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Abstract. We propose a novel neural network architecture, SwitchNet, for solving the wave

equation based inverse scattering problems via providing maps between the scatterers and the
scattered field (and vice versa). The main difficulty of using a neural network for this problem is

that a scatterer has a global impact on the scattered wave field, rendering typical convolutional

neural network with local connections inapplicable. While it is possible to deal with such a problem
using a fully connected network, the number of parameters grows quadratically with the size of the

input and output data. By leveraging the inherent low-rank structure of the scattering problems
and introducing a novel switching layer with sparse connections, the SwitchNet architecture uses
much fewer parameters and facilitates the training process. Numerical experiments show promising

accuracy in learning the forward and inverse maps between the scatterers and the scattered wave
field.

1. Introduction

In this paper, we study the forward and inverse scattering problems via the use of artificial
neural networks (NNs). In order to simplify the discussion, we focus on the time-harmonic acoustic
scattering in two dimensional space. The inhomogeneous media scattering problem with a fixed
frequency ω is modeled by the Helmholtz operator

(1) Lu :=

(
−∆− ω2

c2(x)

)
u,

where c(x) is the velocity field. In many settings, there exists a known background velocity field
c0(x) such that c(x) is identical to c0(x) except in a compact domain Ω. By introducing the scatterer
η(x) compactly supported in Ω

(2)
ω2

c(x)2
=

ω2

c0(x)2
+ η(x),

we can equivalently work with η(x) instead of c(x). Note that in this definition η(x) scales quadratically
with the frequency ω. However, as ω is assumed to be fixed throughout this paper, this scaling does
not affect any discussion below.

In many real-world applications, η(·) is unknown. The task of the inverse problem is to recover
η(·) based on some observation data d(·). The observation data d(·) is often a quantity derived from
the Green’s function G = L−1 of the Helmholtz operator L and, therefore, it depends closely on
η(·). This paper is an exploratory attempt of constructing efficient approximations to the forward
map η → d and the inverse map d→ η using the modern tools from machine learning and artificial
intelligence. Such approximations are highly useful for the numerical solutions of the scattering
problems: an efficient map η → d provides an alternative to expensive partial differential equation
(PDE) solvers for the Helmholtz equation; an efficient map d→ η is more valuable as it allows us
to solve the inverse problem of determining the scatterers from the scattering field, without going
through the usual iterative process.
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In the last several years, deep neural network has become the go-to method in computer vision,
image processing, speech recognition and many other machine learning applications [18, 28, 12, 9].
More recently, methods based on NN have also been applied to solving PDEs. Based on the way
that the NN is used, these methods for solving the PDE can be roughly separated into two different
categories. For the methods in the first category [16, 27, 3, 10, 14, 6], instead of specifying the
solution space via the choice of basis (as in finite element method or Fourier spectral method), NN
is used for representing the solution. Then an optimization problem, for example an variational
formulation, is solved in order to obtain the parameters of the NN and hence the solution to the
PDE. Similar to the use of an NN for regression and classification purposes, the methods in the
second category such as [23, 11, 13, 8] use an NN to learn a map that goes from the coefficients in
the PDE to the solution of the PDE. As in machine learning, the architecture design of an NN for
solving PDE usually requires the incorporation of the knowledge from the PDE domain such that
the NN architecture is able to capture the behavior of the solution process. Despite the abundance
of the works in using the NN for solving PDE, none of the above mentioned methods have tried to
obtain the solution to the wave equation.

