps:

• One first constructs the fundamental network of the homogeneous net-
work.
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• Next, one determines all possible representation types of generic center
subspaces Wc that can occur in a bifurcation.

• After that, one determines all possible reduced vector fields of the funda-
mental network on Wc. This is equivalent to finding all the equivariant
vector fields on Wc. As it turns out, an efficient way of finding these is by
using that F : Wc →Wc is symmetric if and only if ic ◦F ◦Pc : V n → V n

is a fundamental network vector field. See theorem 5.6.

• Finally, theorem 6.1 tells us that the dynamics on the center manifold of
the original network can be found by restricting the dynamics on the center
manifold of the fundamental network to an appropriate synchrony space.
Namely, we know that the dynamics of the original network vector field
is embedded as a robust synchrony space inside the fundamental network
and that center manifold reduction respects it.

Note that if one finds two decompositions V n = Wc⊕Wh = W ′c⊕W ′h such that
Wc and W ′c are isomorphic as representations of Σ, then for any bifurcation
that occurs along Wc there is an equivalent bifurcation along W ′c. By theorem
6.2 this equivalence respects robust synchrony spaces, and in particular the one
that represents the original network.

7 Examples

In this section, we illustrate the machinery that we have developed. We will show
which co-dimension one steady state bifurcations one can expect in networks
B and C when the phase space of a single cell is V = R. In particular, it
will become clear that the difference in generic bifurcations can be explained
from the representations of the symmetry semigroups. For network A, this was
already shown in [22] with the help of normal form theory.

7.1 Network B

Recall from Section 2 that network B is realised as the robust synchrony space
{X2 = X3} inside the fundamental network

Ẋ1 = f(X1, X2, X3, X4)

Ẋ2 = f(X2, X4, X3, X4)

Ẋ3 = f(X3, X4, X3, X4)

Ẋ4 = f(X4, X4, X3, X4)

(7.1)

where it can be found by setting X1 = x1, X2 = X3 = x2 and X4 = x3. For the
moment, we suppress the dependence of f on the parameter λ in our notation.
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Equation (7.1) describes all vector fields on R4 that commute with the maps

(X1, X2, X3, X4) 7→ (X2, X4, X3, X4) ,

(X1, X2, X3, X4) 7→ (X3, X4, X3, X4) ,

(X1, X2, X3, X4) 7→ (X4, X4, X3, X4) .

(7.2)

It can be shown [20] that any decomposition of R4 into indecomposable repre-
sentations of these symmetries is isomorphic to the splitting

R4 = {X1 = X2 = X3 = X4} ⊕ {X4 = 0} (7.3)

with corresponding projections given by

P (X1, X2, X3, X4) = (X4, X4, X4, X4) (7.4)

and
Q(X1, X2, X3, X4) = (X1 −X4, X2 −X4, X3 −X4, 0) . (7.5)

Let us first assume that the center subspace is isomorphic to the subrepresenta-
tion Syn0 := {X1 = X2 = X3 = X4}. Theorem 5.6 says that a reduced vector
field F = F (X) : Syn0 → Syn0 is equivariant if and only if

(iSyn0
◦ F ◦ P )(X1, X2, X3, X4) = (F (X4), F (X4), F (X4), F (X4)) (7.6)

is a fundamental network vector field. As this is clearly the case, we see that
there are no constraints on F . In particular, the bifurcation problem reduces
to solving F (X,λ) = 0 given that F (0, 0) = 0 and DXF (0, 0) = 0. This will
generically yield a fully synchronous saddle node bifurcation.

Now for the representation {X4 = 0}: if we parametrize it by X1, X2 and
X3, then a general vector field on this space can be written as

F (X1, X2, X3) =

F1(X1, X2, X3)
F2(X1, X2, X3)
F3(X1, X2, X3)

 . (7.7)

According to theorem 5.6, the expression

i{X4=0} ◦ F ◦Q(X1, X2, X3, X4) =


F1(X1 −X4, X2 −X4, X3 −X4)
F2(X1 −X4, X2 −X4, X3 −X4)
F3(X1 −X4, X2 −X4, X3 −X4)

0

 (7.8)

must be a fundamental network vector field. Using that a fundamental network
vector field is determined by its first component, we obtain the equalitiesF1(X1 −X4, X2 −X4, X3 −X4)

F2(X1 −X4, X2 −X4, X3 −X4)
F3(X1 −X4, X2 −X4, X3 −X4)

0

 =

F1(X1 −X4, X2 −X4, X3 −X4)
F1(X2 −X4, 0, X3 −X4)
F1(X3 −X4, 0, X3 −X4)
F1(0, 0, X3 −X4)

