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GROUND STATE FOR THE RELATIVISTIC ONE ELECTRON
ATOM

VITTORIO COTI ZELATI AND MARGHERITA NOLASCO

ABSTRACT. We study the Dirac-Maxwell system coupled with an external po-
tential of Coulomb type. We use the Foldy—Wouthuysen (unitary) transfor-
mation of the Dirac operator and its realization as an elliptic problem in the
4-dim half space Ri with Neumann boundary condition. Using this approach
we study the existence of a “ground state” solution.

1. INTRODUCTION AND MAIN RESULTS

The Dirac operator is a first order operator acting on the 4-spinors 1: R? — C*
describing a relativistic electron given by

Dy = —icha -V +mc?p

Here ¢ denotes the speed of light, m > 0 the mass, & the Planck’s constant, a =
(a1, a9, a3) and B are the Pauli-Dirac 4 x 4-matrices,

— H2 02 — 02 Ok —
s=(g %) a2 5) r-r2s

and o are the Pauli 2 x 2-matrices. We take units such that m = ¢ = h = 1.
We are interested in perturbed Dirac operators Dy + agV, V' being a Coulomb
potential, V(z) = f%, s = Z—i N o
and Z, positive integer, is the atomic number.

Due to the unboundedness of the spectrum of the free Dirac operator, many
efforts have been devoted to the characterization and computation of the eigenvalues
for the Dirac-Coulomb Hamiltonian Dy + asV, see [7] and references therein.

Here we add the interaction of the electron with its own (static) electromagnetic
field. The scalar potential ® and the vector potential A = (A;, As, A3) of the elec-
tromagnetic field generated by the electron v satisfy the following (static) Maxwell
equations

is the dimensionless fine structure constant

—AdD = 47p; —AA=A4nJ

where p = [1|? is the charge density and J = (1, 1)) the current of the electron.
Therefore
1

||

and A= (w,aw)*i.

||

@ = [y «

The interaction is obtained through the minimal coupling prescription, which
has, in our units, the following form

DY =a- (—iV — ag A + ax Py + S + ag V)
We have the following result
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Theorem 1.1. Let V(z) = 7% with Z € N the atomic number. For any 4 < Z <

124 there exists pn € (0,1) and 1 € HY?(R3;C*) Ni<g<s/2 Wllo’f(Rg;C4) a solution
of the following Mazwell-Dirac eigenvalue problem

o (—iV — ap A + aps @ + By + apVip = )
(MDC) Wl7. =1
CAD =drp= A2 — AA = dnd = dn (s, o))

Moreover (v, ) is (up to phase) the state of lowest positive energy of the system
(“ground state”).

This existence result is strictly related to the results in [9], where the Authors
consider the Dirac-Fock equations for Atoms and Molecules. The equation con-
sidered in that article describe an atom (even a molecule) with a (fixed) nucleus
and N electrons, and takes into account the interaction of each electron with the
nucleus and the other electrons, but not the interaction of the electrons with their
own electric and magnetic field. Using the Hartree approximation one ends with
an equation similar to the one for the atom with one electron that we consider in
our model (MDC).

Let us also point out that we will prove our result via variational methods, after
performing a unitary change of variables (the Foldy-Wouthuysen transformation)
and a reduction of the problem to an elliptic problem in the 4-dim half space Ri
with nonlinear Neumann boundary condition.

Even in this different setting, we have used in the analysis of the variational
structure of the problem some ideas contained in [9] [7] [TT].

2. THE FW TRANSFORMATION AND THE DIRICHLET TO NEUMANN OPERATOR

Let us recall first the main properties of the free Dirac operator Dy = —ia-V+
(see e.g. [13]). Dy is essentially self-adjoint on C§°(R?\ {0}; C*) and self-adjoint on
D(Dy) = HY(R3;C*). Its spectrum is purely absolutely continuous and it is given
by

g(Dg) = (=00, —1] U [1, +00).
Let define Qp, : H'/?(R3;C*) x H'/2(R3;C*) — C the sesquilinear form associated
to the operator Dy.

Let denote by @ or F(u) the Fourier transform extending the formula

~ 1 —ip-x
a(p) = W /}R3 e~ P %y(x) dx, for u € S(R?).

In the (momentum) Fourier space the free Dirac operator is given by the multipli-
cation operator Dg(p) = FDoF ! = a- p+ 3 that is for each p € R? an Hermitian
4 x 4-matrix with eigenvalues

A(p) = Xa(p) = =A3(p) = —Aa(p) = VIpl> + 1 = A(p).

The unitary transformation U(p) which diagonalize Dy (p) is given explicitly by

U(p) = ay(p)ls +a—(p) %

_ a-p
U~ (p) = at(p)ls — a—(p) il
(1+ ﬁ), we have

U(p)Do(p)U~(p) = Ap)B = /Ip]> +18.
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Hence there are two orthogonal projectors Ay on L?(R3, C*) , both with infinite
rank, given by

L,+3

(2.1) Ae = 7w (55

) U(p)F.

such that
DAL =ALDy=tvV-A+1AL =+AvV-A+ 114
The operator |Dg| = v/—A + 114 can be defined for all f € H*(R3,C?) as the
inverse Fourier transform of the L2 function \/[p[2 + 114 f(p) (see [10]),
Now we consider the Foldy-Wouthuysen (FW) transformation, given by the uni-
tary transformation Uy, = F U (p)F. Under the FW transformation the projec-
tors A4 become sunply

_ I, 8
AinW = UFWA:‘:UFV& = 5
and D, = U, DOU*1 = |Dg| B with the corresponding sesquilinear form

/ V |p|2 dp - QD()( ;Vifv Ul:vig)

defined on the form domain H'/2(R3;C*).

The operator v —A + 1, exactly as the fractional Laplacian, can be related to the
following Dirichlet to Neumann operator (see for example [3] for problems involving
the fractional laplacian, and [4] 5] for more closely related models): given u solve
the Dirichlet problem

{—agv—Ayv—l—v:O inRY ={(z,y) eRxR? |z >0}

v(0,y) = u(y) for y € R® = OR.
and let 5 5
v v

Then Tu(y) = F, ' (\/[pP? + 1a(p)) = V=2 + Tu(y).