This paper takes a deep learning approach to learn both the forward and inverse maps. For the
Helmholtz operator (1), we propose an NN architecture for determining the forward and inverse maps
between the scatterer η(·) and the observation data d(·) generated from the scatterer. Although
this task looks similar to the computer vision problems such as image segmentation, denoising, and
super-resolution where the map between the two images has to be determined, the nature of the
map in our problem is much more complicated. In many image processing tasks, the value of a pixel
at the output generally only depends on a neighborhood of that pixel at the input layer. However,
for the scattering problems, the input and output are often defined on different domains and, due
to wave propagation, each location of the scatterer can influence every point of the scattered field.
Therefore, the connectivity in the NN has to be wired in a non-local fashion, rendering typical NN
with local connectivity insufficient. This leads to the development of the proposed SwitchNet. The
key idea is the inclusion of a novel low-complexity switch layer that sends information between all
pairs of sites effectively, following the ideas from butterfly factorizations [21]. The same factorization
was used earlier in the architecture proposed [19], but the network weights there are hardcoded and
not trainable.

The paper is organized as followed. In Section 2, we discuss about some preliminary results
concerning Helmholtz equation. In Section 3, we study the so called far field pattern of the scattering
problem, where the sources and receivers can be regarded as placed at infinity. We propose SwitchNet
to determine the maps between the far field scattering pattern and the scatterer. In Section 4, we
turn to the setting of a seismic imaging problem. In this problem, the sources and receivers are at a
finite distance, but yet well-separated from the scatterer.

2. Preliminary

The discussion of this paper shall focus on the two-dimensional case. Here, we summarize the
mathematical tools and notations used in this paper. As mentioned above, the scatterer η(x) is
compactly supported in a domain Ω, whose diameter is of O(1). For example, one can think of Ω to
be the unit square centered at the origin. In (1), the Helmholtz operator is defined on the whole
space R2 with the radiative (Sommerfeld) boundary condition [5] specified at infinity. Since the
scatterer field η(x) is localized in Ω, it is convenient to truncate the computation domain to Ω by
imposing the perfectly matched layer [1] that approximates the radiative boundary condition.

In a typical numerical solution of the Helmholtz operator, Ω is discretized by a Cartesian grid X ⊂ Ω
at the rate of a few points per wavelength. As a result, the number of grid points N per dimension is
proportional to the frequency ω. We simply use {x}x∈X to denote the discretization points of this
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N ×N grid X. The Laplacian operator −∆ in the Helmholtz operator is typically discretized with
local numerical schemes, such as the finite difference method [17]. Via this discretization, we can

consider the scatterer field η, discretized at the points in X, as a vector in RN2

and the Helmholtz

operator L as a matrix in CN2×N2

.
Using the background velocity field c0(x), we first introduce the background Helmholtz operator

L0 = −∆− ω2/c20. With the help of L0, one can write L in a perturbative way as

(3) L = L0 − E, E = diag(η),

where E is viewed as a perturbation. By introducing the background Green’s function

(4) G0 := L−1
0 ,

one can write down a formal expansion for the Green’s function G = L−1 of the η-dependent
Helmholtz operator L:

G = (L0(I −G0E))−1

∼ (I +G0E +G0EG0E + · · · )G0

∼ G0 +G0EG0 +G0EG0EG0 + · · ·
:= G0 +G1 +G2 + · · · ,(5)

which is valid when the scatterer field η(x) is sufficiently small. The last line of the above equation
serves as the definition of the successive terms of the expansion (G1, G2, and so on). As G0 can be
computed from the knowledge of the background velocity field c0(x), most data gathering processes
(with appropriate post-processing) focus on the difference G−G0 = G1 +G2 + · · · instead of G itself.

A usual experimental setup consists of a set of sources S and a set of receivers R:

S = {s}s∈S , R = {r}r∈R.

The data gathering process usually involves three steps: (1) impose an external force or incoming
wave field via some sources, (2) solve for the scattering field either computationally or physically,
(3) gather the data with receivers at specific locations or directions. The second step is modeled by
the difference of the Green’s function G−G0, as we mentioned above. As for the other steps, it is
convenient at this point to model the first step with a source-dependent operator ΠS and the third
one with a receiver-dependent operator ΠR. We shall see later how these operators are defined in
more concrete settings. By putting these components together, one can set the observation data d
abstractly as

(6) d = ΠR(G−G0)ΠS = ΠR(G0EG0 +G0EG0EG0 + · · · )ΠS = (ΠRG0)(E+EG0E+ · · · )(G0ΠS).

