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Optimal Mesh Size for Inverse Medium Scattering

Problems

Habib Ammari∗ Yat Tin Chow† Keji Liu‡

Abstract

An optimal mesh size of the sampling region can help to reduce computational burden in practical
applications. In this work, we investigate optimal choices of mesh sizes for the identifications of
medium obstacles from either the far-field or near-field data in two and three dimensions. The results
would have applications in the reconstruction process of inverse scattering problems.
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1 Introduction

The direct and inverse medium scattering problems have been investigated extensively in the past
few decades due to their important practical applications in geophysics, nondestructive testing, biological
studies, evaluation and medicine, see, for instance, [2, 4]. A large variety of numerical reconstruction
methods have been developed and applied in practice for different kinds of models. For instance, some
effective methods are developed for the homogeneous background model: the linear sampling or probing
methods (LSM) [16], the time-reversal multiple signal classification method (MUSIC) [7, 8, 12], the direct
sampling method (DSM) [25], the multilevel sampling method (MSM) [32], the contrast source inversion
method (CSIM) [11], etc. Moreover, several efficient algorithms are applied in various practical situations,
e.g., in the stratified ocean waveguide model: the simple method (SM) [30], extended direct sampling
methods (EDSMs) [13, 14, 15, 26, 27, 28, 31, 33, 34], the extended MUSIC method (EMUSIC) [6, 24], the
topological based imaging functional [3], etc. Furthermore, several efficient approaches are introduced in
the two-layered medium model: the extended multilevel sampling method (EMSM) [36], the extended
linear sampling method (ELSM) [18], etc.

Most reconstruction methods involve an indicator function (called also imaging functional) to be
evaluated at each sampling point inside a sampling region for the recovery of the shape (and, if possible,
the parameters therein) of the unknown inclusions. In practice, the sampling region is usually chosen to be
large enough to contain all the unknown inclusions; then a considerably fine mesh is used in the sampling
region to reconstruct the details of the objects. However, an extremely fine mesh would drastically
increase the computational complexity in practice, especially in the three-dimensional case. In fact, the
computation complexity of most reconstruction methods (see, for instance, DSM, MUSIC, LSM, CSIM,
etc.) is of O(N2) in two dimensions and O(N3) in three dimensions, where N is the number of sampling
points along one direction. Reconstruction methods such as MSM and the EMSM has complexity of order
of N logN in two dimensions and N2 logN in three dimensions. Hence, they are still quite demanding
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if N is large. Therefore, an optimal mesh size for the sampling and the reconstruction is crucial to
reduce the computation complexity of these algorithms and at the same time to reconstruct details of
the inclusions in practical applications. Moreover, several iterative methods (i.e., EMSM, CSIM, etc.)
apply certain cut-off values as a stopping criterion of the method. Such a choice of stopping criterion
may heavily depend on the reconstruction quality under a coarser mesh and a subjective choice of the
cutoff value; which sometimes causes the reconstruction algorithm to entirely miss some small inclusions.
Choosing an optimal mesh size can improve the quality of the reconstruction and practically avoid the
aforementioned issue.

To the best of the authors’ knowledge, although there are quite a lot of discussions of resolution analysis
(e.g., Abbe-Rayleigh resolution limit, Sparrow’s resolution limit, etc) in inverse scattering problems, e.g.,
[1, 9, 20, 22], a systematic choice of the optimal mesh size for numerical reconstruction algorithms in
inverse scattering problems has not yet been addressed in the literature. We would like to remark that the
resolution analysis aims at understanding the quality of an image given a fixed grid size; whereas here we
aim at choosing an optimal mesh size to ensure certain quality of the reconstruction. This paper is hence
devoted to an optimal selection of the mesh size in reconstruction methods. It is worth emphasizing that,
in this paper, instead of focusing on one particular reconstruction method, we are interested in an optimal
choice of the mesh size in a numerical reconstruction scheme assuming a maximal resolving power. We
shall provide an optimal selection of mesh size for the identifications of unknown inclusions from both
the far-field and the near-field data in two and three dimensions.

This paper is organized as follows. In section 2, we state the forward problems that we focus on.
We then provide in section 3 an optimal mesh size selection given far-field data; whereas in section 4,
we consider the mesh size problem when near-field data are available. In section 5, we describe how our
optimal mesh size function may help to refine our mesh in order to resolve clustered inclusions. In section
6, we show that our choice of mesh size is indeed optimal by comparing several reconstructions from
a typical numerical method with different mesh sizes. Finally, some concluding remarks are presented
in section 7. The results of this paper can help minimizing the computation complexity of methods
designed for solving inverse scattering problems. A similar analysis can be performed for electromagnetic
and elastic inverse wave scattering problems.

2 Problem description

In this section, we shall describe the direct and inverse scattering problems in the presence of in-
homogeneous inclusions (inside a sampling domain Ω; see Figure 1) embedded in a homogeneous back-
ground medium RM (M ≥ 2). Consider an inhomogeneous inclusion represented by a (variable) contrast
q ∈ L∞(RM ) such that supp(q) ⊂ Ω, i.e., it vanishes outside Ω.

2.1 Forward problem

We are now ready to state the considered forward problems. For numerical simulations of solutions
of these forward problems, we refer the reader, for instance, to [32, 34].

2.1.1 Plane wave illumination

Suppose that ui is an incident plane given by

ui(x, dy) := eik dy·x ,

where dy ∈ SM is the direction of incidence with k being the wave number and SM being the unit sphere
in RM . Then, ui satisfies the Helmholtz equation

∆ui + k2ui = 0 for x ∈ RM .
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We now consider the total field u as the solution to the following equation,

∆u+ k2
(
1 + q(x)

)
u = 0 for x ∈ RM , (2.1)

subject to the outgoing Sommerfeld radiation condition:

∂us

∂r
− ikus = o

( 1

r(M−1)/2

)
as r → ∞, (2.2)

which holds uniformly in all directions x/|x|, where r = |x| and us := u− ui is the scattered field.
From (2.1), due to the presence of inclusions in Ω, the Lippmann-Schwinger representation formula

of the total field u yields

us(x, dy) = u(x, dy)− ui(x, dy) = k2
∫

Ω

q(z)G(x, z)u(z, dy) dz, dy ∈ SM , (2.3)

where G(x, z), x, z ∈ RM and x 6= z, is the Green function associated with the homogeneous background,

G(x, z) = CMk
2−M

2 |x− z| 2−M
2 H

(1)
M−2

2

(k|x− z|) . (2.4)

Here, H
(1)
ν is the Hankel function of the first kind of order ν and CM = −i(2π)

2−M
2 /4. In particular, we

have

G(x, z) =





i

4
H

(1)
0 (k|x− z|) for M = 2,

eik|x−z|

4π|x− z| for M = 3.