Indeed, solving the equation via partial Fourier transform we get
v(z,y) = Fy (a(p)e” VI,

In view of the FW transformation we may consider the eigenvalue problem
(MDC) for the perturbed Dirac operator

Dy — agga - A+ ag® + apV

as follows.

Let (¥, 1) € H'/?(R3,C*) x R be a (weak) solution of the eigenvalue problem
(MDC)) and let ¢, be the following extension of p,, = Uy, ¥, on the half-space (see
lemma B.1] below)

(2.2) Sulw,y) = F, (U p)du(p)e " VIPFHD),

then ¢, € H'(RL,C*), (¢)er = ¢, and ¢, is a (weak) solution of the following
Neumann boundary value problem

*gi% - Ay¢,u + Qb,u =0 in Ri
(P.) ﬁ% + Uy (—agsax - A + ags® + oszV)UF_vicp# = (o, On 8Ri =R3
|50u|2L2 =1

¢ = | FW<P#|2 |gc|’ A= (U;V\}CP#’O‘UFWSQ#) |91c|
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On the other hand, if ¢, € H'(R%,C*) is a (weak) solution of the Neumann bound-
ary value problem ([Py)), setting ¢, = (¢u)¢r, then (U Lo, ) € HY/2(R3,C*) x R
is a (weak) solution of (MDC).

3. NOTATION AND PRELIMINARY RESULTS

To simplify the notation when clear from the context we will denote simply with
H'/2 the Sobolev space H/2(R3,C"), with H* the space H!(R%,C") and with L?
the spaces L?(R®,C") and L?(R%,C™) (where n =2 or n = 4).

We introduce the following scalar products and norms in H', H'/? and L?,
respectively,

Flow = [[ (@:1.0.:0)+ (908.¥00) + (L) 11 = (£ D,

Hladre = [ VBPFTE): s = (F. v

it [ s = [ 1

where (v, w) denotes the scalar product in C".
The following property can be easily verified (see [0]).

Lemma 3.1. For w € H'(RY), let wy, € HY?(R3) be the trace of w and define
v(z,y) = F, (e (p)e” VI,
Then v e HY(RY) and
(3.2) wirlfpe = [0llE < lwlifn

Remark 3.3. We recall that for all f € C5°(R*)

0
/ £(0,)Pdy = / dy / 0| fPdz < 2|11 2110s £ 2
R3 R3 400

and by density we get for all ¢ € H*
(3.4 (il <[] 00l +16) dudy < 01
+
Remark 3.5. Let us recall the following Hardy-type inequalities :
Hardy: for all ¢ € H(R3)
2™ ]2 < 2[V9lre < vl Dol 2

where vy = 2.
Kato: for all 1) € H'/2(R3)

_1 ™
(3.6) e 72912 < IV lEe < iclblips
where vx = 3.
Tix [14]: for all v» € H'/2(R?,C*)
_1
(3.7) [ e N P VL W o

where y7 = £(5 + 2).

In view of the above inequalities, since A+ commute with translation we have
the following result
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Lemma 3.8. For any p € L'(R?) and ¢ € H'/?(R?,C*) we have

1 T

B9 [ o PO < Sl AUl < ol
1

310) [ (o APy < rlplualAsif

Proof.

L[ AL ) weoa = [ ([ D) pw)as
< §|p|p|(— WWAPlTe < vklplela s

The second inequality can be proved in the same way since A+ commute with

translations. O
Hence in particular for V(z) = 7‘72‘ and Z < Z. = 124 we have that Zagyr €

(0,1) and

311) s /|V||Aiw|2 dy = an|[VV2 At dy < Zosyr|Asts| .

We consider the smooth functional Z: H'(R%,C*) — R given by

7(8) =léulZn — léallZn + o / Voy dy

// Pe)pe(z) ddf—// To®) o) 4
R3 xRS Iy—ZI R3xR3 Iy—Z|

where ¢ = () € H'(RL; € x €2), & = Uyl dur, and py = [0, Jy = (&, o)),
It is easy to check that (¢,,pu) € H'(RL,C?*) x R is a weak solution of the
Neumann boundary value problem ([P.)) if and only if

dZ(¢)[h) = p2Re (dp)erlher) 2 Vh € H' (R, CY.
where dZ(¢) : H' — R is the Frechét derivative of the functional Z given by

dZ(p)[h] =2Re{d1|h1) g — 2 Re(pa|ho) 1 + 2045/‘ V Re(v, &) dy
R 0L CEATR KR T P

ly — 2|
where h = (1) € H'(RY;C? x C?) and £ = U hyr.
Let compute also d>Z(¢) : H' x H! — R, setting n = UF_V\% ki we have

d*Z(p)[h; k] = 2Re(k1|h1) i — 2Re(kalho) g1 + 20 /]R V Re(n, €) dy

py(y) Re(n, §)(2) — Jy(y) - Re(n, ag)(2)
+ 20 //]R3><]R3 =] dy dz

+ dogs // Re(v,n)(y) Re(¥,£)(2) — Re(y, an)(y) - Re(v, a)(z) iy ds
R3 XR3 ly — 2|

Remark 3.12. Note that for any f € L' N L3/? we have that (see [I0, Corollary

5.10])
foe 'EE \/;/R !/ (®)dp = 0.
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Hence in particular
(3.13) // Mdydz > 0.
R3 xR3 ly — 2|

Moreover since |Jy(y)| < py(y) for any y € R® and ¢ € H'/? see [8, Lemma
2.1], we have that

(3.14) //Rd } Py (Y)py(2) — Jp(y) - Ju(2) dydz > 0.

ly — 2|

We also recall the following convergence result. Let v € H/2, f,,. gn, hy, bounded
sequences in H'/2, and one of them converge weakly to zero in H'/2, then we have
(see for example | 5 Lemma 4.1])

[fnl@)lgn|@W)|v](2)|hn ()
(3.15) //Rded T dydz — 0. asn — 400

The following lemma is essentially already contained in [0, Lemma B.1], see also
[12] for related results.

