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Higher Dimensional Lattice Walks: Connecting Combinatorial

and Analytic Behavior

Stephen Melczer∗ Mark C. Wilson†

Abstract

We consider the enumeration of walks on the non-negative lattice Nd, with steps defined by a set S ⊂
{−1, 0, 1}d\{0}. Previous work in this area has established asymptotics for the number of walks in certain
families of models by applying the techniques of analytic combinatorics in several variables (ACSV), where
one encodes the generating function of a lattice path model as the diagonal of a multivariate rational
function. Melczer and Mishna obtained asymptotics when the set of steps S is symmetric over every
axis; in this setting one can always apply the methods of ACSV to a multivariate rational function whose
set of singularities is a smooth manifold (the simplest case). Here we go further, providing asymptotics
for models with generating functions that must be encoded by multivariate rational functions having
non-smooth singular sets. In the process, our analysis connects past work to deeper structural results in
the theory of analytic combinatorics in several variables. One application is a closed form for asymptotics
of models defined by step sets that are symmetric over all but one axis. As a special case, we apply our
results when d = 2 to give a rigorous proof of asymptotics conjectured by Bostan and Kauers; asymptotics
for walks returning to boundary axes and the origin are also given.

Subject classification: 05A16
Keywords: lattice path enumeration, kernel method, analytic combinatorics, D-finite, generating function

1 Introduction

Much modern research in enumeration concerns links between analytic function behaviour and combinatorial
models. When one has sufficient information about a generating function — for instance, the locations and
types of its singularities closest to the origin in the complex plane — the theory of analytic combinatorics
in one variable gives, almost automatically in many cases, the asymptotics of the related sequence (see the
compendium text of Flajolet and Sedgewick [25] for further details).

When a generating function is given in terms of an expansion of a multivariate power series, however,
much less is known. Over the last two decades, several authors have been working towards the development
of a theory of analytic combinatorics in several variables. This refers to methods for deriving asymptotics of
a sequence

bn = [znr]F (z) = [zn·r11 · · · zn·rdd ]F (z1, . . . , zd) := an r1,...,n rd

for some fixed vector r ∈ Zd and multi-dimensional sequence (ai)i∈Zd such that

F (z) :=
∑

i∈Zd

aiz
i

is a meromorphic function analytic in a specified domain. The theory, as it has developed, generally consists
of two stages: first, one must find the contributing singularities of F (z), which are the singularities of F (z)
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where local behaviour of the function dictates its coefficients’ asymptotics. Once these contributing points
have been found, which is often the most difficult step of the analysis, one must then calculate the asymptotic
contribution of each point and sum the results.

In 2002, Pemantle and Wilson [46] derived asymptotics for the power series expansion of a rational func-
tion F (z) = G(z)/H(z) admitting a finite number of contributing points, at which the variety of singularities
is a complex manifold. Two years later [45], they extended this analysis to allow contributing points where
the variety of singularities is the transverse union of complex manifolds. Modern approaches incorporate
techniques from differential and algebraic geometry, topology, and singularity theory; the interested reader
is referred to the text of Pemantle and Wilson [47] or, for a more elementary introduction, the thesis of
Melczer [36].

1.1 Lattice walks in restricted regions

The enumeration of lattice walks restricted to certain regions is a classical topic in combinatorics, tracing its
roots back hundreds of years to work on what is now known as the ballot problem. In modern times, a large
area of work on this topic centers around using the so-called kernel method to express generating functions of
large classes of models as positive series extractions or diagonals of multivariate rational functions, proving
that the generating functions are (or are not) D-finite; that is, determining whether they satisfy a linear
differential equation with polynomial coefficients. Although there are a finite number of models with steps
in {±1, 0}2 that are restricted to a quarter-plane, their combinatorics has been the subject of intense study
in recent years [21, 11, 31, 41, 13, 7, 8, 50, 42, 37, 38, 4, 12, 2, 6, 19]. The models considered in this paper
are higher-dimensional generalizations of this two-dimensional setting.

A lattice path model is determined by a finite set of steps S ⊂ Zd and a region P ⊂ Zd to which
the walks of the model are restricted. A model whose set of allowed steps is symmetric over every axis is
called highly symmetric. Melczer and Mishna [38] combined the kernel method with techniques from analytic
combinatorics in several variables to give asymptotics for the number of integer lattice walks restricted to
an orthant (that is, P = Nd) when the set of steps S is a subset of {±1, 0}d \ {0} and is highly symmetric.
The main result of their paper is the following.

Theorem 1 (Melczer and Mishna [38, Theorem 3.4]). Let S ⊂ {−1, 0, 1}d \ {0} be a set of steps that
is symmetric over every axis and moves forwards and backwards in each coordinate. Then the number sn
of walks of length n taking steps in S, beginning at the origin, and never leaving the positive orthant has
asymptotic expansion

sn = |S|n · n−d/2 ·
(

(

s(1) · · · s(d)
)−1/2

π−d/2|S|d/2 + O

(

1

n

))

,

where s(k) denotes the number of steps in S that have kth coordinate 1.

In order to get this result, Melczer and Mishna used the kernel method to derive the expression

F (t) = ∆

(

G(z, t)

H(z, t)

)

= ∆

(

(1 + z1) · · · (1 + zd)

1− t(z1 · · · zd)S(z)

)

for the generating function F (t) counting the number of walks of a given length defined by the model, where
∆ is the diagonal operator defined in Section 3.2 below. After verification of certain technical conditions,
Theorem 1 then follows from the main result of the original paper of Pemantle and Wilson [46]. The
symmetry condition on the step set S was chosen by Melczer and Mishna precisely because it leads to a
smooth singular variety, the set of singular points of G/H , defined by the zero set of H .

Although not originally considered by Melczer and Mishna, Theorem 1 can be easily extended [36, Chapter
7] to handle positively weighted step sets with weights that are symmetric over every axis. Generalizations
of this work have used multivariate singularity analysis to enumerate weighted walks [17] and walks with
step coordinates having absolute value greater than one [5].
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1.2 Our contributions

Building on the conference paper of Melczer and Wilson [39], in this work we generalize the results of Melczer
and Mishna by giving asymptotics of lattice path models, restricted to the positive orthant, whose set of
allowable steps is symmetric over all but one axis. The formulae we obtain give explicit and fairly simple
descriptions of the exponential rate, leading order and leading coefficient in terms of the basic data of the
walk step set S. The drift of a walk, the vector sum of all the steps in S, plays a crucial role in asymptotics;
owing to symmetry, only one coordinate of the drift may be non-zero and we refer to a walk as having
negative, zero, or positive drift depending on the sign of this coordinate.

Additionally, we show how the arguments of Melczer and Mishna’s analysis fit into larger structure
theorems about the singularities of multivariate rational functions and their asymptotic expansions. In the
negative and zero drift cases, substantial extra work is needed because the expected leading order coefficient
for generic problems of this dimension turns out to vanish. Unfortunately, due to this vanishing and other
degeneracies in integrals that must be asymptotically approximated, we are currently unable to determine
asymptotics for the general zero drift case. Such models will be the subject of future study.

Furthermore, we provide the first rigorous proofs of the guessed asymptotics of Bostan and Kauers [7] on
2D walks restricted to the non-negative quadrant, completing the outline in Melczer and Wilson [39]. Our
analysis uncovers and explains periodicity of the asymptotic coefficients in the negative drift case, which was
not noted in [7], and we give asymptotics for the number of walks returning to the boundary axes and the
origin. Around the same time as the conference paper of Melczer and Wilson [39], Bostan et al. [6] rigorously
gave annihilating differential equations for the generating functions of these lattice path models. Using these
differential equations they were able to prove some of the guessed asymptotics of Bostan and Kauers [7],
however due to issues related to the decidability of asymptotics for coefficients of D-finite functions they
were unable to prove all asymptotics. We discuss the difficulties they faced, and how our results fit into this
context, in Section 7.2. An accompanying Maple worksheet verifying our calculations can be found online1.

1.3 Past work

Lattice path models restricted to a halfspace have algebraic generating functions that can be explicitly
determined [27], leading to strong asymptotic results [1]. For this reason, much attention has been devoted
to walks in quadrants and related cones such as orthants. Early combinatorial works in this area include
Kreweras [32] and Gessel [28]; in 2005, Bousquet-Mélou [11] introduced the algebraic kernel method, on
which our formal series setup is heavily based, to study a quadrant lattice path model stemming from the
work of Kreweras. Gessel and Zeilberger [29] gave representations for lattice path generating functions in
so-called Weyl chambers in arbitrary dimension, which are equivalent to the diagonal representations of
Melczer and Mishna [38] for the Weyl chamber Ad

1. This has been a fruitful area of research: see also
Zeilberger [53], Grabiner and Magyar [30], Tate and Zelditch [51], and Feierl [23, 24]. The systematic
combinatorial enumeration of walks in a quadrant was popularized by Bousquet-Mélou and Mishna [13],
following work of Petkovšek [48], Bousquet-Mélou and Petkovšek [14], and Mishna [40], among others.

Walks in quadrants and orthants have also been long studied from a probabilistic perspective. In one
approach, developed in part for problems arising in queuing theory, a singularity analysis of solutions to
functional equations satisfied by lattice path generating functions yields analytic and asymptotic information.
The text of Fayolle et al. [21] gives a detailed view on the techniques involved, some of which inspired
Bousquet-Mélou’s creation of the algebraic kernel method; see also Malyšev [35] for an early history. The
lattice path models we study have asymptotics of the form C nα ρn for constants α and ρ, where C is constant
or depends only on the periodicity of n. Fayolle and Raschel [22] used these techniques to outline a method
that, in principle, allows one to calculate the exponential growth ρ for many quadrant models.

Another probabilistic approach to lattice path enumeration is to use local limit theorems and/or approx-
imate discrete walks by scaling limits such as multidimensional Brownian motion. For a large variety of
step sets and restricting cones, including orthants, Denisov and Wachtel [18] give techniques for determin-
ing the exponential growth ρ and exponent α for the number of walks that begin and end at the origin:

1https://github.com/smelczer/HigherDimensionalLatticeWalks
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their asymptotic formulas are given by an explicit expression involving the smallest positive eigenvalue of
the Laplace-Beltrami operator on a sphere. When the step set under consideration has zero drift, these
techniques also give ρ and α for the number of walks ending anywhere in the restricting cone. Among other
results, Duraj [20, Example 7] determines ρ and α for quadrant walks ending anywhere in the quadrant
when the drift has negative coordinates, and Garbit and Raschel [26] give the exponential growth ρ for walks
ending anywhere in the restricting cone under no restriction on the drift of a model. We note that using these
probabilistic techniques it is very difficult, if not impossible, to determine the leading asymptotic constant
C or to determine higher order asymptotic terms, as our approach provides (in a less general setting).

