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GROUND STATE FOR THE RELATIVISTIC ONE ELECTRON

ATOM

VITTORIO COTI ZELATI AND MARGHERITA NOLASCO

Abstract. We study the Dirac-Maxwell system coupled with an external po-
tential of Coulomb type. We use the Foldy–Wouthuysen (unitary) transfor-
mation of the Dirac operator and its realization as an elliptic problem in the
4-dim half space R4

+
with Neumann boundary condition. Using this approach

we study the existence of a “ground state” solution.

1. Introduction and main results

The Dirac operator is a first order operator acting on the 4-spinors ψ : R3 → C
4

describing a relativistic electron given by

D0 = −ic~α · ∇+mc2β

Here c denotes the speed of light, m > 0 the mass, ~ the Planck’s constant, α =
(α1, α2, α3) and β are the Pauli-Dirac 4× 4-matrices,

β =

(

I
2

0
2

0
2

−I
2

)

αk =

(

0
2

σk
σk 0

2

)

k = 1, 2, 3

and σk are the Pauli 2 × 2-matrices. We take units such that m = c = ~ = 1.
We are interested in perturbed Dirac operators D0 + αfsV , V being a Coulomb

potential, V (x) = − Z
|x| , αfs =

e2

~c ≈ 1
137 is the dimensionless fine structure constant

and Z, positive integer, is the atomic number.
Due to the unboundedness of the spectrum of the free Dirac operator, many

efforts have been devoted to the characterization and computation of the eigenvalues
for the Dirac-Coulomb Hamiltonian D0 + αfsV , see [7] and references therein.

Here we add the interaction of the electron with its own (static) electromagnetic
field. The scalar potential Φ and the vector potential A = (A1, A2, A3) of the elec-
tromagnetic field generated by the electron ψ satisfy the following (static) Maxwell
equations

−∆Φ = 4πρ; −∆A = 4πJ

where ρ = |ψ|2 is the charge density and J = (ψ,αψ) the current of the electron.
Therefore

Φ = |ψ|2 ∗ 1

|x| and A = (ψ,αψ) ∗ 1

|x| .

The interaction is obtained through the minimal coupling prescription, which
has, in our units, the following form

Dψ = α · (−i∇− αfsA)ψ + αfsΦψ + βψ + αfsV ψ

We have the following result
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Theorem 1.1. Let V (x) = − Z
|x| with Z ∈ N the atomic number. For any 4 < Z <

124 there exists µ ∈ (0, 1) and ψ ∈ H1/2(R3;C4) ∩1≤q<3/2 W
1,q
loc (R

3;C4) a solution
of the following Maxwell-Dirac eigenvalue problem

(MDC)











α · (−i∇− αfsA)ψ + αfsΦψ + βψ + αfsV ψ = µψ

|ψ|2L2 = 1

−∆Φ = 4πρ = 4π|ψ|2 −∆A = 4πJ = 4π(ψ,αψ)

Moreover (ψ, µ) is (up to phase) the state of lowest positive energy of the system
(“ground state”).

This existence result is strictly related to the results in [9], where the Authors
consider the Dirac-Fock equations for Atoms and Molecules. The equation con-
sidered in that article describe an atom (even a molecule) with a (fixed) nucleus
and N electrons, and takes into account the interaction of each electron with the
nucleus and the other electrons, but not the interaction of the electrons with their
own electric and magnetic field. Using the Hartree approximation one ends with
an equation similar to the one for the atom with one electron that we consider in
our model (MDC).

Let us also point out that we will prove our result via variational methods, after
performing a unitary change of variables (the Foldy-Wouthuysen transformation)
and a reduction of the problem to an elliptic problem in the 4-dim half space R4

+

with nonlinear Neumann boundary condition.
Even in this different setting, we have used in the analysis of the variational

structure of the problem some ideas contained in [9, 7, 11].

2. The FW transformation and the Dirichlet to Neumann operator

Let us recall first the main properties of the free Dirac operator D0 = −iα ·∇+β
(see e.g. [13]). D0 is essentially self-adjoint on C∞

0 (R3 \ {0};C4) and self-adjoint on
D(D0) = H1(R3;C4). Its spectrum is purely absolutely continuous and it is given
by

σ(D0) = (−∞,−1] ∪ [1,+∞).

Let define QD0
: H1/2(R3;C4)×H1/2(R3;C4) → C the sesquilinear form associated

to the operator D0.
Let denote by û or F(u) the Fourier transform extending the formula

û(p) =
1

(2π)3/2

∫

R3

e−ip·xu(x) dx, for u ∈ S(R3).

In the (momentum) Fourier space the free Dirac operator is given by the multipli-

cation operator D̂0(p) = FD0F−1 = α · p+ β that is for each p ∈ R3 an Hermitian
4× 4-matrix with eigenvalues

λ1(p) = λ2(p) = −λ3(p) = −λ4(p) =
√

|p|2 + 1 ≡ λ(p).

The unitary transformation U(p) which diagonalize D̂0(p) is given explicitly by

U(p) = a+(p)I4 + a−(p)β
α · p
|p|

U−1(p) = a+(p)I4 − a−(p)β
α · p
|p|

with a±(p) =
√

1
2 (1± 1

λ(p) ), we have

U(p)D̂0(p)U
−1(p) = λ(p)β =

√

|p|2 + 1β.
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Hence there are two orthogonal projectors Λ± on L2(R3,C4) , both with infinite
rank, given by

(2.1) Λ± = F−1U(p)−1

(

I4 ± β

2

)

U(p)F .

such that

D0Λ± = Λ±D0 = ±
√
−∆+ 1Λ± = ±Λ±

√
−∆+ 1 I4.

The operator |D0| =
√
−∆+ 1 I4 can be defined for all f ∈ H1(R3,C4) as the

inverse Fourier transform of the L2 function
√

|p|2 + 1 I4 f̂(p) (see [10]),
Now we consider the Foldy-Wouthuysen (FW) transformation, given by the uni-

tary transformation U
FW

= F−1U(p)F . Under the FW transformation the projec-
tors Λ± become simply

Λ±,FW = U
FW

Λ±U
−1
FW

=
I4 ± β

2
,

and D
FW

= U
FW
D0U

−1
FW

= |D0|β with the corresponding sesquilinear form

QD
FW

(f, g) =

∫

R3

√

|p|2 + 1 (f̂(p), βĝ(p)) dp = QD0
(U−1

FW
f, U−1

FW
g)

defined on the form domain H1/2(R3;C4).
The operator

√
−∆+ 1, exactly as the fractional Laplacian, can be related to the

following Dirichlet to Neumann operator (see for example [3] for problems involving
the fractional laplacian, and [4, 5] for more closely related models): given u solve
the Dirichlet problem

{

−∂2xv −∆yv + v = 0 in R4
+ =

{

(x, y) ∈ R× R3
∣

∣ x > 0
}

v(0, y) = u(y) for y ∈ R3 = ∂R4
+.

and let

T u(y) = ∂v

∂ν
(0, y) = −∂v

∂x
(0, y)

Then T u(y) = F−1
y (

√

|p|2 + 1 û(p)) =
√
−∆+ 1u(y).

Indeed, solving the equation via partial Fourier transform we get

v(x, y) = F−1
y (û(p)e−x

√
|p|2+1).

In view of the FW transformation we may consider the eigenvalue problem
(MDC) for the perturbed Dirac operator

D0 − αfsα ·A+ αfsΦ + αfsV

as follows.
Let (ψµ, µ) ∈ H1/2(R3,C4) × R be a (weak) solution of the eigenvalue problem

(MDC) and let φµ be the following extension of ϕµ = U
FW
ψµ on the half-space (see

lemma 3.1 below)

(2.2) φµ(x, y) = F−1
y (U(p)ψ̂µ(p)e

−x
√

|p|2+1),

then φµ ∈ H1(R4
+,C

4), (φµ)tr = ϕµ and φµ is a (weak) solution of the following
Neumann boundary value problem

(Pµ)























−∂2xφµ −∆yφµ + φµ = 0 in R4
+

β
∂φµ
∂ν

+ U
FW

(−αfsα · A+ αfsΦ+ αfsV )U−1
FW
ϕµ = µϕµ on ∂R4

+ = R
3

|ϕµ|2L2 = 1

Φ = |U−1
FW
ϕµ|2 ∗ 1

|x| ; A = (U−1
FW
ϕµ,αU

−1
FW
ϕµ) ∗ 1

|x|
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On the other hand, if φµ ∈ H1(R4
+,C

4) is a (weak) solution of the Neumann bound-

ary value problem (Pµ), setting ϕµ = (φµ)tr, then (U−1
FW
ϕµ, µ) ∈ H1/2(R3,C4)× R

is a (weak) solution of (MDC).