 . (7.9)

Therefore, a general equivariant vector field on {X4 = 0} is given by
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F (X1, X2, X3) =

F1(X1, X2, X3)
F1(X2, 0, X3)
F1(X3, 0, X3)

 , (7.10)

with the additional condition that F1(0, 0, X3) = 0. Since this means that we
may set F1(X1, X2, X3) = X2G(X1, X2, X3) +X1H(X1, X3), we can write

F (X1, X2, X3) =

X2G(X1, X2, X3) +X1H(X1, X3)
X2H(X2, X3)
X3H(X3, X3)

 . (7.11)

Recall also that we are only interested in the dynamics on the synchrony space
{X2 = X3}. We thus have to solve the equations

X2G(X1, X2) +X1H(X1, X2) = 0
X2H(X2, X2) = 0

. (7.12)

To solve these, let us include the parameter in our notation again and write

G(X1, X2, λ) = C +O(|X1|+ |X2|+ |λ|) , (7.13)

and

H(X1, X2, λ) = a1X1 + a2X2 + a3λ+O(|X1|2 + |X2|2 + |λ|2) . (7.14)

Note that H(0, 0, 0) = 0, which follows from the fact that the linearisation with
respect to X of the reduced vector field in (7.12) is noninvertible at the origin
X1 = X2 = λ = 0. Focussing first on the second equation of (7.12),

X2H(X2, X2, λ) = X2[(a1 + a2)X2 + a3λ+O(|X2|2 + |λ|2)] = 0 , (7.15)

we see that either X2 = 0 or, if a1 + a2 6= 0, that X2 = X2(λ) = − a3
a1+a2

λ +

O(|λ|2) by the implicit function theorem. If we set X2 = 0, then the first
equation of (7.12) reduces to

X1H(X1, 0, λ) = X1[a1X1 + a3λ+O(|X1|2 + |λ|2)] = 0 . (7.16)

This either gives X1 = 0 or X1 = X1(λ) = −a3a1λ+O(|λ|2) if a1 6= 0. If we set

X2 = X2(λ) = − a3
a1+a2

λ+O(|λ|2) then the first equation reduces to

− C a3

a1 + a2
λ+ a1X

2
1 +O(|X1|3 + |X1||λ|+ |λ|2) = 0 . (7.17)

Next, substituting λ = ±µ2 and X1 = µY gives us

∓ C a3

a1 + a2
µ2 + a1µ

2Y 2 +O(|µ|3) = 0 , (7.18)

or, after dividing by µ2,

∓ C a3

a1 + a2
+ a1Y

2 +O(|µ|) = 0 . (7.19)
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For one choice of the sign in λ = ±µ2 this gives no solutions with µ = 0, whereas
for the other we find the solutions

(Y, µ) =

(
±

√
|Ca3|

|a1(a1 + a2)|
, 0

)
. (7.20)

Assuming C, a3 6= 0, the implicit function theorem now tells us that these
solutions continue in µ as

Y (µ) = ±

√
|Ca3|

|a1(a1 + a2)|
+O(|µ|) , (7.21)

from which it follows that we have the branches

X1(λ) = ±

√
Ca3

a1(a1 + a2)
λ+O(|λ|) . (7.22)

To summarise, we have found the following solutions to equation (7.12):

X1(λ) = X2(λ) = 0 ,

X1(λ) = −a3

a1
λ+O(|λ|2), X2(λ) = 0 ,

X1(λ) = ±

√
Ca3

a1(a1 + a2)
λ+O(|λ|), X2(λ) = − a3

a1 + a2
λ+O(|λ|2) .

(7.23)

Note that in all cases we haveX4 = 0, hence the first branch is fully synchronous,
the second is partially synchronous and the last is fully asynchronous.

To determine the stability of these branches, we linearise the vector field in
(7.12) in the X-variables to obtain the Jacobian(
2a1X1 + a2X2 + a3λ+O(|X1|2 + |X2|+ |λ|2) C +O(|X1|+ |X2|+ |λ|)
0 2(a1 + a2)X2 + a3λ+O(|X2|2 + |λ|2)

)
.

For the fully synchronous branch, this Jacobian reduces to

(
a3λ+O(|λ|2) C +O(|λ|)
0 a3λ+O(|λ|2)

)
, (7.24)

hence we find two times the eigenvalue a3λ+O(|λ|2). Likewise, for the partially
synchronous branch we find a3λ + O(|λ|2) and −a3λ + O(|λ|2). For the fully

nonsynchronous one we find ±2a1

√
Ca3

a1(a1+a2)λ + O(|λ|) and −a3λ + O(|λ|2).