(2.5)

Figure 1: Plane wave illumination.

2.1.2 Point source illumination

On the other hand, suppose that ui is generated from a point source y ∈ Γs, where Γs is a surface. Then,

ui(x, y) := G(x, y) = CMk
2−M

2 |x− z| 2−M
2 H

(1)
M−2

2

(|x− y|) ,

which now satisfies

∆ui + k2ui = δy for x ∈ RM .
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Consider the total field u as the solution to the following equation:

∆u+ k2
(
1 + q(x)

)
u = δy for x ∈ RM . (2.6)

with us := u− ui satisfying the outgoing Sommerfeld radiation condition (2.2).
From (2.6), due to the presence of inclusions in Ω, the total field u satisfies the following equation:

u(x, y) = ui(x, y) + k2
∫

Ω

q(z)G(x, z)u(z, y) dz, x ∈ RM and y ∈ Γs . (2.7)

Because the corresponding scattered field us is measured by the receivers on the surface Γr, it has the
following representation:

us(x, y) = k2
∫

Ω

q(z)G(x, z)u(z, y) dz, x ∈ RM and y ∈ Γs . (2.8)

We refer to Figure 2 for a schematic configuration of the inverse medium scattering problem. We may
again consider measurements u(x, y) along a surface x ∈ Γr where y ∈ Γs.

Figure 2: Point source illumination.

2.2 Inverse problem

The inverse problem of our interest is to recover the physical features of the inclusions inside Ω from
knowledge of the scattered field us.

For plane wave illuminations, we consider the following problem: given the measurements of us(x, dy)
along a surface x ∈ Γr, where the distance dist(Γr,Ω) ≫ 1, and dy ∈ SM , where u satisfies (2.3), we aim
at recovering q(x), x ∈ Ω.

In the case of point source illuminations, we consider the following problem: given the measurements
of us(x, y) along a surface x ∈ Γr and y ∈ Γs, where u satisfies (2.7), we aim at recovering q(x), x ∈ Ω.

Note that there are many numerical methods addressing the number of required directions of inci-
dence, see, for instance, [11, 12, 16, 34, 33]. Since our work does not focus on any particular type of
reconstruction methods, but aims at discussing how to choose the mesh size in general, we do not ad-
vocate any particular choice of numerical reconstruction methods. Nevertheless, in this subsection, for
the sake of completeness, we state two examples of indicator functions in order to illustrate our main
ideas. In what follows, we provide a brief description of two types of indicator functions: index functions
provided in the multilevel sampling method (MSM) [30, 31, 32], and the direct sampling method (DSM),
see, for instance, [25, 30, 34]. Both methods work either with plane wave or point source illuminations;
nonetheless, for the sake of simplicity, we only consider the case of plane wave illuminations.
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Example 1: We would like to briefly describe the index function shown in the MSM. Given a choice of
sampling points x ∈ Ω. Consider an incident direction dy ∈ SM−1. We first introduce the contrast source
function φ, which is defined as follows,

φ(x, dy) := k2q(x)u(x, dy) for x ∈ Ω.

The scattered field us can thus be expressed into the following compact form

us(xr , dy) = Prφ (xr , dy) for xr ∈ Γr,

where the integral operator Pr is given, for xr ∈ Γr, by

Prϕ (xr , dy) :=

∫

Ω

G(x, xr)φ(x, dy)dx.

The MSM aims at approximating the contrast source function at sampling points x ∈ Ω given by a mesh
with multiple choices of dy via a backpropagation method; and then refine the choices of mesh sizes in
order to obtain iteratively another set of x ∈ Ω. A backpropagation φb(·, dy), which is defined as follows,
is employed to provide an (initial) approximation of φ(x, dy):

φb :=

∥∥P∗
ru

s
∥∥2
L2(Ω)∥∥Pr P∗

ru
s
∥∥2
L2(Γr)

P∗
ru

s.

Here, P∗
r is known as the backpropagation operator which is represented as

P∗
r φ(x; dy) :=

∫

Γr

G(ξ;x)φ(ξ; dy) dσξ for x ∈ Ω.

In practice, the expression of contrast source function is numerically obtained by

φ̃b,n(x) :=

∥∥P∗
ru

s(·, dy,n)
∥∥2
L2(Ω)∥∥Pr P∗

ru
s(·, dy,n)

∥∥2
L2(Γr)

P∗
ru

s(x, dy,n) for x ∈ Ω, (2.9)

for a finite number of incidences dy,n ∈ SM−1, where n = 1, 2 · · · , N . With this in hand, we now define
an index function or indicator function η(x), which aims at numerically approximating k2q(x) from the
measured values of {us(·, dy,n)}Nn=1, as the least-square solution to the system

φ̃b,n = η(x)u(x, dyn
), (2.10)

for n = 1, 2 · · · , N . Here, the points x ∈ Ω are the chosen sampling points in Ω, and η(x) can be explicitly
given by

η(x) := ℜ





N∑
n=1

φ̃b,n(x)
(
ui(x, dy,n) + PΩφ̃b,n

)

N∑
n=1

∣∣∣ui(x, dy,n) + PΩφ̃b,n

∣∣∣
2





for x ∈ Ω, (2.11)

where ℜ{·} denotes the real part of a complex number, φ̃b,n are defined in (2.9), and the integral operator
PΩ is defined, for all x ∈ Ω, by

PΩφ (x, dy) :=

∫

Ω

G(ξ, x)φ(ξ, dy)dξ.

Now the algorithm chooses a certain threshold of cutoff to numerically identify the support of the index
function or indicator function η, and then the choices of x ∈ Ω are re-sampled, and the whole process is
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preformed again and iterated until a fine reconstruction profile is achieved.

Example 2: Another example of indicator functions is provided by the DSM. For a given incidence
dy ∈ SM , the index function is defined by

I(x, dy) :=

∣∣∣〈us(·, dy), G(·, x)〉L2(Γr)

∣∣∣
||us(·, dy)||L2(Γr)||G(·, x)||L2(Γr)

, ∀x ∈ Ω , (2.12)

where the inner product 〈·, ·〉L2(Γr) is given by

〈us(xr, dy), G(xr , x)〉L2(Γr) :=

∫

Γr

us(xr, dy)G(xr , x)ds

and

||us(·, dy)||L2(Γr) =

(∫

Γr

∣∣∣us(xr, dy)
∣∣∣
2

dσxr

) 1
2

, ||G(·, x)||L2(Γr) =

(∫

Γr

∣∣∣G(xr, x)
∣∣∣
2

dσxr

) 1
2

.