3. Notation and preliminary results

To simplify the notation when clear from the context we will denote simply with
H1/2 the Sobolev space H1/2(R3,Cn), with H1 the space H1(R4

+,C
n) and with L2

the spaces L2(R3,Cn) and L2(R4
+,C

n) (where n = 2 or n = 4).

We introduce the following scalar products and norms in H1, H1/2 and L2,
respectively,

〈f |g〉H1 =

∫∫

R4
+

((∂xf, ∂xg) + (∇yf,∇yg) + (f, g)), ‖f‖2H1 = 〈f, f〉H1 ,

〈f |g〉H1/2 =

∫

R3

√

|p|2 + 1(f̂ , ĝ), |f |2H1/2 = 〈f, f〉H1/2 ,

|f |2L2 =

∫

R3

|f |2, ‖f‖2L2 =

∫∫

R4
+

|f |2

where (v, w) denotes the scalar product in Cn.
The following property can be easily verified (see [6]).

Lemma 3.1. For w ∈ H1(R4
+), let wtr ∈ H1/2(R3) be the trace of w and define

v(x, y) = F−1
y (ŵtr(p)e

−x
√

|p|2+1).

Then v ∈ H1(R4
+) and

(3.2) |wtr|2H1/2 = ‖v‖2H1 ≤ ‖w‖2H1

Remark 3.3. We recall that for all f ∈ C∞
0 (R4)

∫

R3

|f(0, y)|2dy =

∫

R3

dy

∫ 0

+∞

∂x|f |2dx ≤ 2‖f‖L2‖∂xf‖L2

and by density we get for all φ ∈ H1

(3.4) |φtr|2L2 ≤
∫∫

R4
+

(|∂xφ|2 + |φ|2) dxdy ≤ ‖φ‖2H1 .

Remark 3.5. Let us recall the following Hardy-type inequalities :

Hardy: for all ψ ∈ H1(R3)

||x|−1ψ|L2 ≤ 2|∇ψ|L2 ≤ γH ||D0|ψ|L2

where γH = 2.
Kato: for all ψ ∈ H1/2(R3)

(3.6) ||x|− 1
2ψ|2L2 ≤ π

2
|(−∆)1/4ψ|2L2 ≤ γK |ψ|2H1/2

where γK = π
2 .

Tix [14]: for all ψ ∈ H1/2(R3,C4)

(3.7) ||x|− 1
2Λ±ψ|2L2 ≤ γT |Λ±ψ|2H1/2

where γT = 1
2 (
π
2 + 2

π ).

In view of the above inequalities, since Λ± commute with translation we have
the following result
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Lemma 3.8. For any ρ ∈ L1(R3) and ψ ∈ H1/2(R3,C4) we have
∫

R3

(ρ ∗ 1

|x| )|ψ|
2(y)dy ≤ π

2
|ρ|L1 |(−∆)1/4ψ|2L2 ≤ γK |ρ|L1 |ψ|2H1/2(3.9)

∫

R3

(ρ ∗ 1

|x| )|Λ±ψ|2(y)dy ≤ γT |ρ|L1 |Λ±ψ|2H1/2 .(3.10)

Proof.

∫

R3

(
∫

R3

ρ(x)

|x− y| dx
)

|ψ|2(y) dy =

∫

R3

(
∫

R3

|ψ|2(y)
|x− y| dy

)

ρ(x) dx

≤ π

2
|ρ|L1 |(−∆)1/4ψ|2L2 ≤ γK |ρ|L1 |ψ|2H1/2

The second inequality can be proved in the same way since Λ± commute with
translations. �

Hence in particular for V (x) = − Z
|x| and Z ≤ Zc = 124 we have that ZαfsγT ∈

(0, 1) and

(3.11) αfs

∫

|V ||Λ±ψ|2 dy = αfs||V |1/2Λ±ψ|2L2 dy ≤ ZαfsγT |Λ±ψ|H1/2 .

We consider the smooth functional I : H1(R4
+,C

4) → R given by

I(φ) =‖φ1‖2H1 − ‖φ2‖2H1 + αfs

∫

R3

V ρψ dy

+
αfs

2

∫∫

R3×R3

ρψ(y)ρψ(z)

|y − z| dy dz − αfs

2

∫∫

R3×R3

Jψ(y) · Jψ(z)
|y − z| dy dz

where φ =
(

φ1

φ2

)

∈ H1(R4
+;C

2 × C2), ψ = U−1
FW
φtr, and ρψ = |ψ|2, Jψ = (ψ,αψ).

It is easy to check that (φµ, µ) ∈ H1(R4
+,C

4) × R is a weak solution of the
Neumann boundary value problem (Pµ) if and only if

dI(φµ)[h] = µ 2Re 〈(φµ)tr|htr〉L2 ∀h ∈ H1(R4
+,C

4).

where dI(φ) : H1 → R is the Frechét derivative of the functional I given by

dI(φ)[h] =2Re〈φ1|h1〉H1 − 2Re〈φ2|h2〉H1 + 2αfs

∫

R3

V Re(ψ, ξ) dy

+ 2αfs

∫∫

R3×R3

ρψ(y)Re(ψ, ξ)(z)− Jψ(y) · Re(ψ,αξ)(z)
|y − z| dy dz

where h =
(

h1

h2

)

∈ H1(R4
+;C

2 × C2) and ξ = U−1
FW
htr.

Let compute also d2I(φ) : H1 ×H1 → R, setting η = U−1
FW
ktr we have

d2I(φ)[h; k] = 2Re〈k1|h1〉H1 − 2Re〈k2|h2〉H1 + 2αfs

∫

R3

V Re(η, ξ) dy

+ 2αfs

∫∫

R3×R3

ρψ(y)Re(η, ξ)(z)− Jψ(y) · Re(η,αξ)(z)
|y − z| dy dz

+ 4αfs

∫∫

R3×R3

Re(ψ, η)(y)Re(ψ, ξ)(z)− Re(ψ,αη)(y) ·Re(ψ,αξ)(z)
|y − z| dy dz

Remark 3.12. Note that for any f ∈ L1 ∩ L3/2 we have that (see [10, Corollary
5.10])

∫

R3×R3

f(y)f̄(z)

|y − z| =

√

2

π

∫

R3

1

|p|2 |f̂ |
2(p) dp ≥ 0.
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Hence in particular

(3.13)

∫∫

R3×R3

Jψ(y) · Jψ(z)
|y − z| dy dz ≥ 0.

Moreover since |Jψ(y)| ≤ ρψ(y) for any y ∈ R3 and ψ ∈ H1/2, see [8, Lemma
2.1], we have that

(3.14)

∫∫

R3×R3

ρψ(y)ρψ(z)− Jψ(y) · Jψ(z)
|y − z| dy dz ≥ 0.

We also recall the following convergence result. Let v ∈ H1/2, fn, gn, hn bounded
sequences in H1/2, and one of them converge weakly to zero in H1/2, then we have
(see for example [5, Lemma 4.1])

(3.15)

∫∫

R3×R3

|fn|(y)|gn|(y)|v|(z)|hn|(z)
|y − z| dydz → 0. asn→ +∞

The following lemma is essentially already contained in [6, Lemma B.1], see also
[12] for related results.

Lemma 3.16. Let χ ∈ C∞
0 (R3), then [χ,U−1

FW
] and [χ,U

FW
] are bounded operator

from H1/2(R3;C4) → H3/2(R3;C4)
Moreover, for R ≥ 1 let define χR(y) = χ(R−1y). Then

‖[χR, UFW
]‖H1/2→H1/2 = ‖[χR, U−1

FW
]‖ = O(R−1) as R → +∞.

