
A priori error estimates for the optimal
control of the integral fractional Laplacian∗

Marta D’Elia† Christian Glusa‡ Enrique Otárola§

Abstract

We design and analyze solution techniques for a linear-quadratic optimal control prob-
lem involving the integral fractional Laplacian. We derive existence and uniqueness
results, first order optimality conditions, and regularity estimates for the optimal vari-
ables. We propose two strategies to discretize the fractional optimal control problem:
a semidiscrete approach where the control is not discretized – the so-called variational
discretization approach – and a fully discrete approach where the control variable is
discretized with piecewise constant functions. Both schemes rely on the discretization
of the state equation with the finite element space of continuous piecewise polynomials
of degree one. We derive a priori error estimates for both solution techniques. We
illustrate the theory with two-dimensional numerical tests.
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1 Introduction

Nonlocal models have recently become of great interest to the applied sciences
and engineering. This is mainly due to the fact that operators featuring nonlocal
interactions better describe many processes, for instance, anomalous diffusion
phenomena, for which where classical integer order differential operators fail to
provide an accurate description. More specifically, they arise in applications
such as stochastic jump processes [17, 49], material science (e.g. subsurface flow
where nonlocal porous media models accurately describe the physical process)
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[5, 6, 44], image processing [25, 35], finance [33, 46], fluids [12, 29, 36], population
dynamics [30] and cardiology [39].

Fractional operators are a particular class of nonlocal operators. When solv-
ing fractional partial differential equations (PDEs), even linear ones, several
modeling and computational challenges arise. As an example, the computational
cost required by the solution of a linear fractional PDE can be prohibitively ex-
pensive, especially in two- or three-dimensional domains. This is due to the fact
that, contrary to the case of local PDEs, points in a domain interact with every
other point in the space, due to the nonlocal nature of the operator that allows
for infinite range interactions. This clearly creates computational challenges as
the discretized problems are hard to assemble and solve.

Furthermore, it is often the case that the mathematical model is not exact,
e.g. source terms or coefficients may be unknown or subject to uncertainty.
However, in the case when limited data or a priori information is available, one
can resort to the solution of a control or inverse problem to recover the unknown
parameters and define a more accurate, data-driven, mathematical model.

Among available data we may have sparse and/or noisy measurements of the
state of the system or of an output of interest that we would like to match. In this
work we address the problem of finding an input function (e.g. a distributed
source term) such that the corresponding solution is as close a possible to a
target state; for now, we do not consider any uncertainty in the data. We
propose to solve an optimal control problem where the cost functional quantifies
the misfit between the target and the predicted output of interest, the constraint
is the fractional differential equation, and the control is a distributed source
term.

PDE-constrained optimization problems involving fractional and nonlocal
equations are not new in the literature; we mention, e.g., the works by Antil
and Otárola [4], Otárola [41], and D’Elia and Gunzburger [18, 19]. In [4], the
authors consider a linear-quadratic optimal control problem for the spectral def-
inition of the fractional Laplacian; control constraints are also considered. The
authors also propose and study solution techniques to approximate the under-
lying solution. In [18] the authors consider an optimal control problem for a
general nonlocal diffusion operator with finite range interactions. In the current
work, with a similar formulation, we consider a linear-quadratic optimal con-
trol problem involving the integral definition of the fractional Laplace operator,
which we simply refer to as the integral fractional Laplacian; in this case, as
previously mentioned, the interactions can be infinite. It is important to note
that the integral and spectral definitions of the fractional Laplace operator do
not coincide. In fact, as shown in [38], their difference is positive and positivity
preserving. This, in particular, implies that the boundary behavior of the so-
lutions to basic problems involving the aforementioned definitions are different
[11, 16, 26].

In this work, we design and analyze efficient solution techniques for a linear-
quadratic optimal control problem involving the integral fractional Laplacian.
To make matters precise, for n ≥ 1, we let Ω ⊂ Rn be an open bounded domain
with Lipschitz boundary ∂Ω. Given s ∈ (0, 1) and a desired state ud : Ω → R,
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we define the cost functional

J(u, z) :=
1

2
‖u− ud‖2L2(Ω) +

α

2
‖z‖2L2(Ω), (1)

where α > 0 denotes the so-called regularization parameter. Let f : Ω → R be
a fixed function. We consider the following optimal control problem: Find

min J(u, z) (2)

subject to the fractional state equation

(−∆)su = f + z in Ω, u = 0 in Ωc, (3)

with s ∈ (0, 1) and Ωc = Rn \ Ω, and the control constraints

a ≤ z(x) ≤ b a.e. x ∈ Ω; (4)

the control bounds a, b ∈ R are such that a < b.
For functions defined over the whole space Rn, the integral fractional Lapla-

cian (−∆)s can be naturally defined via the Fourier transform as follows:

F((−∆)sw)(ξ) = |ξ|2sF(w)(ξ). (5)

Equivalently, (−∆)s can be defined by means of the following pointwise formula

(−∆)sw(x) = C(n, s) p.v

∫
Rn

w(x)− w(y)

|x− y|n+2s
dy, C(n, s) =

22ssΓ(s+ n
2 )

πn/2Γ(1− s)
,

(6)
where p.v stands for the Cauchy principal value and C(n, s) is a positive nor-
malization constant that depends only on n and s [20, equation (3.2)] and is
introduced to guarantee that the symbol of the resulting operator is |ξ|2s. We
refer the reader to [32, Section 1.1] and [20, Proposition 3.3] for a proof of the
equivalence of these two definitions. Note that, as previously mentioned, there
exist other non-equivalent definitions of the fractional Laplacian on bounded
domains, e.g. the regional fractional Laplacian, the spectral fractional Lapla-
cian, etc. We refer the reader to [7, 38, 45] for a comprehensive description and
study.

The rest of the paper is organized as follows. In section 2 we introduce some
notation that will be useful throughout the paper. In section 3 we formulate
the optimal control problem for the integral fractional Laplacian with Dirichlet
volume constraints. We also prove the well-posedness of the formulation, derive
optimality conditions and derive regularity estimates for the optimal variables.
Section 4 is devoted to the study of discretization techniques to solve the frac-
tional optimal control problem. In section 4.1 we review the a priori error
analysis developed in [1] for the state equation. In section 4.2 we propose a
semidiscrete scheme for the control problem and derive a priori error estimates
for the approximation of the control variable. In section 4.3 we propose a fully
discrete scheme for the fractional optimal control problem and derive error esti-
mates for the approximation of the state and control variables. In section 5 we
report results of two-dimensional numerical tests that illustrate the theory and
demonstrate the efficient solution of the discretized fractional control problem.
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2 Notation and preliminaries

Throughout this work Ω is an open bounded domain of Rn (n ≥ 1) with Lip-
schitz boundary ∂Ω that satisfies the exterior ball condition. We will denote
by Ωc the complement of Ω. The relation a . b indicates that a ≤ Cb with a
constant C that does not depend on neither a and b but it might depend on s
and Ω. The value of C might change at each occurrence. If X and Y are normed
spaces, we write X ↪→ Y to denote that X is continuously embedded in Y.

2.1 Function spaces

For any s ≥ 0, we define Hs(Rn), the Sobolev space of order s over Rn, by [47,
Definition 15.7]

Hs(Rn) :=
{
v ∈ L2(Rn) : (1 + |ξ|2)s/2F(v) ∈ L2(Rn)

}
.

With the space Hs(Rn) at hand, we define H̃s(Ω) as the closure of C∞0 (Ω) in
Hs(Rn) and note that it can be equivalently characterized by [37, Theorem 3.29]

H̃s(Ω) = {v|Ω : v ∈ Hs(Rn), supp v ⊂ Ω}. (7)

When ∂Ω is Lipschitz H̃s(Ω) is equivalent to Hs(Ω) = [L2(Ω), H1
0 (Ω)]s, the real

interpolation between L2(Ω) and H1
0 (Ω) for s ∈ (0, 1) and to Hs(Ω) ∩ H1

0 (Ω)
for s ∈ (1, 3/2) [37, Theorem 3.33]. We denote by H−s(Ω) the dual space of

H̃s(Ω) and by 〈·, ·〉 the duality pair between these two spaces. We also define
the bilinear form

A(v, w) =
C(n, s)

2

∫∫
Rn×Rn

(v(x)− v(y))(w(x)− w(y))

|x− y|n+2s
dxdy, (8)

and denote by ‖ · ‖s the norm that A(·, ·) induces, which is just a multiple of
the Hs(Rn)-seminorm:

‖v‖s = A(v, v)
1
2 =

√
C(n, s)

2
|v|Hs(Rn).