Finally, lattice path enumeration has been studied through the lens of computer algebra. Among the
many results in this area we mention: Kauers et al. [31], which proved a longstanding open problem on the
enumeration of certain quarter plane walks using creative telescoping techniques; Bostan and Kauers [7],
which computationally guessed certain differential equations satisfied by the generating functions of quarter
plane models and used this to guess the asymptotics we prove in Section 6; and Bostan et al. [10], which
used the work of Denisov and Wachtel mentioned above to create algorithms explicitly determining the
exponential growth ρ and exponent α for quarter plane models.

The enumeration of lattice walks is a thriving area of enumerative combinatorics, with too many results
to explicitly mention here. Those looking for additional resources can investigate the texts of Mohanty [43]
and Narayana [44], and the survey of Krattenthaler [3, Chapter 10].

1.4 Organization

We begin in Section 2 by discussing our main results and some illustrative examples. Section 3 then gives an
overview of the kernel method applied to lattice path enumeration, and shows how it can be used to derive
expressions for lattice path generating functions that are amenable to the techniques of analytic combinatorics
in several variables. Unlike the previous work of Melczer and Mishna — where complete symmetry of the step
sets under consideration simplified the required manipulations of the kernel method — care must be taken
here when manipulating diagonal and positive sub-series extractions in iterated Laurent series rings. Section 4
details the general methods of analytic combinatorics in several variables, and outlines how the asymptotic
analysis will proceed; in Proposition 15 we give an explicit description of the contributing singularities
for the models under consideration. We derive asymptotics using this characterization in Section 5. This
work divides naturally into three cases: the positive, negative and zero drift, listed in increasing order of
difficulty (as mentioned above, we do not treat the general zero drift case here; see Section 7.4 for more
information). Detailed computations needed are collected in Appendix A. Section 6 proves asymptotics of
2D walks restricted to the non-negative quadrant. Section 7 discusses extensions and directions for future
research.

A summary of results is displayed in Table 1. It has previously been observed [22, 17] that the sub-
exponential order term nα appearing in asymptotics for the number of walks in a lattice path model has
some correlation with the drift of its steps. This phenomenon occurs here: each coordinate where the drift
is negative corresponds to a contribution of n−3/2 to dominant asymptotics, a positive drift coordinate does
not effect the order term, and a zero drift coordinate corresponds to an asymptotic contribution of at most
n−1/2 (depending on whether or not the walk is highly symmetric).

Drift Exists for Exp. rate Order Geometry Theorem

positive d ≥ 2 |S| n−(d−1)/2 nonsmooth Theorem 2
negative d ≥ 2 < |S| n−1−d/2 smooth Theorem 4

zero (h.s.) d ≥ 2 |S| n−d/2 smooth [38, Thm 3.4]
zero (not h.s.) d ≥ 3 |S| O(n1/2−d/2) nonsmooth Conjectural

Table 1: Summary of results: exponential rate and leading asymptotic order. Here “h.s." means “highly
symmetric" (step set is symmetric over every axis).
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2 Main Results and Examples

In order to simplify equations, we fix a dimension d ∈ N and use the following notation multi-index:

zi = z−1
i ; z = (z1, . . . , zd); i = (i1, i2, . . . , id) ∈ Zd;

zi = zi11 · · · zidd ; zk̂ := (z1, . . . , zk−1, zk+1, . . . , zd).

We consider walks in dimension d defined by a (finite) set S ⊂ {±1, 0}d \ {0} of weighted steps, where
i ∈ S is given real weight wi ≥ 0, such that

• there exists some step forwards and some step backwards in the direction of each coordinate axis:

For all j = 1, . . . , d there exists i ∈ S with ij = 1 and wi 6= 0;

For all j = 1, . . . , d there exists i ∈ S with ij = −1 and wi 6= 0.

• the weighting wi is symmetric over all axes except one;

• each walk is confined to the non-negative orthant Nd.

The (weighted) characteristic polynomial of S is the Laurent polynomial

S(z) =
∑

i∈S
wiz

i.

We may assume without loss of generality that the axis of non-symmetry is zd. In other words, our step set
S is such that for each j with 1 ≤ j ≤ d− 1,

S(z1, . . . , zj−1, zj , zj+1, . . . , zd) = S(z),

so we may write
S(z) = zdA

(

zd̂

)

+Q
(

zd̂

)

+ zdB
(

zd̂

)

for Laurent polynomials A,B, and Q that are symmetric in their variables. Note that S(1) = |S| is the size
of the step set when each step has weight 1.

Also important is the drift B(1) − A(1) of a walk with respect to the d-axis, the weight of steps in
the positive zd direction minus the weight of steps in the negative zd direction. For our models the sign
of the drift will correspond to different asymptotic regimes; in general the relationship between drift and
asymptotics is more nuanced [17, Section 6.4]. Although the models we consider start at the origin, it is
possible to modify our approach with minimal overhead to start at any i ∈ Nd. In fact, one can treat the
starting point i as a parameter that will appear only in the leading constant of dominant asymptotics for
the number of walks, and this approach can be used to construct discrete harmonic functions [17].

2.1 Positive drift models

For 1 ≤ k ≤ d− 1, define bk to be the total weight of the steps moving forwards (or backwards) in the kth
coordinate,

bk =
∑

i∈S,ik=1

wi =
∑

i∈S,ik=−1

wi.

Our main asymptotic result for positive drift models is the following.

Theorem 2 (Positive Drift Asymptotics). Let S be a (weighted) step set that is symmetric over all but one
axis and takes a step forwards and backwards in each coordinate. If S has positive drift, then then number
of walks of length n that never leave the non-negative orthant satisfies

sn = S(1)n · n
−(d−1)

2 ·
[

(

1− A(1)

B(1)

)(

S(1)

π

)
d−1
2 1
√

b1 · · · bd−1

]

(

1 +O(n−1)
)

. (1)
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Note that the result is trivial to apply to any given model, and is general enough to handle families of
models in varying dimension.

Example 3. Consider the step set where B
(

zd̂

)

=
∏

j<d(zj + zj), Q
(

zd̂

)

= 0, and A
(

zd̂

)

= 1, so each step
has weight 1. Then

sn =
(

1 + 2d−1
)n · n

−(d−1)
2 ·

[

2d−1 − 1

(2dπ)
d−1
2

]

(

1 +O(n−1)
)

.

Theorem 2 is proved in Section 5.1.

2.2 Negative drift models

Dominant asymptotics in the negative drift case are given by adding the asymptotic contributions of a finite

collection of points. Let ρ =
√

A(1)
B(1) , and for each 1 ≤ k ≤ d− 1 define

bk(zk̂) := [zk]S(z) = [z−1
k ]S(z).

Furthermore, define

Cρ :=
S(1, ρ) ρ

2 πd/2 A(1)(1 − 1/ρ)2
·
√

S(1, ρ)d

ρ b1(1, ρ) · · · bd−1(1, ρ) · B(1)

and let C−ρ be the constant obtained by replacing ρ by −ρ in Cρ (the term in the square-root will always
be real and positive, so there is no ambiguity).

Theorem 4 (Negative Drift Asymptotics). Let S be a negative drift (weighted) step set that is symmetric
over all but one axis and takes a step forwards and backwards in each coordinate. If Q(zd̂) 6= 0 (i.e., if there
are steps in S having zd coordinate 0) then the number of walks of length n that never leave the non-negative
orthant satisfies

sn = S(1, ρ)n · n−d/2−1 · Cρ

(

1 +O(n−1)
)

.

If Q(zd̂) = 0 then the number of walks of length n that never leave the non-negative orthant satisfies

sn = n−d/2−1 ·
[

S(1, ρ)n · Cρ + S(1,−ρ)n · C−ρ

]

(

1 +O(n−1)
)

.

Again, this result can be immediately applied to families of models. Note that S(1, ρ) = Q(1) +
2
√

A(1)B(1).

Example 5. Consider the step set where A
(

zd̂

)

=
∏

j<d(zj + zj), Q
(

zd̂

)

= 0, and B
(

zd̂

)

= 1 (note that

this is the reflection in the zd axis of the step set of the previous example). Then ρ = 2
d−1
2 and

Cρ =
22d−3/2

πd/2
(

2(d−1)/2 − 1
)2 C−ρ =

22d−3/2

πd/2
(

2(d−1)/2 + 1
)2 ,

so

sn =
(

2(d+1)/2
)n

· n−d/2−1 · 22d−3/2

πd/2(2d−1 − 1)2
· cn

(

1 +O(n−1)
)

,

where

cn =

{

2d + 2 : n is even

2(d+3)/2 : n is odd

Theorem 4 is proved in Section 5.2.
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3 Lattice Path Generating Functions

We now show how to derive several useful expressions for the generating functions of the lattice path models
we consider. We closely follow the kernel method as outlined in Bousquet-Mélou and Mishna [13], and a
straightforward generalization to higher dimensions discussed by Melczer and Mishna [38]. This approach
builds heavily on a probabilistic framework detailed by Fayolle, Iasnogorodski, and Malyshev [21]; see also
Bousquet-Mélou and Petkovšek [15] for a more general overview on the kernel method.

3.1 A generating function expression via the kernel method

To apply the kernel method we introduce the symmetry group of the walk.

Definition 6. For 1 ≤ j ≤ d− 1 define the map σj : C
d → Cd by

σj (z1, . . . , zd) = (z1, . . . , zj−1, zj , zj+1, . . . , zd),

and the map γ : Cd → Cd by

γ (z1, . . . , zd) =

(

z1, . . . , zd−1, zd
A
(

zd̂

)

B
(

zd̂

)

)

.

We can view these maps as acting on Laurent polynomials f ∈ C[z1, z1, . . . , zd, zd] through

σ · f(z) := f(σ(z1, . . . , zd))

and further view them as acting on elements
∑

n≥0 fn(z)t
n ∈ C[z1, z1, . . . , zd, zd][[t]] by

σ ·
∑

n≥0

fn(z)t
n :=

∑

n≥0

(σ · fn(z)) tn =
∑

n≥0

fn(σ(z))t
n .

Finally, we let G be the group of birational transformations generated by σ1, . . . , σd−1 and γ.

Remark 7. Since S is symmetric over all but one axis we have, for each j = 1, . . . , d− 1,

σj

(

A
(

zd̂

))

= A
(

zd̂

)

σj

(

B
(

zd̂

))

= B
(

zd̂

)

which, together with the fact that γ fixes S(z), implies that S(z) is fixed by G. Furthermore, these equalities
show that the generators of G, which are involutions, commute, meaning G is the finite group of order 2d

defined by

G :=
{

σj1
1 · · ·σjd−1

d−1 γ
jd : j1, . . . , jd ∈ {0, 1}

}

.

The group G is the direct sum of d cyclic groups of order 2.