4. Maximization problem

Our first step will be to maximize our functional in the sets

XW =
{

φ =
(

φ1

φ2

)

∈ H1(R4
+;C

2 × C
2)

∣

∣ φ1 ∈W, |φtr|2L2 = 1
}

.

depending on a 1-dim vector space W ⊂ H1(R4
+;C

2). For each φ ∈ XW we will
write φ2 ∈ X−, so that φ ∈ W ×X−.

Denoting G(φ) = |φtr |2L2 , the tangent space of XW at some point φ ∈ XW is the
set

TφXW =
{

h ∈ W ×X−

∣

∣ dG(φ)[h] ≡ 2Re〈φtr |htr〉L2
= 0

}

and ∇XW I(φ), the projection of the gradient ∇I(φ) on the tangent space TφXW is
given by

∇XW I(φ) = ∇I(φ) − µ(φ)∇G(φ)
where ∇I(φ), ∇G(φ) ∈ H1 are such that

Re〈∇I(φ)|h〉
H1

= dI(φ)[h] and Re〈∇G(φ)|h〉
H1

= dG(φ)[h]

for all h ∈ H1 and µ(φ) ∈ R is such that ∇XW I(φ) ∈ TφXW .
We begin giving a result on Palais-Smale sequences for I restricted on XW .

Lemma 4.1. Fix any w ∈ H1(R4
+;C

2), (w)tr 6= 0 and let W = span{w}.
Suppose φn ∈ XW is a Palais-Smale sequence for I restricted on XW , at a

positive level, that is

• I(φn) = c+ ǫn → c > 0;
• ∇XW I(φn) → 0.

Then φn is bounded and |(φn1 )tr|2L2 >
1
2 .

Proof. We let φn =
(

φn
1

φn
2

)

. Since φn1 ∈W ,W one dimensional, and 0 < |(φn1 )tr|2L2 ≤
1 we have ‖φn1‖ ≤ cW for some constant (depending on W ).
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Let us denote ψn+ = U−1
FW

(

(φn
1 )tr
0

)

, ψn− = U−1
FW

( 0
(φn

2 )tr

)

and ψn = ψn+ + ψn−. In
view of Remarks 3.5 and 3.12 we have, for n large enough,

c+ ǫn = I(φn) ≤ ‖φn1‖2H1 − ‖φn2 ‖2H1 + αfs

∫

R3×R3

ρψn(y)(ρψn
+
+ ρψn

−
)(z)

|y − z| dydz

≤ (1 + αfsγT )‖φn1 ‖2H1 − (1− αfsγT )‖φn2‖2H1

Hence we may conclude that

‖φn1‖2H1 ≤ cW , ‖φn2‖2H1 ≤ 1 + αfsγT
1− αfsγT

‖φn1‖2H1

and also

‖φn1‖2H1 + ‖φn2‖2H1 ≤ 2cW
1− αfsγT

In particular we deduce that the any Palais-Smale sequence is bounded in H1.
Then we have

〈∇XW I(φn), φn〉 = dI(φn)[φn]− µ(φn)2|(φn)tr |2L2

= 2I(φn)− 2µ(φn)

+ αfs

∫∫

R3×R3

ρψn(y)ρψn(z)− Jψn(y) · Jψn(z)

|y − z| dydz

and we deduce that

(4.2) µ(φn) = c+ ǫn + 〈∇XW I(φn), φn〉

+
αfs

2

∫∫

R3×R3

ρψn(y)ρψn(z)− Jψn(y) · Jψn(z)

|y − z| dydz.

and

(4.3) µ(φn) > 0

for n large enough since the last term is non negative and 〈∇XW I(φn), φn〉 → 0.
Moreover since ‖φn‖H1 is bounded we have

o(1) = dI(φn)[βφn]− µ(φn)2Re〈(φn)tr|(βφn)tr〉L2 ,

and observing that

Re(ψ+(y) + ψ−(y), ψ+(y)− ψ−(y)) = |ψ+(y)|2 − |ψ−(y)|2 = ρψ+
(y)− ρψ−(y),
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we deduce that

µ(φn)|ψn+|2L2 + o(1) = µ(φn)|ψn−|2L2 +
1

2
dI(φn)[βφn]

= µ(φn)|ψn−|2L2 + ‖φn1‖2H1 + ‖φn2‖2H1 + αfs

∫

R3

V ρnψ+
dy

− αfs

∫

R3

V ρψn
−
dy

+ αfs

∫∫

R3×R3

ρψn(y)(ρψn
+
− ρnψ−

)(z)

|y − z| dydz

− αfs

∫∫

R3×R3

Jψn(y) · (Jψn
+
− Jψn

−
)(z)

|y − z| dydz

≥ µ(φn)|ψn−|2L2 + (1− ZαfsγT )‖φn1‖2H1 + ‖φn2‖2H1

− αfs

∫∫

R3×R3

(ρψn + |Jψn |)(y)ρψn
−
(z)

|y − z| dydz

+ αfs

∫∫

R3×R3

(ρψn − |Jψn |)(y)ρψn
+
(z)

|y − z| dydz

≥ µ(φn)|ψn−|2L2 + (1− ZαfsγT )‖φn1‖2H1 + (1− 2αfsγT )‖φn2‖2H1

> µ(φn)|ψn−|2L2 ,

where we have used the estimate (3.10). We immediately deduce, since µ(φn) > 0
for n large enough, that |ψn+|2L2 > |ψn−|2L2 which implies that |ψn+|2L2 >

1
2 . �

We now introduce the maximization problem

(4.4) λW = sup
φ∈XW

I(φ),

and we show that λW is positive.

Lemma 4.5. Fix any w ∈ H1(R4
+;C

2) and let W = span{w}. If wtr ≡ 0 then
supφ∈XW

I(φ) = +∞; on the other hand for wtr 6≡ 0 then

(4.6) sup
φ∈XW

I(φ) = λW ∈ (0,+∞).

Proof. If wtr ≡ 0 we take a sequence φn =
( anw
φ2

)

∈ XW with |an| → +∞, for n→
+∞, and a fixed φ2 ∈ H1 such that |(φ2)tr|2L2 = 1. We denote ψ− = U−1

FW

(

0
(φ2)tr

)

.

Then by (3.14) we have

sup
φ∈XW

I(φ) ≥ I(φn) ≥ |an|2‖w‖2H1 − ‖φ2‖2H1 + αfs

∫

R3

V ρψ−(y) dy

≥ |an|2‖w‖2H1 − C → +∞ as n→ +∞.

for some constant C > 0 independent on n ∈ N.
Fix now w ∈ H1(R4

+,C
2) with |wtr|L2 = 1. Denote W = span{(w0 )}, then

φ =
(

φ1

φ2

)

∈ XW is given by φ1 = aw , a ∈ C and |φtr|2L2 = |a|2 + |(φ2)tr|2L2 = 1.

Denote v+ = U−1
FW

(wtr
0 ), ψ+ = av+, ψ− = U−1

FW

(

0
(φ2)tr

)

and ψ = ψ+ + ψ−.

Since λW = supφ∈XW
I(φ) ≥ I((w0 )), by (3.14), (3.11), (3.2) and (3.4)

I(( w0 )) ≥ ‖w‖2H1 + αfs

∫

R3

V ρv+ dy ≥ ‖w‖2H1 − ZαfsγT |U−1
FW
wtr|2H1/2

= ‖w‖2H1 − ZαfsγT |wtr|2H1/2 ≥ (1− ZαfsγT )‖w‖2H1 ≥ (1− ZαfsγT ).

hence λW > 0.
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Moreover, in view of (3.13), (3.10) and recalling that |ψ−|H1/2 = |(φ2)tr|H1/2 ≤
‖φ2‖H1 by Lemma 3.1 and that |ρψ|L1 = |ψ|L2 = |φtr|L2 = 1, for any φ ∈ XW we
have

I(φ) ≤‖φ1‖2H1 − ‖φ2‖2H1 +
αfs

2

∫∫

R3×R3

ρψ(y)ρψ(z)

|y − z| dy dz

≤|a|2‖w‖2H1 − ‖φ2‖2H1 + αfs

∫∫

R3×R3

ρψ(y)(ρψ− + ρψ+
)(z)

|y − z| dy dz

≤|a|2‖w‖2H1 − ‖φ2‖2H1 + αfsγT |ρψ|L1(|ψ−|2H1/2 + |a|2|v+|2H1/2)

≤− (1 − αfsγT )‖φ2‖2H1 + CW

hence in particular supφ∈XW
I(φ) ≤ CW for some constant CW > 0 depending only

on W . �

Fix now w ∈ H1(R4
+,C

2) with |wtr|L2 = 1, to obtain additional information
on the the maximization problem (4.4) we introduce the (constraint) functional
JW : B1 → R given by

JW (u) = I
((

a(u)w
u

))

where

B1 =
{

u ∈ X− = H1(R4
+,C

2)
∣

∣ |utr|L2 < 1
}

a(u) is given by the constrain equation |awtr |2L2 + |utr|2L2 = 1 that is |a|2 = 1 −
|utr|2L2 . By the phase invariance, without loss of generality, we can always assume

that a(u) =
√

1− |utr|2L2 .

