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HETEROGENEOUS OPTIMIZED SCHWARZ METHODS FOR
SECOND ORDER ELLIPTIC PDES\ast 

MARTIN J. GANDER\dagger AND TOMMASO VANZAN\dagger 

Abstract. Due to their property of convergence in the absence of overlap, optimized Schwarz
methods are the natural domain decomposition framework for heterogeneous problems, where the
spatial decomposition is provided by the multiphysics of the phenomena. We study here heteroge-
neous problems which arise from the coupling of second order elliptic PDEs. Theoretical results and
asymptotic formulas are proposed solving the corresponding min-max problems both for single and
double sided optimizations, while numerical results confirm the effectiveness of our approach even
when analytical conclusions are not available. Our analysis shows that optimized Schwarz methods
do not suffer the heterogeneity, it is the opposite, they are faster the stronger the heterogeneity is.
It is even possible to have h independent convergence choosing two independent Robin parameters.
This property was proved for a Laplace equation with discontinuous coefficients, but only conjec-
tured for more general couplings in [M. J. Gander and O. Dubois, Numer. Algorithms, 69 (2015),
pp. 109--144]. Our study is completed by an application to a contaminant transport problem.

Key words. optimized Schwarz methods, heterogeneous domain decomposition methods, opti-
mized transmission conditions, contaminant transport

AMS subject classifications. 65N55, 65N22, 65F10, 65F08
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1. Introduction. The classical Schwarz method is a domain decomposition al-
gorithm for solving large scale PDEs. It consists of dividing the domain of computa-
tion into many subdomains, solving iteratively the local problems while exchanging in-
formation along the interfaces through Dirichlet boundary conditions. The pioneering
paper [25], in which Lions proposed a convergent algorithm using Robin transmission
conditions, paved the way for the development of the optimized Schwarz methods
which exploit optimized transmission conditions in order to overcome some of the
drawbacks of the classical Schwarz method such as slow convergence and overlap re-
quirement [10]. The procedure to obtain such optimized transmission conditions is
now well established [9]: the problem of interest is posed in a simplified setting where
one can use the Fourier transform, for unbounded domains, or Fourier series expansion
or more generally separation of variables [19, 18], for bounded domains, to transform
the PDE into a set of ODEs parametrized by the frequencies k. Then, solving the
ODEs and using the transmission conditions, one can get a recursive relation for
the Fourier coefficients and obtain a closed formula for the convergence factor which
contains some free parameters to optimize.

The literature regarding optimized Schwarz methods for homogeneous problems
is well developed. Optimized transmission conditions have been obtained for many
problems such as Helmholtz equations [16, 14], Maxwell equations [4, 22, 30], advec-
tion diffusion problems [8, 18], Navier--Stokes equations [3], shallow water equations
[27], and Euler equations [6]. In all of the previous works, homogeneous problems are
analyzed, in the sense that a unique physics is considered in the whole domain, and

\ast Submitted to the journal's Methods and Algorithms for Scientific Computing section October
16, 2018; accepted for publication (in revised form) March 18, 2019; published electronically July 25,
2019.

https://doi.org/10.1137/18M122114X
\dagger Section de math\'ematiques, Universit\'e de Gen\`eve, Gen\`eve, CH-1211, Switzerland (martin.

gander@unige.ch, tommaso.vanzan@unige.ch).

A2329

D
ow

nl
oa

de
d 

05
/1

0/
23

 to
 1

29
.1

94
.1

.4
6 

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

https://doi.org/10.1137/18M122114X
mailto:martin.\penalty \z@ gander@unige.ch
mailto:martin.\penalty \z@ gander@unige.ch
mailto:tommaso.vanzan@unige.ch


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

A2330 MARTIN J. GANDER AND TOMMASO VANZAN

therefore, the coupling on the interfaces regards equations of the same nature. First
attempts to generalize this situation have been carried out in [26, 12], where Laplace
equations with different diffusion coefficients were considered, and in [5], which was
devoted to Maxwell equations with discontinuous coefficients. Let us remark that at
least two possible interpretations of heterogeneous domain decomposition methods
exist. The first one concerns problems where the same physical phenomenon is taking
place in the whole domain, but it can be convenient to use a cheaper approximation
in some parts of the domain in order to save computational resources. This might be
the case in the presence of boundary layers, or, for example, in computational fluid
dynamics (CFD) simulations where a potential flow is used far away from the zone
of interest while the Navier--Stokes equations are fully solved near, for instance, an
aircraft. In this situation, good transmission conditions can be obtained through a
factorization approach, see [15] for further details.

In this manuscript we follow the second interpretation which assumes that two
different physical phenomena are present in the domain and they interact through an
interface. In this case some physical coupling conditions must be satisfied along the
common interface, such as the continuity of the function and its normal derivative for
second order PDEs, or the continuity of normal stresses for fluid-structure problems.
Some examples in this direction can be found in [17], where optimized transmission
conditions were obtained for the coupling between the hard-to-solve Helmholtz equa-
tion and the Laplace equation, or in [21] where a partial optimization procedure was
carried out for a fluid-structure problem. For these kinds of heterogeneous prob-
lems, a domain decomposition approach can be extremely useful since it allows one
to reuse specific solvers designed for the different physics phenomena present in the
domain. For instance, one can use a finite volume solver where a strong advection is
present while using a multigrid solver where diffusion dominates or an ad-hoc linear
elasticity solver combined with a CFD code for the Navier--Stokes equations. In this
perspective, optimized Schwarz methods lead to a significantly better convergence
of the coupling routine with respect to other domain decomposition algorithms (e.g.,
Dirichlet--Neumann, Robin--Neumann) since they take into account the physical prop-
erties in their transmission conditions. We refer the interested reader to [23, 24] for
the application of optimized Schwarz methods for the coupling of atmospheric and
oceanic computational simulation models.

We study here first the coupling between a reaction diffusion equation and a dif-
fusion equation and second the harder coupling between a general second order PDE
and a reaction diffusion equation. We provide theoretical results and asymptotic for-
mulas for the optimized parameters, and we show the effectiveness through numerical
simulations. The manuscript is completed by the application of our results to a phys-
ical model describing contaminant transport in underground media, which is a topic
of great interest in the last thirty years due, for instance, to the increasing threat of
contamination of groundwater supplies by waste treatments and landfill sites or to
the disposal of nuclear radioactive waste [2]. We refer to [1] for a reference regarding
modeling issues of contaminant transport. Our model assumes that the computa-
tional domain \Omega = \Omega 1 \cup \Omega 2 \cup \Omega 3 \cup \Omega 4, represented in Figure 1, can be partitioned
into four layers. In the first one, the contaminant, whose concentration is described
through the unknown u, penetrates mainly thanks to rainfalls and, therefore, an ad-
vection towards the negative y direction is present. The next two layers are formed by
porous media so that the contaminant spreads in a diffusive regime described by the
Laplace equation. Furthermore we suppose that in the second layer, some chemical
reactions may take place which are synthesized in the reaction term. Finally, in the
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 - \nu 1\Delta u - a2\partial yu = 0

\eta 2u - \nu 2\Delta u = 0

 - \nu 3\Delta u = 0

 - \nu 4\Delta u+ a1\partial xu = 0

Water well

Fig. 1. Geometry for the contaminant transport problem.

last layer, an underground flow transports the contaminant in the x direction towards
a groundwater supply which is connected to a water well. The problem belongs to the
heterogeneous class, since in different parts of the domain we have different physical
phenomena, and thus in the last paragraph we use the results discussed in this manu-
script to design an efficient domain decomposition method to compute the stationary
and time dependent distribution of the contaminant.

2. Reaction diffusion-diffusion coupling. Let us consider two domains \Omega 1 :=
( - \infty , 0)\times (0, L) and \Omega 2 := (0,+\infty )\times (0, L) and the interface \Gamma := \{ 0\} \times (0, L). In this
section we study a reaction-diffusion equation with discontinuous coefficients along the
interface \Gamma ,

(2.1) (\eta 2(x) - \nu (x)\Delta )u = f in \Omega ,

where \Omega := \Omega 1 \cup \Omega 2, \eta 
2(x) = \eta 2 \geq 0 in \Omega 1, and \eta (x) = 0 in \Omega 2, while \nu (x) = \nu 1 in

\Omega 1 and \nu (x) = \nu 2 in \Omega 2, with \nu 1, \nu 2 \in \BbbR +. Equation (2.1) is closed by homogeneous
Dirichlet boundary conditions on the horizontal edges and assuming limx\rightarrow \pm \infty u = 0.
The optimized Schwarz method for this problem is

(\eta 2  - \nu 1\Delta )un1 = f in \Omega 1, (\nu 1\partial x + S1)(u
n
1 )(0, \cdot ) = (\nu 2\partial x + S1)(u

n - 1
2 )(0, \cdot ),

 - \nu 2\Delta un2 = f in \Omega 2, (\nu 2\partial x  - S2)(u
n
2 )(0, \cdot ) = (\nu 1\partial x  - S2)(u

n - 1
1 )(0, \cdot ),

where Sj , j = 1, 2 are linear operators along the interface \Gamma in the y direction. The
goal is to find which operators guarantee the best performance in terms of conver-
gence speed. We consider the error equation whose unknowns are eni := u| \Omega i

 - uni ,
i = 1, 2, and we expand the solutions in the Fourier basis in the y direction, eni =\sum 

k\in \scrV \^eni (x, k) sin(ky), i = 1, 2 with \scrV :=
\bigl\{ 

\pi 
L ,

2\pi 
L , . . .

\bigr\} 
. Moreover, we suppose that

the operator Sj are diagonalizable, with eigenvectors \psi k(y) := sin(ky), such that
Sj\psi k = \sigma j(k)\psi k, where \sigma j(k) are the eigenvalues of Sj . Under these assumptions, we
find that the coefficients \^eni satisfy

(2.2)

(\eta 2  - \nu 1\partial xx + \nu 1k
2)(\^en1 ) = 0, k \in \scrV , x < 0,

(\nu 1\partial x + \sigma 1(k))(\^e
n
1 )(0, k) = (\nu 2\partial x + \sigma 1(k))(\^e

n - 1
2 )(0, k), k \in \scrV ,

( - \nu 2\partial xx + \nu 2k
2)(\^en2 ) = 0, k \in \scrV , x > 0,

(\nu 2\partial x  - \sigma 2(k))(\^e
n
2 )(0, k) = (\nu 1\partial x  - \sigma 2(k))(\^e

n - 1
1 )(0, k), k \in \scrV .