Let F (z, t) be the multivariate generating function

F (z, t) =
∑

i∈Nd

n≥0

ai,nz
itn,

where ai,n counts the number of weighted walks of length n using the steps in S, beginning at the origin,
ending at i ∈ Nd, and never leaving the non-negative orthant in Zd. Describing a walk of length n ending
at i ∈ Nd recursively as a walk of length n − 1 followed by a single step, one can show (see Melczer and
Mishna [38]) that the generating function satisfies a functional equation of the form

(1− tS(z))z1F (z, t) = z1 +
d
∑

k=1

Lk(zk̂, t), Lk(zk̂, t) ∈ Q[zk̂][[t]]. (2)

7



In particular, note that each Lk(zk̂, t) is independent of the variable zk.
When manipulating the formal expressions that arise in our application of the kernel method, we may

encounter rational functions in the variables z1, . . . , zd which, in addition to not being analytic at the origin,
are not Laurent polynomials in these variables. Thus, we make use of the iterated Laurent series ring
R = Q((z1)) · · · ((zd))[[t]]; unless otherwise stated all computations below are assumed to take place in the
ring R, which contains both Q[z1, z1, . . . , zd, zd][[t]] and Q[[z, t]]. Note that every rational function in Q(z)
has an expansion in R. For further details on iterated Laurent series, including their uses in combinatorics
and a classification of which formal series are iterated Laurent series, the reader is referred to the PhD thesis
of Xin [52]. We define the positive sub-series extraction operator [z≥0] : R → Q[[z, t]] by

[z≥0]
∑

n≥0





∑

i∈Zd

ai,nz
i



 tn :=
∑

n≥0





∑

i∈Nd

ai,nz
i



 tn.

This setup leads to Theorem 8, typical of the kernel method (see Bousquet-Mélou and Mishna [13], for
instance, or Zeilberger [53] and Gessel and Zeilberger [29] for similar expressions in a multivariate setting).

Theorem 8. If S is symmetric over all but one axis, then the multivariate generating function F (z, t)
tracking endpoint and length satisfies

F (z, t) = [z≥0]

∑

σ∈G sgn(σ)σ(z1 . . . zd)

(z1 · · · zd)(1− tS(z))
, (3)

where
sgn

(

σj1
1 · · ·σjd−1

d−1 γ
jd
)

= (−1)j1+···+jd .

The generating function F (z, t), and thus the specialized generating function F (1, t) that counts the walks of
a given length ending anywhere, are D-finite.

Note: The order of the iterated Laurent fields that define R is important. If one works in an iterated
Laurent field where zd is not the last variable before t, Equation (3) may not hold.

Proof. We begin by examining the expression σ(z1 . . . zd)F (σ(z), t) for some fixed σ = σj1
1 · · ·σjd−1

d−1 γ
jd ∈ G.

When jd = 1, then every term in the expansion of σ(z1 . . . zd)F (σ(z), t) in the ring R will have negative
power of zd (due to the order of the variables used when defining R). Otherwise, if jd = 0 and there is some
k ∈ {1, . . . , d− 1} such that jk = 1 then every term in the expansion of σ(z1 . . . zd)F (σ(z), t) in the ring R
will have negative power of zk. Thus, we see [z≥0]σ(z1 . . . zd)F (σ(z), t) = 0 for σ ∈ G unless σ is the identity
element. This implies

[z≥0]
∑

σ∈G
sgn(σ)σ(z1 . . . zd)F (σ(z), t) =

∑

σ∈G
sgn(σ)

(

[z≥0]σ(z1 . . . zd)F (σ(z), t)
)

= (z1 · · · zd)F (z, t).

By definition, for all σ ∈ G and τ ∈ {σ1, . . . , σd−1, γ},

sgn(τσ) = − sgn(σ).

As S(z) is fixed by the elements of G, to prove Equation (3) from Equation (2) it is sufficient to show that
for each k = 1, . . . , d,

∑

σ∈G
sgn(σ)σ(z1 . . . zd)

(

σ · Lk(zk̂, t)
)

= 0.

Fix k and write G as the disjoint union G = G0 ∪ G1, where

G0 =
{

σj1
1 · · ·σjd−1

d−1 γ
jd : j1, . . . , jd ∈ {0, 1}, jk = 0

}

G1 =
{

σj1
1 · · ·σjd−1

d−1 γ
jd : j1, . . . , jd ∈ {0, 1}, jk = 1

}

.
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Then for all g ∈ G1, (σkg) · Lk(zk̂, t) = g · Lk(zk̂, t), and therefore

∑

σ∈G
sgn(σ)σ(z1 . . . zd) (σ · Lk(zk̂, t)) =

∑

σ∈G0

sgn(σ)σ(z1 . . . zd) (σ · Lk(zk̂, t))

+
∑

σ∈G1

sgn(σ)σ(z1 . . . zd) (σ · Lk(zk̂, t))

=
∑

σ∈G0

(sgn(σ)− sgn(σ))σ(z1 . . . zd) (σ · Lk(zk̂, t))

= 0,

as desired. The results on D-finiteness follow from a classical result of Lipschitz [34] which states (in an
equivalent form) that the class of D-finite functions is closed under positive sub-series extraction.

The next result determines an explicit expression for the generating function under consideration.

Lemma 9. For the group G,

∑

σ∈G
sgn(σ)σ(z1 . . . zd) = (z1 − z1) · · · (zd−1 − zd−1)

(

zd − zd
A
(

zd̂

)

B
(

zd̂

)

)

.

Consequently,
F (z, t) = [z≥0]R(z, t)

where

R(z, t) =
(1− z−2

1 ) · · · (1− z−2
d−1)

(

B
(

zd̂

)

− z−2
d A

(

zd̂

))

B
(

zd̂

)

(1− tS(z))
. (4)

Proof. The first statement follows directly from the definition of G and the sign operator (formally it can be
proved by induction). The second statement comes from combining Lemma 9 with (3).

3.2 A diagonal representation

Next, we turn back to the sequence counting the total number of walks of a given length (regardless of
endpoint). The generating function of this sequence is simply F (1, t), since specializing each zj variable to
1 sums over its possible values.

We may translate the positive sub-series extraction given by Equation (3) into an expression for F (1, t)
using the diagonal operator ∆ : R → Q[[t]] defined by

∆





∑

n≥0





∑

i∈Zd

ai,nz
i



 tn



 :=
∑

n≥0

an,...,nt
n.

Our asymptotic results will follow from an analysis of a diagonal expression for F (1, t). Establishing this
diagonal expression is more complicated than in Melczer and Mishna [38], because we must consider expres-
sions whose coefficients in t are not Laurent polynomials. In the completely symmetric case A = B in (4),
and cancellation leaves only 1− tS(z) in the denominator.

The following technical lemma is elementary, involving only algebraic manipulations (see also Melczer
and Mishna [38, Proposition 2.6]).

Lemma 10. Let P (z, t) ∈ Q[z1, z1, . . . , zd, zd][[t]] ⊂ R. Then

(

[z≥]P (z, t)
)

∣

∣

∣

∣

z1=1,...,zd=1

= ∆

(

P (z1, . . . , zd, z1 · · · zd · t)
(1− z1) · · · (1− zd)

)

, (5)

where the diagonal on the right hand side is taken as an expansion in R, as usual.
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The proof follows from the definition of the diagonal after writing out the geometric series and expansion
of P on the right hand side.

We would like to use Lemma 10 directly, but R in (4) does not lie in the correct ring and the substitutions
indicated (replacing zi by zi) are not formally justified. This problem can be circumvented through a te-
dious but elementary generating function argument, taking into account the precise structure of the rational
function under consideration, yielding Proposition 11. Due to certain undesirable properties of the represen-
tation (6) we use a different diagonal expression for the generating function more suited to an asymptotic
analysis, so we omit the proof.

Proposition 11. Let S be a weighted step set satisfying the conditions above. Then the generating function
counting the number of walks of a given length in the lattice path model defined by S satisfies

F (1, t) = ∆

(

(1 + z1) · · · (1 + zd−1)
(

B
(

zd̂

)

− z2dA
(

zd̂

))

(1− zd)B
(

zd̂

)

(1− tz1 · · · zdS(z1, . . . , zd−1, zd))

)

. (6)

The rational function in (6) presents a challenge for the integral manipulations necessary to compute
asymptotics as one can only easily deform domains of integration where the integrand is analytic; the factor
B
(

zd̂

)

present in the denominator can give strange surfaces of singularities. Instead we use the following
alternative expression, which is a power series in t with Laurent polynomial coefficients in the other variables.

Theorem 12. Let S be a weighted step set satisfying the conditions above. Then the generating function
counting the number of walks of a given length in the lattice path model defined by S satisfies

F (1, t) = ∆

(

G(z, t)

H(z, t)

)

,

where

G(z, t) = (1 + z1) · · · (1 + zd−1)
(

1− tz1 · · · zd
(

Q
(

zd̂

)

+ 2zdA
(

zd̂

)))

H(z, t) = (1− zd)
(

1− tz1 · · · zdS(z)
)(

1− tz1 · · · zd
(

Q
(

zd̂

)

+ zdA
(

zd̂

))

)

,
(7)

and
S(z) = S(zd̂, zd) = zdB

(

zd̂

)

+Q
(

zd̂

)

+ zdA
(

zd̂

)

.

Proof. Expanding the expression in (4) we obtain

(1 − z21) · · · (1− z2d−1) ·
(

1− z2d
A
(

zd̂

)

B
(

zd̂

)

)

·
∑

n≥0

tn
(

zdA
(

zd̂

)

+Q
(

zd̂

)

+ zdB
(

zd̂

))n
.

As the sub-expression

(1− z21) · · · (1− z2d−1) ·
(

−z2d
A
(

zd̂

)

B
(

zd̂

)

)

·
∑

n≥0

tn
(

zdA
(

zd̂

)

+Q
(

zd̂

))n

contains no positive powers of zd, we can subtract it from R(z) and extract the positive part of

(1− z21) · · · (1− z2d−1)
(

1− z2dA (zd̂) /B (zd̂)
)

1− tS(z)
+

(1− z21) · · · (1− z2d−1)
(

z2dA (zd̂) /B (zd̂)
)

1− t (zdA (zd̂) +Q (zd̂))
.

This final rational function simplifies to

(1 − z21) · · · (1− z2d−1)
(

1− t
(

2zdA
(

zd̂

)

+Q
(

zd̂

)))

(

1− t
(

zdA
(

zd̂

)

+Q
(

zd̂

)

+ zdB
(

zd̂

))) (

1− t
(

zdA
(

zd̂

)

+Q
(

zd̂

))) ,

and we can now apply Lemma 10.
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Note that the power series expansion of 1/H(z, t) has all non-negative coefficients, which will allow us to
simplify necessary characterizations of the singularities of G(z, t)/H(z, t) below. In the special case where
S is symmetric over all axes, we obtain an expression different from that in [38]; by forcing positivity on
our series coefficients we have lost some symmetry and less cancellation occurs. For example, the generating
function of the model with all possible steps in 2 dimensions is the diagonal of

(1 + x)(1 + y)

1− t(1 + x+ y + x2 + y2 + x2y + xy2 + x2y2)

using the expression in Proposition 11, which coincides with that in [38], but the diagonal of

(1 + x)(1− 2t(y + y2 + x2y + xy2 + x2y2))

(1− y)(1− t(1 + x+ y + x2 + y2 + x2y + xy2 + x2y2))(1− t(y + y2 + x2y + xy2 + x2y2))

using the expression in Theorem 12.