We have for any h ∈ H1(R4
+,C

2),

dJW (u)[h] = dI
((

a(u)w
u

))

[(

da(u)[h]w
h

)]

and for h, k ∈ H1

d2JW (u)[h; k] = Q1[h; k] +Q2[h; k]

= dI
((

a(u)w
u

))

[(

d2a(u)[h;k]w
0

)]

(4.7)

+ d2I
((

a(u)w
u

))

[(

da(u)[h]w
h

)

;
(

da(u)[k]w
k

)]

(4.8)

where, setting η = U−1
FW

(

0
utr

)

, ξ = U−1
FW

(

0
htr

)

, we have a(u) =
√

1− |η|2L2 ,

da(u)[h] = − Re〈η|ξ〉L2

√

1− |η|2L2

= −a(u)Re〈η|ξ〉L2

1− |η|2L2

and

d2a(u)[h;h] = −a(u) |ξ|2L2

1− |η|2L2

− a(u)

(

Re〈η|ξ〉L2

1− |η|2L2

)2
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Setting v+ = U−1
FW

(wtr
0 ), φ =

(

a(u)w
u

)

and ψ = U−1
FW
φ we have

1

2
dJW (u)[h] = −Re〈η|ξ〉L2‖w‖2H1 − Re〈u|h〉H1

− αfs Re〈η|ξ〉L2

∫

R3

V ρv+ dy + αfs

∫

R3

V Re(η, ξ) dy

+ αfs

∫

R3

V Re(a(u)v+, ξ) dy − αfs
Re〈η|ξ〉L2

1− |η|2L2

∫

R3

V Re(a(u)v+, η) dy

− αfs Re〈η|ξ〉L2

∫∫

R3×R3

ρψ(y)ρv+(z)− Jψ(y) · Jv+(z)
|y − z| dydz

+ αfs

∫∫

R6

ρψ(y)Re(η, ξ)(z)− Jψ(y) · (η,αξ)(z)
|y − z| dydz

+ αfs

∫∫

R6

ρψ(y)Re(a(u)v+, ξ)(z)− Jψ(y) · Re(a(u)v+,αξ)(z)
|y − z| dydz

− αfs
Re〈η|ξ〉L2

1− |η|2L2

∫∫

R6

ρψ(y)Re(a(u)v+, η)(z)− Jψ(y) ·Re(a(u)v+,αη)(z)
|y − z| dydz

It is convenient to define, for any ν ∈ H1/2,

Γψ(ν) = αfs

∫

R3

V Re(a(u)v+, ν) dy

+ αfs

∫∫

R3×R3

ρψ(y)Re(a(u)v+, ν)(z)− Jψ(y) ·Re(a(u)v+,αν)(z)
|y − z| dydz

(4.9)

where ψ = a(u)v+ + η. Remark that we have

|Γψ(ν)| ≤ C|ψ|H1/2 |ν|H1/2

and

1

2
dJW (u)[h] = −Re〈η|ξ〉L2‖w‖2H1 − Re〈u|h〉H1

− αfs Re〈η|ξ〉L2

∫

R3

V ρv+ dy + αfs

∫

R3

V Re(η, ξ) dy

− αfs Re〈η|ξ〉L2

∫∫

R3×R3

ρψ(y)ρv+(z)− Jψ(y) · Jv+(z)
|y − z| dydz

+ αfs

∫∫

R3×R3

ρψ(y)Re(η, ξ)(z)− Jψ(y) · (η,αξ)(z)
|y − z| dydz

+ Γψ(ξ)−
Re〈η|ξ〉L2

1− |η|2L2

Γψ(η)

In particular, for h = u, that is ξ = η, we have

1

2
dJW (u)[u] =− |η|2L2‖w‖2H1 − ‖u‖2H1 − αfs|η|2L2

∫

R3

V ρv+ dy + αfs

∫

R3

V ρη dy

− αfs|η|2L2

∫∫

R3×R3

ρψ(y)ρv+(z)− Jψ(y) · Jv+(z)
|y − z| dydz

+ αfs

∫∫

R3×R3

ρψ(y)ρη(z)− Jψ(y) · Jη(z)
|y − z| dydz

+

(

1− |η|2L2

1− |η|2L2

)

Γψ(η)
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hence we get
(4.10)
1

2
dJW (u)[u] ≤ −|η|2L2(1 − ZαfsγT )‖w‖2H1 − (1− 2αfsγT )‖u‖2H1 +

1− 2|η|2L2

1− |η|2L2

Γψ(η).

and in particular for all |η|L2 = 1
2 we have

(4.11)
1

2
dJW (u)[u] ≤ −|η|2L2(1 − ZαfsγT )‖w‖2H1 − (1− 2αfsγT )‖u‖2H1 < 0

Proposition 4.12. Let {un} ⊂ B1 ⊂ H1(R4
+,C

2) be a Palais Smale sequence for
JW , i.e. such that ‖dJW (un)‖ → 0 and JW (un) → c > 0.

Then,

(i) there exists κ > 0 such that |ηn|2L2 ≤ 1
2 − κ for all n large enough;

(ii) {un} is precompact in H1.

where ηn = (un)tr.

Proof. It is clear that the sequence φn =
(

a(un)w
un

)

is a Palais-Smale sequence for I
restricted to the subspace XW . We can then apply Lemma 4.1 to deduce that {un}
is a bounded sequence in H1 and |ηn| < 1

2 . We can assume that un ⇀ u weakly in

H1.
We let v+ = U−1

FW
(wtr

0 ), an = a(un) → a (up to subsequences) and ψn =

U−1
FW

(φn)tr = anv+ + ηn.

(i) Suppose on the contrary that |ηn|2L2 → 1
2 . Then from (4.10), |Γψn(ηn)| ≤

C|ψn|H1/2 |ηn|H1/2 and the fact that {un} is a bounded sequence in H1 , we get

1

2
dJW (un)[un] ≤− |ηn|2L2(1− ZαfsγT )‖w‖2H1 − (1 − αfsγT )‖un‖2H1

+
1− 2|ηn|2L2

1− |ηn|2L2

Γψn(ηn)

≤− |ηn|2L2(1− ZαfsγT )‖w‖2H1 +
1− 2|ηn|2L2

1− |ηn|2L2

C‖un‖H1

≤− 1

2
(1− ZαfsγT )‖w‖2H1 + o(1)

a contradiction.
(ii) Since |ηn|2L2 ≤ 1

2 − κ and {un} is a bounded sequence in H1, by (4.10) we
may conclude that

Γψn(ηn) ≥ −C‖dJW (un)‖ = o(1)

for some constant C > 0 independent on n.
Now, from un ⇀ u weakly in H1, ηn ⇀ η = U−1

FW

(

0
utr

)

weakly in H1/2 and

an → a in C, since V v+ ∈ H−1/2 we have
∫

R3

V Re(anv+, (ηn − η))(y) dy → 0

and in view of equation (3.15)

∫∫

R3×R3

ρψn(y)Re(anv+, (ηn − η))(z)

|y − z| dy dz → 0

∫∫

R3×R3

Jψn(y) ·Re(anv+,α(ηn − η))(z)

|y − z| dy dz → 0
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then we have
1

2
dJW (un)[un − u] ≤

≤ −|ηn − η|2L2(1− ZαfsγT )‖w‖2H1 − (1− 2αfsγT )‖un − u‖2H1

− |ηn − η|2L2

1 − |ηn|2L2

Γψn(ηn) + o(1)

≤ −|ηn − η|2L2(1− ZαfsγT )‖w‖2H1 − (1− 2αfsγT )‖un − u‖2H1 + o(1)

Hence we may conclude that un → u strongly in H1. �

We have the following strict concavity result

Proposition 4.13. Let u ∈ H1 be a critical point of JW , namely dJW (u)[h] = 0
for any h ∈ H1, such that |utr|2L2 <

1
2 .