Solving the two differential equations parametrized by k in (2.2), imposing that the

solutions remain bounded for x\rightarrow \pm \infty and defining \lambda (k) :=
\sqrt{} 
k2 + \~\eta 2 and \gamma (k) := k,
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A2332 MARTIN J. GANDER AND TOMMASO VANZAN

we obtain

(2.3) \^en1 = \^en1 (0, k)e
\surd 

k2+\~\eta 2x = \^en1 (0, k)e
\lambda (k)x in \Omega 1,

\^en2 = \^en2 (0, k)e
 - kx = \^en2 (0, k)e

 - \gamma (k)x in \Omega 2,

where \~\eta 2 = \eta 2

\nu 1
. The transmission conditions in (2.2) allow us to express the Fourier

coefficient at iteration n of the solution in one subdomain as a function of the coeffi-
cient of the solution in the other subdomain at the previous iteration n - 1, namely

(2.4) \^en1 (0, k) =
 - \nu 2\gamma (k) + \sigma 1(k)

\nu 1\lambda (k) + \sigma 1(k)
\^en - 1
2 (0, k)

and

(2.5) \^en2 (0, k) =
\nu 1\lambda (k) - \sigma 2(k)

 - \nu 2\gamma (k) - \sigma 2(k)
\^en - 1
1 (0, k).

Combining (2.4) and (2.5) we get

\^en1 (0, k) =
 - \nu 2\gamma (k) + \sigma 1(k)

\nu 1\lambda (k) + \sigma 1(k)
\cdot \nu 1\lambda (k) - \sigma 2(k)

 - \nu 2\gamma (k) - \sigma 2(k)
\^en - 2
1 (0, k).

By induction we then obtain

\^e2n1 (0, k) = \rho n\^e01(0, k) \^e2n2 (0, k) = \rho n\^e02(0, k),

where the convergence factor \rho is defined by

\rho := \rho (k, \sigma 1, \sigma 2) =
 - \nu 2\gamma (k) + \sigma 1(k)

\nu 1\lambda (k) + \sigma 1(k)
\cdot \nu 1\lambda (k) - \sigma 2(k)

 - \nu 2\gamma (k) - \sigma 2(k)
.

Expressing the dependence on the Fourier frequency k we get

(2.6) \rho (k, \sigma 1, \sigma 2) =
 - \nu 2k + \sigma 1(k)

\nu 1
\sqrt{} 
k2 + \~\eta 2 + \sigma 1(k)

\cdot \nu 1
\sqrt{} 
k2 + \~\eta 2  - \sigma 2(k)

 - \nu 2k  - \sigma 2(k)
.

A closer inspection of (2.6) leads us to conclude that if we chose the operators Sj

such that their eigenvalues are

(2.7) \sigma opt
1 (k) := \nu 2k and \sigma opt

2 (k) := \nu 1
\sqrt{} 
k2 + \~\eta 2,

then we would have \rho \equiv 0. In this case the algorithm would converge in just two
iterations. This option, even though it is optimal, leads to nonlocal operators Sopt

j ,
which correspond to the Schur complements [29], and they are expensive from the
computational point of view. Indeed, the operator associated with the eigenvalues
\sigma opt
1 (k) := \nu 2k corresponds to the square root of the Laplacian on the interface \Gamma ,

i.e., Sopt
1 = \nu 2( - \Delta \Gamma )

1
2 , which is a fractional and nonlocal operator. The nonlocal

property of Sopt
1 can also be understood considering a discretization of the straight

interface \Gamma and the discrete counterpart of Sopt
1 , i.e., Sopt

1h := \nu 2( - \Delta y,h)
1
2 , where

 - \Delta y,h = diag( - 1, 2, - 1) is the classical one-dimensional Laplacian. A direct imple-
mentation shows that the matrix Sopt

1h is dense. Even though the use of Sopt
1h would

destroy the sparsity of the subdomain matrices, theoretically it could still be used
as a transmission condition and the method would then converge in two iterations.
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However, the major drawback is that, in general, we do not know the operator Sopt
j

and, therefore, we would have to assemble numerically the Schur complements. This is
an operation which requires the knowledge of the inverse of the subdomain operators
and therefore it is computationally expensive.

We thus look for classes of convenient transmission conditions which are amenable
to easy implementation, and then to find which transmission conditions among a
specific class lead to the best convergence factor. We consider here zeroth order
approximations of the optimal operators in (2.7) which correspond to classical Robin
conditions on the interface. In order to get the best transmission conditions in terms
of convergence speed, we have to minimize the maximum of the convergence factor
over all the frequencies k. Defining \scrD 1,\scrD 2 as the classes of transmission conditions,
we are looking for a couple (\sigma \ast 

1 , \sigma 
\ast 
2) \in \scrD := \scrD 1 \times \scrD 2 such that

(2.8) (\sigma \ast 
1 , \sigma 

\ast 
2) = argmin

(\sigma 1,\sigma 2)\in \scrD 

\Bigl( 
max

kmin\leq k\leq kmax

| \rho (k, \sigma 1, \sigma 2)| 
\Bigr) 
.

The lower and upper bounds kmin, kmax depend on the problem under study: kmin

is given by the Fourier expansion and here it is equal to kmin = \pi 
L . The presence

of kmin in (2.8), is the ``memory"" that our problem has of the boundedness of the
domain; see [11, 20, 19] for more details on the influence of the domain for optimized
Schwarz methods. The upper bound kmax is instead the maximum frequency that
can be resolved by the grid and it is typically estimated as kmax = \pi 

h where h is a
measure of the grid spacing.

2.1. Zeroth order single sided optimized transmission conditions. Let p
be a free parameter, we define

(2.9) \sigma 1(k) = \nu 2p, \sigma 2(k) = \nu 1
\sqrt{} 

\~\eta 2 + p2.

We have made this choice because the optimal operators in (2.7) are clearly
rescaled according to the diffusion constants of the two subdomains, and thus we
imitate this behavior. Furthermore, we introduce the parameter \~\eta 2 in the definition
of \sigma 2(k) in order to make the problem amenable to analytical treatment. With this
choice, we have \sigma j(k) = \sigma opt

j (k) for k = p; in other words, for the frequency k = p,
the transmission conditions lead to an exact solver which converges in two iterations.
The idea of introducing free parameters such that the eigenvalues \sigma j(k) are identical
to the optimal ones for a certain frequency is essential because, as we will see in the
following, it allows us to solve the min-max problems which, for a generic choice of
\sigma j , are extremely hard to solve.

Inserting the expressions (2.9) into (2.6), the min-max problem (2.8) becomes

(2.10) min
p\in \BbbR 

max
kmin\leq k\leq kmax

\bigm| \bigm| \bigm| \bigm| \bigm| k  - p

k + \lambda 
\sqrt{} 
p2 + \~\eta 2

\cdot 
\sqrt{} 
k2 + \~\eta 2  - 

\sqrt{} 
p2 + \~\eta 2\sqrt{} 

k2 + \~\eta 2 + p
\lambda 

\bigm| \bigm| \bigm| \bigm| \bigm| ,
where \lambda = \nu 1

\nu 2
. We define

\rho (k, p) :=
k  - p

k + \lambda 
\sqrt{} 
p2 + \~\eta 2

\cdot 
\sqrt{} 
k2 + \~\eta 2  - 

\sqrt{} 
p2 + \~\eta 2\sqrt{} 

k2 + \~\eta 2 + p
\lambda 

.

We are now solving the min-max problem (2.10). The main steps are the following:
\bullet Restricting the range in which we are searching for p.
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\bullet Identifying the candidates for the maxima in the variable k.
\bullet Studying how the maxima behave when varying the parameter p.

Lemma 2.1 (restriction for the interval of p). If p\ast is a solution to problem
(2.10), then p\ast belongs to the interval [kmin, kmax].

Proof. First, we note that | \rho (k, p)| < | \rho (k, - p)| for every p \geq 0. Therefore, we
can assume p\ast \in \BbbR +. Moreover, the function is always positive and equal to zero only
for k = p. Thus, we can neglect the absolute value. Direct calculations show that
\partial \rho (k,p)

\partial p = h(k, p), where
(2.11)

h(k, p) :=
(p - k)\lambda p(

\sqrt{} 
k2 + \~\eta 2\lambda + k)

(k + \lambda 
\sqrt{} 

p2 + \~\eta 2)2(
\sqrt{} 

k2 + \~\eta 2\lambda + p)
\sqrt{} 

p2 + \~\eta 2
+
(
\sqrt{} 

p2 + \~\eta 2  - 
\sqrt{} 

k2 + \~\eta 2)\lambda (
\sqrt{} 

k2 + \~\eta 2\lambda + k)

(k + \lambda 
\sqrt{} 

p2 + \~\eta 2)(
\sqrt{} 

k2 + \~\eta 2\lambda + p)2
.

We observe that if p\ast < kmin, then
\partial \rho 
\partial p (k, p

\ast ) < 0 for all k \in [kmin, kmax], hence we
are certainly not at the optimum since increasing p\ast would decrease the convergence
factor for all the frequencies k \in [kmin, kmax].

On the other hand, if p\ast > kmax, then we have \partial \rho 
\partial p (k, p

\ast ) > 0 \forall k \in [kmin, kmax].

Hence we cannot be at the optimum either since decreasing p\ast would decrease \rho (k, p)
\forall k \in [kmin, kmax]. Thus we can conclude that if p\ast is a solution of (2.10), then p\ast lies
in the interval [kmin, kmax].

Now we focus on the search of the maxima of \rho (p, k) with respect to k keeping in
mind that p belongs to [kmin, kmax].

Lemma 2.2 (local maxima in k). For any fixed value of p \in [kmin, kmax], the
function k \rightarrow \rho (k, p) assumes its maximum either at k = kmin or at k = kmax.

Proof. We consider the derivative of \rho (k, p) with respect to k and we remind that
\rho (k, p) is always positive so we may neglect the absolute value. Direct calculations
show that \partial \rho 

\partial k = h(p, k). Thus considering (2.11) we have that letting p \in (kmin, kmax),
\partial \rho 
\partial k < 0 \forall k < p, and \partial \rho 

\partial k > 0 \forall k > p. Therefore, the maximum is attained on the
boundary, either at k = kmin or k = kmax.

On the other hand, if p = kmin, \rho (k, kmin) has a zero in k = kmin. For all of the
other values of k in the interval [kmin, kmax], the function is strictly increasing and,
therefore, the maximum is attained at k = kmax. The case p = kmax is identical and
hence the result follows.

We now have all of the ingredients needed to solve the min-max problem (2.10).

Theorem 2.3. The unique optimized Robin parameter p\ast solving the min-max
problem (2.10) is given by the unique root of the nonlinear equation

(2.12) | \rho (kmin, p
\ast )| = | \rho (kmax, p

\ast )| .

Proof. From the previous lemmas, we know that we can rewrite problem (2.10)
as

min
p\in [kmin,kmax]

max \{ \rho (kmin, p), \rho (kmax, p)\} ,

i.e. the maximum is either attained at k = kmin or k = kmax. We now show that the
optimal p\ast satisfies a classical equioscillation property [32]; see Figure 2 for a graphical

representation. We first note that \rho (kmin, p) = 0 for p = kmin, and
\partial \rho (kmin,p)

\partial p > 0 \forall p \in 
(kmin, kmax]. Therefore, increasing p, \rho (kmin, p) strictly increases until it reaches its
maximum value for p = kmax. On the other hand, we have that \rho (kmax, kmin) is strictly
greater than zero, and while p increases from kmin to kmax, \rho (kmax, p) decreases, being
\partial \rho (kmax,p)

\partial p < 0 \forall p \in [kmin, kmax). Furthermore, we have that \rho (kmax, kmax) = 0.
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Fig. 2. Illustration of the equioscillation property described in Theorem 2.3.