3.3 Models whose step sets have fewer symmetries

We end this section with a justification of why we only consider models missing one symmetry (instead of
two, three, etc.). Indeed, as the following theorem shows, in any dimension d ≥ 2 there exists a model
that is missing two symmetries and admits a generating function that is not D-finite. As the diagonal of
a multivariate rational function must be D-finite [16, 34], this shows that it is impossible to determine the
asymptotics of all models missing two symmetries uniformly through multivariate rational diagonals and
analytic combinatorics in several variables.

Theorem 13. There exists a sequence of step sets S2,S3, . . . with Sd defining a step set of dimension d that
is symmetric over all but two axes, such that the generating function of each model is non D-finite.

Proof. If a counting sequence (cn)n≥0 has asymptotics of the form cn ∼ K · ρn · nα for constants K, ρ, α ∈ R

and its generating function is D-finite, then ρ is algebraic and α is rational (see Theorem 3 of Bostan,
Raschel, and Salvy [10]).

When d = 2, consider the set of steps

S2 = {(−1,−1), (0,−1), (0, 1), (1, 0), (−1, 0)}.

Bostan, Raschel, and Salvy [10] show that (en)n≥0, the number of walks on these steps staying in the first
quadrant that begin and end at the origin, has dominant asymptotics

en ∼ Ke · ρne · nαe

where α is an irrational number (approximately 2.757466) equal to −1− π/ arccos(−c), with c an algebraic
number satisfying c3 − c2 + (3/4)c− (1/8) = 0. Work of Duraj [20] implies in our context2 that—since S2

has negative vector sum in both coordinates—the sequence counting the total number of steps has dominant
asymptotics

s(2)n ∼ K2 · ρn2 · nα2 ,

where α2 = αe and is thus irrational.
For d ≥ 3 let Sd = S2 ×{±1}d−2. Every walk of length n on the steps Sd is constructed uniquely from a

walk of length n on the steps S2 in the non-negative quadrant and d−2 independent walks of length n on the
steps {−1, 1} restricted to the non-negative integers (this is a simple version of the Hadamard decomposition
of walks studied in Bostan et al. [4]). Thus, the number of walks of length n taking steps in Sd restricted to
the d-dimensional non-negative orthant is

s(d)n = s(2)n · cd−2
n ,

2That article takes a probabilistic view of exit times for random walks to leave certain cones, and applies to a wide range of
models; see its Example 7 for the case of two dimensional random walks in a quadrant.
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where cn is the number of Dyck paths that do not have to end at 0 (sometimes called Dyck prefixes). It is
a classical result of enumerative combinatorics that cn =

(

n
⌈n/2⌉

)

with dominant asymptotics of the form

cn ∼
√

2/π · 2n · n−1/2,

which implies
s(d)n ∼ Kd · (ρd)n · nαd ,

with αd = α2 − d/2 + 1 6∈ Q.

It would be of great interest to find ‘simple’ diagonal expressions involving more general multivariate
meromorphic functions for walk models with non-D-finite generating functions. Such multivariate functions
could not be D-finite, in the sense that the vector space of all partial derivatives over Q(z) would need to be
infinite dimensional.

Furthermore, although not all models missing two symmetries can be handled directly by our methods,
there are some models missing two (or more) symmetries whose generating functions can be written as
rational diagonals. For a specific model, one can attempt to follow the algebraic kernel method for higher
dimensional walks; see, for instance, Bostan et al. [5] for a general framework. Characterizing all such models
is a more difficult task. Our best guess is that this property is related to being a Hadamard decomposition,
in the sense of Bostan et al. [4], of some (hopefully nice) characterizable family of ‘atomic’ D-finite models.
Although in general one cannot simply determine asymptotics of a model which admits a Hadamard decom-
position by multiplying the asymptotics of lower dimensional sequences, many properties such as D-finiteness
are inherited via Hadamard decomposition; see Bostan et al. [4, Section 5] for details. Given a model whose
generating function can be written as a rational diagonal, Courtiel et al. [17] develop a method to determine
weightings of the step set so that the weighted generating function can be represented as a parametrized
rational diagonal with the weights as parameters.

We now move on to the analysis of the expressions obtained using the methods of analytic combinatorics in
several variables. We use the methods developed by Pemantle and Wilson [47] for asymptotics controlled by
points where the zero set of H(z, t) is locally a manifold or a union of finitely many transversely intersecting
manifolds.

4 Contributing Singularities

Suppose Q(z, t) is a rational function analytic at the origin. As in the univariate case, a multivariate
singularity analysis starts from the Cauchy integral formula, which implies

bn := [(z1 · · · zd t)n]Q(z, t) =
1

(2πi)d+1

∫

C
Q(z) · dz dt

(z1 · · · zd t)n+1
(8)

for any n ∈ N and C a product of circles sufficiently close to the origin. If D is the domain of convergence of
the power series of Q(z, t) at the origin, and V is the set of singularities of Q(z, t), then any singularity on
the boundary ∂D of D is called minimal. When P (z, t) is a polynomial we say that (w, s) is a minimal zero
of P if P (w, s) = 0 and P (y, r) 6= 0 whenever

|wj | ≤ |yj |, j = 1, . . . , d, |r| ≤ |s|

and one of the inequalities is strict. Note that a minimal point of Q is a minimal zero of its denominator,
and vice-versa.

As Q(z, t) is rational, bn grows at most exponentially and standard integral bounds imply

lim sup
n→∞

|bn|1/n ≤ |w1 · · ·wd s|−1 (9)
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for any minimal point (w, s) ∈ ∂D ∩ V . In the simplest cases, one hopes to identify a finite set of minimal
points achieving the optimal bound in Equation (9). When such a set exists, and the local geometry of the
algebraic set V is sufficiently nice, asymptotics can then be determined.

We now specialize our arguments to the rational function Q(z, t) = G(z, t)/H(z, t) defined by Theorem 12;
note that G and H are co-prime, so the singularities of Q are the zeros V = V(H) of the polynomial H .
Because of the nice form of H , we are able to characterize its minimal zeros achieving the best bound in
Equation (9), which is typically the hardest step of any asymptotic analysis. We make use of the following
result.

Lemma 14. Suppose P ⊂ Zd is a finite set not contained in a hyperplane of Rd, and ai > 0 are positive
constants for each i ∈ P. Then every critical point of

P (z) =
∑

i∈P
aiz

i

on (R>0)
d is a global minimum and P admits at most one critical point on this domain. Furthermore, such

a global minimum exists if and only if P is not contained in a halfspace containing the origin.

Proof. This result follows from the strict convexity of the Laplace transform P (ex1 , . . . , exd); for details see
Garbit and Raschel [26, Lemma 7].

In order to reason about minimal zeros of H(z, t), we define the factors

H1 := 1− tz1 · · · zdS(z) = 1− tz1 · · · zd−1

(

z2dA(zd̂) + zdQ(zd̂) +B(zd̂)
)

H2 := 1− tz1 · · · zd
(

Q(zd̂) + zdA(zd̂)
)

H3 := 1− zd,

and set Vj = V(Hj).
Under our assumptions on S the conditions of Lemma 14 are satisfied by S(z), giving the following.

Proposition 15. The unique minimal zero of H(z, t) with positive coordinates that minimizes |z1 · · · zd t|−1

is

p1 :=

(

1, 1, . . . , 1,

√

B(1)

A(1)
,

√

A(1)/B(1)

2
√

A(1)B(1) +Q(1)

)

if the drift is negative

p2 :=

(

1, 1, . . . , 1,
1

S(1)

)

otherwise.

Proof. As |z1 · · · zd t|−1 decreases as (z, t) moves away from the origin, any such minimizer must be a zero
of H1 or H2. Since S(z) has non-negative coefficients, any zero of H1 with positive coordinates is a minimal
zero as t = (z1 · · · zdS(z))−1 increases as one of the zj decreases and the others are constant. Furthermore,

on V1 ∩ (R>0)
d

|z1 · · · zd t|−1 = S(z),

which by Lemma 14 has a unique minimum corresponding to a unique critical point. The system

Sz1(z) = · · · = Szd(z) = 0

can be reduced to

(1 − z21) · [z−1
1 ]S(z) = · · · = (1− z2d−1) · [z−1

d−1]S(z) = B(zd̂)− z2dA(zd̂) = 0,

which has only the solution (1,
√

B(1)/A(1)) with positive coordinates, as S has all non-negative coefficients.
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If the drift is non-positive, B(1) ≤ A(1) and p1 is a minimal zero of the product H1(z, t)H3(z, t).
Otherwise, any minimal zero of H1(z, t)H3(z, t) that minimizes |z1 · · · zd t|−1 must lie on V1 ∩ V3, where

|z1 · · · zd t|−1 = S(zd̂, 1),

and Lemma 14 implies the minimizer is p2.
Finally, if (z, t) ∈ V2 ∩ (R>0)

d
then

t =
1

z1 · · · zd
(

Q(zd̂) + zdA(zd̂)
) >

1

z1 · · · zdS(z, t)

since z1 · · · zdB(z) > 0. But this implies (z, t) is not a minimal zero of H , as there exists (z, s) ∈ V1 with
0 < s < t.

In order to perform a local singularity analysis we will need to describe V near points of interest. In our
case, the singular set V is the union of smooth manifolds V1,V2, and V3 (for each i, the gradient of Hi never
vanishes when Hi = 0). Furthermore, we show in the proof of Theorem 16 that any minimal singularity will
not lie on V2, so that any minimal singularity is either in V1 alone, V3 alone, or the intersection V1 ∩V3. As
the gradients of H1 and H3 are linearly independent at any common zero, we say V1 and V3 are transverse.

In this setting, the stratum of minimal w ∈ V is the intersection of the Vj containing w. Minimal
w ∈ V with non-zero coordinates is called a minimal critical point if it is a critical point (in the differential
geometry sense) of the map φ(z) = log(z1 · · · zd) from the stratum of w to C. Algebraically, this means that
the gradient of φ(z) = log(z1 · · · zd) at z = w can be written as a linear combination of the gradients of the
Hj polynomials defining the strata of w. Critical points are those where the Cauchy integral can be locally
manipulated into a so-called Fourier-Laplace integral, where saddle-point methods can be applied to obtain
asymptotics.

General definitions of critical and contributing points, where local function behaviour dictates coefficient
asymptotics, can be found in [47]. In particular, Proposition 10.3.6 of [47] gives an explicit characterization
of contributing points: in our setting, a singularity of Q(z, t) is a contributing point if it is a minimal critical
point that minimizes |z1 · · · zd t|−1 on ∂D (the exponential order of the asymptotic contribution of that point
is maximum).

Theorem 16. When the drift is positive, there are at most 2d−1 contributing points. The point p2 is one,
and the others are the points (w, 1, t) where

w ∈ {±1}d−1, t =
1

w1 · · ·wd−1 · S (w, 1)
, and |t| = 1

S(1, 1)
.