In particular, we see that the partially synchronous branch is always a sad-
dle, and the fully synchronous branch can only give its stability to the fully
nonsynchronous one.

Recalling that network B can be obtained from network B̃ by making the
identifications X1 = x1, X2 = X3 = x2 and X4 = x3, and using that the center
subspace in B̃ is given by {X4 = 0}, the above analysis proves the claims on
network B of the introduction.
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7.2 Network C

Recall from Section 2 that network C is realised inside the fundamental network

Ẋ1 = f(X1, X2, X3, X4, X5)

Ẋ2 = f(X2, X4, X3, X4, X5)

Ẋ3 = f(X3, X5, X3, X4, X5)

Ẋ4 = f(X4, X4, X3, X4, X5)

Ẋ4 = f(X5, X4, X3, X4, X5)

(7.25)

by setting X1 = X3 = x1, X2 = X5 = x2 and X4 = x3. This latter system
describes all vector fields on R5 with the symmetries

(X1, X2, X3, X4, X5) 7→ (X2, X4, X3, X4, X5) ,

(X1, X2, X3, X4, X5) 7→ (X3, X5, X3, X4, X5) ,

(X1, X2, X3, X4, X5) 7→ (X4, X4, X3, X4, X5) ,

(X1, X2, X3, X4, X5) 7→ (X5, X4, X3, X4, X5) .

(7.26)

As shown in [20], the center and hyperbolic subspaces of its linearisation at a
fully synchronous point will generically define a splitting of R5 isomorphic to

R5 = {X1 = · · · = X5} ⊕ {X4 = 0} . (7.27)

Projections corresponding to this decomposition are given by

P (X1, X2, X3, X4, X5) = (X4, X4, X4, X4, X4) (7.28)

and

Q(X1, X2, X3, X4, X5) = (X1 −X4, X2 −X4, X3 −X4, 0, X5 −X4) . (7.29)

If we take the fully synchronous space to be the center subspace, then generically
we again obtain a fully synchronous saddle node bifurcation, as was the case in
network B as well. If instead we take {X4 = 0} to be the center subspace, then
a reduced vector field for the system (7.25) corresponds to an equivariant vector
field on this space. Following theorem 5.6, these correspond to the functions
F = (F1, F2, F3, F5) : R4 → R4 such that the expression

i{X4=0} ◦ F ◦Q(X1, . . . , X5) =


F1(X1 −X4, X2 −X4, X3 −X4, X5 −X4)
F2(X1 −X4, X2 −X4, X3 −X4, X5 −X4)
F3(X1 −X4, X2 −X4, X3 −X4, X5 −X4)

0
F5(X1 −X4, X2 −X4, X3 −X4, X5 −X4)
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is a fundamental network vector field. This yields the equalities
F1(X1 −X4, X2 −X4, X3 −X4, X5 −X4)
F2(X1 −X4, X2 −X4, X3 −X4, X5 −X4)
F3(X1 −X4, X2 −X4, X3 −X4, X5 −X4)

0
F5(X1 −X4, X2 −X4, X3 −X4, X5 −X4)

 =


F1(X1 −X4, X2 −X4, X3 −X4, X5 −X4)
F1(X2 −X4, 0, X3 −X4, X5 −X4)
F1(X3 −X4, X5 −X4, X3 −X4, X5 −X4)
F1(0, 0, X3 −X4, X5 −X4)
F1(X5 −X4, 0, X3 −X4, X5 −X4)

 .

(7.30)

It follows that a general equivariant vector field on {X4 = 0} is of the form

F (X1, X2, X3, X5) =


F1(X1, X2, X3, X5)
F1(X2, 0, X3, X5)
F1(X3, X5, X3, X5)
F1(X5, 0, X3, X5)

 (7.31)

with the additional condition that F1(0, 0, X3, X5) = 0. This latter condition
can be reformulated by writing

F1(X1, X2, X3, X5) = X1G(X1, X3, X5) +X2H(X1, X2, X3, X5) , (7.32)

from which it follows that a general Σ-equivariant vector field has the form

F (X1, X2, X3, X5) =


X1G(X1, X3, X5) +X2H(X1, X2, X3, X5)
X2G(X2, X3, X5)
X3G(X3, X3, X5) +X5H(X3, X5, X3, X5)
X5G(X5, X3, X5)

 . (7.33)

If we now restrict to network C, i.e. to the synchrony space {X1 = X3, X2 =
X5}, then the steady state problem reduces to solving the equations