Lemma 3.16. Let x € Cg°(R?), then [x,U.}
from HY?(R3;C*) — H3/2(R%;C*)
Moreover, for R > 1 let define xr(y) = x(R™'y). Then

| and [x,U,,| are bounded operator

Ixr, Uiz e = xr, Ul = O(RTY) - as R — +oo.

4. MAXIMIZATION PROBLEM

Our first step will be to maximize our functional in the sets
xw={0=(0) e B RLC X C?) [ g1 € W, [gu[32 =1},

depending on a 1-dim vector space W C H'(R%;C?). For each ¢ € Xy we will
write ¢o € X_, so that p € W x X_.

Denoting G(¢) = |¢¢r|2., the tangent space of Xy at some point ¢ € Xy is the
set

TyXw ={h €W x X_ | dG(¢)[h] = 2Re(ds,|her),, =0}
and Vx,, Z(¢), the projection of the gradient VZ(¢) on the tangent space Ty Xy is
given by
VawZ(¢) = VI(¢) — n(6)VG(9)
where VZ(¢), VG(¢) € H! are such that

Re(VI(¢)|h) ;. = dZ(¢)[h] and  Re(VG(9)|h),, =dG(¢)[h]

for all h € H' and pu(¢) € R is such that Va,, Z(¢) € TpXw.
We begin giving a result on Palais-Smale sequences for Z restricted on Xyy.

Lemma 4.1. Fiz any w € H*(R%;C?), (w)y # 0 and let W = span{w}.
Suppose ¢ € Xw is a Palais-Smale sequence for T restricted on Xy, at a
positive level, that is

e Z(¢")=c+ e, > ¢ >0;
o Vay Z(¢") — 0.
Then ¢" is bounded and |(¢7)er|2. >

Proof. Welet ¢" = ( A

1 we have [|¢7]| < ew for some constant (depending on W).

. Since ¢ € W, W one dimensional, and 0 < |(¢] ) |22 <
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Let us denote 9} = U;vi ((¢1())fT) Yo = U ((%)”) and Y™ = ¢} +¢". In
view of Remarks and we have, for n large enough,

. . . pyr () (pyn + pyn ) (2)
ct en = (") < 6712 — 6310 + afs/ i dyd

R3xR3 ly — 2|
< (1+ agyr) 621120 — (1 — agyr) 6512

Hence we may conclude that

1+ o 1+ agyr
6717 <ew, N5l < - - ||¢”||H1
and also
QCW
7 _"_ T
A

In particular we deduce that the any Palais-Smale sequence is bounded in H'.
Then we have

(Va Z(¢"), ") = dZ(¢™)[6"] — u(8™)2[(¢™)¢r |72
= 2Z(¢") — 2pu(¢™)

4o // Py (Y)pyn (2) — Jyn (y) - Jyn (2) dyd=
R3 xR3 |?J - Z|

and we deduce that

(4'2) M((bn) =c+ep+ <VXWI(¢H)’ ¢n>

Lo // pun )P (2) = Jym(y) - Jym(2) o
2 R3 xR3 |y - Z|

and

(4.3) n(g™) >0

for n large enough since the last term is non negative and (V x,, Z(¢"), ¢™) — 0
Moreover since ||¢"|| g1 is bounded we have

o(1) = dZ(¢"™)[6¢"] — u(¢")2Re((¢")tr|(BS" )er) L2

and observing that

Re(¥4 () + - (), ¥+ (y) = ¥- () = [ W) * = [0-W)* = pys (¥) = py_(y),
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we deduce that
B WL 2 + of1) = (@ 3o + Z(6")[3")
= WM s+ 16T s + 163 s + e [ Vi, dy
— Qs / Vpyn dy

n n — 7 z
‘o // pyr () (pyr — P )(2) dyds
R3 xRR3 ly — 2|

Jyn () - (Jyr — Jyn ) (2
7%// ym (y) - (Jyg — Jyr )( )dydz
R3 xR3 ly — 2|
> (@)™ 2 + (1 = Zagyr) |68 % + 16312

(pyr + [Ty [)(y) pyr (2)
— Qfs dydz
R3 xRR3 ly — 2|

a // (pyr = [Ty [) (W) oy (2) dyde
R3xR3 ly — 2|
> u(@")W1Le + (1 = Zasyr) 67 I3 + (1 = 2ae7) 105 130
> (@2,
where we have used the estimate (BI0). We immediately deduce, since u(¢™) > 0

for n large enough, that [¢7 |2, > [¢)™|2, which implies that [¢7 |2, > 1. O

We now introduce the maximization problem

(4.4) Aw = sup I(¢),
pEXW

and we show that Ay is positive.

Lemma 4.5. Fiz any w € H'(RY;C?) and let W = span{w}. If wy, = 0 then
SUP ye vy L(¢) = +00; on the other hand for wy, # 0 then

(4.6) sup Z(¢) = A,, € (0, +00).

An W

Proof. If wy,. = 0 we take a sequence ¢, = ( oo ) € Xw with |a,| — 400, for n —
+00, and a fixed ¢ € H' such that |(¢2)r[2. = 1. We denote v = UL ((42),. )-
Then by [B.I4) we have

sup Z(¢) = Z(n) = lan|*|lwllF — 62l + afs/ Vpy_(y) dy
pEXW R3

> |an|?||w||3: — C — 400 as n — +00.

for some constant C' > 0 independent on n € N.
Fix now w € H'(RY,C?) with |wi|z2 = 1. Denote W = span{({)}, then

¢ = (ii) € Xw is given by ¢1 = aw , a € C and |¢y |22 = |a|* + |(¢2)er]72 = 1.