2.2 The state equation

Let f ∈ H−s(Ω). The weak formulation of the state equation (3) reads as

follows: Find u ∈ H̃s(Ω) such that

A(u, v) = 〈f + z, v〉 ∀v ∈ H̃s(Ω). (9)

Since A is continuous and coercive in H̃s(Ω), the Lax-Milgram lemma implies
that problem (9) admits a unique solution that satisfies the stability estimate

‖u‖s . ‖f + z‖H−s(Ω). (10)
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3 The fractional optimal control problem

In this section, we analyze the fractional optimal control problem (2)–(4). We
derive existence and uniqueness results together with first order necessary and
sufficient optimality conditions and regularity estimates.

For J defined in (1), the fractional optimal control problem reads as follows:
Find min J(u, z) subject to the state equation (9) and the control constraints
(4). The set of admissible controls is defined by

Zad := {w ∈ L2(Ω) : a ≤ w(x) ≤ b a.e. x ∈ Ω}, (11)

which is a nonempty, bounded, closed, and convex subset of L2(Ω).
As it is customary in optimal control theory [34, 48], to analyze (2)–(4), we

introduce the so-called control-to-state operator.

Definition 1 (control-to-state map): S : L2(Ω) 3 z 7→ u(z) ∈ H̃s(Ω), where u(z)
solves (9), is called the fractional control to state operator.

We notice that S is affine. In fact,

Sz = S0z + ψ0, (12)

where S0z denotes the solution to (9) with f ≡ 0 and ψ0 solves (9) with z ≡ 0;
the operator S0 is linear. We also notice that S is self-adjoint and, in light of the
estimate (10), it is a continuous operator. In view of the continuous embeddings

H−s(Ω) ↪→ L2(Ω) ↪→ H̃s(Ω) [37, Theorem 3.27], we may also consider S acting
from L2(Ω) onto itself. For simplicity, we keep the notation S.

An optimal fractional state-control pair is defined as follows.

Definition 2 (optimal fractional state-control pair): A state-control pair (ū(z̄), z̄) ∈
H̃s(Ω)× Zad is called optimal for problem (2)–(4) if ū(z̄) = Sz̄ and

J(ū(z̄), z̄) ≤ J(u(z), z)

for all (u(z), z) ∈ H̃s(Ω)× Zad such that u(z) = Sz.

The existence and uniqueness of an optimal state–control pair is as follows.

Theorem 1 (existence and uniqueness): The fractional optimal control problem

(2)–(4) has a unique solution (ū, z̄) ∈ H̃s(Ω)× Zad.

Proof. By definition of S, problem (2)–(4) reduces to the following quadratic
optimization problem: Minimize

j(z) :=
1

2
‖Sz − ud‖2L2(Ω) +

α

2
‖z‖2L2(Ω) (13)

over the set Zad. Since α > 0, it is immediate that the functional j is strictly
convex. In addition, since S is continuous, j is weakly lower semicontinuous.
On the other hand, the set Zad is weakly sequentially compact. The assertion
thus follows from employing the direct method of the calculus of variations [15,
Theorem 5.51]. �
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3.1 First order optimality conditions

To provide first order necessary and sufficient optimality conditions, we intro-
duce the so-called adjoint state.

Definition 3 (fractional adjoint state): The solution p = p(z) ∈ H̃s(Ω) of

A(v, p) = 〈u− ud, v〉 ∀v ∈ H̃s(Ω) (14)

is called the fractional adjoint state associated to u = u(z).

The following theorem proves necessary and sufficient optimality conditions
for the optimal control problem (2)–(4).

Theorem 2 (first order optimality conditions): z̄ ∈ Zad is the optimal control of
problem (2)–(4) if and only if it satisfies the variational inequality

(p̄+ αz̄, z − z̄)L2(Ω) ≥ 0 (15)

for every z ∈ Zad, where p̄ = p̄(z̄) solves (14) with u replaced by ū = Sz̄.

Proof. A classical result [48, Lemma 2.21] guarantees that z̄ ∈ Zad minimizes
the reduced cost functional j, defined as in (13), if and only if

(j′(z̄), z − z̄)L2(Ω) ≥ 0 (16)

for every z ∈ Zad. By standard arguments, we conclude that j is Fréchet
differentiable and we rewrite (16) as

(Sz̄ − ud,S0(z − z̄))L2(Ω) + α(z̄, z − z̄)L2(Ω) ≥ 0 ∀z ∈ Zad,

where S0 is defined in (12) [48, Theorem 2.20]. Notice that S0 is self-adjoint.
We can thus utilize Definition 3 to conclude that S0(Sz̄ − ud) + αz̄ = p̄ + αz̄.
This concludes the proof. �

3.2 Regularity of the optimal control

In order to derive a priori error estimates for the solution techniques that we
will propose in section 4.2 and 4.3, it is fundamental to study the regularity
properties of the optimal variables associated to (2)–(4). To accomplish this
task, we introduce the projection operator proj : L1(Ω)→ Zad, which is defined
by

proj[a,b](v)(x) = min{b,max{a, v(x)}} for all x ∈ Ω, (17)

where a and b are in R. With this nonlinear operator at hand, the arguments
developed in [48, Section 2.8] allow us to conclude the following result: If α > 0
and p̄ is given by Definition 3, then the variational inequality (15) is equivalent
to the following projection formula:

z̄(x) = proj[a,b]

(
− 1

α
p̄(x)

)
. (18)
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3.2.1 Regularity results on smooth domains

We now state a regularity result for the state equation (9) that is instrumental
to derive regularity estimates for the optimal control variables.

Proposition 1 (regularity of u on smooth domains): Let s ∈ (0, 1) and Ω be a do-
main such that ∂Ω ∈ C∞. If f + z ∈ Hr(Ω), for some r ≥ −s, then the solution
u of problem (9) belongs to Hs+ϑ(Ω), where ϑ = min{s+ r, 1/2− ε} and ε > 0
is arbitrarily small. In addition, the following estimate holds:

‖u‖Hs+ϑ(Ω) . ‖f + z‖Hr(Ω), (19)

where the hidden constant depends on the domain Ω, n, s, and ϑ.

Proof. See [26]. �
The following example shows that, even when ∂Ω is smooth, smoothness of

the right hand side f + z does not ensure that solutions are any smoother than
Hs+1/2−ε(Ω) [24, 42]: Consider Ω = B(0, 1) ⊂ Rn and f + z ≡ 1, then the
solution to (9) is given by

u(x) =
Γ(n2 )

22sΓ(n+2s
2 )Γ(1 + s)

(
1− |x|2

)s
+
, (20)

where t+ = max{t, 0}.
With the regularity estimates of Theorem 1 at hand, we now proceed to

investigate the regularity properties of the optimal control variable z̄ when ∂Ω ∈
C∞.

Theorem 3 (regularity of z̄ on smooth domains): Let ud ∈ Hλ(Ω) with λ = min{1−
2s, 1

2 − s − ε} and f ∈ Hβ(Ω) with β = max{−s, 1
2 − 3s − ε} where ε > 0 is

arbitrarily small. Then z̄ ∈ Hγ(Ω) with γ = min{1, 1
2 + s− ε}. In addition, we

have that
‖z̄‖Hγ(Ω) . ‖f‖Hβ(Ω) + ‖z̄‖L2(Ω) + ‖ud‖Hλ(Ω), (21)

where the hidden constant depends on Ω, n, and s.

Proof. We begin by noticing that, since the right-hand sides of the state and
adjoint equations, namely, f + z̄ and ū−ud, respectively, belong to H−s(Ω), we
have that ū, p̄ ∈ Hs(Ω). This, on the basis of a nonlinear operator interpolation
result as in [47, Lemma 28.1] combined with [31, Theorem A.1] and formula
(18), implies that z̄ ∈ Hs(Ω).