Hence, thanks to the strict monotonicity of both \rho (kmin, p) and \rho (kmax, p), there
exists by continuity a unique value p\ast such that \rho (kmin, p

\ast ) = \rho (kmax, p
\ast ). This value

is clearly the optimum, because perturbing p\ast would increase the value of \rho at one of
the two extrema and, therefore, the maximum of \rho over all k.

Even though a closed form solution of (2.12) is not known, it is interesting to
study asymptotically how the algorithm performs. Therefore, we keep \nu 1, \nu 2, and \~\eta 2

fixed, and kmax = \pi 
h while letting h \rightarrow 0. This is a case of interest since usually we

want to decrease the mesh size h in order to get a better approximation and, therefore,
it is useful to see how the method performs in this regime. We introduce the notation

f(h) \sim g(h) as h\rightarrow 0 if and only if lim
h\rightarrow 0

f(h)
g(h) = 1.

Theorem 2.4. Let D :=
\sqrt{} 
k2min + \~\eta 2. Then if \nu 1, \nu 2, \~\eta 

2 are kept fixed, kmax=
\pi 
h

and h is small enough, then the optimized Robin parameter p\ast is given by

(2.13) p\ast \sim C \cdot h - 1
2 , C :=

\sqrt{} 
(\lambda D + kmin)\pi 

(\lambda + 1)
.

Furthermore, the asymptotic convergence factor of the heterogeneous optimized Schwarz
method is

(2.14) max
kmin\leq k\leq \pi /h

| \rho (k, p\ast )| \sim 1 - h
1
2

\biggl[ 
\lambda D

C
+
D

C
+
kmin

\lambda C
+
kmin

C

\biggr] 
.

Proof. We make the ansatz p = C \cdot h - \alpha in (2.12). Expanding for small h, we get
that

| \rho (kmin, p)| \sim 1 - h\alpha 
\biggl[ 
\lambda D

C
+
D

C
+
kmin

\lambda C
+
kmin

C

\biggr] 
.

On the other hand,

| \rho (kmax, p)| \sim 1 - h1 - \alpha 

\biggl[ 
\lambda C

\pi 
+

2C

\pi 
+

C

\lambda \pi 

\biggr] 
.

Comparing the first two terms we get the result.

Remark 2.5. Note that if we set \~\eta 2 = 0, then we recover the results for the
coupling of two Laplace equations with different diffusion constants; see [12]. In that
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Table 1
Comparison between the optimal solution p\ast of Theorem 2.3 and the optimal solution \=p com-

puted numerically for the min-max problem involving \sigma 1(k) = \nu 2p and \sigma 2(k) = \nu 1p. Mesh size equal
to h = 1

50
.

\~\eta p\ast \=p maxk \rho (k, p\ast ) maxk \rho (k, \=p)
1 22.47 22.47 0.5618 0.5618

100 72.11 110.09 0.0737 0.0452
500 92.21 508.2691 0.0025 0.0081
1000 95 1005 3.74 \cdot 10 - 4 0.0026

case,

\rho \sim 1 - h
1
2

\sqrt{} 
kmin

\pi 

\biggl[ 
(\lambda + 1)2

\lambda 

\biggr] 
, p\ast =

\sqrt{} 
kmin\pi h

 - 1
2 .

Moreover, we have that the convergence factor (2.14) satisfies for \lambda = \nu 1

\nu 2
\rightarrow \infty ,

| \rho | \sim 1  - h
1
2\lambda 
\sqrt{} 

D
\pi and for \lambda \rightarrow 0, | \rho | \sim 1  - h

1
2
1
\lambda 

\sqrt{} 
kmin

\pi . On the other hand, as

\~\eta \rightarrow \infty we have | \rho | \sim 1  - h
1
2
\surd 
\~\eta (\lambda +1)

3
2\surd 

\lambda \pi 
. It follows that for all strong heterogeneity

limits, the constant in front of the asymptotic term h
1
2 becomes larger; therefore, the

deterioration is slower and the method is more efficient.

Remark 2.6. One could object that if we set \sigma 1(k) = \nu 2p and \sigma 2(k) = \nu 1p, with-
out introducing the ad-hoc term involving \~\eta in the definition \sigma 2(k), it may be possible
to improve the method. In this case the convergence factor would have two zeros, one
located at k1 := p and the other one located in k2 :=

\sqrt{} 
p2  - \~\eta 2. The min-max prob-

lem is then much harder to solve analytically because one of the zeros depends on
the parameter p in a nonlinear way. Furthermore, for p < \~\eta the second zero is not
real, for values of p slightly larger, than \~\eta , the distance between the two zeros might
be significant while if p is very large then k1 \approx k2. A large number of different cases
arises which makes the min-max problem really hard to solve. However, even though
we are unable to solve the min-max problem for a general setting of parameters, it is
possible to draw conclusions in the case in which kmax is large enough. In fact from
an analysis of the convergence factor we deduce that \rho (kmax, p) \rightarrow 1 as h \rightarrow 0. If we
impose equioscillation between \rho (kmin, p) and \rho (kmax, p), calculations show that then
p goes to infinity as h\rightarrow 0 and, therefore, we have three local maxima in the interval
[kmin, kmax], two at the boundary and an interior maximum, \^k located between the

two zeros. Estimating asymptotically | \rho (\^k, p)| as h \rightarrow 0 using the convexity of the
function in the interval [k1, k2], we obtain

| \rho (\^k, p)| \leq \partial \rho 

\partial k
| 
(k=

\surd 
p2 - \~\eta 2,p)

\cdot | p - 
\sqrt{} 
p2  - \~\eta 2| \approx h2 + o(h2).

Then, observing instead that the value of \rho tends to one at the boundaries, it follows
that the optimal solution is indeed obtained by equioscillations between the extreme
points and the interior point does not play a role. Repeating the analogous calculations
of Theorem 2.4, we find that p has the same asymptotic expression as in the previous
theorem. We can then conclude that, for h \rightarrow 0, the two min-max problems with
different \sigma 2(k) lead to equivalent optimized parameters. In the nonasymptotic regime,
Table 1 shows that the two choices are equivalent for moderate values of \~\eta . For very
large values of \~\eta , then (2.9) leads to a more efficient method.
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2.2. Zeroth order two sided optimized transmission conditions. Let us
consider now the more general case for Robin transmission conditions, with two free
parameters p and q such that the operators Sj have eigenvalues

\sigma 1(k) = \nu 2p, \sigma 2(k) = \nu 1
\sqrt{} 
q2 + \~\eta 2.

We remark that, according to this choice, \sigma 1(k) is exact for the frequency k = p
while \sigma 2(k) is exact for frequency k = q. Therefore from (2.6) we deduce the method
converges in two iterations for two frequencies. Again letting \lambda = \nu 1

\nu 2
, we get

(2.15)

min
p,q

max
kmin\leq k\leq kmax

| \rho (k, p, q)| = min
p,q

max
kmin\leq k\leq kmax

\bigm| \bigm| \bigm| \bigm| \bigm| (k  - p)(
\sqrt{} 
k2 + \~\eta 2  - 

\sqrt{} 
q2 + \~\eta 2)

(k + \lambda 
\sqrt{} 
q2 + \~\eta 2)(

\sqrt{} 
k2 + \~\eta 2 + p

\lambda )

\bigm| \bigm| \bigm| \bigm| \bigm| .
Following the same philosophy of the previous section, we start restricting the range
in which we need to search for the parameters p and q. Then we focus on the maxima
with respect to k, and finally we analyze how these maxima behave with respect to p
and q.

Lemma 2.7 (restriction for the interval of p, q). If the couple (p\ast , q\ast ) is a solution
to the min-max problem (2.15), then we have that both p\ast and q\ast belong to the interval
[kmin, kmax].

Proof. For p > 0, we observe that | \rho (k, p, q| ) < | \rho (k, - p, q)| and q is always
squared so we can restrict both parameters to be positive without loss of generality.
Next, we consider the partial derivatives of | \rho | with respect to p and q:

(2.16) sign

\biggl( 
\partial | \rho | 
\partial p

\biggr) 
=  - sign(k  - p), sign

\biggl( 
\partial | \rho | 
\partial q

\biggr) 
=  - sign(k  - q).

Repeating the same argument of Lemma 2.1, we conclude that we are not at the
optimum unless both p and q belong to [kmin, kmax].

Next, we analyze the behavior of | \rho (k, p, q)| with respect to the variable k, trying
to identify the local maxima.

Lemma 2.8 (local maxima in k). For p, q \in [kmin, kmax],

max
kmin\leq k\leq kmax

| \rho (k, p, q)| = max\{ | \rho (kmin, p, q)| , | \rho (\^k, p, q)| , | \rho (kmax, p, q)| \} ,

where \^k is an interior maximum always between [min(p, q),max(p, q)].

Proof. We first observe that | \rho (k, p, q)| has two zeros, one at k = p and the other
at k = q. Next, we consider the derivative of \rho (k, p, q) with respect to k and assuming
that p \not = q1 we get

\partial \rho (k, p, q)

\partial k
=

(
\sqrt{} 

k2 + \~\eta 2  - 
\sqrt{} 

q2 + \~\eta 2)(
\sqrt{} 

k2 + \~\eta 2)(
\sqrt{} 

k2 + \~\eta 2 + p
\lambda 
)(\lambda 

\sqrt{} 
q2 + \~\eta 2 + p)

D(k, p)

+
(k  - p)(k + \lambda 

\sqrt{} 
q2 + \~\eta 2)k( p

\lambda 
+

\sqrt{} 
q2 + \~\eta 2)

D(k, p)
.

(2.17)

The denominator D(k, p) is always positive. Now we consider the two cases in which
k < min(p, q) and k > max(p, q): in both we have that \rho (k, p, q) > 0, and analyzing

1If p = q, we are considering the optimization problem discussed in the previous paragraph.
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Fig. 3. The left panel shows an example of the convergence factor with its three local maxima
localized at k = kmin, k = kmax, and k = \~k. On the right we summarize how these local maxima
behave as function of p and q.

(2.17) we conclude that for k < min(p, q), \partial \rho (k,p)
\partial k < 0 and for k > max(p, q), \partial \rho 

\partial k > 0.