Denote Vy = UFTV\% (UIST), ’l/)+ = AU, ’l/)f = UFTV\% (((i)zo)m) and ’l/} = ’l/)+ +’l/},
Since Adw = supye v, Z(¢) = Z((§)), by B.14), B.1I), B.2) and B.4)

Z((§)) = lwlin +afs/ Voo, dy > |wllfn — Zosyr|Uzgwe 3.
R3

= ||lwl|Fh — Zoagyrlwe 32 > (1= Zagyr)|wllin > (1 — Zagyr).

hence Ay > 0.
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Moreover, in view of (B.13), (B10) and recalling that |¢_|g1/2 = |(d2)tr]| g1z <
|p2|lzr: by Lemma Bl and that |py |1 = |¢|p2 = |¢e|r2 = 1, for any ¢ € Xy we
have

2 2 | s Py (Y)py (2)
7(6) <l — loall + 5 [ L0 dyas

Py (Y) (o + Py )(2)
<Jaf2 ]l — 6ol + on / / vWPe + 2. )2) o g
R3 xR3 |y*2|

<lallwl|F = lI2llFn + asyrlpylor (0= 502 + lal o F2)
< — (1 — agyr) ol Fn + Cw

hence in particular sup ¢ y,,, Z(¢) < Cw for some constant Cy > 0 depending only
on W. O

Fix now w € H'(R{,C?) with |wi |2 = 1, to obtain additional information
on the the maximization problem (£4)) we introduce the (constraint) functional
Jw : B1 — R given by

Jw () =T ()
where

Bi={ueX_=H'R],C | |uxl> <1}

a(u) is given by the constrain equation |awy, |32 + |ug|3. = 1 that is [a|*> = 1 —
|Utr|2L2- By the phase invariance, without loss of generality, we can always assume

that a(u) = /1 — |utr|%2.
We have for any h € H'(R%,C?),

dw (w)[h] = dT ((etw)) [ (et ]
and for h,k € H!

&> Jw (u)[h; k] = Q1[h; k] + Qa2[h; k]
(4.7) = dT ((aCww)) [(dza(uz)[h;k]w)}
(4.8) + &P (o)) [(da(ug[hlw) : (d“(“ﬁ[k]w)]

where, setting n =U_! ([0 ), €=Ut (0 ), we have a(u) = /1 — |n|2.,

Re<77|§>L2 Re<77|§>L2
da(u)|h] = ——m—=— = —a(u)————
) = T — ot TR

and

et = sty o0 (T2
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Setting vy = UL ("), ¢ = (*®v) and ¢ = U_ !¢ we have
1
50w (W)[h] = = Re(n|&) p2[|wl[3: — Re(ulh) m
~auRe(rl)z: | Vi dy+ae [ VRe(n€)dy
R3 R3
R 2
+ afs/ V Re(a(u)vy, &) dy — afsw%/ V Re(a(u)vy,n)dy
L2 JR3
v J. . Jv
N | L UG P
R3 xR3
o // py(y) Re(n,€)(2) — Ju(y) - (n,af)()dydz
RS ly — 2|
o / [ ot >| o) Reloe:,00C) 3,
R6 Yy—=z

Relule)se [[ pul) Re(alu)vs, n)(z) = July) -Rela(wos an)(2)
ST o // 7| Ay

It is convenient to define, for any v € H/?2,

Ty(v) = ags . V Re(a(u)vy,v)dy
pu(y) Re(a(u)vy, v)(2) — Jy(y) - Re(a(u)vy, av)(z)
o //]R3 xR3 dydz

ly — 2|

(4.9)

where ¢ = a(u)vy + 1. Remark that we have

Ty ()] < Clblgselvlpe

and
1
§d~7W(u)[h] = —Re|&) rz|lw|/F — Re(u|h)
~ an Reln[€) 2 / Vo, dy + ass / VRe(n,) dy
Y)poy (2) = Jy(y) - Ju, (2)
- SR d d
ass Re(n|€) //Rded ydz

ly — z|
bou [ 2OR0E) = le) (100 4,
R3 xR3 ly — 2|
Re(nl¢) 12
+y(8) — 4= 5Ty (1)
|77|L2
In particular, for h = u, that is & = 7, we have
1 2 2 2 2
5ddw (Wu] = — |nlze iz = llullz — aslnlz. Ry L
v J. . Jv
N T SCEE U RAC
R3 xR3 ly — 2|
Jr%// Py (W)pn(2) — Ju(y) - Iy(2) dyds
R3 xR3 ly — |

(o Y
1—nl3.
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hence we get

(4.10)
L < _|nl2.(1-2Z 2 (1-2 2 12l
3 w(uw)[u] < —nl7:(1 — Zagyr)l|wllzn — (1 — 2a8y7)[Jullzn +

1—nl%.

Ly (n).

and in particular for all |n|z2 = 1 we have

1
(411)  SdIw(u)[u] < —lnlZ> (1 = Zogsyr) |wllzp — (1= 206y7)|[ullfn <0

Proposition 4.12. Let {u,} C By C H*(R%,C?) be a Palais Smale sequence for
Jw, i.e. such that ||dJw (un)|| = 0 and Jw (un) — ¢ > 0.
Then,
1

(i) there exists k > 0 such that |n,|2, < 3 — k for all n large enough;
(i) {un} is precompact in H'.

where 1y, = (Un) tr-

Proof. Tt is clear that the sequence ¢™ = (a(?[;)w) is a Palais-Smale sequence for 7
restricted to the subspace Xy. We can then apply Lemma 1] to deduce that {u,}
is a bounded sequence in H! and |n,| < % We can assume that u, — u weakly in
H!.

We let vy = U L(""), an = a(un) — a (up to subsequences) and v, =
UF_V\II (n)tr = anvy + M-

(i) Suppose on the contrary that |n,|2. — 3. Then from @IQ), [Ty, (7,)] <
C|Yn| g1/2|Mnl /2 and the fact that {u,} is a bounded sequence in H! | we get

1
5 @Iw (un)[un] < — Ml 72 (1 = Zagyr) [wl|Fn — (1 = agsyr) un| 3
1- 2|77n|%2
—=T
1—|mm 2L2 ¥ ()
1 —2[nn|7
< = Inuf3(1 = Zosr)lwlfs + TG C
n LZ

< = 5 (1= Zagyr)|lwllFp +o(1)

N =

a contradiction.
(ii) Since |77n|%2
may conclude that

< 3 — and {u,} is a bounded sequence in H', by EI0) we

Ty, () > —C||dTw (un)]| = o(1)
for some constant C' > 0 independent on n.
Now, from u, — u weakly in H', n, — n = U} (,” ) weakly in H'/? and

an — a in C, since Vuy € H-/? we have

[,V Relaror (= m)wydy =0

and in view of equation (B.15)