We now consider the following cases.

Case 1. s ≥ 1/4: Notice that, in view of the assumption on ud, we have that
ū − ud ∈ Hη(Ω), where η = min{s, λ} = λ. By Proposition 1, we conclude
that p̄ ∈ Hξ(Ω), where ξ = s+ ϑ1 and ϑ1 = min{s+ λ, 1/2− ε}. By invoking,
again, [47, Lemma 28.1], [31, Theorem A.1], and formula (18), we conclude that
z̄ ∈ Hκ(Ω) with κ = min{1, ξ}.

Notice that, if s ∈ [1/4, 1/2 + ε), we have that 1− 2s > 1/2− s− ε and thus
that λ = 1/2− s− ε. Consequently, ϑ1 = 1/2− ε and ξ = s+ ϑ1 = s+ 1/2− ε.
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As a result, we have obtained that z̄ ∈ Hs+1/2−ε(Ω) with ε > 0 being arbitrarily
small. On the other hand, if s ≥ 1/2 + ε, then 1− 2s ≤ 1/2− s− ε. This yields
λ = 1− 2s. Consequently, ϑ1 = min{1− s, 1/2− ε} = 1− s, which implies that
ξ = s+ ϑ1 = 1. We have thus obtained that z̄ ∈ H1(Ω).

Case 2. 1/8 ≤ s < 1/4: Notice that, since β = 1/2− 3s− ε < s, we obtain that
f + z̄ ∈ Hβ(Ω). We can thus apply Proposition 1 to conclude that ū ∈ Hι(Ω)
with ι = s+ϑ2 and ϑ2 = min{s+β, 1/2−ε}. Notice that ι = 1/2−s−ε = λ. Since
ud ∈ Hλ(Ω), we thus have that ū − ud ∈ Hλ(Ω). Therefore, by Proposition 1,
p̄ ∈ Hs+ϑ3(Ω), where ϑ3 = min{s + λ, 1/2 − ε} = 1/2 − ε. By invoking,
again, [47, Lemma 28.1], [31, Theorem A.1], and formula (18), we obtain that
z̄ ∈ Hs+1/2−ε(Ω), where ε > 0 is arbitrarily small.

Case 3. 0 < s < 1/8: Since z̄ ∈ Hs(Ω), we have that f + z̄ ∈ Hδ(Ω), where
δ = min{s, 1/2 − 3s − ε} = s. We thus invoke Proposition 1 to conclude that
ū ∈ Hs+ϑ4(Ω), where ϑ4 = min{s+ δ, 1/2− ε} = min{2s, 1/2− ε} = 2s. Notice
that, in view of the assumption ud ∈ Hλ(Ω) with λ = 1/2− s− ε, we conclude
that ū − ud ∈ H2s(Ω). We apply again [47, Lemma 28.1], [31, Theorem A.1],
and formula (18) to conclude that z̄ ∈ Hs+ϑ5(Ω), where ϑ5 = min{3s, 1/2− ε}.

Case 3.1. 1/6 ≤ s < 1/8: In this case 3s > 1/2− ε, and then ϑ5 = 1/2− ε.
Consequently, z̄ ∈ Hs+1/2−ε(Ω) with ε > 0 being arbitrarily small.

Case 3.2. 0 < s < 1/6: On the basis of the arguments previously developed,
a bootstrap argument allows us to conclude that z̄ ∈ Hs+1/2−ε(Ω) with ε > 0
being arbitrarily small.

In all the considered cases, the estimate 21 follows from stability estimates
for state and adjoint equations and the nonlinear operator interpolation result
of [47, Lemma 28.1] combined with [31, Theorem A.1] and formula (18). This
concludes the proof. �

The following result follows immediately.

Corollary 1 (regularity of ū and p̄ on smooth domains): Let s ∈ (0, 1). Under the
framework of Theorem 3 we have that ū ∈ Hs+1/2−ε(Ω) and p̄ ∈ Hs+1/2−ε(Ω)
for every ε > 0.

As the example previously described, which involves (20) as exact solution,
shows, the regularity properties of the optimal variables ū and p̄ obtained in
Corollary 1 cannot be improved.

3.2.2 Regularity results on Lipschitz domains

The following results establish regularity estimates in Hölder and Sobolev spaces
for Lipschitz domains.

Proposition 2 (regularity of u on Lipschitz domains): Let s ∈ (0, 1) and Ω be a
bounded Lipschitz domain satisfying the exterior ball condition. If f + z ∈
L∞(Ω), then the solution u of problem (9) belongs to Cs(Rn) and the following
estimate holds:

‖u‖Cs(Rn) . ‖f‖L∞(Ω) + ‖z‖L∞(Ω), (22)

where the hidden constant depends on Ω and s.
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Proof. See [43, Proposition 1.1]. �

Proposition 3 (regularity of u on Lipschitz domains): Let s ∈ (0, 1) and Ω be a
bounded Lipschitz domain satisfying the exterior ball condition. If s ∈ (0, 1/2),

let f + z ∈ C
1
2−s(Ω); if s = 1/2, let f + z ∈ L∞(Ω); and if s ∈ (1/2, 1), let

f + z ∈ Cβ(Ω) for some β > 0. Then, for every ε > 0, the solution u of problem
(9) belongs to Hs+1/2−ε(Ω) and satisfies the estimate

‖u‖Hs+1/2−ε(Ω) . ‖f + z‖?, (23)

where ‖ · ‖? denotes the C
1
2−s(Ω), L∞(Ω) or Cβ(Ω)-norm, correspondingly to

whether s is smaller, equal or grater than 1/2. The hidden constant depends
on the domain Ω, the dimension n, and the parameter s, and blows up when
ε→ 0.

Proof. See [1, Propositions 3.6 and 3.11]. �
We now proceed to investigate the regularity properties of the optimal con-

trol variable z̄ when Ω is a bounded Lipschitz domain that satisfies the exterior
ball condition. We begin with the case s ∈ (0, 1

4 ).

Theorem 4 (regularity of z̄ on Lipschitz domains: s ∈ (0, 1
4 )): Let f ∈ L∞(Ω) and

ud ∈ L∞(Ω). If s ∈ (0, 1
4 ), then we have that z̄ ∈ Cs(Ω). In addition, we have

the estimate

‖z̄‖Cs(Ω) . ‖f‖L∞(Ω) + ‖z̄‖L∞(Ω) + ‖ud‖L∞(Ω),

where the hidden constant depends on Ω and s.

Proof. Since the right-hand side f+z̄ of the state equation (9) belongs to L∞(Ω),
Proposition 2 allows us to conclude that ū ∈ Cs(Rn). Thus, since ud ∈ L∞(Ω),
we can apply Proposition 2, again, to conclude that p̄ ∈ Cs(Ω). The projection
formula (17) and [31, Theorem A.1] allow us to conclude that z̄ ∈ Cs(Ω). �

Theorem 5 (regularity of z̄ on Lipschitz domains: s ∈ [ 1
4 ,

1
2 )): Let f ∈ L∞(Ω) and

ud ∈ C1/2−s(Ω). If s ∈ [ 1
4 ,

1
2 ), then we have that, for every ε > 0, the optimal

control z̄ ∈ Hs+1/2−ε(Ω). In addition, we have the estimate

‖z̄‖Hs+1/2−ε(Ω) . ‖f‖L∞(Ω) + ‖z̄‖L∞(Ω) + ‖ud‖C1/2−s(Ω),

where the hidden constant depends on Ω, n, and s, and blows up when ε→ 0.

Proof. In view of the fact that f + z̄ belongs to L∞(Ω), we can apply the results
of Proposition 2 to obtain that ū ∈ Cs(Rn) and that

‖ū‖Cs(Rn) . ‖f‖L∞(Ω) + ‖z̄‖L∞(Ω). (24)

Now, notice that, since s ∈ [1/4, 1/2), the following trivial inequality holds:
1/2 − s ≤ s. This, the estimate (24), and the assumption on the desired state
ud reveal that ū− ud ∈ C1/2−s(Ω). We are thus in position to apply the results
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of Proposition 3 to obtain that, for every ε > 0, the optimal adjoint variable p̄
belongs to Hs+1/2−ε(Ω). In addition, we have the estimate

‖p̄‖Hs+1/2−ε(Ω) . ‖ū‖C1/2−s(Ω) + ‖ud‖C1/2−s(Ω).