Hence by continuity of \partial k\rho (k, p), there exists at least one \^k, which is a local minimum
of \rho (k, p) and a local maximum for | \rho (k, p)| (see Figure 3), such that \partial k\rho = 0, and all
of them lie in the interval [min(p, q),max(p, q)] for p and q fixed. Now we prove that
the interior maximum is unique. Indeed the interior maxima for | \rho (k, p, q)| are given
by the roots of \partial k\rho (k, p) = 0 which corresponds to

(2.18)

\sqrt{} 
q2 + \~\eta 2  - 

\sqrt{} 
\~\eta 2 + k2

k + \lambda 
\sqrt{} 

\~\eta 2 + q2
=

(k  - p) k\Bigl( 
\lambda 
\sqrt{} 

k2 + \~\eta 2 + p
\Bigr) \sqrt{} 

k2 + \~\eta 2
.

First, we suppose that p < k < q. Then, we have that the left-hand side of (2.18) is
positive in k = p, it is strictly decreasing in k, and it reaches zero at k = q. The right-
hand side of (2.18) instead starts from zero and it is strictly increasing. We conclude

that there is a unique point \^k such that the two sides are equal and hence a unique
interior maximum \^k for | \rho (k, p, q)| . If q < k < p, changing the sign of (2.18) and

diving by k/
\sqrt{} 
k2 + \~\eta 2, the right-hand side is strictly decreasing while the left-hand

side, computing the derivative, is strictly increasing and hence the same conclusion
holds.

We may conclude that the function assumes its maximum either at the interior
point \^k, or at the boundaries of the interval, i.e., kmin, kmax.

In the next lemma we prove that the end points kmin and kmax satisfy an equioscil-
lation property as in the previous case of a single parameter p.

Lemma 2.9 (equioscillation at the end points). The optimized convergence factor
| \rho (k, p, q)| must satisfy equioscillation at the end points, i.e.,

| \rho (kmin, p
\ast , q\ast )| = | \rho (kmax, p

\ast , q\ast )| .

Proof. We study how | \rho (kmin, p, q)| , | \rho (\~k, p, q)| , and | \rho (kmax, p, q)| behave as p, q
vary, and we show that if we do not have equioscillation at the boundary points, we
can always improve the convergence factor until equioscillation is reached. Taking
into account (2.16), we have for every p, q \in [kmin, kmax]

\partial | \rho (kmin, p, q)| 
\partial p

> 0,
\partial | \rho (kmin, p, q)| 

\partial q
> 0,
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\partial | \rho (kmax, p, q)| 
\partial p

< 0,
\partial | \rho (kmax, p, q)| 

\partial q
< 0.

In other words, increasing independently p, q increases | \rho (kmin, p, q)| and decreases
| \rho (kmax, p, q)| . We now compute the total derivative of | \rho (\~k, p, q)| with respect to p
and q, which since we have \partial k| \rho (\~k, p, q)| = 0, corresponds to the partial derivative

with respect to the two arguments. One then finds that the sign of \partial | \rho (\~k,p,q)| 
\partial p and

\partial | \rho (\~k,p,q)| 
\partial q depends on the position of \~k with respect to p and q. Indeed, it holds that

sign

\Biggl( 
\partial | \rho (\~k, p, q)| 

\partial p

\Biggr) 
= sign(p - \~k), sign

\Biggl( 
\partial | \rho (\~k, p, q)| 

\partial q

\Biggr) 
= sign(q  - \~k).

The right panel of Figure 3 summarizes the dependence of the local maxima with re-
spect to p and q. Let us suppose that p < q, q fixed, and | \rho (kmin, p, q)| < | \rho (kmax, p, q)| .
The other cases are treated similarly. We do not make any assumptions on the value of
| \rho (\~k, p, q)| . Now if we increase p, we decrease max\{ | \rho (kmin, p, q)| , | \rho (\^k, p, q)| , | \rho (kmax, p,
q)| \} as long as | \rho (kmin, p, q)| \leq | \rho (kmax, p, q)| and p \leq q. If | \rho (kmin, p, q)| = | \rho (kmax, p, q)| 
for a certain p < q, then we obtain the desired result since we have improved
uniformly the convergence factor. Suppose instead that when p = q, and there-
fore | \rho (\~k, p, q)| = 0, we still have | \rho (kmin, p, q)| < | \rho (kmax, p, q)| . Thus the conver-
gence factor is equal to | \rho (kmax, p, q)| . We now set up a process which improves
max[kmin,kmax] | \rho (k, p, q)| until we get equioscillation at the boundary points. As long

as | \rho (kmin, p, q)| < | \rho (kmax, p, q)| , we increase p > q until | \rho (\~k, p, q)| \leq | \rho (kmax, p, q)| .
When we reach | \rho (\~k, p, q)| = | \rho (kmax, p, q)| , we then increase q until q = p. If while
increasing q we still have | \rho (kmin, p, q)| < | \rho (kmax, p, q)| , then we repeat the process.
Continuing this process, we must reach equioscillation at some point by continuity
since when p approaches kmax, we must have | \rho (kmin, kmax, q)| > | \rho (kmax, kmax, q)| = 0.
At the same time we improved surely the convergence factor since, in spite of the ini-
tial value of | \rho (\~k, p, q)| , we have that max[kmin,kmax] | \rho (k, p, q)| \leq | \rho (kmax, p, q)| which
is decreasing along the process.

We now have enough tools and insights to prove the main results of this section.

Theorem 2.10. There are two pairs of parameters (p\ast 1, q
\ast 
1) and (p\ast 2, q

\ast 
2) such that

we obtain equioscillation between all three local maxima,

(2.19) | \rho (kmin, p
\ast 
j , q

\ast 
j )| = | \rho (kmax, p

\ast 
j , q

\ast 
j )| = | \rho (\^k, p\ast j , q\ast j )| , j = 1, 2.

The optimal pair of parameters is the one which realizes the

(2.20) min
(p\ast 

j ,q
\ast 
j ),j=1,2

| \rho (kmin, p
\ast 
j , q

\ast 
j )| .

Proof. Let us define F1(p, q) := \rho (kmin, p, q) and F2(p, q) := \rho (kmax, p, q). Due
to Lemma 2.9, we know that there exist values (p, q) such that F := | F1(p, q)|  - 
| F2(p, q)| = 0. We can thus express one parameter, for example q, as a function
of the other one, i.e., q = q(p). Although the expression is too complicated to be
used for analytical computations, we are able to infer about the structure of q(p).
First, we can state that q(p = kmin) = kmax since | F1(kmin, q(kmin))| = 0 implies that
| F2(kmin, q(kmin)| = 0 but then the only choice possible is q(kmin) = kmax. Similarly,
we have q(kmax) = kmin. We next use implicit differentiation to infer about the
behavior of q with respect to p.
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Following classical arguments, we have that, since F (p, q(p)) = 0,

0 =
dF (p, q(p))

dp
=
dF1(p, q(p)) - dF2(p, q(p))

dp
=
\partial F1  - \partial F2

\partial p
+
\partial F1  - \partial F2

\partial q
q\prime (p),

and therefore,

(2.21) q\prime (p) =

\partial F2

\partial p  - \partial F1

\partial p

\partial F1

\partial q  - \partial F2

\partial q

.

Analyzing carefully the sign of each term, we conclude that q\prime (p) < 0 \forall p \in (kmin, kmax).
Therefore, we state that q(p) is a strictly decreasing function which starts from
q(p = kmin) = kmax and reaches its minimum at q(kmax) = kmin.

Now we have only one free parameter p, since q is constrained to vary such that
the equioscillation between the end points is achieved, thus we look for values of p
such that we obtain equioscillation between kmin and the interior maximum \^k.

Let us first study how \~F (p, q) := \rho (\^k, p, q(p)) behaves while p varies. As long as

p \leq \^k \leq q(p), we have

sign

\Biggl( 
\partial | \~F (p, q(p))| 

\partial p

\Biggr) 
= sign

\biggl( \sqrt{} 
q(p)2 + \~\eta 2  - 

\sqrt{} 
\^k2 + \~\eta 2

\biggr) 
\cdot sign( \~F (p, q(p)) < 0,

sign

\Biggl( 
\partial | \~F (p, q(p))| 

\partial q

\Biggr) 
= sign(p - \^k) \cdot sign( \~F (p, q(p)) > 0.

Then, keeping in mind the q\prime (p) < 0, \~F (p, q(p)) is strictly decreasing for all of the

values of p such that p < \^k < q(p),

d| \~F (p, q(p))| 
dp

=
\partial | \~F (p, q(p))| 

\partial p
+
\partial | \~F (p, q(p))| 

\partial q
\cdot q\prime (p) < 0.

Similarly, it is straightforward to verify that for q(p) < \^k < p,

d| \~F (p, q(p))| 
dp

=
\partial | \~F (p, q(p))| 

\partial p
+
\partial | \~F (p, q(p))| 

\partial q
\cdot q\prime (p) > 0.

Moreover, we have that for p = \^k = q(p), | \~F (p, q(p))| = 0 and d| \~F (p,q(p))| 
dp = 0.

Focusing next on | F1(p, q(p))| we can state that, neglecting the sign(F1(p, q(p))),
because it is always positive or zero, the derivatives at the left and right boundary
extrema are equal to

d| F1(kmin, kmax)| 
dp

=
\partial | F1(kmin, kmax)| 

\partial p
+
\partial | F1(kmin, kmax)| 

\partial q
q
\prime 
(p)

=
\partial | F1(kmin, kmax)| 

\partial p
> 0

and

d| F1(kmax, kmin)| 
dp

=
\partial | F1(kmax, kmin)| 

\partial p
+
\partial | F1(kmax, kmin)| 

\partial q
q
\prime 
(p)

=
\partial | F1(kmax, kmin)| 

\partial p
< 0.
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So for values of p in a right neighborhood of p = kmin, | F1(p, q(p))| increases, while
for values of p in a left neighborhood of p = kmax, | F1(p, q(p))| decreases. Using the

monotonicity of | F (\^k, p, q(p))| and the fact that when \^k = p = q(p), | F (\^k, p, q(p))| = 0,
while | F (kmin, p, q(p))| > 0, we conclude that there exists at least one pair (p, q) such

that | F (kmin, p, q(p))| = | F (\^k, p, q(p))| .
We still have to prove that actually there exist only two couples (pj , qj) such

that equioscillation is achieved. Indeed, if we imagine that | F1(p, q(p))| had a certain
behavior, for example it oscillates, then we might have more than two pairs. Never-
theless, we show that | F1(p, q(p))| has a unique local maximum for p \in [kmin, kmax] so
that only two equioscillations are allowed among all of the three local maxima: one
while | \~F (p, q(p))| decreases, the other one for increasing | \~F (p, q(p))| .

To do so, we consider d| F1(p,q(p))| 
dp again and substitute (2.21),

d| F1(p, q(p))| 
dp

=

\partial F1

\partial q \cdot \partial F2

\partial p  - \partial F2

\partial q \cdot \partial F1

\partial p

\partial F1

\partial q \cdot \partial F2

\partial q

.