In order to fully utilize measurements from multiple measurement events, i.e., with incidences dy,n ∈
SM , n = 1, ..., N , we define an index function I(x) to combine different values of I(x, dy,n) in the following
way:

I(x) = max
n=1,...,N

{
I(x, dy,n)

}
, ∀x ∈ Ω.

Here, Im means the index function for the mth data set. It has been discussed theorectically and illus-
trated numerically in [34] that the function in (2.12) has a relative large value when a sampling point x
is close to an inhomogeneous inclusion in Ω and decays rapidly as xmoves away from any of the inclusions.

We notice that in the two aforementioned examples, the choices of sampling points x places a crucial
row in constructing the indicator functions (either η(x) or I(x) in the previous two examples), and
appropriate choices of the mesh size (or the density of sampling points) are of importance for insuring
the best possible quality of the reconstruction procedure.

3 Optimal mesh size with far-field data under plane wave illu-

mination

In this section, we shall consider the optimal choice of the mesh size for the reconstruction of inclusions
inside Ω from the far-field data. We consider the case when Γr = R SM−1 where R ≫ 1. In this case,
instead of having the scattered field us as measurement, we may assume that we have obtained our
measurement as the far-field pattern u∞ given by

u∞(dx, dy) = lim
|x|→∞

|x|M−1
2 exp−ik|x| us(|x|dx, dy), (3.1)

where dx and dy belong to the unit sphere SM−1.
Hence, we assume that the measurements u∞(dx, dy), where dx, dy ∈ SM−1, are performed. For small

wave number k, the Born approximation shows that the far-field pattern can be expressed as

u∞(dx, dy) = C̃k,Mk2
∫

Ω

q(z)eik(dx−dy)·zdz +O(k4|Ck,M |2), (3.2)

where there error term is in L2, and

C̃k,M =
−i√
8π

(
k

2π

)M−2
2

exp

(
− (M − 1)

4
πi

)

6



is a constant depending on the space dimension M and k. We have the following result from the Nyquist-
Shannon sampling theorem.

Theorem 3.1. Let k be fixed and small. Denote by F(q)(ξ) the Fourier transform of q(y):

F(q)(ξ) :=

∫

Ω

q(z)eiξ·zdz for ξ ∈ RM . (3.3)

Suppose that F(q)(ξ) = 0 for all |ξ| > 2k. Then, the reconstruction of q from u∞(dx, dy), where dx, dy ∈
SM−1, is with an error of order O(k2|C̃k,M |). The reconstruction can be performed with a choice of the
mesh size h < λ

2 , where λ := 2π/k is the operating wavelength.

Proof. It is direct to observe that

F(q)(ξ) =
1

C̃k,Mk2
u∞(dx, dy) +O(k2|C̃k,M |), (3.4)

where ξ := k(dx − dy) ∈ {ξ : |ξ| ≤ 2k}. Hence, from u∞(dx, dy), dx, dy ∈ SM−1, we obtain the values of

F(q)(ξ) for |ξ| ≤ 2k up to an error of the order O(k2|C̃k,M |) in L2. Since F(q)(ξ) = 0 for all |ξ| > 2k, we

have F(q)(ξ) up to an error of the order O(k2|C̃k,M |) in L2. Applying the inverse Fourier transform, we

obtain q up to an error of the order O(k2|C̃k,M |) in L2. An application of the Nyquist-Shannon sampling
theorem yields the last statement in the theorem with a choice of h < λ

2 .

Notice that the above result shows that we may maximize our choice of the mesh size by taking
h = λ

2 − ǫ for a small ǫ in order to minimize the computation complexity.
In order to recover the contrast function q(x), we should discretize (3.2) into the following form:

u∞ ≈ γk2
N∑

j=1

sj q(zj)e
ik(dx−dy)·zj .

Here, the optimal N is
⌈
4|Ω|/λ2

⌉
when M = 2, where ⌈x⌉ means the largest integer that is less than or

equal to x, sj denotes the j-th grid point in Ω, and |Ω| represents the area (volume) of Ω.

4 Optimal mesh size with near-field data under point source

illumination

In this section, optimal mesh size for contrast reconstruction from near-field data will be discussed.
Based on the first term of the Neumann series solution to the Lippmann-Schwinger integral equation
which is known as the Born approximation, the scattered field us is approximated by

us
B(x, y) = k2

∫

Ω

q(z)G(x, z)ui(y, z) dz +O(k4), x ∈ Γr and y ∈ Γs . (4.1)

Furthermore, the incident field ui in this case is provided by the Green function. Thus, the estimated
scattered field us

B can be written into the following multi-static response (MSR):

[MSR(q)](x, y) :=
1

k2
us
B(x, y) =

∫

Ω

q(z)G(x, z)G(z, y) dz +O(k2), x ∈ Γr and y ∈ Γs . (4.2)

In practice, we again discretize the sampling domain D into N sub-regions and denote the center
of each sub-region by zj for j = 1, 2, · · · , N . Based on this discretization, we have the following MSR

7



approximation operator A up to a normalization constant Ĉk,M depending on k and M , which is the
dominant part of the near-field data,

A :=

N∑

j=1

q(zj)|zj − x| 2−M
2 |zj − y| 2−M

2 H
(1)
M−2

2

(k|zj − x|)H(1)
M−2

2

(k|zj − y|) for x ∈ Γr and y ∈ Γs , (4.3)

where zj ∈ Ω.
Let us consider for simplicity the case when Γr = Γs. In order to investigate the optimal mesh size for

the reconstruction process, we need to determine the number of observable singular values for the MSR
operator A when zj are close to each other.

For this purpose, we first define a conjugation map on L2(Γ) as follows,

C : L2(Γ) → L2(Γ) f 7→ f̄ .