In view of the projection formula (17) and [31, Theorem A.1], a nonlinear op-
erator interpolation result as in [47, Lemma 28.1] allow us to conclude that, for
every ε > 0, z̄ ∈ Hs+1/2−ε(Ω), with the estimate

‖z̄‖Hs+1/2−ε(Ω) . ‖p̄‖Hs+1/2−ε(Ω) . ‖ū‖C1/2−s(Ω) + ‖ud‖C1/2−s(Ω).

This, in view of (24), concludes the proof. �
We now consider the case s ∈ ( 1

2 , 1).

Theorem 6 (regularity of z̄ on Lipschitz domains: s ∈ ( 1
2 , 1)): Let f ∈ L∞(Ω) and

ud ∈ Cβ(Ω), for some β > 0. If s ∈ ( 1
2 , 1), then we have that the optimal control

z̄ belongs to H1(Ω). In addition, we have the estimate

‖z̄‖H1(Ω) . ‖f‖L∞(Ω) + ‖z̄‖L∞(Ω) + ‖ud‖Cγ(Ω),

where γ = min{β, s}, and the hidden constant depends on Ω, n, and s, and
blows up when ε→ 0.

Proof. We begin the proof by applying the results of Proposition 2 to conclude
that ū ∈ Cs(Rn), with the estimate

‖ū‖Cs(Rn) . ‖f‖L∞(Ω) + ‖z̄‖L∞(Ω). (25)

In view of the assumptions, we conclude that ū − ud ∈ Cγ(Ω), where γ =
min{β, s}. We can thus invoke the results of Proposition 3 to conclude that, for
every ε > 0, we have that p̄ ∈ Hs+1/2−ε(Ω), with the estimate

‖p̄‖Hs+1/2−ε(Ω) . ‖ū‖Cγ(Ω) + ‖ud‖Cγ(Ω).

The regularity property for the optimal control follows thus from (17), [31,
Theorem A.1] and [47, Lemma 28.1]. In fact, we have that z̄ ∈ H1(Ω), with the
estimate

‖z̄‖H1(Ω) . ‖ū‖Cγ(Ω) + ‖ud‖Cγ(Ω)

. ‖f‖L∞(Ω) + ‖z̄‖L∞(Ω) + ‖ud‖Cγ(Ω),

where, to obtain the last estimate, we have used (25). This concludes the proof.
�

Similar arguments to the ones elaborated in the proofs of Theorems 5 and
6 allow us to obtain regularity estimates for the case s = 1

2 . For brevity, we
present the following result and skip the details.



M. D’Elia, C. Glusa and E. Otárola 11

Theorem 7 (regularity of z̄ on Lipschitz domains: s = 1
2 ): Let f and ud ∈ L∞(Ω).

If s = 1
2 , then we have that, for every ε > 0, the optimal control z̄ ∈ H1−ε(Ω),

with the estimate

‖z̄‖H1−ε(Ω) . ‖f‖L∞(Ω) + ‖z̄‖L∞(Ω) + ‖ud‖L∞(Ω),

where the hidden constant depends on Ω, n, and s, and blows up when ε→ 0.

The following regularity result will be instrumental for the error analysis
that we will perform.

Lemma 1 (regularity of z̄ on Lipschitz domains: s ∈ [ 1
4 , 1)): Let f ∈ L∞(Ω) and

ud ∈ L∞(Ω). In addition, for s ∈ [1/4, 1/2), let ud ∈ Cβ(Ω) for some β > 0.
Then,

z̄ ∈


C1/2−s(Ω), s ∈ [ 1

4 ,
1
2 ),

L∞(Ω), s = 1
2 ,

Cs(Ω), s ∈ ( 1
2 , 1).

(26)

Proof. The case s = 1
2 follows immediately from the fact that z̄ ∈ Zad.

If s ∈ ( 1
2 , 1), we can apply Proposition 2, since ū−ud ∈ L∞(Ω), to conclude

that p̄ ∈ Cs(Rn). This, in view of the projection formula (17) reveals that
z ∈ Cs(Ω).

If s ∈ [ 1
4 ,

1
2 ), an application of Proposition 2, again, yields p̄ ∈ Cs(Ω). This

implies that p̄ ∈ C1/2−s(Ω) for s ∈ [ 1
4 ,

1
2 ). The projection formula (17) allows

us to conclude. �

4 Approximation of the fractional control problem

In this section, we introduce and analyze two solution techniques to approximate
the solution to the fractional optimal control problem (2)–(4). Before proceeding
with the design and analysis of the proposed methods, it is instructive to review
the numerical approximation of the state equation (3) developed in [1]. We
briefly report such results in the following section.

4.1 A finite element method for the state equation

We start with some terminology and describe the construction of the underlying
finite element spaces. Let T = {T} be a conforming partition of Ω into simplices
T with size hT = diam(T ), and set hT = maxT∈T hT . We denote by T the
collection of conforming and shape regular meshes that are refinements of an
initial mesh T0. By shape regular we mean that there exists a constant σ > 1
such that max{σT : T ∈ T } ≤ σ for all T ∈ T. Here σT = hT /ρT denotes the
shape coefficient of T , where ρT is the diameter of the largest ball that can be
inscribed in T [10, 14, 22].

Given a mesh T ∈ T, we define the finite element space of continuous
piecewise polynomials of degree one as

V(T ) =
{
vT ∈ C0(Ω) : vT |T ∈ P1(T ) ∀T ∈ T , vT = 0 on ∂Ω

}
. (27)
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Note that discrete functions are trivially extended by zero to Ωc and that we
enforce a classical homogeneous Dirichlet boundary condition at the degrees
of freedom that are located at the boundary of Ω. As Proposition 2 states,
the solutions of state and adjoint equations are in the Hölder space Cs (Rn).
Therefore their boundary trace is zero on ∂Ω. The finite element approximation
of the state equation (9) is then the unique solution to the following discrete
problem: Find uT ∈ V(T ) such that

A(uT , vT ) = 〈f + z, vT 〉 ∀vT ∈ V(T ), (28)

Note that discrete functions are trivially extended by zero to Ωc. From this
formulation it follows that uT is the projection (in the energy norm) of u onto
V(T ). Consequently, we have a Céa-like best approximation result

‖u− uT ‖s = inf
vT ∈V(T )

‖u− vT ‖s. (29)

4.1.1 Error estimates on quasi-uniform meshes

Localization results for fractional seminorms [23] and local stability and approx-
imation properties for the Scott-Zhang interpolation operator [13] are the key
ingredients to provide an a priori error analysis. We present the following a
priori error estimate in energy norm [1, Theorem 4.7].

Proposition 4 (energy error estimate for quasi–uniform meshes): Let u ∈ H̃s(Ω)
be the solution to (9), and let uT ∈ V(T ) be the solution to the discrete
problem (28). If T is quasi–uniform, then, under the hypotheses of Proposition
3, we have the error estimate

‖u− uT ‖s . h
1
2

T | log hT |‖f + z‖?, (30)

where the hidden constant depends on Ω, s, and σ; ‖ · ‖? denotes the C
1
2−s(Ω),

L∞(Ω) or Cβ(Ω)-norm, correspondingly to whether s is smaller, equal or grater
than 1/2.

The following a priori error estimate in L2(Ω) can be derived following the
arguments of [9, Proposition 4.3]; see [8, Proposition 3.8].