Then u is a strict local maximum for JW , namely

d2JW (u)[h;h] ≤ −δ‖h‖2H1 ∀h ∈ H1

for some δ > 0.

Proof. Let φ =
(

a(u)w
u

)

and ψ = U−1
FW
φtr = a(u)v+ + η where v+ = U−1

FW
(wtr

0 ) and

η = U−1
FW

(

0
utr

)

. From the assumptions follows that |η|2L2 <
1
2 .

Now, let d2JW (u)[h;h] = Q1[h;h] + Q2[h;h] (see (4.7)-(4.8)). We set ξ =
U−1

FW

(

0
htr

)

and

r[ξ] =
Re〈η, ξ〉L2

1− |η|2L2

,

p[ξ; ξ] = (r[ξ])2 ≥ 0,

q[ξ; ξ] =
|ξ|2L2

1− |η|2L2

+ p[ξ; ξ] ≥ 2p[ξ; ξ].

We have da(u)[ξ] = −a(u)r[ξ] and
(da(u)[ξ])2 = a(u)2p[ξ; ξ] ≥ 0; d2a(u)[ξ; ξ] = −a(u)q[ξ; ξ] ≤ 0.

Since dJW (u)[u] = 0, in view of (4.10) we have Γψ(η) ≥ 0.
Let us compute Q1[h;h] adding a zero term for convenience, we get

Q1[h;h] = Q1[h;h] + q[ξ; ξ]dJW (u)[u]

= −2q[ξ; ξ]
(

‖w‖2H1 + αfs

∫

R3

V ρv+ dy

+ αfs

∫∫

R3×R3

ρψ(y)ρv+(z)− Jψ(y) · Jv+(z)
|y − z| dydz

)

− 2q[ξ; ξ]
(

‖u‖2H1 − αfs

∫

R3

V ρη dy

− αfs

∫∫

R3×R3

ρψ(y)ρη(z)− Jψ(y) · Jη(z)
|y − z| dydz

)

− 2q[ξ; ξ]
|η|2L2

1− |η|2L2

Γψ(η)

≤ −2q[ξ; ξ](1− ZαfsγT )‖w‖2H1 − 2q[ξ; ξ](1− 2αfsγT )‖u‖2H1

Now let estimate Q2[h;h], setting χ = U−1
FW

(

da(u)[ξ]wtr

htr

)

= da(u)[ξ]v++ ξ. We first

note that by Hölder inequality implies
∫∫

R3×R3

Re(ψ, χ)(y)Re(ψ, χ)(z)

|y − z| dy dz ≤
∫∫

R3×R3

ρψ(y)ρχ(z)

|y − z| dy dz
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and by Remark 3.12 follows

∫∫

R3×R3

Re(ψ,αχ)(y) · Re(ψ,αχ)(z)
|y − z| dy dz ≥ 0

hence we have

Q2[h;h] ≤ 2p[ξ; ξ]‖a(u)w‖2H1 − 2‖h‖2H1 + 2αfs

∫

R3

V ρχ(y) dy

+ 2αfs

∫∫

R3×R3

ρψ(y)ρχ(z)− Jψ(y) · Jχ(z)
|y − z| dy dz

+ 4αfs

∫∫

R3×R3

ρψ(y)ρχ(z)

|y − z| dy dz

≤ 2a(u)2p[ξ; ξ]
(

‖w‖2H1 + αfs

∫

R3

V ρv+

+ αfs

∫∫

R3×R3

ρψ(y)ρv+(z)− Jψ(y) · Jv+(z)
|y − z|

)

− 2‖h‖2H1 + 2αfs

∫

R3

V ρξ + 2αfs

∫∫

R3×R3

ρψ(y)ρξ(z)− Jψ(y) · Jξ(z)
|y − z|

− 4r[ξ]Γψ(ξ) + 4αfs

∫∫

R3×R3

ρψ(y)ρχ(z)

|y − z| dy dz

Again it is convenient to add the following zero terms,

0 = 2r[ξ]dJ (u)[h] + 2p[ξ; ξ]dJ (u)[u]

= −4p[ξ; ξ]

(

‖w‖2H1 + αfs

∫

R3

V ρv+ + αfs

∫∫

R3×R3

ρψ(y)ρv+(z)− Jψ(y) · Jv+(z)
|y − z|

)

− 4p[ξ; ξ]

(

‖u‖2H1 − αfs

∫

R3

V ρη dy − αfs

∫∫

R3×R3

ρψ(y)ρη(z)− Jψ(y) · Jη(z)
|y − z|

)

− 4r[ξ] Re〈u|h〉H1 + 4r[ξ]αfs

∫

R3

V Re(η, ξ) dy

+ 4r[ξ]αfs

∫∫

R3×R3

ρψ(y)Re(η, ξ)(z)− Jψ(y) ·Re(η,αξ)(z)
|y − z| dydz

+ 4r[ξ]Γψ(ξ) − 4p[ξ; ξ]
|η|2L2

1− |η|2L2

Γψ(η).
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In view of (4.10) Γψ(η) ≥ 0 and by Lemma 3.8 we have

Q2[h;h] = Q2[h;h] + 2r[ξ]dJW (u)[h] + 2p[ξ; ξ]dJW (u)[u]

≤ −2p[ξ; ξ]

(

‖w‖2H1 + αfs

∫

R3

V ρv+ + αfs

∫∫

R3×R3

ρψ(y)ρv+(z)− Jψ(y) · Jv+(z)
|y − z|

)

− 2‖h‖2H1 + 2αfs

∫

R3

V ρξ dy + 2αfs

∫∫

R3×R3

ρψ(y)ρξ(z)− Jψ(y) · Jξ(z)
|y − z| dydz

− 4p[ξ; ξ]

(

‖u‖2H1 − αfs

∫

R3

V ρη dy − αfs

∫∫

R3×R3

ρψ(y)ρη(z)− Jψ(y) · Jη(z)
|y − z| dydz

)

+ 4r[ξ](−Re〈u|h〉H1 + αfs

∫

R3

V Re(η, ξ))

+ 4r[ξ]αfs

∫∫

R3×R3

ρψ(y)Re(η, ξ)(z)− Jψ(y) ·Re(η,αξ)(z)
|y − z|

+ 4αfs

∫∫

R3×R3

ρψ(y)ρχ(z)

|y − z| dy dz

≤ −2p[ξ; ξ](1− ZαfsγT )‖w‖2H1 − (1 − 2αfsγT )‖h‖2H1 − (1− 2αfsγT )‖h+ 2r[ξ]u‖2H1

+ 4αfsγK |da(u)[ξ]v+ + ξ|2H1/2

Therefore, since q[ξ; ξ] ≥ 2p[ξ; ξ], we have

Q1[h;h] +Q2[h;h] ≤ −6(1− ZαfsγT )p[ξ; ξ]‖w‖2H1

− (1− 2αfsγT )‖h‖2H1 + 4αfsγK(p[ξ; ξ]‖a(u)w‖2H1 + ‖h‖2H1)

≤ −6(1− ZαfsγT − 2

3
αfsγK)p[ξ; ξ]‖w‖2H1 − (1− 2αfsγT − 4αfsγK)‖h‖2H1

≤ −(1− 8αfsγT )‖h‖2H1

where we have used that γK < 3
2γT , ZαfsγT + αfsγT = αfs(Z + 1)γT ≤ 1 (since

Z ≤ 123). �

In view of the above results we may conclude

Proposition 4.14. For any w ∈ H1(R4
+,C

2) with |wtr |L2 = 1 there exists unique
φ2 = φ2(w), a strict global maximum of JW , namely

JW (φ2) = sup
u∈B1

JW (u) = sup
φ∈XW

I(φ) = λW .