The zeros of the derivative are given by the nonlinear equation

(p - kmin)

\biggl( \sqrt{} 
k2max + \~\eta 2  - 

\sqrt{} 
k2min + \~\eta 2

\biggr) \sqrt{} 
k2min + \~\eta 2 + p

\lambda \sqrt{} 
k2max + \~\eta 2 + p

\lambda 

= (kmax  - p)

\biggl( \sqrt{} 
q2 + \~\eta 2  - 

\sqrt{} 
k2min + \~\eta 2

\biggr) 
kmin + \lambda 

\sqrt{} 
q2 + \~\eta 2

kmax + \lambda 
\sqrt{} 

q2 + \~\eta 2
.

It is sufficient to observe that the left-hand side starts from 0 and it is strictly increas-
ing in p, while the right-hand side starts from a positive value, it decreases with p and
it reaches 0 for p = kmax. So the equation admits only one solution and, therefore,
the local maximum with respect to p of | F1(p, q(p))| is unique. The solution to the
min-max problem (2.15) is the pair of parameters (p\ast , q\ast ) which allows equioscillation
among the three local maxima and realizes (2.20). Every other pair of parameter
would lead to the increase of at least one of the local maxima and, therefore, of the
maximum of | \rho | over k.

In [12], the authors proved a similar result for the Laplace equation with discon-
tinuous coefficients without the presence of the further optimality condition (2.20).
Their result was based on the possibility of restricting the interval of interest for
the parameters to p < q or q < p according to the value of \lambda . In the present case
this is not possible because of the presence of \~\eta 2, which breaks the symmetry of the
convergence factor. Therefore, we cannot discard a priori one of the two possible
equioscillations and the further condition (2.20) must be added. Nevertheless, in the
asymptotic regime for h \rightarrow 0 and kmax \rightarrow \infty , the next result allows us to clearly
choose the optimal pair as a function of \lambda , recovering the property of the results for
the simplified situation treated in [12].

Theorem 2.11. Let D :=
\sqrt{} 
k2min + \~\eta 2. Then if the physical parameters \~\eta 2, \nu 1, \nu 2

are fixed, kmax = \pi 
h and h goes to zero, the optimized two-sided Robin parameters are

for \lambda \geq 1,

(2.22)

p\ast 1 \sim \lambda (kmin+D)
\lambda  - 1  - 2

\surd 
2(1+\lambda )(\lambda D+kmin)\lambda 

2
\surd 

\pi (kmin+D)

\pi \lambda (\lambda  - 1)3 h
1
2 ,

q\ast 1 \sim \pi (\lambda  - 1)
2\lambda h - 1 +

\surd 
2(1+\lambda )2

\surd 
\pi (kmin+D)

2\lambda (\lambda  - 1) h - 
1
2 ,

maxkmin\leq k\leq \pi /h | \rho (k, p\ast 1, q\ast 1)| \sim 1
\lambda  - 2

\surd 
2(1+\lambda )

\surd 
(kmin+D)\surd 

\pi \lambda (\lambda  - 1)
h

1
2 ,
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and for \lambda < 1 we have

(2.23)

p\ast 2 \sim 1
2\pi (1 - \lambda )h - 1 +

\surd 
2(1+\lambda )2

\surd 
\pi (D+kmin)

2(1 - \lambda ) h - 
1
2 ,

q\ast 2 \sim 
\sqrt{} \Bigl( 

D+kmin

1 - \lambda 

\Bigr) 2
 - \~\eta 2  - 2

\surd 
2(D+kmin)

2(\lambda +1)(\lambda D+kmin)

(\lambda  - 1)4
\surd 

\pi (D+kmin)
\sqrt{} 

D+kmin
1 - \lambda  - \~\eta 2

h
1
2 ,

maxkmin\leq k\leq \pi /h | \rho (k, p\ast 2, q\ast 2)| \sim \lambda  - 2
\surd 
2\lambda (1+\lambda )

\surd 
(kmin+D)\surd 

\pi (1 - \lambda )
h

1
2 .

Proof. Guided by numerical experiments, for \lambda \geq 1 we make the ansatz p \sim 
Cp+Ah

1
2 , q \sim Qh - 1+Bh - 

1
2 , and \^k = Ckh

 - 1
2 . First, considering \partial k\rho (\^k, p, q) = 0, we

find setting to zero the first nonzero term Ck =
\sqrt{} 
Cp \cdot Q. Inserting this into (2.19)

and comparing the two leading terms, we get the result. Similarly, for \lambda < 1, we
make the ansatz p \sim Cph

 - 1 + Ah - 
1
2 , q \sim Q + Bh

1
2 , and \^k = Ckh

 - 1
2 , and we get

Ck =
\sqrt{} 
Cp

\sqrt{} 
Q2 + \~\eta 2. Substituting and matching the leading order terms we obtain

the result.

If we set \~\eta 2 = 0, then D = kmin and we recover the results of [12]. Note that
in contrast to the one sided case, the convergence factor does not deteriorate to 1
as h \rightarrow 0, but it is bounded either by 1

\lambda if \lambda \geq 1 or by \lambda if \lambda < 1, so we obtain a
nonoverlapping optimized Schwarz method that converges independently of the mesh
size h. We emphasize that the heterogeneity makes the method faster instead of
presenting a difficulty. A heuristic explanation is that the heterogeneity tends to
decouple the problems, making them less dependent one from the other. In contrast
with other domain decomposition methods, optimized Schwarz methods can be tuned
according to the physics and, therefore, they can benefit from this decoupling.

3. Advection reaction diffusion-reaction diffusion coupling. In this sec-
tion, we consider again a domain \Omega divided into two subdomains, \Omega 1,\Omega 2 according
to the description at the beginning of section 2. In \Omega 1 we have a reaction diffusion
equation, while in \Omega 2 we have an advection reaction diffusion equation. We allow
the reaction and diffusion coefficients to be different among the subdomains. The
optimized Schwarz method reads

(3.1)

(\eta 21  - \nu 1\Delta )un1 = f in \Omega 1,
(\nu 1\partial x + S1)(u

n
1 )(0, \cdot ) = (\nu 2\partial x  - a \cdot (1, 0)\top + S1)(u

n - 1
2 )(0, \cdot ),

(\eta 22 + a \cdot \nabla  - \nu 2\Delta )un2 = f in \Omega 2,
(\nu 2\partial x  - a \cdot (1, 0)\top  - S2)(u

n
2 )(0, \cdot ) = (\nu 1\partial x  - S2)(u

n - 1
1 )(0, \cdot ),

where a = (a1, a2)
\top . The additional term in the transmission conditions arises from

the conservation of the flux in divergence form; see Chapter 6 in [31]. We first suppose
a2 = 0. Then, we can solve the error equations in the subdomains through separation
of variables and we obtain eni =

\sum 
k\in \scrV \^eni sin(ky), i = 1, 2, where

\^en1 (k, x) = An(k)e

\sqrt{} 
\eta 2
1

\nu 1
+k2x

, \^en2 (k, x) = Bn(k)e\lambda  - (k)x,
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and \lambda  - (k) :=
a1 - 

\surd 
a2
1+4\nu 2

2k
2+4\nu 2\eta 2

2

2\nu 2
. Inserting e1, e2 into the transmission conditions

we get

\nu 1

\sqrt{} 
\eta 21
\nu 1

+ k2An(k) + \sigma 1(k)A
n(k) = \nu 2\lambda  - (k)B

n - 1(k) - a1B
n - 1(k) + \sigma 1(k)B

n - 1(k),

\nu 2\lambda  - (k)B
n(k) - a1B

n(k) - \sigma 2(k)B
n(k) = \nu 1

\sqrt{} 
\eta 21
\nu 1

+ k2An - 1(k) - \sigma 2(k)A
n - 1(k).

The convergence factor is given by

\rho (k, \sigma 1, \sigma 2) =
\nu 2\lambda  - (k) - a1 + \sigma 1(k)

\nu 1
\sqrt{} 

\~\eta 21 + k2 + \sigma 1(k)

\nu 1
\sqrt{} 

\~\eta 21 + k2  - \sigma 2(k)

\nu 2\lambda  - (k) - a1  - \sigma 2(k)
,

where \~\eta 21 =
\eta 2
1

\nu 1
. We rewrite \lambda  - (k) as \lambda  - (k) = a1

2\nu 2
 - 

\surd 
k2 + \delta 2 with \delta 2 =

a2
1

4\nu 2
2
+

\eta 2
2

\nu 2
.

Using the dependence on k, the convergence factor becomes

\rho (k, \sigma 1, \sigma 2) =
\nu 2
\surd 
k2 + \delta 2 + a1

2  - \sigma 1(k)

\nu 1
\sqrt{} 

\~\eta 21 + k2 + \sigma 1(k)

\nu 1
\sqrt{} 

\~\eta 21 + k2  - \sigma 2(k)

\nu 2
\surd 
k2 + \delta 2 + a1

2 + \sigma 2(k)
.

We can define the two optimal operators Sopt
j associated to the eigenvalues \sigma opt

1 (k) :=

\nu 2
\surd 
k2 + \delta 2 + a1

2 and \sigma opt
2 (k) := \nu 1

\sqrt{} 
k2 + \~\eta 21 which lead to convergence in just two

iterations.

3.1. Zeroth order single sided optimized transmission conditions. Fol-
lowing the strategy of the previous section, we choose \sigma 1(k), \sigma 2(k) so that they coincide

with the optimal choice for the frequency k = p, i.e., \sigma 1(k) = \nu 2
\sqrt{} 
p2 + \delta 2 + a1

2 and

\sigma 2(k) = \nu 1
\sqrt{} 
p2 + \~\eta 21 . Defining \lambda := \nu 1

\nu 2
, the convergence factor then becomes

(3.2) \rho (k, p) =

\sqrt{} 
k2 + \~\eta 21  - 

\sqrt{} 
p2 + \~\eta 21

1
\lambda 

\Bigl( \surd 
k2 + \delta 2 + a1

2\nu 2

\Bigr) 
+
\sqrt{} 
p2 + \~\eta 21

\cdot 
\surd 
k2 + \delta 2  - 

\sqrt{} 
p2 + \delta 2

\lambda 
\sqrt{} 
k2 + \~\eta 21 +

\Bigl( \sqrt{} 
p2 + \delta 2 + a1

2\nu 2

\Bigr) .
Theorem 3.1. The unique optimized Robin parameter p\ast solving the min-max

problem

min
p\in \BbbR 

max
kmin\leq k\leq kmax

| \rho (k, p)| ,(3.3)

is given by the unique root of the nonlinear equation

| \rho (p\ast , kmin)| = | \rho (p\ast , kmax)| .