/ / P () Re<c|znv+, <|nn —m)(z)
/ / Ty (4) -Re(znu, (. —n)(2)

ly — 2|

dydz — 0

dydz — 0
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then we have
%djw(un)[un —u] <
< =l =22 (1 = Zagyr)[wlin — (1= 200577)lun — ullFn
- () + ot
< =l =L (1 = Zagyr)llwlin — (1= 206577) |un — ullZn +o(1)
Hence we may conclude that w, — u strongly in H*. (]
We have the following strict concavity result

Proposition 4.13. Let u € H' be a critical point of Jw, namely dJw (u)[h] = 0
for any h € H', such that |u|2, < &
Then u is a strict local maximum for Jw, namely
& Jw ()b h] < =0||hl3n Vhe H'
for some § > 0.
Proof. Let ¢ = (*®v) and ¢ = U_ ¢y, = a(u)vy +1n Where vy = UL (") and

FW

n=U_L(, ). From the assumptions follows that |n|2. < 3

Now, let d®*Jw (u)[h;h] = Qi[h;h] + Qalh; h] (see (IIZI) (m)) We set £ =
Usw (n,) and

Re(n, £) 2

pl&; €] = (r[€])? >0,

di6 = T 4 plese) > 20l ).
We have da(u)[¢] = —a(u)r[§] and
(da(u)[€])* = a(u)’pl&; €] = 0; d*a(u)[&;:€] = —a(u)qlé; €] < 0

Since dJw (u)[u] = 0, in view of [@I0) we have I'y(n) > 0.
Let us compute @Q1[h; h] adding a zero term for convenience, we get

Q1[h; h] = Q1[h; h] + q[&; §ldTw (u)[u]

= —20l6:6] (s + s [ Vo, dy
+ g // Pu(y)pv, (2) = Jy(Y) - Ju, (2) dydz)
R3 xR3

ly — 2|

—2ales€](Julfs —an [ Viudy

o //RE;XRB pw(y)pn(nyJZ(y) Jn(2) dydz)

gl '”'ﬁ r(n)

< —2q(&€)(1 = Zogsyr) lwllFn — 24[& (1 — 2a50v7) ull 3

Now let estimate Q2 [h; h], setting x = U ! (da(u}iiﬁ]w”) = da(u)[¢]vy + €& We first
note that by Holder inequality implies

S T e < [ P ayae
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and by Remark follows

// Re(®, ax)(y) - Re(, ax)(z) ;5. 5
R3 xR3 B

ly — 2|

hence we have

Qulhs ) < 2016 €llau)ulf = 2bl +205 [ Voo dy
) J

 2an // Py (Y)px(2) = Jy(y) - Iy (2) dydz
R3 xR3 |y - Z|

+4afs// Po®)px(z) d dz
R3 xR3 |y—z|

< 2a(?plss ) (ol + o [ Vo,

P (y)pv+ (2) — Jy (y) - Jo, (2)
+Oéfs//RsXRs |y—z| )
— 2|4 + Qafs/ Ve + 2a //RS R3 pu(W)pe(2) — Ty (y) - Je(2)

ly — 2|
—4r[¢ Fw ) + 4o // pw dy dz
R3 xR3 y - |

Again it is convenient to add the following zero terms,

0 = 2r[¢]dT (u)[h] + 2p[&; €]dT (u)[u]
= —4p[&; €] (|w||%{1 + Qs /]Rs Vpo, + ous // e (Z))

R3 XR3 ly — 2|
— 4pl&; €] <|u|§{1 — Qs /]R3 Vpydy — ous //]RSX]RS Pw(y)Pn(Ziy—_Jz(y) . Jn(2)>
— 4Ar[¢] Re{u|h) g + 4r[€]ass / V Re(n, &) dy
y)Re(®, ) (2) = Ju(y) -Re(n. af)(z) . .

T 4reI (6 — 4ple: ) '”'n T

%
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In view of (£I0) I'y(n) > 0 and by Lemma 3.8 we have
Qa[h; h] = Qa[h; b] + 2r[f]dTw (u)[h] + 2p[&; | dTw (u)[u]

2pl&; €] (lel?il + ag /W Vo, + ae //RSXRs Py (Y)Po, (zl)y_J:'(y) s (z)>

—J )
— 21l + 20 / Vpe dy + 20, // po)pela) — Ju0) Jel2) g g
R3 R3 xR3 ly — 2|

N B | e R

ly — 2|

+ 47[€](— Re(u|h) g +afs/ V Re(n, £))
y) Re(n,§)(2) = Ju(y) - Re(n, a€)(2)
+4T Oéfs //]RJXIRJ

ly — 2|
+ dag, // PeWe2) g g,
R3 xR3 |y—z|

< =2p[&: €] (1~ Zagyr) | wllFn — (1 = 2a8y7) | hll7 — (1= 2agy7)[h + 2r[ul|3n
+ dagsyi [da(u) [Evs + €3
Therefore, since g[¢; €] > 2p[¢; €], we have
Q[ h] + Qalhi A < ~6(1 — Zaryr)plé; €][[w]|
— (1 = 2as77) 12|30 + Aasyie (pl€ Elalw)w] 3 + [|hl|7m)

2
< —6(1 — Zagyr — §Ozfs7K)p[§;§]HWII§p — (1 = 2077 — 4ok ) || Bl 7

—(1 = 8agyr) IRl

where we have used that vx < %'yT, Zagyr + agyr = ags(Z + 1)yr < 1 (since
7 < 123). O

In view of the above results we may conclude

Proposition 4.14. For any w € H (R, C?) with |wy, |2 = 1 there exists unique
P2 = ¢a(w), a strict global maximum of Jw, namely

Jw(¢2) = sup Jw(u) = sup I(¢) = Aw.

u€ By PEXW
Moreover

o dJw (¢2(w)) = 0;
e there exists 6 > 0 such that

Jw (d2(w)[h;h] < =8|[p|*  Vhe H'
e the map w — ¢a(w), is smooth and
dg(w)[dP(w)[]] = ~(duF (w, $2(w))) ™" [duw F (w, $2(w))[].
where P(w) = —%— and

‘wtr‘LQ

Fw, w)[h] = dz ((*)P0)) [(@@P@) | vp e m.