Proposition 5 (L2-error estimate for quasi–uniform meshes): Let u ∈ H̃s(Ω) be
the solution to (9), and let uT ∈ V(T ) be the solution to the discrete problem
(28). If T is quasi–uniform, then, under the hypotheses of Proposition 1, we
have the error estimate

‖u− uT ‖L2(Ω) . hϑ+β
T ‖f + z‖Hr(Ω), (31)

where ϑ = min{s + r, 1/2 − ε}, β = min{s, 1/2 − ε} and ε > 0 may be taken
arbitrarily small. In addition, the hidden constant depends on Ω, s, n, ϑ, and
σ and blows up when ε→ 0.
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4.1.2 Error estimates on graded meshes

When s ∈ (1/2, 1) and n = 2, the singular behavior of the solution exhibited by
the regularity estimates in weighted Sobolev spaces of [1] can be compensated
by using a priori adapted meshes. The latter, that are graded near the boundary
of the domain and allow for an improvement on the priori error estimate (30),
are constructed as follows. In addition to shape regularity, we assume that the
meshes T have the following property: Given a mesh parameter h > 0 and
µ ∈ [1, 2] every element T ∈ T satisfies

hT ≈ C(σ)hµ if T ∩ ∂Ω 6= ∅, hT ≈ C(σ)hdist(T, ∂Ω)(µ−1)/µ if T ∩ ∂Ω = ∅,
(32)

where C(σ) depends only on the shape regularity constant σ of the mesh T .
We notice that µ relates the mesh parameter h to the number of degrees of
freedom, N , as follows:

N ≈ h−2
T if µ ∈ (1, 2), N ≈ h−2

T | log hT | if µ = 2. (33)

The optimal choice for the parameter is µ = 2 and the following error estimate
can be derived [1, Theorem 4.11].

Proposition 6 (energy error estimate for graded meshes): Let Ω ⊂ R2 and s ∈
(1/2, 1). Let u ∈ H̃s(Ω) be the solution to (9), and let uT ∈ V(T ) be the
solution to the discrete problem (28). If T satisfies (32) with µ = 2 and
f + z ∈ C1−s(Ω) then, we have the error estimate

‖u− uT ‖s . | logN |N− 1
2 ‖f + z‖C1−s(Ω), (34)

where the hidden constant depends on σ and blows up when s→ 1/2.

4.2 A semidiscrete scheme: the variational approach

In this section, we propose a semidiscrete scheme for the fractional optimal con-
trol problem that is based on the so-called variational discretization approach.
This approach, that was introduced by Hinze in [27], discretizes only the state
space; the control space Zad is not discretized. The scheme induces a discretiza-
tion of the optimal control variable by projecting the optimal discrete adjoint
state into the admissible control set.

The aforementioned semidiscrete scheme reads as follows: Find min J(uT , g)
subject to the discrete state equation

A(uT , vT ) = 〈f + g, vT 〉 ∀vT ∈ V(T ), (35)

and the control constraints g ∈ Zad. For notational convenience, we will refer
to the previously defined problem as the semidiscrete optimal control problem.

To perform an error analysis, we introduce the control-to-state operator
ST : Zad 3 g 7→ uT ∈ V(T ) where ST g = uT (g) solves (35). We notice that
ST is an affine and continuous operator. In fact, ST g = ST,0 g + ψT , where
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ST,0g denotes the solution to (35) with f ≡ 0 and ψT solves (35) with g ≡ 0;
ST,0 is a linear and continuous operator.

As in section 3, we denote by (ūT , ḡ) ∈ V(T )×Zad an optimal pair solving
the semidiscrete optimal control problem.

We now state the existence and uniqueness results together with first order
optimality conditions.

Theorem 8 (existence, uniqueness and optimality conditions): The semidiscrete op-
timal control problem has a unique optimal solution (ūT , ḡ) ∈ V(T )× Zad. In
addition, the first order optimality condition

(p̄T + αḡ, g − ḡ)L2(Ω) ≥ 0 ∀g ∈ Zad (36)

is necessary and sufficient.

Proof. The proof follows standard arguments [48]. For brevity, we skip the
details. �

We define the optimal adjoint state p̄T = p̄T (ḡ) as the solution to

A(vT , p̄T ) = 〈ūT − ud, vT 〉 ∀vT ∈ V(T ). (37)

With these ingredients at hand, we proceed to derive an a priori error analysis
for the semidiscrete optimal control problem. The proof is inspired by the
arguments developed by Hinze in [28]. Since, in our case, the optimal control
and state variables exhibit reduced regularity properties, that are dictated by
Theorem 3 and Corollary 1, we present a detailed proof.

Theorem 9 (variational approach: error estimate): Let s ∈ (0, 1) and ud ∈ H1/2−s−ε(Ω),
for every ε > 0. Let (ū, z̄) and (ūT , ḡ) be the solutions to the continuous and
semidiscrete optimal control problems, respectively. If T is quasi–uniform, then,
under the framework of Theorem 3, we have the error estimate

‖z̄ − ḡ‖L2(Ω) . h
1/2+β−ε
T

(
‖ū‖Hs+1/2−ε(Ω) + ‖ud‖H1/2−s−ε(Ω) + ‖z̄‖Hγ(Ω)

)
, (38)

where β = min{s, 1/2 − ε}, γ = min{s + 1/2 − ε, 1}, and ε > 0 is arbitrarily
small. The hidden constant depends on Ω, s, and n and blows up when ε→ 0.

Proof. Set z = ḡ and g = z̄ in the variational inequalities (15) and (36),
respectively and add the obtained inequalities to arrive at the estimate

α‖z̄ − ḡ‖2L2(Ω) ≤ (p̄− p̄T , ḡ − z̄)L2(Ω). (39)

We now write p̄ = p̄(z̄) = S0(Sz̄ − ud) and p̄T = p̄T (ḡ) = ST,0(ST ḡ − ud),
where S and ST denote the continuous and semidiscrete control-to-state maps,
respectively. With these relations at hand we can thus rewrite the estimate (39)
as

α‖z̄ − ḡ‖2L2(Ω) ≤ (S0(Sz̄ − ud)− ST,0(ST ḡ − ud), ḡ − z̄)L2(Ω).

Adding and subtracting the term ST,0Sz̄, we obtain that

α‖z̄− ḡ‖2L2(Ω) ≤ ((S0−ST,0)Sz̄+ST,0Sz̄−ST ,0ST ḡ+(ST,0−S0)ud, ḡ− z̄)L2(Ω).
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We now add and subtract ST,0ST z̄ to conclude that

α‖z̄ − ḡ‖2L2(Ω) ≤ ((S0 − ST,0)Sz̄, ḡ − z̄)L2(Ω) + (ST,0(S− ST )z̄, ḡ − z̄)L2(Ω)

(ST,0ST (z̄− ḡ), ḡ− z̄)L2(Ω) + ((ST,0 −S0)ud, ḡ− z̄)L2(Ω) =: I + II + III + IV.
(40)

Thus, it suffices to control the terms I, II, III, and IV. We begin with
the control of I. To accomplish this task, we first notice that, since Sz̄ = ū,
Corollary 1 implies that Sz̄ ∈ Hs+1/2−ε(Ω) for every ε > 0. We can thus invoke
the error estimate (31) with r = s+ 1/2− ε to conclude that

|I| . hϑ1+β
T ‖ū‖Hs+1/2−ε(Ω)‖z̄ − ḡ‖L2(Ω),

where ϑ1 = min{2s + 1/2 − ε, 1/2 − ε} and β = min{s, 1/2 − ε}. We notice
that ϑ1 = 1/2 − ε, and thus that ϑ1 + β = 1/2 + β − ε. The control of the
term IV follows exactly the same arguments upon exploiting the assumption
ud ∈ H1/2−s−ε(Ω). To estimate II, we follow similar arguments and use the
continuity of the discrete operator ST . Finally, we control the term III as
follows:

III = (ST (z̄ − ḡ),ST ,0(ḡ − z̄))L2(Ω) = −‖ST ,0(ḡ − z̄)‖2L2(Ω) ≤ 0.

The desired estimate (38) follows from replacing the estimates we obtained
for I, II, III, and IV into (40). This concludes the proof. �

Remark 4.1 (variational approach): The key advantage of the variational discretiza-
tion approach is that delivers an optimal quadratic rate of convergence for the
error approximation of the control variable [28, Theorem 2.4]. The analysis
relies on the following assumption [28, Assumption 2.3]:

‖(S− ST )z‖L2(Ω) . h2
T ‖z‖L2(Ω),

which, in turn, relies on the H2(Ω)-regularity of the optimal state variable ū.
In our problem, the regularity properties exhibited by ū are limited. In fact,
Corollary 1 reveals that ū ∈ Hs+1/2−ε(Ω) for every ε > 0. As (20) shows, this is
the case even when ∂Ω is smooth. This reduced regularity feature is responsible
for the suboptimal order of convergence in the error estimate (38).