Proof. The proof is very similar to the proof of Theorem 2.3; therefore, we just
sketch the main steps. We start observing that \rho (k, p) has only one zero located at
k = p and \rho (k, p) > 0 \forall k, p. Thus we may neglect the absolute value. Analyzing the
derivative with respect to p, we find that

sign

\biggl( 
\partial \rho (k, p)

\partial p

\biggr) 
=  - sign(k  - p).
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This implies that \partial \rho (k,p)
\partial p > 0 if k < p and \partial \rho (k,p)

\partial p < 0 if k > p. We conclude that p

must lie in the interval [kmin, kmax]. Similarly, the derivative with respect to k satisfies
\partial \rho (k,p)

\partial k < 0 if k < p and \partial \rho (k,p)
\partial k > 0 if k > p. Hence, the local maxima with respect

to k are located at the boundary points k = kmin and k = kmax. Repeating the final
argument of Theorem 2.3 we get the result.

Since a closed form formula is again not available, we now show asymptotic results
for the optimal parameter p\ast and observe the behavior of the method when taking
finer and finer meshes.

Theorem 3.2. If the physical parameters are fixed, kmax=
\pi 
h , and h is small

enough, then the optimized Robin parameter p\ast satisfies

p\ast \sim Ca \cdot h - 
1
2 , Ca =

\sqrt{} 
\nu 2 (\lambda + 1)\pi 

\Bigl( 
2
\sqrt{} 
k2min + \~\eta 21\lambda \nu 2 + 2

\sqrt{} 
k2min + \delta 2\nu 2  - a1

\Bigr) 
\surd 
2\nu 2 (\lambda + 1)

.

Furthermore, the asymptotic convergence factor is

max
kmin\leq k\leq \pi /h

| \rho (k, p\ast )| \sim 1 - h
1
2

\Biggl( 
C\ita (\lambda + 1)

2

\lambda \pi 

\Biggr) 
.

Proof. We insert the ansatz p = Ca \cdot h - \alpha into (3.3). Expanding for small h, we
get that

\rho (p, kmin) \sim 1 - h\alpha 

\Biggl( 
C\ita (\lambda + 1)

2

\lambda \pi 

\Biggr) 
.

On the other hand,

\rho (p, kmax) \sim 1 + h - \alpha +1

\left(  1

2

(\lambda + 1)
\Bigl( 
 - 2
\sqrt{} 
k2min + \~\eta 21\lambda \nu 2  - 2

\sqrt{} 
k2min\delta 

2\nu 2 + a1

\Bigr) 
Ca \nu 2 \lambda 

\right)  .

Comparing the first two terms we get the result.

3.2. Zeroth order two sided optimized transmission conditions. In this
paragraph we generalize the previous transmission conditions, introducing another
degree of freedom q. The operators Sj are such that their eigenvalues are

\sigma 1(k) = \nu 2
\sqrt{} 
q2 + \delta 2 +

a1
2
, \sigma 2(k) = \nu 1

\sqrt{} 
p2 + \~\eta 21 ,

and the convergence factor becomes

\rho (k, p) =

\sqrt{} 
k2 + \~\eta 21  - 

\sqrt{} 
p2 + \~\eta 21

1
\lambda 

\Bigl( \surd 
k2 + \delta 2 + a1

2\nu 2

\Bigr) 
+
\sqrt{} 
p2 + \~\eta 21

\cdot 
\surd 
k2 + \delta 2  - 

\sqrt{} 
q2 + \delta 2

\lambda 
\sqrt{} 
k2 + \~\eta 21 +

\Bigl( \sqrt{} 
q2 + \delta 2 + a1

2\nu 2

\Bigr) .
In order to prove a similar result as in Theorem 2.10, we suppose that \~\eta 1 = 0, i.e.,
only diffusion is present in \Omega 1, and a1 > 0, i.e., the advection flux is pointing into the
subdomain \Omega 2.

Theorem 3.3. There are two pairs of parameters (p\ast 1, q
\ast 
1) and (p\ast 2, q

\ast 
2) such that

we obtain equioscillation between all of the three local maxima located at the boundary
extrema kmin, kmax and at the interior point \^k,

| \rho (kmin, p
\ast 
j , q

\ast 
j )| = | \rho (kmax, p

\ast 
j , q

\ast 
j )| = | \rho (\^k, p\ast j , q\ast j )| , j = 1, 2.
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The optimal pair of parameters is the one which realizes the

min
(p\ast 

j ,q
\ast 
j ),j=1,2

| \rho (kmin, p
\ast 
j , q

\ast 
j )| .

Proof. Similarly to the proof of Theorem 2.10, we observe that the function admits
two zeros, one located at k = p, the other at k = q due to the choice of the transmission
operators. Computing the derivatives with respect to p and q we get

sign

\biggl( 
\partial | \rho | 
\partial p

\biggr) 
=  - sign(\rho ) \cdot sign(k  - q) =  - sign(k  - p),

sign

\biggl( 
\partial | \rho | 
\partial q

\biggr) 
=  - sign(\rho ) \cdot sign(k  - p) =  - sign(k  - q).

We conclude that, at the optimum, both p and q lie in [kmin, kmax], i.e., the function
at the optimum has two zeros in the interval. Now we study the behavior with respect
to k. Computing the derivative with respect to k, we find that the potential local
maxima are given by the roots of

\surd 
\delta 2 + k2  - 

\sqrt{} 
\delta 2 + q2

k(\lambda k +
\sqrt{} 
q2 + \delta 2 + a1

2\nu 2
)
=

p - k
\surd 
k2 + \delta 2

\Bigl( 
p\lambda +

\surd 
k2 + \delta 2 + a1

2\nu 2

\Bigr) .
With some algebraic manipulations, we find that a sufficient condition such that

p - k

(p\lambda +
\surd 
k2+\delta 2+a1/(2\nu 2))

has a monotonic behavior with respect to k is that a1 > 0. Then

under this hypothesis we may repeat the arguments in the proof of Theorem 2.10.
Letting p, q in [kmin, kmax], we have that the local maxima of the function are located

at kmin, kmax, \^k. Moreover, we have

\partial | \rho | 
\partial p

| k=kmin > 0,
\partial | \rho | 
\partial q

| k=kmin > 0,

\partial | \rho | 
\partial p

| k=kmax
< 0,

\partial | \rho | 
\partial q

| k=kmax
< 0,(3.4)

\partial | \rho | 
\partial p

| k=\~k < 0,
\partial | \rho | 
\partial q

| k=\~k > 0.

We can thus repeat the same arguments as in the proof of Theorem 2.10 since all
steps are now exclusively based on the sign of the partial derivatives with respect to
the parameters (see (3.4)), and the result follows.

Theorem 3.4. Let D :=
\sqrt{} 
k2min + \delta 2. If the physical parameters \~\eta 22 , \nu 1, \nu 2, a1 are

fixed, kmax = \pi 
h and h goes to zero, the optimized two-sided Robin parameters are for

\lambda \geq 1,

p\ast 1 \sim P1h
 - 1 + E1h

 - 1
2 , q\ast 1 \sim Q1  - F1h

1
2 , max

kmin\leq k\leq \pi 
h

| \rho (k, p\ast 1, q\ast 1)| \sim \lambda  - E1\pi (\lambda +1)
(P1\lambda +\pi )2 h

1
2 ,
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with

P1 :=
\pi (\lambda  - 1)

2\lambda 
, Q1 :=

\sqrt{} 
D + kmin + a1

2\nu 2\lambda 

1 - 1
\lambda 

 - \delta 2,

E1 :=
(2(P1

\sqrt{} 
\delta 2 +Q2

1 + C2
h)(\lambda + 1)\nu 2 + P1a1)(\lambda P1 + \pi )2

2\lambda 2P1\nu 2Ch\pi (\lambda + 1)
,

F1 :=
(2(P1

\sqrt{} 
\delta 2 +Q2

1 + C2
h)(\lambda + 1)\nu 2 + P1a1)(2\nu 2(\lambda kmin +

\sqrt{} 
\delta 2 +Q2

1) + a1)
2
\sqrt{} 

\delta 2 +Q2
1

4\lambda 2P1\nu 2
2ChQ1(2\nu 2(\lambda kmin +D) + a1)

,

Ch :=

\sqrt{} 
P1(2

\sqrt{} 
\delta 2 +Q2

1\nu 2(\lambda + 1) + a1)\sqrt{} 
2\nu 2(\lambda + 1)

,

and for \lambda < 1,

p\ast 2 \sim P2  - E2h
1
2 , q\ast 2 \sim Q2h

 - 1 + F2h
 - 1

2 , \mathrm{m}\mathrm{a}\mathrm{x}
kmin\leq k\leq \pi 

h

| \rho (k, p\ast 2, q\ast 2)| \sim \lambda  - F2\lambda \pi (1+\lambda )

(\lambda \pi +Q2)2
h

1
2

with

P2 :=
D + kmin + a1

2\nu 2

1 - \lambda 
, Q2 :=

\pi (\lambda  - 1)

2
,

E2 :=
((\lambda + 1)(D2

h + P2Q2)\nu 2 +
a1Q2

2
)(2\nu 2(\lambda P2 +D) + a1)

2

2\nu 2
2DhQ2(2kmin\lambda \nu 2 + 2\nu 2D + a1)

,

F2 :=

\surd 
\lambda + 1

\sqrt{} 
(D + kmin)(\lambda + 1) + a1

2\nu 2

\surd 
\pi (3\lambda  - 1)2

\surd 
2(1 - \lambda 2)

,

Dh :=

\sqrt{} 
Q2(2P2\nu 2(\lambda + 1) + a1)\sqrt{} 

2\nu 2(\lambda + 1)
.

Proof. The proof follows the same steps as in the proof of Theorem 2.11.

3.3. Advection tangential to the interface. In the previous subsection we
restricted our study to the case of advection normal to the interface. Here we consider
the other relevant physical case, namely advection tangential to the interface, so that
a1 = 0 and a2 \not = 0 in (3.1). For homogeneous problems, this case has been studied
through Fourier transform in unbounded domains; see [7]. However, it has recently
been observed in [18], that for homogeneous problems with tangential advection this
procedure does not yield efficient optimized parameters. The reason behind this failure
lies in the separation of variables technique which applied to the error equation,

(3.5)

(\eta 21  - \nu 1\Delta )en1 = 0 in \Omega 1,
(\nu 1\partial x + S1)(e

n
1 )(0, \cdot ) = (\nu 2\partial x + S1)(e

n - 1
2 )(0, \cdot ),

(\eta 22 + a2\partial y  - \nu 2\Delta )en2 = 0 in \Omega 2,
(\nu 2\partial x  - S2)(e

n
2 )(0, \cdot ) = (\nu 1\partial x  - S2)(e

n - 1
1 )(0, \cdot )

leads to

(3.6) en1 =
\sum 
k\in \scrV 

\^en1 (0, k)e
\lambda 1(k)x sin(ky) and en2 =

\sum 
k\in \scrV 

\^en2 (0, k)e
 - \lambda 2(k)xe

a2y
2\nu 2 sin(ky),

where \lambda 1(k) =
\sqrt{} 
k2 + \~\eta 1, \lambda 2(k) =

\surd 
4\nu 2

2k
2+4\nu 2

2 \~\eta 2
2+a2

2

2\nu 2
with \~\eta 2j :=

\eta 2
j

\nu j
. Since the func-

tions \psi k(y) := sin(ky) and \phi k(y) := e
a2y
2\nu 2 sin(ky) are not orthogonal, it is not possible

to obtain a recurrence relation which expresses \^enj (0, k) only as a function of \^en - 2
j (0, k)