X1G(X1, X1, X2, λ) +X2H(X1, X2, λ) = 0 ,

X2G(X2, X1, X2, λ) = 0 .
(7.34)

At this point, we include the parameter again to investigate generic steady state
bifurcations. So we shall write

G(X1, X2, X3, λ) = a1X1 + a2X2 + a3X3 + a4λ+O(|X|2 + |λ|2) ,

H(X1, X2, λ) = C + b1X1 + b2X2 + b3λ+O(|X|2 + |λ|2) .
(7.35)

The second line in equation (7.34) is solved when X2 = 0 or when

G(X2, X1, X2, λ) = a1X2 + a2X1 + a3X2 + a4λ+O(|X|2 + |λ|2) = 0 . (7.36)
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Assuming a2 6= 0, the implicit function theorem then gives us that locally all
the solutions to equation (7.36) are given by X1 = X1(X2, λ) = −a1+a3

a2
X2 −

a4
a2
λ+O(|X2|2 + |λ|2).
Let us first assume that X2 = 0. The first line in equation (7.34) is then

solved when X1 = 0 or when X1(λ) = −a4
a1+a2

λ+O(|λ|2), assuming a1 + a2 6= 0.

Next, suppose we have the relation X1 = X1(X2, λ) = −a1+a3
a2

X2 − a4
a2
λ +

O(|X2|2 + |λ|2). The first line in (7.34) then becomes the equation[
−a1 + a3

a2
X2 −

a4

a2
λ

](
(a1 + a2)

[
−a1 + a3

a2
X2 −

a4

a2
λ

]
+ a3X2 + a4λ

)
+

X2

(
C + b1

[
−a1 + a3

a2
X2 −

a4

a2
λ

]
+ b2X2 + b3λ

)
+O(|X2|3 + |λ|3) = 0 ,

which can be rewritten as

CX2 +
a2

4a1

a2
2

λ2 +O(|X2|2 + |λ||X2|+ |λ|3) = 0 . (7.37)

Hence, assuming C 6= 0, the implicit function theorem gives the solution

X2 = X2(λ) =
−a2

4a1

Ca2
2

λ2 +O(|λ|3) . (7.38)

Combined with the relation X1 = X1(X2, λ) = −a1+a3
a2

X2 − a4
a2
λ + O(|X2|2 +

|λ|2), we then get

X1(λ) =
−a4

a2
λ+O(|λ|2) . (7.39)

To summarise, we have found the three bifurcation branches

X1(λ) = X2(λ) = 0 ,

X1(λ) =
−a4

a1 + a2
λ+O(|λ|2), X2(λ) = 0 ,

X1(λ) =
−a4

a2
λ+O(|λ|2), X2(λ) =

−a2
4a1

Ca2
2

λ2 +O(|λ|3) ,

(7.40)

where furthermore we have that X4 = 0 in all three cases. Note that this makes
the first branch fully synchronous, the second partially synchronous and the
last fully non synchronous. Note however that this third branch is partially
synchronous up to first order.

A stability analysis similar to that in Section 7.1 yields the eigenvalue a4λ+
O(|λ|2) twice for the fully synchronous branch. We thus assume that a4 6= 0. For
the partially synchronous branch we then find the eigenvalues −a4λ + O(|λ|2)
and a1a4

a1+a2
λ + O(|λ|2). For the fully non-synchronous branch we find β1λ +

O(|λ|2) and β2λ+O(|λ|2), where β1 and β2 satisfy

β1 + β2 = −a4
2a1 + a2

a2
and β1 · β2 = a2

4

a1

a2
. (7.41)
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Note that for positive values of a1a2 the expression 2a1+a2
a2

= 2a1a2 +1 is necessarily
positive as well. Hence, the fully non-synchronous branch either takes over the
stability of the fully synchronous one, or remains a saddle. The same holds true
for the partially synchronous solution. However, when this latter branch gains
the stability of the fully synchronous one then it must hold that a1

a1+a2
< 0.

From this it follows that a2
a1

= a1+a2
a1
− 1 < 0 and we see that in this case the

nonsynchronous branch is necessarily a saddle. We note that it is also possible
that both the partially synchronous and the fully nonsynchronous branch are
saddles, as there are values of a1 and a2 for which a1

a2
is negative, but a1

a1+a2
=(

a2
a1

+ 1
)−1

is positive.

As network C is obtained from the fundamental system (7.25) by setting
X1 = X3 = x1, X2 = X5 = x2 and X4 = x3, we see that the results obtained
above hold for this former system under these identifications. This proves the
claims on network C of the introduction.
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