Now, from the fact that the operator A is compact and C-complex symmetric, namely, A∗ = CAC. We
have the following Danciger’s variational principle for the singular values {σi} of A [21],

σn = min
codimRV=n

max
p∈V

||p||=1

ℜ[Ap, p] , (4.4)

where [Ap, p] = pTAp and σ0 ≥ σ1 ≥ ... ≥ 0.
Before we state the following main result, we denote the locations of receivers and sources by Γ :=

Γr ∪ Γs. Firstly, we consider the simplest case when N = 1. Because q is a constant, we investigate the
following operator A1 which is the key part of the operator A:

A1 := a|z − x| 2−M
2 |z − y| 2−M

2 H
(0)
M−2

2

(k|z − x|)H(1)
M−2

2

(k|z − y|) = w ⊗ wT for x, y ∈ Γ, (4.5)

where a = |||z − x| 2−M
2 H

(1)
M−2

2

(k|z − x|)||2L2(Γ), ⊗ means the Kronecker product and

w := |z − x| 2−M
2 H

(1)
M−2

2

(k|z − x|)
/∥∥∥|z − x| 2−M

2 H
(1)
M−2

2

(k|z − x|)
∥∥∥
L2(Γ)

is a unit vector. It is easy to see that

ℜ[A1p, p] = ℜ(pTA1p) = ℜ(wT p)2




= 0 if p ⊥R w ,

6= 0 otherwise,
(4.6)

and that ℜ[A1p, p] ≤ 1. We infer from Danciger’s principle [17] that the singular values of A1 are as
follows: σ0 = 1 and σi = 0 (i ≥ 1).

Secondly, we investigate the case when N = 2. With the help of (4.3), the main part of the MSR
matrix is of the form

A2 := b1w1 ⊗ wT
1 + b2w2 ⊗ wT

2 , (4.7)

where bj = |||zj − x| 2−M
2 H

(1)
M−2

2

(k|zj − x|)||2L2(Γ), and

wj := |zj − x| 2−M
2 H

(1)
M−2

2

(k|zj − x|)
/∥∥∥|zj − x| 2−M

2 H
(1)
M−2

2

(k|zj − x|)
∥∥∥
L2(Γ)

,

for j = 1, 2, are unit vectors. Similarly, we are able to directly obtain that

ℜ[A2p, p] = ℜ(pTA2p)




= 0 if p ⊥R span

R
{w1, w2} ,

6= 0 otherwise .
(4.8)
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Now, let us define {h1, h2} :=
{

w1+w2

‖w1+w2‖L2(Γ)
, w1−w2

‖w1−w2‖L2(Γ)

}
. Then, we have

‖h1‖L2(Γ) = ‖h2‖L2(Γ) = 1 , ℜ〈h1, h2〉Γ = 0 , (4.9)

and that spanR{h1, h2} = spanR{w1, w2}. Hence, the operator A2 can be written as,

A2 =
1

2
‖w1 + w2‖2L2(Γ) h1 ⊗ hT

1 +
1

2
‖w1 − w2‖2L2(Γ) h2 ⊗ hT

2 . (4.10)

Considering (4.8)-(4.10), Danciger’s principle yields that the singular values of A2 satisfy

σ0 =
1

2
max

{
‖w1 + w2‖2L2(Γ), ‖w1 − w2‖2L2(Γ)

}
= 1 + |ℜ〈w1, w2〉| , (4.11)

σ1 =
1

2
min

{
‖w1 + w2‖2L2(Γ), ‖w1 − w2‖2L2(Γ)

}
= 1− |ℜ〈w1, w2〉| , (4.12)

σl = 0, ∀ l > 1, (4.13)

where 〈w1, w2〉 =
∫
Γ
w1w2dσ. The above results can be summarized in the following theorem.

Theorem 4.1. Suppose that the operator A can be represented as follows,

A := w1 ⊗ wT
1 + w2 ⊗ wT

2 , (4.14)

where wj are unit vectors in L2(Γ) for j = 1, 2. We have the following expression for the singular values
of A:

σ0 = 1 + |ℜ〈w1, w2〉| , σ1 = 1− |ℜ〈w1, w2〉| , σ2 = σ3 = · · · = 0, (4.15)

and the quotient α between the two non-zero singular values is expressed as,

α :=
σ1

σ0
=

1− |ℜ〈w1, w2〉|
1 + |ℜ〈w1, w2〉|

. (4.16)

We have noticed that the ratio α represents the relative observability of the second singular value with
respect to the first one. Therefore, it quantifies the ability to distinguish between two inhomogeneities
from the measurements in the form of the MSR matrix. Consequently, we introduce the following defini-
tion of the α-distinguishable with respect to Γ, for 0 < α < 1.

Definition 4.2. Two point scatterers at locations z1 and z2 with equal weights are α-distinguishable with
respect to Γr if the following inequality is satisfied:

1− α ≥ 1− |ℜ〈w1, w2〉|
1 + |ℜ〈w1, w2〉|

, (4.17)

where

wj := (k|zj − x|)
2−M

2 H
(1)
M−2

2

(k|zj − x|)
/∥∥∥ (k|zj − x|)

2−M
2 H

(1)
M−2

2

(k|zj − x|)
∥∥∥
L2(Γ)

with j = 1, 2 and ∀zj ∈ D, x ∈ Γr.

Without loss of generality, we consider two point scatterers located at z1 = z and z2 = z + εv, where
v is a unit vector and ε is a distance parameter which can be viewed as the mesh size. We acquire
the interval of ε when the two point scatterers are α-distinguishable with respect to Γ. From the series
expansion of (1 + a)−β for all β 6= 0 w.r.t. a, we derive that if ε < |z − x|, then

|z + εv − x|−β =

∞∑

r=0

r∑

s=0

Γ(β2 + r)

Γ(β2 )s!(r − s)!
(−1)rεr+s cosr−s(θz−x,v)|z − x|−β−r−s,

9



where θz−x,v denotes the relative angle between z− x and v and that the series converges absolutely and
uniformly when ε < (1 − γ)min{1, |z − x|}, for some 0 < γ < 1. Together with Graf’s fromula [35], we
have if ε < (1− γ) min{1, dist(Γ, z)} , then the following expansion holds:

ℜ
(∫

Γ

|z − x| 2−M
2 |z + εv − x| 2−M

2 H
(2)
M−2

2

(k|z − x|)H(1)
M−2

2

(k|z + εv − x|) dσx

)

=





∑
n∈Z

pnJn(kε) if M = 2,

∑
n∈Z

∑
r∈N

r∑
s=0

pnrs Jn(kε) ε
r+s if M > 2,

(4.18)

where pn and pn,r,s are explicitly given by

pn := ℜ

(
∫

Γ

H
(2)
0 (k|z − x|)H(1)

n (k|z − x|)e−inθz−x,v dσx

)

(4.19)

pnrs := (−1)r
Γ(M−2

4
+ r)

Γ(M−2
4

)s!(r − s)!
ℜ

(
∫

Γ

|z − x|2−M−r−s
H

(2)
M−2

2

(k|z − x|)