D
ow

nl
oa

de
d 

05
/1

0/
23

 to
 1

29
.1

94
.1

.4
6 

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

HETEROGENEOUS OSMS FOR SECOND ORDER ELLIPTIC PDES A2347

for each k and j = 1, 2. Nevertheless, we propose here a more general approach. First,
let us define two scalar products, the classical L2 scalar product \langle f, g\rangle = 2

L

\int 
\Gamma 
fgdy and

the weighted scalar product \langle f, g\rangle w = 2
L

\int 
\Gamma 
fge - 

a2y
\nu 2 dy. It follows that \langle \psi k, \psi j\rangle = \delta k,j

and \langle \phi k, \phi j\rangle w = \delta k,j . Setting S1 := \nu 2\lambda 2(p) and S2 := \nu 1\lambda 1(q) for p, q \in \BbbR and
inserting the expansions (3.6) into the boundary conditions of (3.5), we obtain
(3.7)

+\infty \sum 
i=1

\^en1 (0, i)(\nu 1\lambda 1(i) + \nu 2\lambda 2(p))\psi i(y) =
+\infty \sum 
l=1

\^en - 1
2 (0, l)( - \nu 2\lambda 2(l) + \nu 2\lambda 2(p))\phi l(y),

+\infty \sum 
l=1

\^en2 (0, l)( - \nu 2\lambda 2(l) - \nu 1\lambda 1(q))\phi l(y) =
+\infty \sum 
i=1

\^en - 1
1 (0, i)(\nu 1\lambda 1(i) - \nu 1\lambda 1(q))\psi i(y).

We truncate the expansions for i, l > N , since higher frequencies are not represented
by the numerical grid, and we project the first equation onto \psi k with respect to the
scalar product \langle \cdot , \cdot \rangle and the second one onto \phi j with respect to the weighted scalar
product \langle \cdot , \cdot \rangle w,
(3.8)

\^en1 (0, k)(\nu 1\lambda 1(k) + \nu 2\lambda 2(p)) =
N\sum 
l=1

\^en - 1
2 (0, l)( - \nu 2\lambda 2(l) + \nu 2\lambda 2(p))\langle \psi k, \phi l\rangle ,

\^en2 (0, j)( - \nu 2\lambda 2(j) - \nu 1\lambda 1(q)) =
N\sum 
i=1

\^en - 1
1 (0, i)(\nu 1\lambda 1(i) - \nu 1\lambda 1(q))\langle \phi j , \psi i\rangle w.

Defining now the vectors enj \in \BbbR N such that (enj )i := \^enj (0, i) for j = 1, 2, the matrices
Vk,l := \langle \psi k, \phi l\rangle , Wj,i := \langle \phi j , \psi i\rangle w and the diagonal matrices (D1)l,l := ( - \nu 2\lambda 2(l) +
\nu 2\lambda 2(p)), ( \~D1)k,k := (\nu 1\lambda 1(k) + \nu 2\lambda 2(p)), (D2)i,i := (\nu 1\lambda 1(i)  - \nu 1\lambda 1(q)), ( \~D2)j,j :=
( - \nu 2\lambda 2(j) - \nu 1\lambda 1(q)), we obtain,

(3.9)
en1 = \~D - 1

1 V D1e
n - 1
2 ,

en2 = \~D - 1
2 WD2e

n - 1
1 ,

which implies

(3.10) en1 = \~D - 1
1 V D1

\~D - 1
2 WD2e

n - 2
1 and en2 = \~D - 1

2 WD2
\~D - 1
1 V D1e

n - 2
2 .

Since for two given matrices A,B the spectral radius satisfies \rho (AB) = \rho (BA), we
conclude that \rho ( \~D - 1

1 V D1
\~D - 1
2 WD2) = \rho ( \~D - 1

2 WD2
\~D - 1
1 V D1) and, therefore, in order

to accelerate the method, we are interested in the minimization problem

(3.11) min
p,q\in \BbbR 

\rho (( \~D - 1
1 V D1

\~D - 1
2 WD2)(p, q)).

Problem (3.11) does not have yet a closed formula solution. However in the next
section we show its efficiency by solving numerically the minimization problem.

Remark 3.5. Equation (3.11) is a straight generalization of the min-max problem
(2.8). Indeed, assuming that the functions \psi k and \phi j are orthogonal, the matrices V
and W are the identity matrix. Therefore, (3.10) simplifies to en1 = \=Den - 2

1 and en2 =
\=Den - 2

2 , where the diagonal matrix \=D satisfies ( \=D)k,k = \nu 2\lambda 2(k) - \nu 2\lambda 2(p)
\nu 1\lambda 1(k)+\nu 2\lambda 2(p)

\nu 1\lambda 1(k) - \nu 1\lambda 1(q)
\nu 2\lambda 2(k)+\nu 1\lambda 1(q)

.

Since the eigenvalues of a diagonal matrix are its diagonal entries we get that if
W = V = I,

min
p,q\in \BbbR 

\rho (( \~D - 1
1 V D1

\~D - 1
2 WD2)(p, q)) = min

p,q
max

k

\bigm| \bigm| \bigm| \bigm| \nu 2\lambda 2(k) - \nu 2\lambda 2(p)

\nu 1\lambda 1(k) + \nu 2\lambda 2(p)

\nu 1\lambda 1(k) - \nu 1\lambda 1(q)

\nu 2\lambda 2(k) + \nu 1\lambda 1(q)

\bigm| \bigm| \bigm| \bigm| .
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Table 2
Asymptotic behavior as h \rightarrow 0 for the reaction diffusion-diffusion coupling. Physical parame-

ters: left table \~\eta 2 = \lambda = 1, right table \~\eta 2 = \lambda = 10.

h \rho single sided \rho double sided
1/50 0.7035 0.4052
1/100 0.7801 0.4748
1/500 0.8950 0.6160
1/1000 0.9245 0.6672
1/5000 0.9655 0.7650

h \rho single sided \rho double sided
1/50 0.1721 0.0337
1/100 0.2625 0.0456
1/500 0.4868 0.0685
1/1000 0.5823 0.0760
1/5000 0.7662 0.0872

Remark 3.6. The case of an arbitrary advection, i.e., a1 \not = 0 and a2 \not = 0 has
been recently treated in [18] for homogeneous problems. Considering a heterogeneous
problem with advection fields aj = (a1j , a2j)

\top in domain \Omega j , j = 1, 2, a separation

of variables approach would lead to nonorthogonal functions \psi k(y) = e
a21y
2\nu 1 sin(ky)

and \phi k(y) = e
a22y
2\nu 2 sin(ky) unless a21

2\nu 1
= a22

2\nu 2
, and thus it is not possible to obtain a

recurrence relation as shown in (2.4) and (2.5). However, the approach developed in
this section can be readily applied. The subdomain solutions are

en1 (x, y) =
\sum 
k\in \scrV 

\^en1,ke
a21y
2\nu 1 sin(ky)e\lambda 1(k)x, en2 (x, y) =

\sum 
k\in \scrV 

\^en2,ke
a22y
2\nu 2 sin(ky)e - \lambda 2(k)x,

with \lambda 1(k) =
a11+

\surd 
4\nu 2

1k
2+4\nu 2

1 \~\eta 1
2+a2

11+a2
21

2\nu 1
and \lambda 2(k) =

 - a12+
\surd 

4\nu 2
2k

2+4\nu 2
2 \~\eta 2

2+a2
12+a2

22

2\nu 2
.

Defining S1 = \nu 2\lambda 2(p) + a12, S2 = \nu 1\lambda 1(p)  - a11, the two scalar products \langle f, g\rangle w1 =
2
L

\int 
\Gamma 
fge - 

a21y
\nu 1 dy and \langle f, g\rangle w2 = 2

L

\int 
\Gamma 
fge - 

a22y
\nu 2 dy, and repeating the calculations (3.7)--

(3.9), one finds the recurrence relation (3.10), with Vk,l := \langle \psi k, \phi l\rangle w1 ,Wj,i := \langle \phi j , \psi i\rangle w2 ,

and the diagonal matrices (D1)l,l := ( - \nu 2\lambda 2(l) + \nu 2\lambda 2(p)), ( \~D1)k,k := (\nu 1\lambda 1(k) +

\nu 2\lambda 2(p) - a11 + a12), (D2)i,i := (\nu 1\lambda 1(i) - \nu 1\lambda 1(q)), ( \~D2)j,j := ( - \nu 2\lambda 2(j) - \nu 1\lambda 1(q) - 
a12 + a11).

4. Numerical results. Our numerical experiments to test the different coupling
strategies separately are performed using the subdomains \Omega 1 = ( - 1, 0)\times (0, 1), \Omega 2 =
(0, 1) \times (0, 1). We use a classical five point finite difference scheme for the interior
points and treat the normal derivatives with second order discretization using a ghost
point formulation.

4.1. Reaction diffusion-diffusion coupling. We first consider the reaction
diffusion-diffusion coupling analyzed in section 2. Tables 2 and 3 show the values
of the convergence factor in two different asymptotic regimes, when h \rightarrow 0 and for
strong heterogeneity. As the asymptotic Theorem 2.11 and Remark 2.5 state, a strong
heterogeneity improves the performance of the algorithm. In the single sided opti-
mized case, the value of the convergence factor | \rho (k)| tends to 1, while in the double
sided case, | \rho (k)| is bounded either by \lambda or by 1/\lambda . Figure 4 shows the number of
iterations required to reach convergence with a tolerance of 10 - 6 as function of the
optimized parameters in both the single and double sided cases. We see that the
analysis predicts the optimized parameter very well.

4.2. Advection reaction diffusion-diffusion coupling. Next, we consider
the advection reaction diffusion-diffusion coupling with advection normal to the in-
terface. Table 4 summarizes the behavior of \rho (k) as h\rightarrow 0 and for strong heterogene-
ity. Similarly, Figure 5 shows the number of iterations required to reach convergence
with the tolerance of 10 - 6. Figure 6 shows the number of iterations to reach conver-
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Table 3
Asymptotic behavior as \lambda \rightarrow 0 and \lambda \rightarrow \infty , with h = 0.05 for the reaction diffusion-diffusion

coupling. Physical parameter: \~\eta 2 = 1.

\lambda \rho single sided \rho double sided
0.001 0.0125 7.8 \cdot 10 - 4

0.01 0.1075 0.0078
0.1 0.4453 0.0757
1 0.5851 0.4748
10 0.2625 0.076
100 0.0389 0.0078
1000 0.0040 7.8 \cdot 10 - 4
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Fig. 4. Number of iterations required to reach convergence with a tolerance of 10 - 6 as function
of the optimized parameters for the reaction diffusion-diffusion coupling. The left panel shows the
single sided case while the right panel shows the double sided case. Physical parameters: \nu 1 = 2,
\nu 2 = 1, \eta 2 = 10, mesh size h = 0.02.

gence for the tangential advection case. The minimization problem (3.11) is solved
numerically to find the optimal parameters p and q using the Nelder--Mead algorithm.
We have solved the minimization problem with different initial couples (p, q) and we
have noticed that the optimal solution satisfies an ordering relation between p and q
depending on \lambda as in Theorems 2.11 and 3.4.