Proof. 1t is clear that the equality sup,cp, Jw(u) = supyeax,, Z(¢) holds. The
existence of a maximizer for Jy then follows from lemma [£5] which shows that
the supremum is strictly positive, Ekeland’s variational principle, which implies
that we can find a maximizing sequence u,, which is also a Palais-Smale sequence,
and Proposition [£12] which shows that w, — u with |ug|r2 < %



RELATIVISTIC ONE ELECTRON ATOM 15

Suppose that we have another maximizer 4. By Proposition4.12] we deduce that
|'&/tr|L2 < %
To reach a contradiction, we consider the set

G={9g:[-1,1] » H'(RL,C?) | g(—1) = u, g(1) =@, |(9(t))e] 2 < %}

and the min-max level

c=sup min Jw(g(t))
geg te[—1,1]

The functional Jy satisfies the Palais-Smale condition, see proposition 12 and
the set Byjp = {u € H (R4, C?) | |ug|z2 < 1/2 } is invariant for the gradient flow
generated by dJw since by (EII) dJw (u)[u] < 0 on 9B;/5. Then we can deduce
that ¢ is a Mountain pass critical level, and that there is a Mountain pass critical
point ¥ in By, i.e. such that |0 |r2 < %, a contradiction with Proposition E.13]
since a Mountain pass critical point cannot be a strict local maximum.

Finally to prove that the map w — ¢2(w) is smooth we use the implicit function
theorem. Indeed let consider any open subset U C H' \ {w; = 0} and the smooth
map F : U x H' — H~! defined by

F(w,u)[h] = dT ((a@Pw))) [(da(u)[lgmw))} Vhe H'.

Now fix wy € U with |wg|zz = 1 and let ug = ¢a(wg) and Wy = span{wg}, we
have
F(wo,up) = dIw, (ug) =0
and the operator d, F'(wq,uo) : H' — H~! given by

(@ (. ) D] =T () [ (e ) (et )
dz (o)) [(Cotoptivo )| vk € B!

is invertible. Indeed, we simply apply the Riesz theorem on Hilbert spaces (or
equivalently Lax-Milgram theorem) to the symmetric, bilinear and bi-continuous,
quadratic form @ : H* x H' — R given by
Qlh; k] = —(duF (wo, uo) [1]) [K]-

In view of Proposition

QUi h] = —d Tiwy (o) ) > O|B2 ¥h € H*
for some 6 > 0, namely @ is definite positive (coercive) and the theorem apply,
hence for any f € H~! there exists unique h € H' such that Q[h; k] = f[k] for any
k € H', namely d, F(wo,uo)[h] = —f.

Therefore we can apply the implicit function theorem to conclude that there
exists a neighborhood Uy C X \ {wy = 0} of wy and a smooth map u : Uy — H*!
such that F(w,u(w)) = 0 for all w € Up.

Since we already know that for any w € X \ {wy,. = 0} there exist ¢2(P(w)),
the unique strict global maximum of Jw, such that F(w, ¢2(P(w))) = 0, we may
conclude that u(w) = ¢o(P(w)) for any w € Up.

Moreover, we have that for w € Uy, du(w) : H' — H?! is given by

du(w)[h] = —(du F (w, uw(w))) ™ dw F(w, u(w))[h]] Vh e H'.

(I
Corollary 4.15. For anyw € H' (R4, C?) with |wy,|r2 = 1, let p(w) = (a(‘iz((i)))w).
Then ¢(w) € Xw is the unique (up to phase) mazimizer of T in Xy, namely

(4.16) Z(p(w)) = sup Z(4) = A, > 0.

pEXW
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and
dZ(¢(w))[h] = 2u(d(w)) Re((d(w))er | her)rz  Yhe W ® X

where

TN s Pou Y)Po (2) = S (y) - Jp (2)
ue(w)) = Aw + = //Rsst ] dydz.

and Yy = U, HA(w))sr. Moreover, the following estimates holds

() [p1(w)erlFs > 35

.. n 1tapyrZ
(i) ||¢(w)||§1,1 < (ka;;w)j(flvjamTZ) Aw -

Proof. We only have to show that item (ii) holds.
If ¢(w) is the maximizer for Z in Xy we have as in the proof of Lemma [L.1]

Mw < (L+ agyr) [ fr ()7 — (1= awyr) [ d2(w) |7

Moreover we have
Aw > Z((76) = [l (w)|F + s /RS Vg, ., dy > (1= awyrZ)||ér(w)|

where ¢4, = U (‘1’16“’)). Hence we may conclude that

afsYT
g2 (w7 < 7175 (14 2)|lé1(w) |7
YT
A
2 oW
o)l < 7ot
and also
1+ agyrZ 1+ agyrZ
2 2 2
w + w < - w < .
lor@)iFn + lox(w)lin < Tl o)1 <€ gt
O

5. PROOF oF THEOREM [I.1]

In view of the results of Proposition[f.I4lit is convenient to introduce the smooth
functional F : H'(R%;C?) \ {wy =0} = R

F(w) = Z(p(w))

where ¢(w) = (“(@;i(l,w@))l;(w)) and P(w) = o5 Now in view of Proposition
trlp2
[4£T14 we may conclude that
A1 = inf sup Z(¢) = inf I(p(w)) = inf Flw
' A ¢>€/pr ) weH" (RY;C?) (#(w) weH (R} ;C2)\{wer=0} (w)
m = |wer | 2=1

Let us introduce the constraint manifold W ¢ H'(R%;C?)
W={we H (RY;C?) : Gw) = |we |32 — 1 =0}
and its tangent space
T, W ={h e H'(R};C?) : dG(w)[h] = 2 Re(ws, |hsy)r2 = 0}
Let us compute dF (w)[h] = dZ(¢(w))[dp(w)[h]]. Forw € Wand h € H'(R%; C?),

we have

— ( da(¢2(w))[dg2(w)[dP(w)[h]]w a($2(w))dP(w)[h
do(w)[h] = ( d2(w)[dP(w)[h]] ) + (@ ))O P

Since
0 = A (Ga(w))H] = dT(6(w)) [(dawz(kw))[k]wﬂ Vk e H'
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we have
dF(w)[h] = dJw (p2(w))[dp2 (w)[dP(w)[h]] + dZ(P(w)) [(a(¢2(w))0dp(w)[h] )]
= a(¢a(w))dZ(d(w)) [(P@MH)].

where dP(w)[h] = h — wRe{wyy | hr)p2 if w € W.