·H
(1)
M−2

2
+n

(k|z − x|) cosr−s(θz−x,v)e
−inθz−x,v dσx

)

(4.20)

with θz−x,v denoting the relative angle between z − x and v. Likewise, we have

∫

Γ

|z + εv − x|2−MH
(2)
M−2

2

(k|z + εv − x|)H(1)
M−2

2

(k|z + εv − x|) dσx

=





∑
n,m∈Z

hnmJn(kε)Jm(kε) if M = 2,

∑
n,m∈Z

∑
r∈N

r∑
s=0

hnmrs Jn(kε)Jm(kε) εr+s if M > 2,
(4.21)

where hnm and hnmrs are given by

hnm := ℜ

(
∫

Γ

H
(2)
m (k|z − x|)H(1)

n (k|z − x|)e−i(n−m)θz−x,v dσx

)

, (4.22)

hnmrs := (−1)r
Γ(M−2

2
+ r)

Γ(M−2
2

)s!(r − s)!
ℜ

(
∫

Γ

|z − x|2−M−r−s
H

(2)
M−2

2
+m

(k|z − x|)

·H
(1)
M−2

2
+n

(k|z − x|) cosr−s(θz−x,v)e
−i(n−m)θz−x,v dσx

)

. (4.23)

Assume that 0 < R0 ≤ dist(z,Γ) ≤ R1 for some R0, R1 ∈ R, and consider the asymptotic property of Jm
[10]. We can infer that both the series (4.18) and (4.21) converge absolutely. If we further impose the
restriction that k ε

2 ≤ 1, then from the following well-known Taylor series of the Bessel functions [35],

Jn(kε) = (sgn(n))n
∑

l∈N

(−1)l

l!(l + |n|)!

(
k ε

2

)2l+|n|

, (4.24)
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we immediately obtain the following expansion of the inner product:

ℜ

(
∫

Γ

|z − x|
2−M

2 |z + εv − x|
2−M

2 H
(2)
M−2

2

(k|z − x|)H
(1)
M−2

2

(k|z + εv − x|) dσx

)

=















∑

l∈N

∑

n∈Z

(sgn(n))npn
(−1)l

l!(l+|n|)!

(

k ε

2

)2l+|n|
for M = 2,

∑

l∈N

∑

n∈Z

∑

r∈N

r
∑

s=0

(−sgn(n))npnrs
(−1)l

l!(l+|n|)!

(

k ε

2

)2l+|n|
εr+s for M > 2,

(4.25)

∫

Γ

|z + εv − x|2−M
H

(2)
M−2

2

(k|z + εv − x|)H
(1)
M−2

2

(k|z + εv − x|) dσx

=















∑

l,p∈N

∑

n,m∈Z

(sgn(n))n(sgn(m))mhnm
(−1)l+p

l!p!(l+|n|)!(p+|m|)!

(

k ε

2

)2(l+p)+|n|+|m|
for M = 2,

∑

l,p∈N

∑

n,m∈Z

∑

r∈N

r
∑

s=0

(sgn(n))n(sgn(m))mhnmrs
(−1)l+p

l!p!(l+|n|)!(p+|m|)!

(

k ε

2

)2(l+p)+|n|+|m|
εr+s for M > 2,

(4.26)

where the two series at the right-hand side converge absolutely for k ε
2 ≤ 1 and ε < (1−γ) min{1, dist(Γ, z)}.

4.1 α-distinguishability when M = 2

For simplicity, let us first focus on the case when M = 2. We obtain the following estimate,
∣

∣

∣

∣

ℜ

(∫

Γ

H
(2)
0 (k|z − x|)H

(1)
0 (k|z + εv − x|) dσx

)

− p0 +
k ε

2
(p1 − p−1)

∣

∣

∣

∣

≤ C1
k2 ε2

4
, (4.27)

∣

∣

∣

∣

∣

∣

∫

Γ

H
(2)
0 (k|z + εv − x|)H

(1)
0 (k|z + εv − x|) dσx − h00 −

k ε

2

∑

|m|+|n|=1

(sgn(n))n(sgn(m))mhnm

∣

∣

∣

∣

∣

∣

≤ C2
k2 ε2

4
, (4.28)

where p0 = h00 = ||H(1)
0 (k|z − x|)||2L2(Γ) and C1 and C2 are two finite constants having the following

forms:

C1 =
∑

l>0

∑

n∈Z

|pn|
l!(l + n)!

+
∑

n>1

|pn|
n!

, (4.29)

C2 =
∑

l+p>0

∑

m,n∈Z

|hnm|
l!p!(l + n)!(p+m)!

+
∑

m+n>1

|hnm|
n!m!

(4.30)

if k ε
2 ≤ 1 and ε < (1−γ) min{1, dist(Γ, z)}. From (4.27) and (4.28), we have the following approximation:

1− |ℜ〈w1, w2〉|2 = 1−

(
p0 − (p1 − p−1)

k ε
2 +O

(
k2 ε2

4

))2

p0

(
p0 +

k ε
2

∑
|m|+|n|=1

(sgn(n))n(sgn(m))mhnm +O
(
k2 ε2

4

)
) . (4.31)

We further assume that

k ε

2
≤
√

p20k
2
1

4C2
2

+
p0(1− δ)

C2
− p0|k1|

2C2
(4.32)

for some 0 < δ < 1, where

k1 =

∑
|m|+|n|=1(sgn(n))

n(sgn(m))mhnm

p0
. (4.33)

11



Then, we have

max

{
k ε

2

∣∣∣∣k1 −
C2

p0

k ε

2

∣∣∣∣ ,
k ε

2

∣∣∣∣k1 +
C2

p0

k ε

2

∣∣∣∣
}

≤ 1− δ, (4.34)

and thus, we can derive from the Taylor expansion and (4.31) that

∣∣∣∣1− |ℜ〈w1, w2〉|2 −
(
2(p1 − p−1)

p0
+ k1

)
k ε

2

∣∣∣∣ ≤ C
k2 ε2

4
(4.35)

with the constant C given by

C =
C2

p0

(

1 + 2 |k1| δ
−1)+ k

2
1δ

−1 +
C2

2

p20
δ
−1 +

2(|p1|+ |p−1|)|k1|

p0
+

(|p1|+ |p−1|)
2 + 2(p0 + |p1|+ |p−1|)C1 + C2

1

p20
, (4.36)

when 0 < δ < 1. We can rewrite the condition in (4.17) as follows,

4(1− α)

(2− α)2
≥ 1− |ℜ〈w1, w2〉|2. (4.37)

With the help of (4.35), the two point inclusions with the same magnitude are α-distinguishable if the
following inequality holds:

4(1− α)

(2 + α)2
≥
(
2(p1 − p−1)

p0
+ k1

)
k ε

2
+ C

(
k ε

2

)2

. (4.38)

This directly infers the following theorem. Note that we may always assume that kε < 1/2.