4.3. Application to the contaminant transport problem. The computa-
tional domain \Omega described in Figure 1 is set equal to \Omega = (0, 8) \times ( - 4, 0), with
\Omega j = (0, 8)\times (1 - j, - j), j = 1, . . . , 4. On the top boundary \Gamma 1, we impose a condi-
tion on the incoming contaminant flow, i.e., \partial u

\partial y  - a2u = 1 while on the bottom edge

\Gamma 3 we impose a zero Neumann boundary condition \partial u
\partial y = 0. On the vertical edges \Gamma 2

and \Gamma 4 we set absorbing boundary conditions so that

\partial u
\partial \bfn + pu = 0 on \{ 0\} \times [ - 3; 0] and \{ 8\} \times [ - 3; 0],

\partial u
\partial \bfn  - a1u+ pu = 0 on \{ 0\} \times [ - 4; - 3] and \{ 8\} \times [ - 4; - 3],

where n is the outgoing normal vector. The parameter p is chosen equal to p =
\sqrt{} 
\pi \pi 

h ,
being kmin = \pi and kmax = \pi 

h . This choice derives from the observation that imposing
\partial u
\partial n + DtNu = 0, where DtN is the Dirichlet to Neumann operator, is an exact
transparent boundary condition; see [29, 28]. Thus we replace the expensive exact
transparent boundary condition with an approximation of the DtN operator. We
know from [9] that p =

\sqrt{} 
\pi \pi 

h is indeed a zero order approximation of the DtN
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Table 4
For the advection reaction diffusion-diffusion coupling, the left table shows the asymptotic be-

haviour when h \rightarrow 0 while the right table shows the values of the convergence factor for strong
heterogeneity when h = 1/50. Physical parameters: \eta 21 = 1, \eta 22 = 2, \nu 1 = 2, \nu 2 = 1, a2 = 0, a1 = 5,
mesh size h = 0.02.

h \rho single sided \rho double sided
1/50 0.4766 0.1835
1/100 0.5910 0.2306
1/500 0.7889 0.3274
1/1000 0.8452 0.3618
1/5000 0.9273 0.4228

\lambda \rho single sided \rho double sided
0.001 0.0031 4.89 \cdot 10 - 4

0.01 0.0297 0.0049
0.1 0.2101 0.0458
1 0.4865 0.2552
10 0.2786 0.0517
100 0.0459 0.0056
1000 0.0049 5.6 \cdot 10 - 4
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Fig. 5. Number of iterations required to reach convergence with a tolerance of 10 - 6 as func-
tion of the optimized parameters for the advection reaction diffusion-diffusion coupling with normal
advection. Physical parameters: \nu 1 = 2, \nu 2 = 1, \eta 21 = 1, \eta 22 = 2, a1 = 5, mesh size h = 0.02.

operator. To solve the system of PDEs, we consider the optimized Schwarz method:
(4.1)
 - \nu 1\Delta un1  - a2\partial yu

n
1 = 0 in \Omega 1, \scrB 1(u

n
1 ) = 0 on \partial \Omega 1 \setminus \Sigma 1,

\partial n1,2
un1 + p12u

n
1 = \partial n1,2

un - 1
2 + p12u

n - 1
2 on \Sigma 1,

\eta 22u
n
2  - \nu 2\Delta u

n
2 = 0 in \Omega 2, \scrB 2(u

n
2 ) = 0 on \partial \Omega 2 \setminus \{ \Sigma 1,\Sigma 2\} ,

\partial n1,1
un2 + p21u

n
2 = \partial n1,1

un - 1
1 + p21u

n - 1
1 on \Sigma 1,

\partial n2,3u
n
2 + p23u

n
2 = \partial n2,3u

n - 1
3 + p23u

n - 1
3 on \Sigma 2,

 - \nu 3\Delta un3 = 0 in \Omega 3, \scrB 3(u
n
3 ) = 0 on \partial \Omega 3 \setminus \{ \Sigma 2,\Sigma 3\} ,

\partial n2,2u
n
3 + p32u

n
3 = \partial n2,2u

n - 1
2 + p32u

n - 1
2 on \Sigma 2,

\partial n3,4
un3 + p34u

n
3 = \partial n3,4

un - 1
4 + p34u

n - 1
4 on \Sigma 3,

 - \nu 4\Delta un4 + a1\partial xu
n
4 = 0 in \Omega 4, \scrB 4(u

n
4 ) = 0 on \partial \Omega 4 \setminus \Sigma 3,

\partial n3,3
un4 + p43u

n
4 = \partial n3,3

un - 1
3 + p43u

n - 1
3 on \Sigma 3,

where \Sigma i are the shared interfaces \Sigma i = \partial \Omega i \cap \partial \Omega i+1, i = 1, 2, 3, the vectors ni,j are
the normal vectors on the interface \Sigma i pointing towards the interior of the domain \Omega j ,
and the operators \scrB i(ui) represent the boundary conditions to impose on the bound-
ary excluding the shared interfaces. Regarding the Robin parameters pi,j , we choose
them according to the two subdomain analysis carried out in this manuscript. Due
to the exponential decay of the error away from the interface (see eq. (2.3)), if the
subdomains are not too narrow in the y direction, the information transmitted from
each subdomain to the neighboring one does not change significantly and, therefore,
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Fig. 6. In the top row, we show the number of iterations required to reach convergence with
a tolerance of 10 - 6 as function of the optimized parameters for the advection reaction diffusion-
diffusion coupling with tangential advection. In the bottom row, we show the dependence on p
and the level curves of the objective function in the min-max problem (3.11). Physical parameters:
\nu 1 = 1, \nu 2 = 2, \eta 21 = 1, \eta 22 = 2, a2 = 15, mesh size h = 0.01.

the pi,j from a two subdomain analysis are still a good choice. We remark that this ar-
gument does not hold for the Helmholtz equation, for which there are resonant modes
for frequencies k \leq \omega , where \omega is the wave number, which travel along the domains
and they do not decay away from the interface. Figure 7 shows the stationary distri-
bution of the contaminant. We observe that due to the advection in the y direction
in \Omega 1, the contaminant accumulates on the interface with \Omega 2, representing the porous
medium, and here we have the highest concentration. Then the contaminant diffuses
into the layers below and already in the porous media region it feels the presence of
the tangential advection in \Omega 4. Next, we also consider the transient version of (4.1).
We discretize the time derivative with an implicit Euler scheme, so that each equation
has a further reaction term equal to \eta 2j,tran = \eta 2j,stat +

1
\Delta t . Figure 8 shows the time

dependent evolution of the concentration u over 400 integration steps. The initial
condition is set equal to zero on the whole domain \Omega .

Table 5 shows the number of iterations to reach a tolerance of 10 - 6 for the algo-
rithm (4.1) both used as an iterative method and as a preconditioner for GMRES for
the substructured system; see [13] for an introduction to the substructured version of
(4.1). We consider both single and double sided optimizations for the parameters pi,j
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Fig. 7. Stationary distribution of the contaminant. Physical parameters: \nu 1 = 0.5, \nu 2 = 3, \nu 3 =
3, \nu 4 = 1, \eta 22 = 0.01, a2 = 2, a1 = 2.
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(\mathrm{c}) 300 \mathrm{t}\mathrm{i}\mathrm{m}\mathrm{e} \mathrm{s}\mathrm{t}\mathrm{e}\mathrm{p}\mathrm{s}.

0

0.5

1

1.5

2

2.5

3

3.5

4

y

0 2 4 6 8

x

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

0.022

(\mathrm{d}) 400 \mathrm{t}\mathrm{i}\mathrm{m}\mathrm{e} \mathrm{s}\mathrm{t}\mathrm{e}\mathrm{p}\mathrm{s}.

Fig. 8. Evolution of the contaminant concentration u.

at each interface. For the time evolution problem, the stopping criterion is

(4.2) max

\Biggl\{ 
\| un,k1,\Sigma 1

 - un,k2,\Sigma 1
\| 

\| un,k1,\Sigma 1
\| 

,
\| un,k2,\Sigma 2

 - un,k3,\Sigma 2
\| 

\| un,k2,\Sigma 2
\| 

,
\| un,k3,\Sigma 1

 - un,k4,\Sigma 3
\| 

\| un,k3,\Sigma 3
\| 

\Biggr\} 
\leq 10 - 6.

From Figures 7 and 8, we note that this physical configuration would represent a safe
situation since a very small concentration of contaminant manages to get through the
vertical diffusive layers and reaches the right-bottom of the domain, where it could
pollute the water well.
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Table 5
Number of iterations to reach a tolerance of 10 - 6 for the optimized Schwarz method (4.1) used

as an iterative method and as a preconditioner. The left side refers to the stationary case while
the right side to the transient one where we consider the number of iterations needed to satisfy the
stopping criterion (4.2) averaged over 400 time steps.

Iterative GMRES
Single sided 270 33
Double sided 55 25

Iterative GMRES
Single sided 11.5 5.7
Double sided 9.6 4.3

5. Conclusions. In this manuscript we considered the heterogeneous couplings
arising from second order elliptic PDEs and solved analytically the corresponding
min-max problems, except in the case of tangential advection to the interface where
we provided a numerical optimization procedure. Our results show that optimized
Schwarz methods are not only natural for heterogeneous problems, they are also ex-
tremely efficient. Indeed, the asymptotic analysis shows that the stronger the hetero-
geneity is, the faster becomes the convergence. In particular, a double sided method
should be preferred since not only is it clearly faster than a single sided one, but it
also leads to an h independent convergence as long as there is a jump in the diffusion
coefficients. Our analysis is based on a two-dimensional setting but the results can be
extended to three-dimensional problems. Considering \Omega 1 = ( - \infty , 0)\times (0, L)\times (0, \^L)
and \Omega 2 = (0,+\infty )\times (0, L)\times (0, \^L), we can obtain analogous sine expansions for the
errors enj , j = 1, 2 as in section 2. Then, for symmetric problems and in the case

of normal advection to the plane \Gamma := \{ 0\} \times (0, L) \times (0, \^L), we can reuse the same
theoretical results by changing the range of frequencies in the min-max problems,
setting kmin = \pi 

L + \pi 
\^L
and kmax = 2\pi 

h . Considering tangential advection, all of the
possible tangential directions now lie on the plane \Gamma , which in our example is the y-z
plane. Then one could use the numerical procedure developed in section 3.3 intro-
ducing the matrices V and W and proper scalar products defined as integrals on the
two-dimensional interface.
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