When the drift is negative, there are at most 2d+1 contributing points. The point p1 is one, and the
others are the points (w, wd, t) where

w ∈ {±1}d−1, wd = ν

√

B(w)

A(w)
, t =

1

wdS (w, wd)
,

|wd| =
√

B(1)
√

A(1)
, and |t| =

√

A(1)
√

B(1)S
(

1,
√

A(1)/B(1)
) ,

with ν a fourth root of unity (note that in order to satisfy the condition on |t| it is necessary that B(w)/A(w) >
0, so the square root can be taken unambiguously).

When the drift is zero, there are at most 2d contributing points. The point p1 = p2 is one, and the others
are the points (w, wd, t) where

(w, wd) ∈ {±1}d, t =
1

w1 · · ·wdS (w, wd)
, and |t| = 1

S(1, 1)
.
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Proof. As the power series expansion of 1/H(z, t) has non-negative coefficients, every minimal point has the
same coordinate-wise modulus as an element of V with positive coordinates (an element of ∂D is the limit
of a sequence in D that makes the power series of 1/H approach infinity, but as the power series coefficients
are non-negative the series only gets larger when each coordinate is replaced by its modulus).

Thus, we search for points in V with the same coordinate-wise modulus as p1 and p2. First, we note
that no point in V2 is minimal as its t variable will be smaller than required. On V1, we seek points (w, s)
such that

|S(w, s)| = S(p1) or |S(w, s)| = S(p2).

Since z1 · · · zdS(z, t) is a polynomial with non-negative coefficients, the triangle inequality implies the only
way this can happen is if every monomial of S(z, t) has the same argument when evaluated at w. Our
assumptions on S imply that w1, . . . , wd−1 must be real (and thus ±1) so the points in the statement of
Theorem 16 are the only potential minimizers of |z1 · · · zd t|−1, and are minimal points.

Computing the gradient of H1(z) = 1− tz1 · · · zdS(z) shows that a point (z, t) with stratum V1 is critical
if and only if z satisfies

Sz1(z) = · · · = Szd(z) = 0,

while a point with stratum V1 ∩ V3 is critical if and only if

Sz1(z) = · · · = Szd−1
(z) = 0, zd = 1.

These equations are satisfied by the stated points, therefore we have found the set of contributing points.

5 Asymptotic Expansions

The results of Pemantle and Wilson [47] apply broadly to compute asymptotics when contributing points
are known. Now that the set of contributing points is characterized by Theorem 16 it is a straightforward
(though computationally intensive) matter to compute asymptotics, which we do for each of the cases in
Theorem 16. Some of the technical and laborious proofs that are not of theoretical interest are given in
Appendix A.

We make an exponential change of variables to convert complex contour integrals to integrals over Rd.
To this end we introduce some basic notation.

Definition 17. For p ∈ Cd, define E on [−π, π]d by

Ep(θ) = (p1e
iθ1 , . . . , pde

iθd)

For fixed p, every function f(z) of z yields a corresponding function f̃(θ) := f ◦ Ep of θ under this change
of variable.

For 1 ≤ j ≤ d, we use the usual notation ∂j for the partial differential operator (∂/∂θj) and define the
functions B1(z1̂), . . . , Bd−1(z d̂−1

) by stipulating that Bk is the unique Laurent polynomial such that

S(z) = (zk + zk)Bk(zk̂) +Qk(zk̂) (10)

for some Laurent polynomial Qk. For notational convenience we set Bd(zd̂) := B(zd̂).

Remark 18. We note that for each j 6= k with j, k < d, each Bj is symmetric in zk and zk, and does not
involve any power of zj. Also A,B,Q (and both S and S) are symmetric in zk and zk.

We also need the following quantities.

Definition 19. For each j < d, define Laurent polynomials A′
j , B

′
j , A

′′
j , B

′′
j by

A(zd̂) = (zj + zj)A
′
j(zĵ) +A′′

j (zĵ)

B(zd̂) = (zj + zj)B
′
j(zĵ) +B′′

j (zĵ).
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Finally, for a differentiable function f(z) we define

∇log f(z) := (z1∂1f, . . . , zd∂df) .

We now have all the necessary tools to compute asymptotics, beginning with the positive drift case.

5.1 The Positive Drift Models

In the positive drift case, when A(1) < B(1), Theorem 16 implies that we are dealing with contributing
points on the stratum V1 ∩ V3. The next result follows from Theorem 10.3.4 of Pemantle and Wilson [47],
where ej is the jth standard basis vector (with a 1 in its jth entry and zeros elsewhere).

Proposition 20. Let Γ be the square matrix whose first 2 rows are ∇log H1(p) and ∇log H3(p), and whose
last d− 1 rows are pjej for j = 1, . . . , d− 1. Furthermore, define

g(θ) := log

(

1

(p1 · · · pd)ei(θ1+···+θd)S(p1eiθ1 , . . . , pdeiθd)

)

.

Then

[tn1]∆Q(z, t) = p
n1 · n−(d−1)/2 ·

(

(2π)−(d−1)/2(d+ 1)−(d−1)/2 G(p)

det Γ ·
√

det g′′(0)
+O(n−1)

)

,

where g′′(0) denotes the Hessian of g(θ) at the origin.

Proof. As p2 is the only contributing point where G(z, t) does not vanish, Theorem 10.3.4 of Pemantle and
Wilson [47] gives the above asymptotic result and the bound of O(n−1) on the lower order terms.

Because G(z, t) vanishes at all contributing points except for p2, no positive drift model will have peri-
odicity in its leading asymptotic term. Applying Proposition 20 in our situation gives asymptotics in the
positive drift case.

Proof of Theorem 2. Theorem 16 implies that the point p2 = (1, 1, 1/S(1, 1)) is the unique contributing
point at which G(z, t) does not vanish. At this point, one can calculate that

Γ =























0 0 0 · · · 0 −1 0
−1 −1 −1 · · · −1 −r −1
1 0 0 · · · 0 0 0
0 1 0 · · · 0 0 0
0 0 1 0 · · · 0 0
...

. . .
. . .

. . .
. . .

...
...

0 0 0 · · · 1 0 0























for a real number r < 1, which does not appear in the determinant of Γ, and

G(1, 1/|S|)
H2(1, 1/|S|)

= 2d−1 (B(1)−A(1))

S(1)

S(1)

B(1)
= 2d−1

(

1− A(1)

B(1)

)

.

The Chain Rule and Lemma 27 of Appendix A imply that g′′(0) is the diagonal matrix

g′′(0) =



















2B1(1)
(d+1)S(1) 0 0 · · · 0

0 2B2(1)
(d+1)S(1) 0 · · · 0

...
. . .

. . .
. . .

...

0 0 · · · 2Bd−2(1)
(d+1)S(1) 0

0 0 · · · 0 2Bd−1(1)
(d+1)S(1)



















,
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so that Proposition 20 gives

sn = S(1)nn−1/2(2π)−
d−1
2 (d+ 1)

−(d−1)
2 ·

2d−1
(

1− A(1)
B(1)

)

√

(d+ 1)−(d−1)2d−1S(1)−(d−1)/2(b1 · · · bd−1)
+O(S(1)nn−3/2),

which simplifies to (1).

5.2 The Negative Drift Models

In the negative drift case, when A(1) < B(1), Theorem 16 implies that we are dealing with contributing
points on the stratum V1 where V itself is locally a manifold. This simplifies computations, but an added
difficulty is that the numerator vanishes to at least first order at every critical point. We now state a
general theorem that allows one to calculate asymptotics under these conditions, coming from Raichev and
Wilson [49] (note that for us the dimension d is one less than the number of variables of F ).

Theorem 21. Fix natural number N > 0 and recall the above notation from this section. In a neighborhood
in V of a smooth critical point p on V1, write t = h(z). Define u, g̃ and g̃ by

u(z) = − G(z, h(z))

h(z)(∂H/∂t)(z, h(z))

g̃(θ) = log
h̃(θ)

h̃(0)
+ i

d
∑

j=1

θj

g̃(θ) = g̃(θ)− 1

2
θ
T g̃′′(0)θ.

Supposing that the Hessian determinant det g̃′′(0) 6= 0, define

Ψ
(p)
n,N := p−n1 · n−d/2 · (2π)−d/2(det g̃′′(0))−1/2

N−1
∑

k=0

n−kLk(ũ, g̃), (11)

where

Lk(ũ, g̃) =
2k
∑

l=0

Hk+l(ũg̃l)(0)

(−1)k2k+ll!(k + l)!

with H the differential operator
H = −

∑

1≤a,b≤d

(g̃′′(0)−1)a,b∂a∂b.

Then, as n → ∞,
[tn1]∆Q(z, t) =

∑

p∈W

Ψ
(p)
n,N +O(n−N ).

Lemma 28 of Appendix A shows that the term L1(ũ, g̃), which will determine dominant asymptotics for
negative drift models, simplifies considerably for the functions we consider. In the setting of this section we
have

ũ(θ) =
(1 + p1e

iθ1) · · · (1 + pd−1e
iθd−1)

(

1− p2de
2iθdA(pd̂)/B(pd̂)

)

1− pdeiθd

g̃(θ) = log S(p)− logS(p1e
iθ1 , . . . , pde

iθd),
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and Lemma 27 of Appendix A implies that g̃′′(0) is the diagonal matrix

g̃′′(0) =





















2p1B1(p1̂)

S(p)
0 0 · · · 0

0
2p2B2(p2̂)

S(p)
0 · · · 0

...
. . .

. . .
. . .

...

0 0 · · · 2pd−1Bd−1(pd̂−1
)

S(p)
0

0 0 · · · 0
2Bd(pd̂)

pdS(p)





















.

Extensive calculations, given by Proposition 29 and Proposition 30 in Appendix A, then give the following.

Proposition 22. Let S be a step set that is symmetric over all but one axis and takes a step forwards and
backwards in each coordinate, and let W be the set of contributing points given by Theorem 16. If S has
negative drift, then the number of walks of length n that never leave the non-negative orthant satisfies

sn =
∑

p∈W

[

(p1 · · · pdpt)−nn−d/2−1
(

KpCp +O(n−1)
)

]

, (12)

where

Kp = 2−d π−d/2 S(p)d/2
(

p1 · · · pd−1 · B1(p1̂) · · ·Bd−1(pd̂−1
)B(pd̂)/pd

)−1/2

Cp =
S(p)

∏

j<d(1 + pj)

1− pd





1

A(p)pd(1 − pd)
+

d−1
∑

j=1

1− pj
2pjBj(p)

(

A′
j(p)

A(p)
−

B′
j(p)

B(p)

)



 .

Examining the set of contributing points given by Theorem 16 implies that only those whose first d− 1
coordinates are 1 contribute to dominant asymptotics (otherwise they have a −1 coordinate and Cp is zero).