4.3 A fully discrete scheme

In this section, we propose and analyze a fully discrete scheme to approximate
the solution of the fractional optimal control problem (2)–(4) by using piece-
wise constant discretization for the approximation of the control variable and
piecewise linear discretization for the approximation of the state variable. To
be precise, to discretize the control, we introduce the finite element space of
piecewise constant functions over T

W(T ) =
{
vT ∈ L∞(Ω) : vT |T ∈ P0(T ) ∀T ∈ T

}
, (41)
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and the space of discrete admissible controls

Zad(T ) = Zad ∩W(T ). (42)

With this notation at hand, we propose the following fully discrete approxi-
mation of the optimal control problem (2)–(4): Find min J(uT , zT ) subject to
the discrete state equation

A(uT , vT ) = 〈f + zT , vT 〉 ∀vT ∈ V(T ), (43)

and the control constraints zT ∈ Zad(T ), where J , A, and V(T ) are defined
as in (1), (8), and (27), respectively. For notational convenience, we will refer
to the previously defined problem as the fully discrete optimal control problem.

We define the discrete control-to-state operator ST : Zad(T ) 3 zT 7→ uT ∈
V(T ), where ST zT = uT solves (43). We also define the optimal adjoint state
p̄T as the solution to

A(vT , p̄T ) = (ūT − ud, vT )L2(Ω) ∀vT ∈ V(T ). (44)

We present the following result.

Theorem 10 (existence, uniqueness and optimality conditions): The fully discrete
optimal control problem has a unique optimal solution (ūT , z̄T ) ∈ V(T ) ×
Zad(T ). In addition, the first order optimality condition

(p̄T + αz̄T , zT − z̄T )L2(Ω) ≥ 0 ∀zT ∈ Zad(T ) (45)

is necessary and sufficient.

Proof. The proof follows standard arguments [48]. For brevity, we skip the
details. �

4.3.1 Auxiliary estimates and variables

Since it is instrumental in the analysis that we perform, we introduce the L2(Ω)-
orthogonal projection operator [22, Section 1.6.3]

ΠT : L2(Ω)→W(T ), (v −ΠT v, vT )L2(Ω) = 0 ∀vT ∈W(T ). (46)

An important property is that ΠT Zad ⊂ Zad(T ). In addition, for 1 ≤ p ≤ ∞,
κ ∈ (0, 1], and v ∈Wκ,p(Ω), we have the error estimate [22, Proposition 1.135]

‖v −ΠT v‖Lp(Ω) . hκT |v|Wκ,p(Ω). (47)

In what follows we introduce two auxiliary variables that are also instrumen-
tal to perform an error analysis for the fully discrete optimal control problem.
First,

qT ∈ V(T ) : A(vT , qT ) = (ū− ud, vT )L2(Ω) ∀vT ∈ V(T ). (48)

Second,

rT ∈ V(T ) : A(vT , rT ) = (uT (z̄)− ud, vT )L2(Ω) ∀vT ∈ V(T ), (49)

where uT (z̄) ∈ V(T ) solves the discrete problem (28) with z replaced by z̄.
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4.3.2 A priori error estimates on smooth domains

We now derive error estimates for the fully discrete optimal control problem
when ∂Ω is smooth.

Theorem 11 (error estimate for smooth domains on quasi–uniform meshes): Let s ∈
(0, 1) and ud ∈ H1/2−s−ε(Ω), for ε > 0 arbitrarily small. Let (ū, z̄) and (ūT , z̄T )
be the solutions to the continuous and fully discrete optimal control problems,
respectively. Let ∂Ω be a smooth domain and T be quasi–uniform. Under the
framework of Theorem 3, we have the following error estimates: If s > 1/2, then

‖z̄ − z̄T ‖L2(Ω) . h1−ε
T

(
‖ū‖H1/2−s−ε(Ω) + ‖ud‖H1/2−s−ε(Ω) + ‖z̄‖H1(Ω)

)
(50)

and if s ≤ 1/2, then

‖z̄ − z̄T ‖L2(Ω) . h
s+ 1

2−ε
T

(
‖ū‖H1/2−s−ε(Ω) + ‖ud‖H1/2−s−ε(Ω) + ‖z̄‖Hs+1/2−ε(Ω)

)
.

(51)
In both estimates the hidden constants depend on Ω, n, and s.

Proof. We proceed in four steps.
Step 1. We begin this step by observing that, since Zad(T ) ⊂ Zad, we are
allow to set z = z̄T in the optimality condition (15). On the other hand, we
set zT = ΠT z̄ ∈ Zad(T ) in (45); ΠT denotes the L2(Ω)-orthogonal projection
operator defined in (46). Adding the obtained inequalities, we arrive at the
estimate

α‖z̄ − z̄T ‖L2(Ω) ≤ (p̄− p̄T , z̄T − z̄)L2(Ω) + (p̄T +αz̄T ,ΠT z̄ − z̄)L2(Ω) =: I + II.
(52)

Step 2. We bound I. To accomplish this task, we write p̄−p̄T = (p̄−qT )+(qT −
p̄T ), where qT is defined as in (48) and first estimate the term involving p̄−qT .
Since qT can be seen as the finite element approximation of p̄ within the space
V(T ), we can thus invoke the a priori error estimate (31) with r = 1/2− s− ε
to conclude the estimate

‖p̄− qT ‖L2(Ω) . hϑ1+β
T

(
‖ū‖H1/2−s−ε(Ω) + ‖ud‖H1/2−s−ε(Ω)

)
, (53)

where ϑ1 = 1/2−ε, β = min{s, 1/2−ε}, and ε > 0 being arbitrarily small. Notice
that Corollary 1 guarantees that ū ∈ Hs+1/2−ε(Ω). Thus ū ∈ H1/2−s−ε(Ω) and,
by assumption, ū− ud ∈ H1/2−s−ε(Ω) for every ε > 0.

To control the term qT − p̄T , we write qT − p̄T = (qT − rT ) + (rT − p̄T ),
where rT is defined as in (49). Next, notice that rT − p̄T ∈ V(T ) solves

A(vT , rT − p̄T ) = (uT (z̄)− ūT , vT )L2(Ω) ∀vT ∈ V(T ). (54)

On the other hand, uT (z̄)− ūT ∈ V(T ) solves

A(uT (z̄)− ūT , vT ) = (z̄ − z̄T , vT )L2(Ω) ∀vT ∈ V(T ). (55)
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Consequently, by setting vT = rT −p̄T ∈ V(T ) in (55) and vT = ūT −uT (z̄) ∈
V(T ) in (54), we conclude that

(rT − p̄T , z̄T − z̄)L2(Ω) = A(ūT −uT (z̄), rT − p̄T ) = −‖ūT −uT (z̄)‖2L2(Ω) ≤ 0.
(56)

It thus suffices to estimate qT − rT . To accomplish this task, we notice that

qT − rT ∈ V(T ) : A(vT , qT − rT ) = (ū− uT (z̄), vT )L2(Ω) ∀vT ∈ V(T ).

We invoke a stability argument and the a priori error estimate (31) with r =
γ = min{s+ 1/2− ε, 1} to conclude that

‖qT − rT ‖L2(Ω) . ‖ū− uT (z̄)‖L2(Ω) . hϑ2+β
T ‖z̄‖Hγ(Ω), (57)

where ϑ2 = min{s + γ, 1/2 − ε}, and β = min{s, 1/2 − ε}. The fact that
z̄ ∈ Hγ(Ω) follows from Theorem 3.