In this paper, we focus on two scenarios: far field pattern and seismic imaging. We start with far
field pattern first to motivate and introduce SwitchNet. We then move on to the seismic case by
focusing on the main differences.

3. SwitchNet for far field pattern

3.1. Problem setup. In this section, we consider the problem of determining the map from the
scatterer to the far field scattering pattern, along with its inverse map. Without loss of generality,
we assume that the diameter of the domain Ω is of O(1) after appropriate rescaling. The background
velocity c0(x) is assumed to be 1 since the far field pattern experiments are mostly performed in free
space.

In this problem, both the sources and the receivers are indexed by a set of unit directions in S1.
The source associated with a unit direction s ∈ S ⊂ S1 is an incoming plane waves eiωs·x pointing
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at direction s. It is well known that the scattered wave field, denoted by us(x), at a large distance
takes the following form [5]

us(x) =
eiω|x|√
|x|

(
u∞s

(
x

|x|

)
+ o(1)

)
,

where the function u∞s (·) is defined on the unit circle S1. The receiver at direction r ∈ R ⊂ S1 simply
records the quantity u∞s (r) for each s. The set of observation data d is then defined to be

d(rs) = u∞s (r).

Figure 1 provides an illustration of this experimental setup. Henceforth, we assume that both R
and S are chosen to be a set of uniformly distributed directions on S1. Their size, denoted by M ,
typically scales linearly with frequency ω.

Figure 1 Illustration of the incoming and outgoing waves for a far field pattern
problem. The scatterer η(x) is compactly supported in the domain Ω. The incoming
plane wave points at direction s. The far field pattern is sampled at each receiver
direction r.

This data gathering process can be put into the framework of (6). First, one can think of the
source prescription as a limiting process that produces in the limit the incoming wave eiωs·x. The
source can be considered to be located at the point −sρ for the direction s ∈ S1 with the distance
ρ ∈ R+ going to infinity. In order to compensate the geometric spreading of the wave field and also
the phase shift, the source magnitude is assumed to scale like

√
ρe−iωρ as ρ goes to infinity. Under

this setup, we have

lim
ρ→∞

(G0ΠS)(x, s)

= lim
ρ→∞

(1/
√
ρ)eiω|x−(−sρ)|√ρe−iωρ

= lim
ρ→∞

(1/
√
ρ)eiω(ρ+s·x)√ρe−iωρ

= eiωs·x.(7)

Similarly, one can also regard the receiver prescription as a limiting process as well. The receiver is
located at point rρ′ for a fixed unit direction r ∈ S1 with ρ′ ∈ R+ going to infinity. Again in order
to to compensate the geometric spreading and the phase shift, one scales the received signal with√
ρ′e−iωρ

′
. As a result, we have

lim
ρ′→∞

(ΠRG0)(r, x)

= lim
ρ′→∞

(1/
√
ρ′)eiω|rρ

′−x|
√
ρ′e−iωρ

′
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= lim
ρ′→∞

(1/
√
ρ′)eiω(ρ′−r·x)

√
ρ′e−iωρ

′

= e−iωr·x.(8)

In this limiting setting, one redefine the observation data as

(9) d = lim
ρ,ρ′→∞

(ΠRG0)(E + EG0E + · · · )(G0ΠS).

Now taking the two limits (7) and (8) under consideration, one arrives at the following representation
of the observation data d(r, s) for r ∈ R and s ∈ S

(10) d(r, s) =
∑
x∈X

∑
y∈X

e−iωr·x(E + EG0E + · · · )(x, y)eiωs·y.