Moreover

• dJW (φ2(w)) = 0;
• there exists δ > 0 such that

JW (φ2(w))[h;h] ≤ −δ‖h‖2 ∀h ∈ H1

• the map w → φ2(w), is smooth and

dφ2(w)[dP (w)[·]] = −(duF (w, φ2(w)))
−1[dwF (w, φ2(w))[·]].

where P (w) = w
|wtr|L2

and

F (w, u)[h] = dI
((

a(u)P (w)
u

))

[(

da(u)[h]P (w)
h

)]

∀h ∈ H1.

Proof. It is clear that the equality supu∈B1
JW (u) = supφ∈XW

I(φ) holds. The
existence of a maximizer for JW then follows from lemma 4.5, which shows that
the supremum is strictly positive, Ekeland’s variational principle, which implies
that we can find a maximizing sequence un which is also a Palais-Smale sequence,
and Proposition 4.12, which shows that un → u with |utr|L2 < 1

2 .
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Suppose that we have another maximizer ũ. By Proposition 4.12 we deduce that
|ũtr|L2 < 1

2 .
To reach a contradiction, we consider the set

G =
{

g : [−1, 1] → H1(R4
+,C

2)
∣

∣ g(−1) = u, g(1) = ũ, |(g(t))tr|L2 ≤ 1

2

}

and the min-max level
c = sup

g∈G
min

t∈[−1,1]
JW (g(t))

The functional JW satisfies the Palais-Smale condition, see proposition 4.12, and
the set B1/2 =

{

u ∈ H1(R4
+,C

2)
∣

∣ |utr|L2 < 1/2
}

is invariant for the gradient flow
generated by dJW since by (4.11) dJW (u)[u] < 0 on ∂B1/2. Then we can deduce
that c is a Mountain pass critical level, and that there is a Mountain pass critical
point ṽ in B1/2, i.e. such that |ṽtr|L2 < 1

2 , a contradiction with Proposition 4.13,
since a Mountain pass critical point cannot be a strict local maximum.

Finally to prove that the map w → φ2(w) is smooth we use the implicit function
theorem. Indeed let consider any open subset U ⊂ H1 \ {wtr = 0} and the smooth
map F : U ×H1 → H−1 defined by

F (w, u)[h] = dI
((

a(u)P (w)
u

))

[(

da(u)[h]P (w)
h

)]

∀h ∈ H1.

Now fix w0 ∈ U with |w0|L2 = 1 and let u0 = φ2(w0) and W0 = span{w0}, we
have

F (w0, u0) = dJW0
(u0) = 0

and the operator duF (w0, u0) : H
1 → H−1 given by

(duF (w0, u0)[h])[k] =d
2I

((

a(u0)w0
u0

))

[(

da(u0)[h]w0

h

)

;
(

da(u0)[k]w0

k

)]

+ dI
((

a(u0)w0
u0

))

[(

d2a(u0)[h;k]w0

0

)]

∀h, k ∈ H1

is invertible. Indeed, we simply apply the Riesz theorem on Hilbert spaces (or
equivalently Lax-Milgram theorem) to the symmetric, bilinear and bi-continuous,
quadratic form Q : H1 ×H1 → R given by

Q[h; k] = −(duF (w0, u0)[h])[k].

In view of Proposition 4.13

Q[h;h] = −d2JW0
(u0)[h;h] ≥ δ‖h‖2 ∀h ∈ H1

for some δ > 0, namely Q is definite positive (coercive) and the theorem apply,
hence for any f ∈ H−1 there exists unique h ∈ H1 such that Q[h; k] = f [k] for any
k ∈ H1, namely duF (w0, u0)[h] = −f .

Therefore we can apply the implicit function theorem to conclude that there
exists a neighborhood U0 ⊂ X+ \ {wtr = 0} of w0 and a smooth map u : U0 → H1

such that F (w, u(w)) = 0 for all w ∈ U0.
Since we already know that for any w ∈ X+ \ {wtr = 0} there exist φ2(P (w)),

the unique strict global maximum of JW , such that F (w, φ2(P (w))) = 0, we may
conclude that u(w) ≡ φ2(P (w)) for any w ∈ U0.

Moreover, we have that for w ∈ U0, du(w) : H
1 → H1 is given by

du(w)[h] = −(duF (w, u(w)))
−1[dwF (w, u(w))[h]] ∀h ∈ H1.

�

Corollary 4.15. For any w ∈ H1(R4
+,C

2) with |wtr|L2 = 1, let φ̄(w) =
(

a(φ2(w))w
φ2(w)

)

.

Then φ̄(w) ∈ XW is the unique (up to phase) maximizer of I in XW , namely

(4.16) I(φ̄(w)) = sup
φ∈XW

I(φ) = λ
W
> 0.
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and

dI(φ̄(w))[h] = 2µ(φ̄(w))Re〈(φ̄(w))tr | htr〉L2 ∀h ∈W ⊕X−

where

µ(φ̄(w)) = λW +
αfs

2

∫∫

R3×R3

ρψw(y)ρψw (z)− Jψw(y) · Jψw (z)

|y − z| dydz.

and ψw = U−1
FW

(φ̄(w))tr. Moreover, the following estimates holds

(i) |φ1(w)tr|2L2 >
1
2 ;

(ii) ‖φ̄(w)‖2H1 ≤ 1+αfsγTZ
(1−αfsγT )(1−αfsγTZ)λW .

Proof. We only have to show that item (ii) holds.
If φ(w) is the maximizer for I in XW we have as in the proof of Lemma 4.1,

λW ≤ (1 + αfsγT )‖φ1(w)‖2H1 − (1 − αfsγT )‖φ2(w)‖2H1

Moreover we have

λW ≥ I(
(

φ1(w)
0

)

) ≥ ‖φ1(w)‖2H1 + αfs

∫

R3

V ρψ+,w dy ≥ (1− αfsγTZ)‖φ1(w)‖2H1

where ψ+,w = U−1
FW

(

φ1(w)
0

)

. Hence we may conclude that

‖φ2(w)‖2H1 ≤ αfsγT
1− αfsγT

(1 + Z)‖φ1(w)‖2H1

‖φ1(w)‖2H1 ≤ λW
1− αfsγTZ

and also

‖φ1(w)‖2H1 + ‖φ2(w)‖2H1 ≤ 1 + αfsγTZ

1− αfsγT
‖φ1(w)‖2 ≤ 1 + αfsγTZ

(1 − αfsγT )(1 − αfsγTZ)
λW .

�

5. Proof of Theorem 1.1

In view of the results of Proposition 4.14 it is convenient to introduce the smooth
functional F : H1(R4

+;C
2) \ {wtr ≡ 0} → R

F(w) = I(φ(w))

where φ(w) =
(

a(φ2(P (w)))P (w)
φ2(P (w))

)

and P (w) = w
|wtr |L2

. Now in view of Proposition

4.14 we may conclude that

Λ1 = inf
W⊂X+

dimW=1

sup
φ∈XW

I(φ) = inf
w∈H1(R4

+;C2)

|wtr |L2=1

I(φ̄(w)) = inf
w∈H1(R4

+
;C2)\{wtr=0}

F(w)

Let us introduce the constraint manifold W ⊂ H1(R4
+;C

2)

W = {w ∈ H1(R4
+;C

2) : G(w) := |wtr|2L2 − 1 = 0}
and its tangent space

TwW = {h ∈ H1(R4
+;C

2) : dG(w)[h] = 2Re〈wtr|htr〉L2 = 0}
Let us compute dF(w)[h] = dI(φ(w))[dφ(w)[h]]. Forw ∈ W and h ∈ H1(R4

+;C
2),

we have

dφ(w)[h] =
(

da(φ2(w))[dφ2(w)[dP (w)[h]]w
dφ2(w)[dP (w)[h]]

)

+
(

a(φ2(w))dP (w)[h]
0

)

.