In view of Young’s inequality, the collection of the estimates (53), (56), and
(57) yield the estimate for the term I:

|I| ≤ Ch2(ϑ1+β)
T

(
‖ū‖2H1/2−s−ε(Ω) + ‖ud‖2H1/2−s−ε(Ω)

)
+ Ch

2(ϑ2+β)
T ‖z̄‖2Hγ(Ω) +

α

4
‖z̄ − z̄T ‖2L2(Ω),

where C denotes a positive constant. We note that, for s ∈ (0, 1), ϑ1 = 1/2− ε
and ϑ2 = 1/2− ε. We can thus conclude the following estimates for the term I:

s ∈ [1/2, 1)⇒ β = 1/2− ε⇒ |I| . Ch
2(1−ε)
T , (58)

s ∈ (0, 1/2)⇒ β = s⇒ |I| . Ch
2(s+1/2−ε)
T . (59)

Step 3. The goal of this step is to estimate the term II = (p̄T + αz̄T ,ΠT z̄ −
z̄)L2(Ω). To accomplish this task, we invoke definitions (48) and (49) and write

II = (p̄T +αz̄T ,ΠT z̄−z̄)L2(Ω) = (p̄+αz̄,ΠT z̄−z̄)L2(Ω)+α(z̄T −z̄,ΠT z̄−z̄)L2(Ω)

+(p̄T −rT ,ΠT z̄−z̄)L2(Ω)+(rT ±qT −p̄,ΠT z̄−z̄)L2(Ω) =: II1+II2+II3+II4.

To bound II1, we first invoke the definition of ΠT and notice that

II1 = (p̄+ αz̄ −ΠT (p̄+ αz̄),ΠT z̄ − z̄)L2(Ω). (60)

We can thus invoke the estimate (47) and the regularity results of Theorem 3
and Corollary 1 to conclude that

|II1| . h2γ
T ‖p̄+ αz̄‖Hγ(Ω)‖z̄‖Hγ(Ω), (61)

where γ = min{s+ 1/2− ε, 1} with ε > 0 arbitrarily small.
To bound II2 we use, (47) and the regularity results of Theorem 3, again,

and Young’s inequality. We thus arrive at the estimate

|II2| ≤ Ch2γ
T ‖z̄‖

2
Hγ(Ω) +

α

4
‖z̄ − z̄T ‖2L2(Ω), (62)



M. D’Elia, C. Glusa and E. Otárola 19

where C denotes a positive constant and γ = min{s+ 1/2− ε, 1}.
To control II3 we invoke a stability estimate for the discrete problem (49)

and the error estimate (47). In fact, we have that

|II3| . hγT ‖ūT − uT (z̄)‖L2(Ω)‖z̄‖Hγ(Ω) . hγT ‖z̄ − z̄T ‖L2(Ω)‖z̄‖Hγ(Ω), (63)

To obtain the last inequality we have used a stability estimate for the discrete
problem (43).

The control of the term rT − qT follows from (57) while the one for qT − p̄
from the estimate (53).
Step 4. The desired estimates (50) and (51) follow from collecting all the esti-
mates we obtained in previous steps. �

4.3.3 A priori error estimates on Lipschitz domains

To derive the error estimates (50) and (51) we have used the a priori error
estimate (31) that requires that ∂Ω is smooth. In the following result we allow
Ω to be a bounded Lipschitz domain satisfying the exterior ball condition and
obtain quasi-optimal error estimates, in terms of approximation, for the control
and state variables. To do this, we define

Λ(z̄, f, ud) := ‖f + z̄‖C1−s(Ω) + ‖ud‖C1−s(Ω) + ‖z̄‖H1(Ω). (64)

We present the following result.

Theorem 12 (error estimates for Lipschitz domains on graded meshes): Let s ∈ (1/2, 1)
and Ω be a bounded Lipschitz domain satisfying the exterior ball condition. Let
(ū, z̄) and (ūT , z̄T ) be the solutions to the continuous and fully discrete optimal
control problems, respectively. If T satisfies (32) with µ = 2, f ∈ C1−s(Ω), and
ud ∈ C1−s(Ω), then

‖z̄ − z̄T ‖L2(Ω) . | logN |N− 1
2 Λ(z̄, f, ud) (65)

and
‖ū− ūT ‖s . | logN |N− 1

2 Λ(z̄, f, ud), (66)

where N denotes the number of degrees of freeedom of T . In both estimates,
the hidden constant depend on σ and blows up when s→ 1/2.

Proof. The proof follows closely the arguments developed in the proof of Theo-
rem 11; the difference being the use of the error estimate (34) instead of (31).
Since the latter estimates require different assumptions on the problem data,
we briefly report the arguments.
Step 1. We recall the estimate (52):

α‖z̄ − z̄T ‖2L2(Ω) ≤ (p̄− p̄T , z̄T − z̄)L2(Ω) + (p̄T +αz̄T ,ΠT z̄ − z̄)L2(Ω) =: I + II.
(67)

Step 2. The results of Proposition 2 imply that ū ∈ Cs(Ω) with the stability
estimate ‖ū‖Cs(Ω) . ‖f + z̄‖L∞(Ω). This, in view of the assumption ud ∈



M. D’Elia, C. Glusa and E. Otárola 20

C1−s(Ω), allows us to conclude that ū− ud ∈ C1−s(Ω) for s ∈ (1/2, 1). Notice
that ū− ud corresponds to the right-hand side of the adjoint equation (14) and
that qT denotes its finite element approximation. We can thus conclude, on the
basis of the error estimate (34), that

‖p̄− qT ‖L2(Ω) . | logN |N− 1
2 ‖ū− ud‖C1−s(Ω)

. | logN |N− 1
2

(
‖f + z̄‖L∞(Ω) + ‖ud‖C1−s(Ω)

)
. (68)

The control of qT −p̄T follows from writing qT −p̄T = (qT −rT )+(rT −p̄T ),
where rT is defined as in (49). Notice that (56) yields

(rT − p̄T , z̄T − z̄)L2(Ω) = −‖ūT − uT (z̄)‖2L2(Ω) ≤ 0. (69)

Now, notice that, in view of (26), the optimal control z̄ ∈ Cs(Ω) when s ∈
(1/2, 1). Consequently, for such an interval, f + z̄ ∈ C1−s(Ω). We thus invoke
a stability argument and the error estimate (34) to conclude that

‖qT − rT ‖L2(Ω) . ‖ū− uT (z̄)‖s . | logN |N− 1
2 ‖f + z̄‖C1−s(Ω). (70)

Step 3. As in the step 3 in the proof of Theorem 11, we write II = II1 + II2 +
II3 + II4. The estimate for II1 follows from (60) and the error estimate (47):

|II1| . h2‖p̄+ αz̄‖H1(Ω)‖z̄‖H1(Ω), (71)

where we have used that the mesh grading (32) implies that hT ≤ Ch for all
T ∈ T . Notice that, in view of the regularity estimates of Theorem 6 we have
that ‖p̄‖H1(Ω) and ‖z̄‖H1(Ω) are bounded. The estimate for the term II2 follows
from the regularity estimates of Theorem 6 and the error estimate (47):

|II2| ≤ Ch2‖z̄‖2H1(Ω) +
α

4
‖z̄ − z̄T ‖2L2(Ω), (72)

where C denotes a positive constant. The estimates for II3 and II4 follow form
the estimates derived for rT − qT and qT − p.
Step 4. The desired estimate (65) follows from collecting the estimates derived
in the previous steps.
Step 5. We derive the error estimates associated to the approximation of the
optimal state variable. We begin with the basic estimate

‖ū− ūT ‖s = ‖Sz̄ − ST z̄T ‖s
≤ ‖(S− ST )z̄‖s + ‖ST (z̄ − z̄T )‖s.

Notice that (26) guarantees that z̄ ∈ Cs(Ω) for s ∈ ( 1
2 , 1) and thus that z̄ ∈

C1−s(Ω). We can thus apply the error estimate (34) to conclude that

‖(S− ST )z̄‖s . | logN |N− 1
2 ‖f + z̄‖C1−s(Ω),
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where the hidden constant depends on σ and blows up when s→ 1/2. We now
invoke the continuity of the discrete control-to-state map ST to conclude that

‖ST (z̄ − z̄T )‖s . | logN |N− 1
2 Λ(z̄, f, ud).

The collection of these estimates yield (12). �

Remark 4.2 (quasi-optimal error estimate): Notice that the error estimates (65)
and (66) are quasi-optimal in terms of approximation.

5 Numerical experiments

We present a series of numerical examples that illustrate the performance of
the fully discrete scheme proposed in section 4.3 for the solution of the optimal
control problem (2)–(4) and the sharpness of the derived error estimates. We
consider an example where Ω is smooth and another one where we go beyond
the theory and violate the assumption of exterior ball condition.