Furthermore, if c =
√

B(1)/A(1) and |S(1, c ν)| = S(1, c) then ν must be 1 if Q 6= 0 and must be either
1 or −1 if Q = 0. Putting everything together gives Theorem 4. Note that ρ is the reciprocal of c, so S
is replaced by S in the theorem statement, and the radicand appearing in C−ρ is positive as S(1,−ρ) and
each bj(1,−ρ) are negative when Q = 0. Applying Proposition 20 in our situation gives asymptotics in the
positive drift case. Because two contributing singularities may dictate the dominant asymptotic term, there
are negative drift models whose leading asymptotic constant depends on the parity of n.

6 Applications to 2D Models Restricted to a Quadrant

The study of two dimensional lattice walks restricted to the non-negative quadrant has been a very active
area of interest in several sub-areas of combinatorics (see, for instance, the citations in our Introduction
above) and has applications to several branches of applied mathematics, including queuing theory and the
study of linear polymers. The seminal work of Bousquet-Mélou and Mishna [13] gave a uniform approach
to several enumerative questions, including the nature of a model’s generating function (algebraic, D-finite,
etc.) and the determination of exact or asymptotic counting formulas. In particular, they used the orbit
sum method (in a manner similar to Section 3) to prove that the generating functions corresponding to 22
of the 79 non-equivalent two dimensional models were D-finite (they conjectured that one additional model
was D-finite and that the rest were not). Around the same time, Bostan and Kauers [7] used computer
algebra approaches to guess differential equations satisfied by the generating functions of 23 models (the 22
proven D-finite by Bousquet-Mélou and Mishna and the one they conjectured to be D-finite) which they
then used to guess dominant asymptotics for these models (see Table 2). They later proved, using another
computer algebra approach, that the 23rd conjectured D-finite model of Bousquet-Mélou and Mishna is in
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fact algebraic (and thus also D-finite)3. Furthermore, 5 of the remaining 56 models were proven to admit
non D-finite generating functions by Melczer and Mishna [37] and strong evidence for non D-finiteness of
the final 51 generating functions has been provided by several sources [33, 10].

We now look at the application of the general formulas developed in Section 5 to proving the guessed
asymptotics in Table 2.

S Asymptotics S Asymptotics S Asymptotics

4
π · 4n

n

√
3

2
√
π
· 3n√

n
An

π · (2
√
2)n

n2

2
π · 4n

n
4

3
√
π
· 4n√

n
Bn

π · (2
√
3)n

n2

√
6

π · 6n

n

√
5

3
√
2π

· 5n√
n

Cn

π · (2
√
6)n

n2

8
3π · 8n

n

√
5

2
√
2π

· 5n√
n

√
8(1+

√
2)7/2

π · (2+2
√
2)n

n2

2
√
2

Γ(1/4) · 3n

n3/4
2
√
3

3
√
π
· 6n√

n

√
3(1+

√
3)7/2

2π · (2+2
√
3)n

n2

3
√
3√

2Γ(1/4)
· 3n

n3/4

√
7

3
√
3π

· 7n√
n

√
570−114

√

6(24
√

6+59)
19π · (2+2

√

6)n

n2√
6
√
3

Γ(1/4) · 6n

n3/4
3
√
3

2
√
π
· 3n

n3/2
8
π · 4n

n2

4
√
3

3Γ(1/3) · 4n

n2/3
3
√
3

2
√
π
· 6n

n3/2

Table 2: Asymptotics for the 23 D-finite models of Bostan and Kauers.

An =

{

24
√
2 : n even

32 : n odd
, Bn =

{

12
√
3 : n even

18 : n odd
, Cn =

{

12
√
30 : n even

144/
√
5 : n odd

6.1 The Highly Symmetric Models

Four of the models in Table 2 have step sets that are symmetric over every axis. This means that their
asymptotics follow directly from the work of Melczer and Mishna [38] (see Theorem 1 above). The asymptotic
order is |S|nn−1 in each case.

6.2 Positive Drift Models Missing One Symmetry

There are six models whose step sets are missing one symmetry and have positive drift; one can directly
apply Theorem 2 to prove the asymptotics listed. The asymptotic order is |S|nn−1/2 in each case.

6.3 Negative Drift Models Missing One Symmetry

There are six models whose step sets are missing one symmetry and have negative drift; one can apply
Theorem 4 to prove the asymptotics listed (we note that the original table of guessed asymptotics by Bostan
and Kauers [7] has small errors in the constants for the first three of these models). The asymptotic order

is
(

Q(1) + 2
√

A(1)B(1)
)n

n−2 in each case.

3This was later proved using non-computer based arguments by Bostan, Kurkova, and Raschel [9] and Bousquet-Mélou [12].
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Example 23. Consider the model defined by step set

S = {(0, 1), (−1,−1), (0,−1), (1,−1)}= {N,SE, S, SW}.
Here we have

G(z, t) = (1 + x)
(

1− y2(x+ 1 + x)
)

/(1− y)

H(z, t) = 1− t(x + y2 + xy2 + x2y2),

and two of the eight possible points described by Theorem 16 are contributing points: p1 = (1, 1/
√
3, 1/2) and

p2 = (1,−1/
√
3, 1/2). Using Sage to implement Proposition 29, we can calculate the contribution at each

contributing point to be

Ψ(p1)
n =

3
√
3(2 +

√
3)

π
· (2

√
3)n

n2

Ψ(p2)
n =

3
√
3(2 −

√
3)

π
· (−2

√
3)n

n2

so that the number of walks of length n satisfies

sn =
(2
√
3)n

n2
· 3

√
3

π

(√
3(1 − (−1)n) + 2(1 + (−1)n) +O(n−1)

)

=

{

(2
√
3)n

n2 ·
(

12
√
3

π +O(n−1)
)

: n even
(2

√
3)n

n2 ·
(

18
π +O(n−1)

)

: n odd

The first three models here each have two contributing points that determine the dominant asymptotics,
giving a periodicity in the coefficients as seen in the above example.

6.4 The Exceptional (Zero Orbit Sum) Algebraic Cases

There are four models for which the orbit sum method fails to give an expression for the walk generating
functions as the diagonals of rational functions (meaning the techniques of analytic combinatorics in several
variables as described above cannot by directly used). Luckily, these four models are algebraic and explicit
minimal polynomials for the generating functions are known: the first was found by Mishna [41], the next
two by Bousquet-Mélou and Mishna [13] and the final model—known as Gessel’s walk—is treated in Bostan
and Kauers [8]. It is effective to determine the asymptotics of a sequence from its generating function’s
minimal polynomial (under gentle technical conditions), so the asymptotics for these cases follow rigorously
through univariate methods (see Chapter VII.7 of Flajolet and Sedgewick [25] and [41, 8]). In fact, the
multivariate generating function enumerating walks by length and endpoint is algebraic for each model, a
stronger property.

6.5 The Remaining Three Models

There are three models not covered by the above cases. They do not exhibit any symmetries, but the
orbit sum method still gives a rational diagonal expression. Asymptotics of these models were previous
given by Bousquet-Mélou and Mishna [13]: although their multivariate generating functions enumerating
walks by length and endpoint are transcendental, the first two models have univariate generating functions
F (t) counting walks ending anywhere in the quadrant which are algebraic. The final model does not have
an algebraic univariate generating function, but Bousquet-Mélou and Mishna determined asymptotics by
exploiting the fact that the coefficients of its multivariate generating function are Gosper summable; see [13,
Proposition 11] for details.
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6.5.1 Case 1: S = {N,W, SE}
Applying the kernel method, the counting generating function satisfies

F (t) = ∆

(

(x2 − y)(1− xy)(x − y2)

(1− x)(1 − y)(1− xyt(y + yx+ x))

)

.

Furthermore, the kernel method implies (see, for example, Bousquet-Mélou and Mishna [13] or Bostan et
al. [6]) that

F (t) =
1− t−

√
1− 2t− 3t2

2t2

is algebraic, and asymptotics can be determined directly from this specification. Alternatively, one can
perform a (more difficult) multivariate singularity analysis on this rational function. Although the rational
function has smooth and transverse multiple points that are minimal and critical, we cannot directly apply
the asymptotic methods discussed above at the point (1, 1, 1/3)—which turns out to be a contributing
singularity—as the gradient of H1 at that point is parallel to the gradient of the function φ(x, y, t) = log(xyt)
occurring in the Fourier-Laplace integral that must be analyzed to determine asymptotics. The theory in
this case, where three factors in the denominator intersect, still needs to be fully developed. Here, one can
write

x2 − y = (x− 1)(x+ 1)− (y − 1)

to decompose the rational function as

(x2 − y)(1− xy)(x − y2)

(1− x)(1 − y)(1− xyt(y + yx+ x))
=− (1 − xy)(x− y2)(x + 1)

(1− y)(1− xyt(y + yx+ x))

+
(1− xy)(x − y2)

(1− x)(1 − xyt(y + yx+ x))
,

where each of the summands now contains only two factors in the denominator. After this simplification, a
(still difficult) asymptotic analysis can be applied to determine the asymptotic contribution of each summand
to the diagonal sequence. Using the explicit algebraic expression, or the multivariate approach, gives that
the counting sequence for the number of walks on these steps satisfies

sn =
3n

n3/2

(

3
√
3

2
√
π
+O

(

n−1
)

)

.

It is interesting that the D-finite models which are harder to approach using multivariate analytic methods
are precisely those which have algebraic generating functions; we do not see a deep reason why this should
be true.

6.5.2 Case 2: S = {NW,SE,N, S,E,W}
Applying the kernel method, we see that the counting generating function satisfies

F (t) = ∆

(

(x − y2)(1− xy)(x2 − y)

(1 − x)(1 − y)(1− txy(x+ y + xy + yx+ x+ y))

)

.

Analogously to the last case, one can compute an algebraic expression

F (t) =
1− 2t−

√
1− 4t− 12t2

8t2

for the generating function, which immediately gives asymptotics, or decompose the multivariate rational
function into a sum of rational functions with simpler singular sets and perform a multivariate analysis. In
either case, one obtains that the counting sequence for the number of walks on these steps satisfies

sn =
6n

n3/2

(

3
√
3

2
√
π
+O

(

n−1
)

)

.
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6.5.3 Case 3: S = {E, SE,W,NW}
Applying the kernel method, we see that the counting generating function satisfies

F (t) = ∆

(

(x+ 1)(x2 − y)(x − y)(x+ y)

1− xyt(x+ xy + yx+ x)

)

.

This case turns out to be easy to analyze, since the denominator is smooth. There are two points that satisfy
the critical point equations: p1 = (1, 1, 1/4) and p2 = (−1, 1, 1/4), both of which are minimal and smooth.
As the numerator has a zero of order 2 at p1 but order 3 at p2, in fact only p1 contributes to the dominant
asymptotics. The Sage package of Raichev—implementing Theorem 21—computes the contributions at both
points and shows that the counting sequence for the number of walks on these steps satisfies

sn =
4n

n2
· 8
π
+O

(

4n

n3

)

Weighted versions of this step set were studied in detail by Courtiel et al. [17].

7 Further Considerations

We end with some additional remarks and generalizations.

7.1 Weighted models

Although our results hold for models whose steps have positive real weights, we have not yet given an example
with positive weights not equal to one. We do so now.