Since

0 = dJW (φ2(w))[k] = dI(φ(w))
[(

da(φ2(w))[k]w
k

)]

∀k ∈ H1
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we have

dF(w)[h] = dJW (φ2(w))[dφ2(w)[dP (w)[h]] + dI(φ(w))
[(

a(φ2(w))dP (w)[h]
0

)]

= a(φ2(w))dI(φ(w))
[(

dP (w)[h]
0

)]

.

where dP (w)[h] = h− wRe〈wtr | htr〉L2 if w ∈ W .
Since dF(w)[w] = 0 for any w ∈ W , it is easy to see that W is indeed a natural

constraint for F . Hence in particular by Ekeland’s variational principle, there
exists a Palais-Smale, minimizing sequence {wn} ∈ W , namely F(wn) → Λ1 and
‖dF(wn)‖ → 0.

Now setting φn = φ(wn) =
(

φ1,n

φ2,n

)

, with φ1,n = anwn, an = a(φ2(wn)),

φ2,n = φ2(wn) and µn = µ(φn) and defining the linear continuous functional
Tn : H1(R4

+;C
2) → R

(5.1) Tn[h] = dI(φn)[( h0 )]− 2µnRe〈an(wn)tr | htr〉L2

in view of Corollary 4.15 we have that Tn[h] = 0 for any h ∈ span{wn} and n ∈ N.
On the other hand for any h ∈ H1(R4

+;C
2)

dF(wn)[h] = andI(φn)
[(

dP (wn)[h]
0

)]

= anTn[dP (wn)[h]] = anTn[h]

and since ‖dF(wn)‖ → 0 and an >
1
2 we may conclude that Tn → 0 strongly.

Since the sequence {φn} is bounded in H1(R4
+;C

4) (it follows from Corollary

4.15 since λWn → Λ1) we get that, up to a subsequence, φn ⇀ φ weakly in H1 and
µn → µ, and hence,

dI(φ)[h] = 2µRe〈φtr, htr〉L2 ∀h ∈ H1(R4
+;C

4).

(since dI(φn)[h] → dI(φ)[h] if φn ⇀ φ, see (3.15)).
To conclude the proof of Theorem 1.1 we need to show that |φtr|L2 = 1, that is

a strong convergence in L2 of (φn)tr, in fact we will prove strong convergence of φn
in H1.

First note that we can assume that

(5.2) lim inf
n→+∞

d2F(wn)[h;h] ≥ 0 ∀h ∈ H1(R4
+;C

2).

This is an adaptation of of theorem 2.6 in Borwein and Preiss [2] with p = 2, ǫ = 1
n

and λ = 1 (see also [1]) which states that one can find a minimizing sequence such
that

F(wn) ≤ inf
w∈W

F(w) +
1

n
,

F(wn) +
1

n
∆(wn) ≤ F(w) +

1

n
∆(w) for all w ∈ W

where ∆(y) =
∑∞
k=1 βk‖y − yk‖2H1 for a (convergent) sequence of points yk and

reals βk ≥ 0 such that
∑∞

k=1 βk = 1. The above relation shows that w = wn is a

minimizer for Gn(w) = F(w) + 1
n∆(w) and hence

0 ≤ d2Gn(wn)[h, h] = d2F(wn)[h, h] +
1

n
〈h | h〉H1 .

Now with the additional information (5.2) on the second variations, we prove
the following bound on the Lagrange multiplier µ, that it will be a key point to
prove strong convergence of the minimizing sequence. We have

Lemma 5.3. µ < 1

Proof. Since wn is bounded we can assume that wn ⇀ w in H1. Take h ∈
H1(R4

+;C
2) such that htr ∈ H1(R3;C2) and Re〈wtr|htr〉L2 = 0.
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We set h1,n = dP (wn)[h] and h2,n = dφ2(wn)[dP (wn)[h]], then we have

d2F(wn)[h;h] = d2I(φn)
[(

da(φ2,n)[h2,n]wn

h2,n

)

;
(

anh1,n

0

)

]

+ d2I(φn)
[(

anh1,n

0

)

;
(

anh1,n

0

)]

+ dI(φn)
[(

da(φ2,n)[h2,n]h1,n

0

)]

+ dI(φn)
[(

and
2P (wn)[h;h]

0

)]

= (I) + (II) + (III).

where

(I) = d2I(φn)
[(

da(φ2,n)[h2,n]wn

h2,n

)

;
(

anh1,n

0

)

]

+ dI(φn)
[(

da(φ2,n)[h2,n]h1,n

0

)]

(II) = d2I(φn)
[(

anh1,n

0

)

;
(

anh1,n

0

)]

(III) = dI(φn)
[(

and
2P (wn)[h;h]

0

)]

.

In view of Proposition 4.14 for any w ∈ W we have for all h ∈ H1

h2,n = dφ2(w)[dP (w)[h]] = −(duF (w, φ2(w))
−1[(dwF (w, φ2(w))[h])],

where the map F : H1 \ {wtr = 0} ×H1 → H−1 is given by

F (w, u)[k] = dI
((

a(u)P (w)
u

))

[(

da(u)[k]P (w)
k

)]

∀k ∈ H1,

let compute the operator dwF (w, u) : H
1 → H−1, for w ∈ W and any for h1, h2 ∈

H1 we have

(dwF (w, u)[h1])[h2] =d
2I

((

a(u)w
u

))

[

(

a(u)dP (w)[h1]
0

)

;
(

da(u)[h2]w
h2

)]

+ dI
((

a(u)w
u

)) [(

da(u)[h2]dP (w)[h1]
0

)]

.

Hence we have

−(duF (wn, φ2,n)[h2,n])[h2,n] = (dwF (wn, φ2,n)[h])[h2,n] = (I).

Recalling that

(duF (w, u)[k])[k] = d2I
((

a(u)w
u

))

[(

da(u)[k]w
k

)

;
(

da(u)[k]w
k

)]

+ dI
((

a(u)w
u

))

[(

d2a(u)[k;k]w
0

)]

= d2JW (u)[k; k] ∀k ∈ H1.

in view of Proposition 4.13, we get

(I) = (dwF (wn, φ2,n)[h])[h2,n] = −d2JW (φ2,n)[h2,n;h2,n] ≥ δ‖h2,n‖2H1 .

On the other hand, we have

(I) =and
2I(φn)

[(

0
h2,n

)

;
(

h1,n

0

)]

− da(φ2,n)[h2,n]d
2I(φn)

[(

0
φ2,n

)

;
(

h1,n

0

)]

+ da(φ2,n)[h2,n]
(

d2I(φn)
[

φn;
(

h1,n

0

)]

+ dI(φn)
[(

h1,n

0

)])

.

Then, since 〈(wn)tr|h1,n〉L2 = 〈(wn)tr |dP (wn)[h]〉L2 = 0, by Corollary 4.15 we have

dI(φn)
[(

h1,n

0

)]

= Tn(h)
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and recalling that h1,n = dP (wn)[h] = h − wnRe〈(wn)tr |htr〉L2 → h, as n → +∞
strongly in H1, we set ξ = U−1

FW

(

htr
0

)

, by Hölder’s and Hardy’s inequalities, we get

d2I(φn)
[

φn;
(

h1,n

0

)]

= dI(φn)
[(

h1,n

0

)]

+ 4αfs

∫∫

R3×R3

ρψn(y)Re(ψn, ξ)(z)− Jψn(y) ·Re(ψn,αξ)(z)
|y − z| dy dz + on(1)

≤ Tn(h) + 8αfs

∫∫

R3×R3

ρψn(y)|ψn|(z)|ξ|(z)
|y − z| dy dz + on(1)

≤ Tn(h) + C

∫

R3

ρψn(y)

(
∫

R3

|ξ|2(z)
|y − z|2 dz

)1/2

dy + on(1)

≤ Tn(h) + C|∇ξ|L2 + on(1).

and analogously, by Hölder and Hardy’s inequalities, we have

d2I(φn)
[(

0
h2,n

)

;
(

h1,n

0

)]

≤ C‖h2,n‖H1(|∇ξ|L2 + on(1))

and
∣

∣d2I(φn)
[(

0
φ2,n

)

;
(

dP (wn)[h]
0

)]
∣

∣ ≤ C(|∇ξ|L2 + on(1))

for some constant C > 0 that may change from line to line.
Hence, since da(φ2,n)[h2,n] ≤ |(h2,n)tr|L2 ≤ ‖h2,n‖H1 and |an| ≤ 1, we get

δ‖h2,n‖2H1 ≤ (I) ≤ C‖h2,n‖H1(|∇ξ|L2 + on(1))

namely

‖h2,n‖H1 ≤ C(|∇ξ|L2 + on(1))

and we may conclude that

(I) ≤ C|∇ξ|2L2 + on(1).