Theorem 4.3. When the dimension M = 2, consider a point z such that 0 < R0 ≤ dist(z,Γ) ≤ R1 for

some R0, R1 ∈ R, where Γ = Γs = Γr,
k ε
2 ≤ min

{
1
4 ,
√

p2
0k

2
1

4C2
2
+ p0(1−δ)

C2
− p0|k1|

2C2

}
for some 0 < δ < 1,

ε < (1 − γ) min {1, dist(Γ, z)} for some 0 < γ < 1, pn are defined as in (4.19), hnm as in (4.22), and
let C1, C2, C, k1 be stated in (4.29), (4.30) (4.36) and (4.33), respectively. The two point scatterers with
equal weights located at z and z + εv are α-distinguishable with respect to Γ if the following inequality
holds:

k ε

2
≤ −

(
2p1 − 2p−1 + k1p0

2Cp0

)
+

√(
2p1 − 2p−1 + k1p0

2Cp0

)2

+
16(1− α)

C(2 + α)2
. (4.39)

Unfortunately, both the conditions and conclusions of the above theorem are too complicated to be
practical for choosing an optimal mesh size. In order to obtain an optimal mesh size for practical use,
we provide approximations for the coefficients in the above inequalities: we estimate C1 and C2 by

C1 ≈ p0 , C2 ≈ 2p0 . (4.40)

By considering (4.25) and (4.26), and further imposing that δ = 1/2, the following approximation of the
constant C holds:

C ≈ 13 + 8 |k1|+ 2k2
1 +

(|p1|+ |p−1|)
2 + 2(|p1|+ |p−1|)(1 + |k1|)p0

p20
. (4.41)

The condition (4.32) with kε/2 < 1/4 can also be simplified to be the above approximate condition

k ε

2
< min

{
1

4
,

√
k21
16

+
1

4
− |k1|

4

}
. (4.42)
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Combining the above estimations of the constants C1, C2, and C with (4.39), we obtain the following
approximate description of an anisotropic optimal density at any point z and any direction v for contrast
reconstruction from the near-field data in terms of the α-distinguishably,

hz,v(α) :=
2

k
min




1

4
,

√
k21
16

+
1

4
− |k1|

4
,

(
2p1 − 2p−1 + k1p0

2Cp0

)
−

√(
2p1 − 2p−1 + k1p0

2Cp0

)2

+
16(1− α)

C(2 + α)2



 .(4.43)

Note that p0, p1, p−1, k1, and C depend on z, v, and Γ.

Remark 4.4. A few remarks are in order:

(i) In practice, the measurements are taken over a finite number of points on Γ = Γr = Γs and hence,
the integrals in (4.19), (4.20), (4.22), and (4.23) can be evaluated numerically as a sum over the
points.

(ii) In practice, small regions with fine details are usually anticipated to be recovered with high resolution.
Thus, a uniform discretization in the whole sampling domain may not be the best. Hence, we may
apply adaptivity, and use the optimal mesh size in (4.43) in the region with the requirements of high
resolution and a coarse mesh to the other regions.

(iii) To get the interpretation of the optimal mesh size correct, actually it means if you refine further
than the mesh size given, it will not improve the resolution. Hence, if the object is far away, then
it is almost identical to using far-field reconstruction, and we do not need to refine better than λ/2.

(iv) A similar analysis can be performed in the general case when Γr and Γs may not coincide, but we
skip the analysis for the sake of simplicity.

4.2 α-distinguishability when M > 2

Similarly, when M > 2, we have,
∣

∣

∣

∣

ℜ

(∫

Γ
H

(2)
0 (k|z − x|)H

(1)
0 (k|z + εv − x|)dσx

)

− p000 +
k ε

2

(

p1 0 0 − p−1 0 0 −
2p0 1 0

k

) ∣

∣

∣

∣

≤ C1,M
k2 ε2

4
, (4.44)

∣

∣

∣

∣

∣

∣

∫

Γ
H

(2)
0 (k|z + εv − x|)H

(1)
0 (k|z + εv − x|) dσx − h0000 +

k ε

2





∑

|m|+|n|=1

(sgn(n))n(sgn(m))mhnm00 +
2h0010

k





∣

∣

∣

∣

∣

∣

≤ C2,M
k2 ε2

4
, (4.45)

where p000 = h0000 =
∥∥∥|z − x|M−2

2 H
(1)
M−2

2

(k|z − x|)
∥∥∥
2

L2(Γ)
and C1,M and C2,M are two constants given if

k ε
2 ≤ 1 and ε < (1− γ) min{1, dist(Γ, z)} by

C1,M =
∑

l>0

∑

n∈Z

∑

r∈N

r
∑

s=0

|pnrs|

l!(l+ n)!
+

∑

n>1

∑

r∈N

r
∑

s=0

|pnrs|

n!
, (4.46)

C2,M =
∑

l+p>0

∑

m,n∈Z

∑

r∈N

r
∑

s=0

|hnmrs|

l!p!(l+ n)!(p +m)!
+

∑

m+n>1

∑

r∈N

r
∑

s=0

|hnmrs|

n!m!
. (4.47)

Hence, a similar analysis can be performed as in the previous subsection provided that ε < (1 −
γ) min{1, dist(Γ, z)} and

k ε

2
≤ min

{
1,

√
p2000k

2
1

4C2
2,M

+
p000(1 − δ)

C2,M
− p000|k1,M |

2C2,M

}
(4.48)

for some 0 < δ < 1, where

k1,M =


 ∑

|m|+|n|=1

(sgn(n))n(sgn(m))mhnm00 +
2h0010

k



/

p000 . (4.49)
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Then, by a Taylor expansion, we readily see that
∣∣∣∣∣1− |ℜ〈w1, w2〉|2 −

(
2
(
p1 0 0 − p−1 0 0 − 2p0 1 0

k

)

p000
+ k1,M

)
k ε

2

∣∣∣∣∣ ≤ C
k2 ε2

4

with the constant CM being given by

CM =
C2,M

p000

(

1 + 2
∣

∣k1,M
∣

∣ δ−1
)

+ k21,Mδ−1 +
C2

2,M

p2000
δ−1 +

2
(

|p1 0 0|+ |p−1 0 0| −
2|p0 1 0|

k

)

)|k1,M |

p000

+

(

|p1 0 0|+ |p−1 0 0| −
2|p0 1 0|

k

)2
+ 2

(

p000 +
(

|p1 0 0|+ |p−1 0 0| −
2|p0 1 0|

k

))

C1,M + C2
1,M

p2000
, (4.50)

when 0 < δ < 1. Hence, condition (4.17) is fulfilled if

4(1− α)

(2 + α)2
≥
(
2
(
p1 0 0 − p−1 0 0 − 2p0 1 0

k

)

p000
+ k1,M

)
k ε

2
+ CM

(
k ε

2

)2

. (4.51)

Likewise, adding the constraint kε < 1/4, this directly infers the following theorem.