Since dF (w)[w] = 0 for any w € W, it is easy to see that W is indeed a natural
constraint for F. Hence in particular by Ekeland’s variational principle, there
exists a Palais-Smale, minimizing sequence {w,} € W, namely F(w,) — A; and
[[dF (wn)|| — 0.

Now setting ¢, = éd(w,) = (i;:), with ¢1, = anwn, an = alp2(wy)),

¢p2n = ¢2(wy) and p, = p(p,) and defining the linear continuous functional
Tn: HY(RY;C?) - R
(5.1) Tulh] = dI(‘bﬂ)[(%)] — 240 Re{an(wn)er | hir) L2

in view of Corollary 15l we have that 7T,[h] = 0 for any h € span{w,, } and n € N.
On the other hand for any h € H*(R%;C?)

dF (wn)[h] = andZ($,) [(FI)] = a, T [dP(wn)[h] = anTalh]

and since ||dF(w,)|| — 0 and a, > 1 we may conclude that T, — 0 strongly.

Since the sequence {¢,} is bounded in H!(R%;C?) (it follows from Corollary
A TI8 since A\, — A1) we get that, up to a subsequence, ¢,, — ¢ weakly in H! and
n — p, and hence,

dZ(¢)[h] = 2uRe(per, huy)r2  Vh € HY(RE;CH).

(since dZ(¢n)[h] — dZ(@)[R] if ¢y, — ¢, see (BIH)).

To conclude the proof of Theorem [T we need to show that |¢s.|r2 = 1, that is
a strong convergence in L? of (¢, )4, in fact we will prove strong convergence of ¢,,
in H'.

First note that we can assume that

(5.2) limn inf d*F(wn)[h;h] >0 Vh e H'(RY;C?).
n—-+4oo
This is an adaptation of of theorem 2.6 in Borwein and Preiss [2] with p =2, ¢ = &

and A =1 (see also [1]) which states that one can find a minimizing sequence such
that

-
F(wn) < wlgvf(UJ)Jr

1
n7
1 1
Fwy) + —Awy,) < Flw) + —A(w) for all w e W
n n

where A(y) = Y22, Belly — ykl|%: for a (convergent) sequence of points y; and
reals Br > 0 such that 21?;1 Br = 1. The above relation shows that w = w,, is a
minimizer for G, (w) = F(w) + 2A(w) and hence

0 < PG (wn)[h, h] = & F(wn)[h, h] + %<h | ).

Now with the additional information (5.2]) on the second variations, we prove
the following bound on the Lagrange multiplier u, that it will be a key point to
prove strong convergence of the minimizing sequence. We have

Lemma 5.3. <1

Proof. Since w, is bounded we can assume that w, — w in H'. Take h €
H'(R%;C?) such that hy € H'Y(R3;C?) and Re(wiy |her)r2 = 0.
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We set hy ., = dP(wy)[h] and hg ., = dp2(wy,)[dP(wy)[h]], then we have

d*F(wy)[h; h] = d*Z(¢n) Kda(@,zizz,n]wn) (@ )}

) ()3 ()] 4 AT (00l
o dZ(gn) [ (@ Pt )| = (1) + (1) + (111).

where

(I) _ d2I(¢n) [(da(%,z)[hz,n]wn) : (anig)l,n )} + dz(¢n) I:(da((bZ,n)ng,n]hl,n )}

2,n

(I1) = d*Z(¢y) [(@nhrm ) ; (i)
(I1T) = dZ(¢y) KandZP(gfn)[h;h] )} _

In view of Proposition EE14] for any w € W we have for all h € H!
han = dga(w)[dP(w)[h]] = —(duF (w, d2(w)) ™ [(dwF (w, ¢2(w))[A])],
where the map F : H! \ {wy, =0} x H! — H~! is given by
Fw,u)[k] = dT ((«00p)) [(de@@re)) v e,

let compute the operator d,, F(w,u) : H' — H~! for w € W and any for hy, hy €
H' we have

(du F(w, u)[ha])[ha] =d2T (( @) [(a(u)dPO(w)[hl]) : (da(u})l[zhz]w)}
+dT ((a(z)w)) [(da(u)[hg]gp(w)[hﬂ )] .

Hence we have
—(duF(wn, $2.n) h2,n])[h2n] = (dwF (wn, da.n)[h])[hon] = ().
Recalling that
(duF(w, )k [] =T (o)) [(2eCey ) ; (et )]
Hd ((e)w)) [( et )| = P Tw (kK] VE e H
in view of Proposition .13 we get
(1) = (du F (wn, d2,0) (M) [h2,n] = =d* T ($2,0) [h2,n han] > 0]l han -
On the other hand, we have

(I) =and®Z(¢n) [(ny., )5 ("57)] = da(dz.0)honld®T(60) [(47.) s ("57)]
+da(d2.0)ho,n] (PZ(0n) [dn; ("5 )] +dZ(¢n) [("57)]) -

Then, since ((wp)er|h1,n) 12 = ((Wn)tr |[dP(wy)[R]) 2 = 0, by Corollary 15l we have

dZ(¢n) [("57)] = Tu(h)
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and recalling that hy, = dP(wy)[h] = h — wy, Re((wn )r|her) 2 — h, as n — +00

strongly in H', we set £ = U_ L ("), by Hélder’s and Hardy’s inequalities, we get

L(dn) [dn; ("g)] = dZ(en) [("5)]

+ dag //}R3 ; Pwn(y)Re(%,f)(z)'yJZT(ZJ) Re(n, a8)(2) 4+ on(1)
< Ta(h) + 8o //}R3 - P (y)||;p"| Z)K'(z) dydz + o, (1)