Example 24. Consider the general 2D model with one symmetry defined by the following step set with
non-negative real weights,

d

a

b

e

c

d

a

b

Then sn is asymptotic to

(2(a+ b+ d) + c+ e)n n−1/2 ·
[

(

1− 2d+ e

2b+ c

)

√

(

2(a+ b+ d) + c+ e

(a+ b+ d)π

)

]

when 2b + c > 2d + e > 0 (positive drift), whereas for 0 < 2b + c < 2d + e (negative drift) and a 6= 0 it is
asymptotic to

(

2a+ 2
√

(2b+ c)(2d+ e)
)n

n−2 · C
with

C =









(2a+ 2
√

(2b+ c)(2d+ e))2

2π
(

1−
√

2b+c
2d+e

)2

((2b+ c)(2d+ e))3/4
√

d
√

2b+c
2d+e + a+ b

√

2d+e
2b+c









.

Asymptotics in the subcase when 0 < 2b + c < 2d + e (negative drift) and a = 0 similarly follows from
Theorem 4, resulting in an unwieldy formula due to periodicity. Finally, when 2b + c = 2d + e (zero drift)
and b = d and c = e (highly symmetric) then sn is asymptotic to

(2a+ 2c+ 4b)
n
n−1 ·

[

2a+ 2c+ 4b

π
√

(a+ 2b)(c+ 2b)

]

.
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The non-highly symmetric zero drift cases are outside the scope of our results. Conjecturally, they have
dominant asymptotics which are a constant times (2a+2b+2c+2d)nn−1 for generic a, b, c, d, although there
are values of the parameters for which this does not hold.

7.2 Decidability of asymptotics

The techniques of analytic combinatorics in several variables are currently at the front line of research into
computability questions in enumerative combinatorics. Given a univariate rational generating function, or
an algebraic generating function encoded by its minimal polynomial and a sufficient number of initial terms,
there are algorithms that take the function and return asymptotics of its power series coefficients at the
origin. On the other hand, it is an open problem whether it is decidable to take a D-finite generating function
encoded by an annihilating linear differential equation and initial conditions and determine asymptotics of
its counting sequence. In slightly restricted settings (for instance, when the D-finite generating function has
integer coefficients and positive radius of convergence) a careful singularity analysis allows one to determine
a so-called asymptotic basis : a finite collection of terms ∆1, . . . ,∆d with asymptotic expansions of the form

∆j = ρnj n
αj (log n)κj

(

C
(j)
0 +

C
(j)
1

n
+ · · ·

)

that can be determined explicitly to any finite order, such that asymptotics of the coefficient sequence cn is
an R−linear combination of the ∆j ,

cn ∼ K1 ∆1 + · · ·+Kr ∆r, Kj ∈ R.

See Flajolet and Sedgewick [25, Sec VII. 9] for details.
In this way, decidability of asymptotics can be reduced to the determination of the connection coefficients

Kj. If, without loss of generality, asymptotics of ∆1 dominates asymptotics of the other ∆j then ∆1 typically
determines (up to a scaling multiple) asymptotics of cn. However, if the constant K1 is zero then cn can
have drastically different asymptotic behaviour than ∆1. Determining the coefficients Kj is known as the
connection problem.

Because the class of multivariate rational diagonals contains the class of algebraic functions, and is
contained in the class of D-finite functions, the techniques of analytic combinatorics in several variables offer
tools to investigate the connection problem (see Melczer [36] for an in-depth look at this approach). For
instance, Bostan et al. [6] give annihilating differential equations for each lattice path generating function
in Table 2, even representing them in terms of explicit hypergeometric functions; however, they were not
able to prove all asymptotics in that table, because of the connection problem. For instance, they show [6,
Conjecture 2] that the number of walks with step set S = {(0,−1), (−1, 1), (1, 1)} has dominant asymptotics

of the form
√
3

2
√
π
3kk−1/2 if and only if the integral

I :=

∫ 1/3

0

{

(1− 3v)1/2

v3(1 + v2)1/2

[

1 + (1− 10v3) · 2F1

(

3/4, 5/4

1

∣

∣

∣

∣

64v4
)

+6v3(3− 8v + 14v2) · 2F1

(

5/4, 7/4

2

∣

∣

∣

∣

64v4
)]

− 2

v3
+

4

v2

}

dv

has the value I = 1 (see that paper for details on the notation used). Using the multivariate singularity
analysis discussed above, we are able to circumvent these difficulties, and resolve the connection problem for
these lattice path models. As an indirect corollary of our asymptotic results, we thus determine the values
of certain complicated integral expressions involving hypergeometric functions.
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7.3 Walks returning to boundaries

The kernel method as presented here uses the multivariate generating function F (z, t) tracking walk length
and endpoint to derive a rational diagonal expression for the univariate generating function F (1, t) counting
the number of walks ending anywhere. Also of interest is the number of walks ending on one or more of the
boundary hyperplanes in the first orthant; if V ⊂ {1, . . . , d} then

F (z, t)
∣

∣

∣zj=0,j∈V
zj=1,j /∈V

counts the number of walks returning to the intersection of the boundary hyperplanes {zj = 0} for j ∈ V .
Lemma 10 can easily be generalized to the following.

Lemma 25. Let P (z, t) ∈ Q[z1, z1, . . . , zd, zd][[t]] ⊂ R. Then

(

[z≥]P (z, t)
)

∣

∣

∣zj=0,j∈V
zj=1,j /∈V

= ∆





P (z1, . . . , zd, z1 · · · zd · t)
(1 − z1) · · · (1 − zd)

·
∏

j∈V

(1− zj)



 .

Thus, following the arguments above, if Q(z, t) = G(z, t)/H(z, t) is the rational function given in Theo-
rem 12 such that F (1, t) = (∆Q)(t) then

F (z, t)
∣

∣

∣zj=0,j∈V
zj=1,j /∈V

= ∆



Q(z, t) ·
∏

j∈V

(1 − zj)



 .

This close link between the diagonal expressions for walks ending anywhere and walks ending on boundary
hyperplanes allows us to reuse much of the work above to derive asymptotics for walks ending on boundary
hyperplanes. In particular, if V does not contain d then the singular sets of both multivariate rational
functions obtained are the same, so the contributing points calculated by Theorem 16 are still contributing.
Analysis of asymptotics is easy for any fixed model, but the additional zeros in the numerator of Q(z, t) ·
∏

j∈V (1− zj) at contributing points make explicit expressions for generic models harder to calculate.
When V contains d, then the factor of 1−zd in the numerator of Q(z, t) will cancel the new factor 1−zd in

the numerator. In the negative drift and zero drift cases this has no bearing on the contributing singularities,
and hence on the exponential growth of the number of walks returning to the hyperplane {zd = 0}. However
in the positive drift case the contributing singularities will change and the exponential growth will be smaller
for walks returning to the hyperplane {zd = 0} than for general walks.

Using the Sage package of Raichev to compute asymptotic contributions, Table 3 gives asymptotics for
the number of walks returning to one or both of the boundary axes on the 2D quadrant models analyzed
above, where

δn =

{

1 : n ≡ 0 mod 2

0 : otherwise
σn =

{

1 : n ≡ 0 mod 3

0 : otherwise
ǫn =

{

1 : n ≡ 0 mod 4

0 : otherwise

and

γn =



















448
√
2 : n ≡ 0 mod 4

640 : n ≡ 1 mod 4

416
√
2 : n ≡ 2 mod 4

512 : n ≡ 3 mod 4

help account for periodicities that appear, and the algebraic constants A,B, and C are given by

A = (156 + 41
√
6)

√

23− 3
√
6, B = (583 + 138

√
6)

√

23− 3
√
6, C = (4571 + 1856

√
6)

√

23 − 3
√
6.

This completes, for the first time, a proof of conjectured asymptotics given by Bostan et al. [6]. Note that
the second and third columns show that periodicity can occur even with positive drift models (unlike the
situation for walks ending anywhere analyzed in previous sections).
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S Return to x-axis Return to y-axis Return to origin
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√
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√
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√
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√
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√
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√
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√
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√
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√
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3
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√
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√

3
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π
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n5/2
27

√
3
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√

π
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27

√
3

π
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n4

Table 3: Asymptotics of quadrant walks returning to the x-axis, the y-axis, and the origin, respectively.

7.4 Zero drift models

In the non-highly symmetric zero drift case, when A(1) = B(1) but A(zd̂) 6= B(zd̂), Theorem 16 implies
that we can have contributions from the point p := p1 = p2 on the stratum V1 ∩ V3, possibly with other
points lying on locally smooth parts of V1. Note that the numerator vanishes to at least first order at every
critical point, and that this case cannot occur for unweighted steps in dimension 2 (where every zero drift
model is highly symmetric).

Since p is on the intersection of V1 and V3, and the numerator vanishes, we expect it to give an asymptotic
contribution of C · |S|n · n−d/2−1/2, while the other (locally smooth) contributing points have a contribution
of O

(

|S|n · n−d/2−1
)

. Thus, if we can determine a second order contribution at p and show that it does not
vanish, we will have found dominant asymptotics.
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Asymptotic contributions of minimal critical points are determined by analyzing integrals of the form

∫

[−1,1]r
A(θ)e−nφ(θ) dθ

where r ∈ N, and A and φ analytic functions from [−1, 1]r to C (see [47] for details). When the gradient of φ
vanishes in the interior of [−1, 1]r, and other technical conditions on A and φ (which are satisfied here) hold,
the asymptotic formulas in Theorem 21 follow. Unfortunately, in the non-highly symmetric zero drift case
the gradient of φ vanishes on the boundary of the domain of integration, meaning the relevant asymptotic
constants are not the same as those in Theorem 21. In fact, general asymptotics for such a situation have
not yet been worked out in the context of ACSV.

Furthermore, while non-vanishing of the second order contribution at p happens generically, there are
models where vanishing does occur and finding dominant asymptotics requires a detailed analysis at several
contributing singularities. Because of these added difficulties, including a need to extend the underlying
analytic theory, a more nuanced study of the zero drift models will be the subject of future work.

7.5 Connecting analytic and combinatorial behaviour

As we have seen, the kernel method shows how nice combinatorial properties of a step set (like symmetry
over axes) correspond to nice analytic properties of a multivariate rational function (like a singular set de-
fined as the union of a small number of smooth manifolds) encoding the corresponding generating function.
Furthermore, it is possible to turn this around: because diagonal sequences of multivariate rational func-
tions with ‘simple’ geometry at contributing singularities can only capture a restricted set of asymptotic
behaviour, certain step sets whose asymptotics are sufficiently complicated cannot have their generating
functions encoded as the diagonals of ‘nice’ rational functions.

The connection between analytic and combinatorial behaviour also helps explain patterns in asymptotics.
For instance, it was previously observed that the exponential growth of 2D quadrant walks ending anywhere
and the exponential growth of walks ending at the origin was the same for negative drift models but different
for positive drift models. The strong connection between the diagonal representations of the corresponding
generating functions explains why this is the case.