Theorem 4.5. For M > 2, consider a point z such that 0 < R0 ≤ dist(z,Γ) ≤ R1 for some R0, R1 ∈
R, where Γ = Γs = Γr, and that k ε

2 satisfies (4.48) for some 0 < δ < 1 and kε < 1/4, ε < (1 −
γ) min {1, dist(Γ, z)} for some 0 < γ < 1, where pnrs are defined as in (4.20), hnmrs as in (4.23), and
let C1,M , C2,M , CM , k1,M be as in (4.46), (4.47) (4.50), and (4.49), respectively. The two point scatterers
with equal weights located at z and z+εv are α-distinguishable with respect to Γ if the following inequality
holds:

k ε

2
≤
(
2
(
p1 0 0 − p−1 0 0 − 2p0 1 0

k

)

p000
+ k1,M

)
−

√√√√
(
2
(
p1 0 0 − p−1 0 0 − 2p0 1 0

k

)

p000
+ k1,M

)2

+
16(1− α)

CM (2 + α)2
.(4.52)

In order to make the conditions stated in the above theorem practical, we assume that δ = 1/2 and
provide, by considering (4.25) and (4.26), approximations for the coefficients with

C1,M ≈ p000 , C2,M ≈ 2p000 ,

CM ≈ 13 + 8
∣

∣k1,M
∣

∣ + 2k21,M +

(

|p1 0 0|+ |p−1 0 0| −
2|p0 1 0|

k

)2
+ 2

(

|p1 0 0|+ |p−1 0 0| −
2|p0 1 0|

k

)

(p000 + |k1,M |)

p2000
.

With the above approximations of the constants C1,M , C2,M , and CM and estimate (4.52), we obtain an
anisotropic optimal density at any point z and at any direction v for contrast reconstruction from the
near-field data in terms of α-distinguishably as follows:

hz,v,M (α) :=
2

k
min

{

1

4
,

√

k2
1,M

16
+

1

4
−

|k1,M |

4
,

(

2
(

p1 0 0 − p−1 0 0 −
2p0 1 0

k

)

p000
+ k1,M

)

−

√

√

√

√

(

2
(

p1 0 0 − p−1 0 0 −
2p0 1 0

k

)

p000
+ k1,M

)2

+
16(1− α)

CM (2 + α)2

}

. (4.53)

The remarks in the previous subsection are also in order in this subsection.

4.2.1 Combining the optimal mesh size function along two opposite directions

Practically, one may combine the optimal mesh-size for v and −v since they are refined in the same
direction, and we may consider the following function instead,

h̃z,v(α) := min
{
hz,v(α), hz,−v(α)

}
,
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as well as
h̃z,v,M (α) := min

{
hz,v,M (α), hz,−v,M (α)

}
.

This is to forget the information about separating a point forward or backward along the direction v.

5 Adaptive refinement using the optimal mesh function

We can apply the function h̃z,v(α) to refine a mesh at a point z along a direction v (which we may
refer to as a polarization direction). Suppose we have a finite number of inhomogeneous inclusions inside
Ω, and we implement the following procedures to recover all the inhomogeneities:

(i) Select a coarse mesh with mesh size h = λ/2;

(ii) Locate where the reconstruction has an elongated shape at a sampling point z, say, a rod with
direction v;

(iii) Refine the mesh h̃z,v(α) at the point z and the polarization direction v for further reconstruction;

(iv) Repeat step (iii) until all inclusions are separated.

It is worth emphasizing that the purpose of steps (ii) and (iii) is to determine whether the inhomogeneities
are actually two objects or only one long rod.

6 Numerical illustrations

6.1 Behavior of the mesh-size function h̃z,v(α)

In order to understand better the behavior of the optimal mesh-size function, let us numerically

illustrate some of the behaviors of h̃z,v(α) defined as in (4.43) (see Theorem 4.3). Assume that the
sources xs and receivers xr are located at Γ = {(cos(4πn/14), 4 sin(2πn/14))} for n = 0, 1, · · · , 7, as
shown in Figure 3(a), and let Ω = B4(0).
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Figure 3: (a) Γ in red. (b) The graph of hz,v(α) with respect to α when k = 2, z = (1, 3.5) and the polarization
direction v = (1, 0). Measurement points in red and grid points in blue.

We assume that k = 2, z = (1, 3.5), and the polarization direction v = (1, 0). The mesh-size function
hz,v(α) with respect to α is illustrated in Figure 3(b). We may also fix a large α to obtain a density
function and uneven mesh with a mesh-size satisfying the density provided by

z 7→ pv,α(z) :=

(
h̃z,v(α)

)−2

∫
Ω

(
h̃z,v(α)

)−2
dz

15



for a fixed v. The reason to take this function is that the optimal density is proportional to
(
h̃z,v(α)

)−M

where M = 2. Figure 4 shows the density function pv,α(z) at v = (1, 0) and v = (0, 1), respectively, when
α = 0.995.
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Figure 4: The function pv,α(z) at v = (1, 0) and v = (0, 1), respectively, when α = 0.99. Measurement points in
red and grid points in blue.

The above plots show that the refinement is unnecessary when the sampling points are at a distance
half the radius from the sources/receivers. Now, we fix a particular α and generate a set of grid points
with a mesh-size satisfying hz,v along the direction v. Figure 5 illustrates the grid points with v = (1, 0)
and v = (0, 1), respectively, when α = 0.55.
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Figure 5: Grid points with mesh-size satisfying hz,v(0.1) along the direction v, where v = (1, 0) and v = (0, 1),
respectively.