2 P 1/2
<70 +0 [ oot ([ 50 )y outt)
< To(h) + CIVE| L2 + 0,(1).

and analogously, by Holder and Hardy’s inequalities, we have
PL(On) [(na, ) s ("57)] < Cllhanllz (1|2 + 0n (1)
and
|*Z(6n) [(4a ) 3 (“PCGIPD)]] < C(IVE]L2 + 0n (1))

for some constant C' > 0 that may change from line to line.
Hence, since da(¢z.n)[h2,n] < [(hon)itr|r2 < ||honllm and |a,| < 1, we get

Sllha,nllzp < (I) < Cllhanllm (IVE] L2 + 0n(1))
namely
[h2nll e < C(IVE|L2 + on(1))
and we may conclude that
(1) < CIVE[72 + on(1).
Now, by Remark and Holder inequality, we have
(11) < 203l + 23 | Viedy
+ 8a2 o // Pun (Y)pe(2) dydz + on (1)
rRexRs  |Y — 2|
Moreover, recalling that
d? P(wy)[h; h] =3| Re((wn)ir|htr) 12 |*w0n — 2 Re{(wn)tr|her) 2h — |hir|3own
we have by Corollary .15
(L11) = 120 Re((1wn)or) (@2 P () 13 B b 12 + an T (d2P () s )
= pn2ay, (| Re((wn)er|her) p2|* = [her[72) + 0n(1)
= =207 in|hur| 72 + 0n (1)

Collecting the estimates above we get

& F(wn)lhih]) <202 (Al = palhir32) + 20306 [ Vocdy
R3
+ 8a2 ovgs // Mdydz—i—(ﬂVﬂ%z + on(1)
R3xRs Y — 2|
Now, for fixed € > 0 we take h, = e~%€3/2n(e|y|) with n € H/2(R3;C?), n(y) =

n(lyl) and [n[r2 = 1.
Note that

1
1hell7 = 5€*IVnlLe + Il
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and setting & = U_ ! ((hso)”) we have

o
Eely) = 20U (D) = &2 (fi e ) (ev)

[a— (ep) ZE1]
hence in particular
pe. () =€ F [ (ep)il] P(ey) + es|f-1[a_<ep>%m|2<ey>
= py(elyl) + €*Ce(ey)
where p,(y) = |n|*(y) and
Cely) =I1F " (ax(ep) — Dl (y) + |r1[a,(€p)%
+2Re(n, F~*[(as(ep) — Dil)) ()

Recalling that a4 (ep) = y/1(1 +1/A(ep)), and A(p) = v/|p|> + 1, we have

il*(y)

_(Mep) 1 LMl _ o o
|a+<ep>1||<m) T S
ot = (S522) <
we have
o (s (ep) = Vil < C2llpfl

|la—(ep)ilrz < Cellplil 2
Therefore we get
dz}—(wn)[he;hE] < 2‘131(1 — Hn)

3
€|Z]) €
+ 202 s, / V() o (ely]) ¥y + 8a2ag, // Pen@on(el2 €
R3 R3 xR3

ly — 2|
3
+ 2a2 augs /}R3 V(y)Ce(ey) € dy + 8a2 v //}RSXRS % dy dz
+ CE|Vn[Ta +0a(1)
Here, using (B:6) we get
/ V(y)¢e(ey) €dy = —Ze elv) dy
R3 R3 |y|
-z [ Pl virw,,
R3 |y]
- ZE/ 7~ a—(ep) T (v) "
R3 |yl
L G T
R3 |y
< (o) = Vil s + eClF o (en) Ll

+ eC|.7:_1[(a+(ep) = Uil gz |nl grase
< C|lp*"*7]13 2 + EC|IpI*2A)l72 + ECIp1> 0] 2 |nl g1/

Since for any radial function p € L*(R?;Ry) and for any 2z € R3 we have

p(y) p(y)
/]RS ly — 2| = /1R3 ly .
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we deduce

3 3
R3 xR3 ly — z| R3 rs Y — 2|
S €|p'¢)n|L1/ pn(|Z|) dZ
R3

E

and, by Lemma [3.8]

3

c(ez)e

JI D oy < il < Il + ol
R3 xR3 ly — 2|

Then, by (B2) and Lemma [3.8 we get

0 <liminf d>F (wy,)[he; he]

n—-+o0o

< 2a2(1 — )+ 2a2afs/
]RB

(—fﬁ N f) onlyl) dy

]
+ Ce%|n)3s + o(€?)

where a = lim,, a,, (up to subsequence). B
Hence, since Z > 4 we may conclude that there exists 6 > 0 and € > 0 such that

2
0< (1—u)—6(§/ In® dy + Ce|n|3 <1—pu—Ce
rs |yl
where we have denoted with C various positive constants. O
Now, let i = (117 ) = ¢ — 6 — 0 weakly in H', define &, = UpL (1))
and &_ , = U;vi ((hzi)”) and &, = UF*\; (hn)tr = &+ + & we have

Lemma 5.5. If &, — 0 weakly in H'/? then

/ Vpgi’n dy — 0.
R3

Proof. The proof is similar, even somewhat simpler than the [6, Lemma B.1] O

Then finally taking ¢,, = Bh,,. in view of Corollary[£.15] and since h,, = ¢, — —
0 by Lemma , we get

on(1) = Tn(Cn) = dZ(¢n)[Cn] — 24n Re<(1/)n,§+7n - 57,n>L2
= 2[|h1nllFn + 2l henlFn — 2pn (164 nl72 — 6= nl72)

+ 20sz/ Vipe, . —pe_,)dy
]RB

—J -,
+ 20, / / P )Py o (2) = Ty, (y) - Je, L, (2) dy d=
R3 xR3 |y - Z|

) // P, (Y)pe_ . (2) = Ty, (y) - Je_,(2)
— &a0fg

R3 xR3 ly — 2|
> 2(1 = pn) |1 a7+ 2(1 = 297) R || 30 + 0n(1).

dydz + o, (1)

since p < 1 we may conclude that ¢,, — ¢ strongly in H'.
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