Now, by Remark 3.12 and Hölder inequality, we have

(II) ≤ 2a2n‖h‖2H1 + 2a2nαfs

∫

R3

V ρξ dy

+ 8a2nαfs

∫∫

R3×R3

ρψn(y)ρξ(z)

|y − z| dy dz + on(1)

Moreover, recalling that

d2P (wn)[h;h] =3|Re〈(wn)tr|htr〉L2 |2wn − 2Re〈(wn)tr|htr〉L2h− |htr|2L2wn

we have by Corollary 4.15

(III) = µn2a
2
nRe〈(wn)tr|(d2P (wn)[h;h])tr〉L2 + anTn(d2P (wn)[h;h])

= µn2a
2
n(|Re〈(wn)tr|htr〉L2 |2 − |htr|2L2) + on(1)

= −2a2nµn|htr|2L2 + on(1).

Collecting the estimates above we get

d2F(wn)[h;h] ≤2a2n
(

‖h‖2H1 − µn|htr|2L2

)

+ 2a2nαfs

∫

R3

V ρξ dy

+ 8a2nαfs

∫∫

R3×R3

ρψn(y)ρξ(z)

|y − z| dy dz + C|∇ξ|2L2 + on(1)

Now, for fixed ǫ > 0 we take hǫ = e−xǫ3/2η(ǫ|y|) with η ∈ H5/2(R3;C2), η(y) =
η(|y|) and |η|L2 = 1.

Note that

‖hǫ‖2H1 =
1

2
ǫ2|∇η|2L2 + |η|2L2
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and setting ξǫ = U−1
FW

(

(hǫ)tr
0

)

we have

ξǫ(y) = ǫ3/2U−1
FW

(

η(ǫ|y|)
0

)

= ǫ3/2
(

F−1[a+(ǫp)η̂]

F−1[a−(ǫp)σ·p
|p| η̂]

)

(ǫy)

hence in particular

ρξǫ(y) =ǫ
3|F−1[a+(ǫp)η̂]|2(ǫy) + ǫ3|F−1[a−(ǫp)

σ · p
|p| η̂]|

2(ǫy)

=ǫ3ρη(ǫ|y|) + ǫ3ζǫ(ǫy)

where ρη(y) = |η|2(y) and

ζǫ(y) =|F−1[(a+(ǫp)− 1)η̂]|2(y) + |F−1[a−(ǫp)
σ · p
|p| η̂]|

2(y)

+ 2Re(η,F−1[(a+(ǫp)− 1)η̂])(y)

Recalling that a±(ǫp) =
√

1
2 (1 ± 1/λ(ǫp)), and λ(p) =

√

|p|2 + 1, we have

|a+(ǫp)− 1| = |
(

λ(ǫp) + 1

2λ(ǫp)

)
1
2

− 1| ≤ |1− λ(ǫp)|
2λ(ǫp)

≤ ǫ2|p|2

|a−(ǫp)| =
(

λ(ǫp)− 1

2λ(ǫp)

)
1
2

≤ ǫ|p|

we have

|(a+(ǫp)− 1)η̂|L2 ≤ Cǫ2||p|2η̂|L2

|a−(ǫp)η̂|L2 ≤ Cǫ||p|η̂|L2

(5.4)

Therefore we get

d2F(wn)[hǫ;hǫ] ≤ 2a2n(1 − µn)

+ 2a2nαfs

∫

R3

V (y)ρη(ǫ|y|) ǫ3dy + 8a2nαfs

∫∫

R3×R3

ρψn(y)ρη(ǫ|z|) ǫ3
|y − z| dy dz

+ 2a2nαfs

∫

R3

V (y)ζǫ(ǫy) ǫ
3dy + 8a2nαfs

∫∫

R3×R3

ρψn(y)ζǫ(ǫz) ǫ
3

|y − z| dy dz

+ Cǫ2|∇η|2L2 + on(1)

Here, using (3.6) we get
∫

R3

V (y)ζǫ(ǫy) ǫ
3dy = −Zǫ

∫

R3

ζǫ(y)

|y| dy

= −Zǫ
∫

R3

|F−1[(a+(ǫp)− 1)η̂]|2(y)
|y| dy

− Zǫ

∫

R3

|F−1[a−(ǫp)
σ·p
|p| η̂]|2(y)

|y| dy

− 2Zǫ

∫

R3

Re(η,F−1[(a+(ǫp)− 1)η̂])(y)

|y| dy

≤ ǫC|F−1[(a+(ǫp)− 1)η̂|2H1/2 + ǫC|F−1[a−(ǫp)
σ · p
|p| η̂]|

2
H1/2

+ ǫC|F−1[(a+(ǫp)− 1)η̂]|H1/2 |η|H1/2

≤ ǫ4C||p|5/2η̂]|2L2 + ǫ3C||p|3/2η̂]|2L2 + ǫ3C||p|5/2η̂]|L2 |η|H1/2

Since for any radial function ρ ∈ L1(R3;R+) and for any z ∈ R3 we have
∫

R3

ρ(y)

|y − z| dy ≤
∫

R3

ρ(y)

|y| dy.
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we deduce

∫∫

R3×R3

ρψn(y)ρη(ǫ|z|) ǫ3
|y − z| dy dz =

∫

R3

ρψn(y)

(
∫

R3

ρη(ǫ|z|)ǫ3
|y − z| dz

)

dy

≤ ǫ|ρψn |L1

∫

R3

ρη(|z|)
|z| dz

and, by Lemma 3.8

∫∫

R3×R3

ρψn(y)ζǫ(ǫz) ǫ
3

|y − z| dy dz ≤ C|ψn|2H1/2 |ζǫ|L1 ≤ Cǫ2|η|2H2 + o(ǫ2)

Then, by (5.2) and Lemma 3.8 we get

0 ≤ lim inf
n→+∞

d2F(wn)[hǫ;hǫ]

≤ 2a2(1− µ) + 2a2αfs

∫

R3

(

−Zǫ|y| +
4ǫ

|y|

)

ρη(|y|) dy

+ Cǫ2|η|2H2 + o(ǫ2)

where a = limn an (up to subsequence).
Hence, since Z > 4 we may conclude that there exists δ̄ > 0 and ǭ > 0 such that

0 ≤ (1− µ)− ǫδ̄

∫

R3

|η|2
|y| dy + Cǫ2|η|2H2 ≤ 1− µ− Cǭ

where we have denoted with C various positive constants. �

Now, let hn =
(

h1,n

h2,n

)

= φn − φ ⇀ 0 weakly in H1, define ξ+,n = U−1
FW

(

(h1,n)tr
0

)

and ξ−,n = U−1
FW

( 0
(h2,n)tr

)

and ξn = U−1
FW

(hn)tr = ξ+,n + ξ−,n we have

Lemma 5.5. If ξn ⇀ 0 weakly in H1/2 then

∫

R3

V ρξ±,n dy → 0.

Proof. The proof is similar, even somewhat simpler than the [6, Lemma B.1] �

Then finally taking ζn = βhn. in view of Corollary 4.15, and since hn = φn−φ ⇀
0 by Lemma 5.5 , we get

on(1) = Tn(ζn) = dI(φn)[ζn]− 2µnRe〈(ψn, ξ+,n − ξ−,n〉L2

= 2‖h1,n‖2H1 + 2‖h2,n‖2H1 − 2µn(|ξ+,n|2L2 − |ξ−,n|2L2)

+ 2αfs

∫

R3

V (ρξ+,n − ρξ−,n) dy

+ 2αfs

∫∫

R3×R3

ρψn(y)ρξ+,n(z)− Jψn(y) · Jξ+,n(z)

|y − z| dy dz

− 2αfs

∫∫

R3×R3

ρψn(y)ρξ−,n(z)− Jψn(y) · Jξ−,n(z)

|y − z| dy dz + on(1)

≥ 2(1− µn)‖h1,n‖2H1 + 2(1− 2γT )‖h2,n‖2H1 + on(1).

since µ < 1 we may conclude that φn → φ strongly in H1.
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