When solving equations involving the integral fractional Laplacian, two pri-
mary issues need to be addressed:

• No closed form is available for the entries of the stiffness matrix, and hence
quadrature needs to be used for their evaluation. Particular care in the
choice of quadrature rules needs to be taken to handle the case of pairs of
elements that are either connected or close to each other. In order not to
spoil the solution, the quadrature error needs to be smaller than the error
arising from discretization.

• Due to the nonlocal interactions, straightforward assembly would lead to
a dense matrix representation of the fractional Laplacian. This would
mean that a single solve of state or adjoint equation would scale at best
quadratically in the number of unknowns. Fortunately, the interactions of
well-separated clusters of unknowns can be approximated, using a panel
clustering approach, whereby the overall complexity of a matrix-vector
product is reduced to O(N (logN)

2n
). Again, error due to the approxi-

mation of the operator needs to be controlled.

For a comprehensive treatment of both issues we refer the reader to [2, 3].
For the examples that we present in this section, the discrete equations

(43) and (44) are solved on the basis of multigrid solver, while to solve the
minimization problem, we use the BFGS algorithm [40].

5.1 Unit disc

We let n = 2, Ω = B(0, 1), and s ∈ (0, 1). We consider

(−∆)su = f in Ω, u = 0 in Ωc.
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This problem has a family of known closed-form solutions when the right-hand
side reads, in polar coordinates, as follows:

fn,`(r, θ) = 22sΓ (1 + s)
2

(
s+ n+ `

s

)(
s+ n

s

)
r` cos (`θ)P (s,`)

n

(
2r2 − 1

)
,

where `, n ∈ N0. In fact, for `, n ∈ N0, the solution is given by

un,`(r, θ) = r` cos(`θ)P (s,`)
n (2r2 − 1)(1− r2)s+.

We refer the reader to [21] for details.
We set a = −0.9, b = 0.9, α = 10−1, ud = u0,1 + αf0,0, and f = f0,1 −

proj[a,b] (u0,0). The exact solution reads ū = u0,1, p̄ = −αu0,0 and

z̄ = proj[a,b] (u0,0) =

{
b r < ro :=

√
1− b1/s,

(1− r2)s r ≥ ro.

5.1.1 Quasi-uniform meshes

We discretize Ω using a sequence of quasi-uniform meshes and solve the control
problem with the scheme of section 4.3 for s ∈ {0.1, 0.2, . . . , 0.9}. In Figure 1
we present the finite element solutions for the optimal state ūT and control z̄T ,
on the finest mesh (66k vertices, 131k elements), for s = 0.7. Note that the
upper bound on the control is active for r ≤ ro.

In Figures 2, we show experimental rates of convergence for the H̃s(Ω)-error
of the state variable, as well as the L2(Ω)-error of the control variable. We

mention that the aforementioned H̃s(Ω)-error can be computed as follows:

‖ū− ūT ‖2s = A(ū− ūT , ū− ūT ) = A(ū, ū)− 2A(ū, ūT ) +A(ūT , ūT )

= 〈f + z̄, ū〉 − 2〈f + z̄, ūT 〉+ 〈f + zT , ūT 〉
= 〈f + z̄, ū〉 − 2〈z̄, ūT 〉 − 〈f, ūT 〉+ 〈zT , ūT 〉, (73)

where the first term can be evaluated analytically. We observe, from Figures 2,
that the rates of convergence predicted by Proposition 4 and Theorem 11 are

attained: we observe O(h
1/2−ε
T ) for the H̃s(Ω)-error of the state variable, and

O(h
s+1/2−ε
T ) and O(h1−ε

T ),

for the L2(Ω)-error of control variable when s ≤ 1/2 and s > 1/2, respectively.
Figure 3 displays the solution times for the discretized control problems. It

can be observed that the solve in fact scales as O
(
N(logN)4

)
.

5.1.2 Graded meshes

We discretize Ω using a family of graded meshes which satisfy condition (32)
with µ = 2. As an example, we present one of these meshes in Figure 4. We solve
the fractional optimal control problem for s = 0.75. In Figure 4, we present the
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Fig. 1: Finite element solutions for the optimal state ūT (left) and the optimal
control z̄T (right) for s = 0.7. We notice that the upper bound on the
control is active near the center of the domain.
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Fig. 2: Left: Experimental rates of convergence for the H̃s(Ω)-error of the
state variable and the L2(Ω)-error of the control variable for n = 2,
Ω = B(0, 1), and s ∈ {0.1, 0.2, . . . , 0.9}. The experimental rates of con-
vergence are in agreement with the results of Proposition 4 and Theo-
rem 11.
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Fig. 3: Solution time for the discretized control problem using BFGS for the
minimization problem and multigrid combined with panel clustering for
the linear systems. The solve scale as N(logN)4.

experimental orders of convergence for the H̃s(Ω)-error for the state variable and
the L2(Ω)-error for the control variable; both of them being displayed versus the
number of degrees of freedom N , where, we recall that, N = dimV(T ). It can
be observed that, as predicted by Theorem 12, the experimental errors decay as
O(| logN |N− 1

2 ); the latter being nearly-optimal in terms of approximation.
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Fig. 4: Left: Graded mesh satisfying condition (32) with µ = 2. Right: Experi-

mental rates of convergence for the H̃s(Ω)-error for the state variable and
the L2(Ω)-error for the control variable. As predicted by Theorem 12,

both experimental rates decay as O(| logN |N− 1
2 ), which is nearly opti-

mal in terms of approximation.

5.2 L-shaped domain

We now illustrate the case of a non-smooth domain by solving the fractional
optimal control problem on a family of quasi-uniform meshes on the L-shaped
domain Ω = [0, 2]2 \ [1, 2]2. Notice that Ω is Lipschitz but does not satisfy the
exterior ball condition.

We consider s = 0.75, ud = 1B((0.5,0.5),0.2) + 1B((1.5,0.5),0.2) + 1B((0.5,1.5),0.2),
f = 1, a = 0, b = 30, and α = 10−1. Since no analytical solution is available,
we compute errors with respect to a reference solution on a highly refined mesh
(200k vertices, 400k elements, h = 2−8). The numerical solution for the control
as well as computed errors are shown in Figure 5. The speed-up of convergence
in H̃s(Ω)- and L2(Ω)-norm for larger number of unknowns is due to the fact that
the reference solution is used in their computation instead of the true solution.

6 Conclusion

In this paper we introduced an optimal control problem for the integral form
of the fractional Laplacian operator with the goal of determining the optimal
source term such that the nonlocal solution is as close as possible to a given
data. We performed a careful and detailed mathematical and numerical anal-
ysis proving well-posedness of the control problem and establishing resularity
estimates and convergence results for two finite-dimensional approximations of
the continuous problem. Also, we provided several two-dimensional numerical
results that illustrate the theory and additional results on complex geometries
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Fig. 5: Left: Finite element solution for the optimal control z̄T . Right: Exper-
imental rates of convergence for the H̃s(Ω)-error of the state variable
and the L2(Ω)-error of the control variable for n = 2, s = 0.75, and
Ω = [0, 2]2 \ [1, 2]2. The experimental convergence rates are in agree-

ment with the results of Proposition 4 and Theorem 11: O(h
1/2−ε
T ) and

O(h1−ε
T ), respectively.
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that show applicability of our approach to more realistic problems.
This work sets the ground for future research: as an example, one could con-

sider a different control variable such as a diffusion parameter or the fractional
order itself. The latter problem is very challenging both in terms of analysis
(for different controls the solution belongs to a different functional space) and
computations (the matrix of the discretized problem needs to be reassembled
at each iteration of the optimization algorithm).
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gado. Numerical methods for fractional diffusion. Computing and Visual-
ization in Science, Mar 2018.

[9] J. P. Borthagaray, L. M. Del Pezzo, and S. Mart́ınez. Finite element ap-
proximation for the fractional eigenvalue problem. Journal of Scientific
Computing, Apr 2018.

[10] S. C. Brenner and L. R. Scott. The mathematical theory of finite element
methods, volume 15 of Texts in Applied Mathematics. Springer, New York,
third edition, 2008.

[11] L. A. Caffarelli and P. R. Stinga. Fractional elliptic equations, Cacciop-
poli estimates and regularity. Ann. Inst. H. Poincaré Anal. Non Linéaire,
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