We believe that the tools of analytic combinatorics in several variables have much to offer the immensely
popular area of lattice path enumeration, and hope that others will pick up and utilize the tools discussed
here.
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A Calculus Computations

General Results

Here we collect the results and proofs that are necessary for determining asymptotics but theoretically
uninteresting. Our first two results will be useful for calculating derivatives.

Lemma 26. Let P,Q be smooth functions from I ⊂ Rd to C, and suppose that 0 lies in the interior of I
and Q(0) 6= 0. Let ∂ := ∂k be a partial derivative operator such that (∂P )(0) = 0 = (∂Q)(0).

Then ∂(P/Q)(0) = 0 and

∂2(P/Q)(0) =
Q(0)∂2P (0)− P (0)∂2Q(0)

Q(0)2
.

When

P (θ) =
(

eiθk + e−iθk
)

Pk(θk̂) +Rk(θk̂)

Q(θ) =
(

eiθk + e−iθk
)

Qk(θk̂) +R′
k(θk̂)

then (∂P )(0) = 0 = (∂Q)(0) and

∂2(P/Q)(0) =
−2Pk(0)Q(0) + 2P (0)Qk(0)

Q(0)2
.

Proof. The first assertion follows from expanding the second derivative using the quotient rule, and applying
the obvious simplification. The second follows from the first by direct substitution, since (∂2P )(0) simplifies
to −2Pk(0) and similarly for Q.
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Lemma 27. For a point p ∈ Cd, let

S̃(θ) := S̃(θ) = S(p1e
iθ1 , . . . , pde

−iθd).

Then if pd̂ ∈ {±1}d−1 and pd = ±
√

B(pd̂)/A(pd̂), we have for 1 ≤ j ≤ k ≤ d:

∂jS̃(0) = 0

and

∂j∂kS̃(0) =











0 : if j 6= k;

−2Bd(pd̂)/pd : if j = k = d;

−2pjBj(pĵ) : if j = k < d.

Furthermore, if j < d then

∂d∂
2
j S̃(0) = −2ipj

(

pdÃ
′
j(0)− p−1

d B̃′
j(0)

)

.

If p′d = i pd is the imaginary number corresponding to pd, and S(1, 1) = S(pd̂, p
′
d), then the values of all

partial derivatives above equal the values of the derivatives calculated for (pd̂, p
′
d), potentially up to sign.

Proof. For j < d, applying ∂j to

S̃(θ) = (pje
iθj + p−1

j e−iθj )B̃j(θ) + Q̃j(θ)

yields
∂jS̃(θ) = (ipje

iθj − ip−1
j e−iθj )B̃j(θ).

Note that from this point, applying any ∂k with k 6= j will not change the factor ipje
iθj − ip−1

j e−iθj . Also,

evaluating at zero gives i(pj − p−1
j ) = 0.

Repeating this with higher powers of ∂j gives a formula that is periodic in the exponent, with period 4.
In particular when we evaluate at 0 we obtain

∂n
j S̃(0) =

{

(−1)n/22pjB̃j(0) if n is even

0 if n is odd.

A similar computation with j = d yields

∂n
d S̃(0) =

{

(−1)n/22B̃(0)/pd if n is even

0 if n is odd.

Finally, consider the third order derivative ∂d∂
2
j S̃. Writing

S̃(θ) = pde
iθdA(θ) +Q+ p−1

d e−iθdB(θ)

and differentiating using the formulae in Definition 19 yields the stated result.
The statement about p′d follows from the same considerations, using the fact that if S(1, 1) = S(pd̂, p

′
d)

then B(pd̂, p
′
d)/p

′
d and A(pd̂, p

′
d) p

′
d have the same argument.

Negative Drift Model Calculations

We now show that the quantities appearing in Theorem 21 simplify for us. Since in our situation of interest
we always have L0(ũ, g̃) = ũ(0) = 0, we begin by considering the term corresponding to k = 1 in (11). For
possible independent interest we show that some simplification is possible even in the general case.
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Lemma 28. In the general smooth case

L1(ũ, g̃) = −1

2

(

H(ũ)(0) +
H2(ũg̃)(0)

4
+

ũH3(g̃2)(0)

48

)

.

If ũ vanishes to order at least 1 at 0, then

L1(ũ, g̃) = −1

2

(

H(ũ)(0) +
H2(ũg̃)(0)

4

)

and only terms involving third partial derivatives of g̃ contribute to the H2 term.
If ũ vanishes to order at least 2 at 0 then

L1(ũ, g̃) = −1

2
H(ũ)(0).

If ũ vanishes to order at least 3 at 0 then

L1(ũ, g̃) = 0.

Proof. First note that any partial derivative of order at most 2 of g̃ is zero when evaluated at 0, by con-
struction. Furthermore all derivatives of g̃ of degree more than 2 yield the same result when evaluated at
0 as the corresponding derivative of g̃, since the difference between the two functions is quadratic. Thus in
each nonzero term in an expansion of L1 we may replace g̃ by g̃.

Since g̃ vanishes to order 3 at 0, the term involving H3 simplifies substantially, since in order to obtain

a nonzero term all the 6th partial derivatives must be applied to g̃2 and so H3(ũg̃2) simplifies to ũH3(g̃2).

Similarly, H2(ũg̃) simplifies, since each 4th order partial derivative, when applied to the product ũg̃ and
then evaluated at 0, only yields a nonzero result when at least 3 of the derivations are applied to g̃. If ũ
vanishes to order 2 then even these terms are zero. If ũ vanishes to order 1 then it is exactly the 3rd partials
of g̃ that can contribute.

This, combined with Theorem 21, directly gives the following.

Proposition 29. Let S be a step set that is symmetric over all but one axis and takes a step forwards and
backwards in each coordinate, and let W be the set of contributing points determined by Theorem 16. If S
has negative drift, then the number of walks of length n that never leave the non-negative orthant satisfies

sn =
∑

p∈W

Ψ(p)
n (13)

for

Ψ(p)
n = (p1 · · · pdpt)−n

[

n−d/2−1KpCp +O(n−1)
]

,

where

Kp = 2−dπ−d/2S(p)d/2
(

p1B1(p1̂) · · · pd−1Bd−1(pd̂−1
)Bd(pd̂)/pd

)−1/2

,

Cp = −1

2

(

H(ũ)(0) +
H2(ũg̃)(0)

4

)

for differential operator

H = −S(p)

2





pd
Bd(pd̂)

∂2
d +

∑

j<d

1

pjBj(pĵ)
∂2
j




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and

ũ(θ) = (1 + p1e
iθ1) · · · (1 + pd−1e

iθd−1)

(

1− p2de
2iθd

A
(

pd̂e
iθd̂

)

B
(

pd̂e
iθd̂

)

)

(1− pde
iθd)−1.

We now show that the derivatives of g̃ and ũ simplify substantially, giving Theorem 4.

Proposition 30. In the situation of Proposition 29, we have

Cp =
S(p)

∏

j<d(1 + pj)

1− pd





1

A(p)pd(1− pd)
+

d−1
∑

j=1

1− pj
2pjBj(p)

(

A′
j(p)

A(p)
−

B′
j(p)

B(p)

)



 .

Proof. Note that ∂kg̃ = −∂kS̃/S̃. This evaluates to zero at 0. It follows from Lemma 26 that ∂n
k g̃ evaluates

at 0 to −∂n
k S̃(0)/S̃(0). Also, when we evaluate ∂d∂

2
j g̃ at 0, it simplifies to ∂d∂

2
j S̃(0)/S̃(0).

Now define

X :=
∏

j<d

(1 + pje
iθj )

Y :=1− p2de
2iθd

A(pd̂e
iθd̂)

B(pd̂e
iθd̂)

Z :=(1− pde
iθd)−1

so that
ũ = XY Z.

We first seek to compute

−1

2
H(ũ)(0) =

S(p)

4





pd
Bd(pd̂)

∂2
d ũ(0) +

∑

j<d

1

pjBj(pĵ)
∂2
j ũ(0)



 .

When k < d, we have ∂2
kũ = ∂2

k(XY Z). Expanding via the product rule and evaluating at θ = 0 we see that
each term with Y as a factor yields zero because Y vanishes at at p, and each term with ∂kY as a factor
vanishes by Lemma 26. This leaves

∂2
kũ = X(∂2

kY )Z

which simplifies to

∂2
kũ(0) = −p2d

∏

j<d(1 + pj)

1− pd

(

−2A′
k(p)B(pd̂) + 2A(pd̂)B

′
k(p)

)

B(pd̂)
2

= 2
B(p)

A(p)

∏

j<d(1 + pj)

1− pd

[

A′
kB(p)−A(p)B′

k(p)

B(p)2

]

=
2
∏

j<d(1 + pj)

1− pd

[

A′
k(p)

A(p)
− B′

k(p)

B(p)

]

by Lemma 26.
Now consider k = d. Then since X is independent of θd, ∂

2
d ũ evaluates at θ = 0 to X

[

(∂2
dY )Z + 2(∂dY )(∂dZ)

]

.
At this point we readily compute ∂dY = −2i, ∂dZ = pdi/(1− pd)

2, ∂2
dY = 4p2dA/B = 4. Thus

∂2
dũ(0) =

4
∏

j<d(1 + pj)

(1− pd)2
.
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Thus

−1

2
H(ũ)(0) =

S(p)

4

∏

j<d(1 + pj)

1− pd

[

d−1
∑

j=1

2

pjBj(p)

(

A′
j(p)

A(p)
− B′

j(p)

B(p)

)

+
4

A(p)pd(1− pd)

]

.

We now compute the term (−1/8)H2(ũg̃)(0). The diagonal nature of the Hessian implies that H2 has the
form

∑

j,k cjck∂
2
j ∂

2
k. Lemma 27 now allows further simplification, because it implies that each third partial

derivative of the form ∂3
j g̃ evaluates to zero. Thus, since ũ vanishes to order at least 1 at 0, when we expand

H2(ũg̃) fully the only nonzero terms remaining on evaluation at 0 are of the form ∂dũ∂d∂
2
j g̃. The coefficient

of each such term is 4cjcd.
It is easily computed that

∂dũ(0) = X(0)∂dY (0)Z(0) = −2i

∏

j<d(1 + pj)

1− pd
.

By Lemma 27,

∂d∂
2
j g̃(0) = −∂d∂

2
j S̃(0)/S̃(0) =

2ipj

(

pdÃ
′
j(0)− p−1

d B̃′
j(0)

)

S(p)
.

Thus,

(−1/8)H2(ũg̃)(0) = −
S(p)

∏

j<d(1 + pj)

2pd(1 − pd)A(p)

∑

j<d

(

pdÃ
′
j(0)− p−1

d B̃′
j(0)

)

Bj

and hence, using a little more algebraic simplification (particularly the defining relation for pd), we obtain

Cp =
S(p)

∏

j<d(1 + pj)

1− pd





1

A(p)pd(1− pd)
+

d−1
∑

j=1

1− pj
2pjBj(p)

(

A′
j(p)

A(p)
−

B′
j(p)

B(p)

)



 .
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