One may observe that the refinements are done in the directions v near the source/receiver points
and are left coarser when the sampling points are further away. In practice, we may combine the two

mesh sizes and generate a tensor mesh with a mesh-size h̃z,e1(α) along e1 = (1, 0) and h̃z,e2(α) along

e2 = (0, 1). Figure 6 respectively shows the grid points of the tensor mesh with h̃z,e1(α) along e1 = (1, 0)

and h̃z,e2(α) along e2 = (0, 1) when α = 0.55.
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Figure 6: (a) Grid points with mesh-size satisfying hz,v(0.1) along the direction v, where v = (1, 0) and v = (0, 1),
respectively. (b) Unrefined mesh. Measurement points in red and grid points in blue.

6.2 Use of the mesh-size function h̃z,v(α) for improving the reconstruction

methods

This paper aims at getting an optimal mesh-size which maximizes the resolution of the reconstruction
procedure with minimal numerical cost. As discussed before, this choice of mesh is not restricted to
one particular numerical method, and the numerical methods given in subsection 2.2 are just several
examples to illustrate the concept. In this subsection, we illustrate the efficiency of the optimal meshing
procedure using the DSM, which is introduced in subsection 2.2. For further details on the DSM, we
refer to [30, 31, 32, 13, 31, 33, 34, 14, 15, 26, 27, 28].

In what follows, we consider an example of a near-field measurement corresponding to only one
illumination. Notice that since the case considered here is more pathological than the assumptions given

in Theorem 4.3, the mesh-size function h̃z,v(α) defined as in (4.43) shall serve as a bottom line for the
reconstruction.

We consider the case k = π2 when q(x) in (2.1) is given by

q(x) = 1 + 2IQ1(x) + 2IQ2(x),

where Q1 = {x ∈ R2;−0.275 < x1 < −0.175,−0.275 < x2 < −0.175} and Q2 = {x ∈ R2;−0.15 < x1 <
−0.05,−0.15 < x2 < −0.05} are two squares inside R2, and IA is an indicator function of a set A such
that the value is 1 if x ∈ A and is 0 otherwise. We take a plane wave incidence with angle θy = π/4,
i.e., dy = (cos(θy), sin(θy)). As shown in the following figures, 20 measurement points along a circle of
radius 0.5 are employed in this example. We perform the DSM with different mesh sizes to illustrate

the efficiency of using h̃z,v(α) for meshing. Note that we intentionally define Q1 and Q2 closer to the

boundary measurement points, otherwise the density given by h̃z,v(α) will be similar to the situation
when we have far-field measurements, and that will not serve the purpose of illustrating the efficiency of

h̃x,v(α).
Moreover, we also intentionally put the distance between Q1 and Q2 smaller than half of the wave-

length which is approximately 0.16. This helps to test if the meshing given by h̃x,v(α) can separate the
two obstacles. One remark is that, since we are taking near-field measurements, the DSM would have
its kernal possessing “heavy tail”, (see, for instance, [29] for more details), and hence the reconstruction
will not be quite sharp and are expected to be more fussy. We do not anticipate clear reconstructions
since only one single measurement is applied in the recovery procedure. This section, however, illustrates

that, taking a mesh-size given by h̃x,v(α) helps to obtain as much details as those we can recover from
our measurements.
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Figure 7: (a) Grid points on a coarse mesh. (b) reconstruction given by [I(x, dy)]2, where Icoarse := I(x, dy) in
(2.12) with the grid point given by the coarse mesh.

Figure 7 (a) illustrates the coarse mesh that we considered, with its mesh-size being half the wave-
length. Figure 7 (b) shows the reconstruction given by the index function Icoarse := I(x, dy) with this
coarse mesh. As we may expect, we cannot distinguish two inclusions in the image, and basically we only
observe a large patch at the lower bottom part of the reconstruction.

Now, let us consider a refinement of the mesh as a tensor grid with mesh-sizes h̃z,ei(α) along the two
directions e1 = (1, 0) and e2 = (0, 1), where we take α = 0.9. We refine the mesh in the whole sampling
domain Ω, and obtain a fine mesh given as in Figure 8 (a). We then perform the DMS and Figure 8 (b)
is the approximation provided by the index function I(x, dy) with this fine sampling. We notice that this
sampling helps to identify whether or not there are indeed two inclusions, with a clear dip separating
the two inclusions. However, we do not expect a very fine reconstruction since the problem is severely
ill-posed. Nonetheless, we are able to separate the two inclusions in the image.
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Figure 8: (a) Grid points on a refined mesh given by a tensor grid with mesh-sizes h̃x,ei(α) along e1 = (1, 0), e2 =
(0, 1), α = 0.9, and x is taken in the whole sampling domain Ω. (b) A reconstruction given by [I(x, dy)]2, where
I(x, dy) in (2.12) with a refined grid in the left.

Next, we consider a refinement of the mesh only at the points where the value of Icoarse(x) > 0.995.

Again, we refine as a tensor grid with mesh-sizes h̃z,ei(α) along the two directions e1 = (1, 0) and
e2 = (0, 1), where we take α = 0.9. The resulting adaptive refinement is shown in Figure 9 (a). We
perform the DSM. Figure 9 (b) illustrates the recovery obtained by the index function I(x, dy) with this
adaptive fine sampling. Comparing the reconstruction in Figures 8 and 9, we can clearly observe that the
qualities of the reconstructions are similar, i.e., both of them separate the two inclusions, but adaptive
refinement requires a significantly smaller number of sampling points in the reconstruction.

18



-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5
-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5
-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) (b)

Figure 9: (a) Grid points on adaptively-refined mesh given by a tensor grid with mesh-sizes h̃x,ei(α) along
e1 = (1, 0), e2 = (0, 1), α = 0.9, and x is taken only when Icoarse(x) > 0.995. (b) A reconstruction given by
[I(x, dy)]2, where I(x, dy) in (2.12) with adaptively-refined grid on the left.

7 Conclusion

In this paper, we have discussed the choice of optimal mesh size for the reconstruction of inclusions
from both the near-field and the far-field data in two and three dimensions. The computation complexity
would be sharply reduced with an optimal mesh size for state-of-the-art algorithms (i.e., LSM, DSM,
CSIM, etc,) since the computation complexity is usually at least of the order of O(NM−1) in RM ,
where N is the number of sampling points along one direction. Moreover, an optimized mesh size can
help improving reconstructions of some iterative reconstruction approaches (i.e., MSM, EMSM, etc,) by
avoiding choices of stopping criterion which may heavily depend on the quality of the reconstruction
under a coarser mesh and a subjective choice of the cut-off value. We can conclude that our results are
expected to have important implications in solving inverse scattering problems.
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