3.2. Low-rank property. The intuition behind the proposed NN architecture comes from examining
(10) when E (or η) is small. In such a situation, we simply retain the term that is linear in E. Using
the fact that E = diag(η), (10) becomes

d(r, s) ≈
∑
x∈X

eiω(s−r)·xη(x)

for r ∈ R ⊂ S1 and s ∈ S ⊂ S1. This linear map takes η(x) defined on a Cartesian grid X ⊂ Ω to
d(r, s) defined on yet another Cartesian grid R× S ⊂ S1 × S1. Recalling that both R and S are of

size M and working with a vectorized d ∈ CM2

, we can write the above equation compactly as

(11) d ≈ Aη,

where the element of the matrix A ∈ CM2×N2

at (r, s) ∈ R× S and x ∈ X is given by

(12) A(rs, x) = exp(iω(s− r) · x).

The following theorem concerning the matrix A plays a key role in the design of our NN. Let us
first partition Ω uniformly into

√
PX ×

√
PX Cartesian squares of side-length equal to 1/

√
ω. Here

we assume that
√
PX is an integer. Note that, since the diameter of Ω is of O(1),

√
PX ≈

√
ω. This

naturally partitions the set of grid points X into PX subgroups depending on which square each
point belongs to. We shall denote these subgroups by X0, . . . , XPX−1. Similarly, we also partition
S1 × S1 uniformly (in the angular parameterization) into

√
PD ×

√
PD squares D0, . . . , DPD−1 of

side-length equal to 1/
√
ω.
√
PD is also assumed to be an integer and obviously

√
PD ≈

√
ω. This

further partitions the set R× S into PD subgroups depending on which square they belong to. We
shall denote these subgroups by D0, . . . , DPD−1. Fig. 2 illustrates the partition for

√
PX =

√
PD = 4.

Figure 2 Illustration of the partitions used in Theorem 1. The fine grids stand for
the Cartesian grids X and R× S. The bold lines are the boundary of the squares of
the partitions.
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Theorem 1. For any Di and Xj, the submatrix

(13) Aij := [A(rs, x)](r,s)∈Di,x∈Xj

is numerically low-rank.

Proof. The proof of this theorem follows the same line of argument in [2, 29, 20] and below we outline
the key idea. Denote the center of Di by (ri, si) and the center of Xj by xj . For each (r, s) ∈ Di and
x ∈ Xj , we write

(14) exp(iω(s− r) · x) = exp(iω((s− r)− (si − ri)) · (x− xj))·
exp(iω(si − ri) · x) · exp(iω(s− r) · xj) · exp(−iω(si − ri) · xj).

Note that for fixed Di and Xj each of the last three terms is either a constant or depends only
on x or (r, s). As a result, exp(iω(s − r) · x) is numerically low-rank if and only if the first term
exp(iω((s−r)−(si−ri)) ·(x−xj)) is so. Such a low-rank property can be derived from the conditions
concerning the side-lengths of Di and Xj . More precisely, since (r, s) resides in Di with center (ri, si),
then

(15) |(s− r)− (si − ri)| ≤
1√
ω
.

Similarly as x resides in Xj with center xj , then

(16) |x− xj | ≤
1√
ω
.

Multiplying these two estimates results in the estimate

(17) ω|((s− r)− (si − ri)) · (x− xj))| ≤ 1

for the phase of exp(iω((s− r)− (si − ri)) · (x− xj)). Therefore,

(18) exp(iω((s− r)− (si − ri)) · (x− xj))

for (r, s) ∈ Di or x ∈ Xj is non-oscillatory and hence can be approximated effectively by applying,
for example, Chebyshev interpolation in both the (r, s) and x variables. Since the degree of the
Chebyshev polynomials only increases poly-logarithmically with respect to the desired accuracy,
exp(iω((s− r)− (si − ri)) · (x− xj)) is numerically low-rank by construction. This proves that the
submatrix Aij defined in (13) is also numerically low-rank. �

3.3. Matrix factorization. In this subsection, we show that Theorem 1 guarantees a low-complexity

factorization of the matrix A. Let the row and column indices of A ∈ CM2×N2

be partitioned into
index sets {Di}PD−1

i=0 and {Xj}PX−1
j=0 , respectively, as in Theorem 1. To simplify the presentation, we

assume PX = PD = P , |X0| = · · · |XP−1| = N2/P , and |D0| = · · · = |DP−1| = M2/P .
Since the submatrix

Aij := [A(rs, x)]rs∈Di,x∈Xj

is numerically low-rank, assume that

(19) Aij ≈ UijV ∗ij ,

where Uij ∈ CM2/P×t and Vij ∈ CN2/P×t. Here t can be taken to be the maximum of the numerical
ranks of all submatrices Aij . Theorem 1 implies that t is a small constant.
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By applying (19) to each block Aij , A can be approximated by

(20)


U00V

∗
00 U01V

∗
01 · · · U0(P−1)V

∗
0(P−1)

U10V
∗
10 U11V

∗
11 · · · U1(P−1)V

∗
1(P−1)

...
. . .

...
U(P−1)0V

∗
(P−1)0 U(P−1)1V

∗
(P−1)1 · · · U(P−1)(P−1)V

∗
(P−1)(P−1)

 .
The next step is to write (20) into a factorized form. First, introduce Ui and Vj

(21) Ui =
[
Ui0, Ui1, · · · , Ui(P−1)

]
∈ CM

2/P×tP , Vj =
[
V0j , V1j , · · · , V(P−1)j

]
∈ CN

2/P×tP ,

and define in addition

(22) U =


U0

U1

. . .

UP−1

 ∈ CM
2×P 2t, V ∗ =


V0
∗

V1
∗

. . .

VP−1
∗

 ∈ CP
2t×N2

,

In addition, introduce

Σ =


Σ00 Σ01 · · · Σ0(P−1)

Σ10 Σ11 · · · Σ1(P−1)

...
. . .

...
Σ(P−1)0 Σ(P−1)1 · · · Σ(P−1)(P−1)

 ∈ CP
2t×P 2t,(23)

where the submatrix Σij ∈ CPt×Pt itself is a P × P block matrix with blocks of size t × t. Σij is
defined to be zero everywhere except being the identity matrix at the (j, i)-th t× t block. In order to
help understand the NN architecture discussed below sections, it is imperative to understand the

meaning of Σ. Let us assume for simplicity that t = 1. Then for an arbitrary vector z ∈ CP 2

, Σz
essentially performs a “switch” that shuffles z as follows

(24) (Σz)(jP + i) = z(iP + j), i, j = 0, . . . , P − 1.

With the above definitions for U , V , and Σ, the approximation in (20) can be written compactly
as

(25) A ≈ UΣV ∗.

Notice that although A has M2 ×N2 entries, using the factorization (25), A can be stored using
tP (M2 + P + N2) entries. In this paper, P ≈ max(M,N) and M and N are typically on the
same order. Therefore, instead of O(N4), one only needs O(N3) entries to parameterize the map A
approximately using (25). Such a factorization is also used in [21] for the compression of Fourier
integral operators.

We would like to comment on another property that may lead to further reduction in the parameters
used for approximating A. Let us focus on any two submatrices Aij and Aik of A. For two regions
Xj and Xk, where the center of Xj and Xk are xj and xk respectively, Xk = Xj + (xk − xj). Let
(r, s) ∈ Di. For x ∈ Xj and x′ = x+ (xk − xj) ∈ Xk, we have

exp(iω(s− r) · x) = g1(r, s)h((r, s), x),
exp(iω(s− r) · x′) = g2(r, s)h((r, s), x),(26)

where
(27)
g1(r, s) = exp(iω(s− r) ·xj), g2(r, s) = exp(iω(s− r) ·xk), h((r, s), x) = exp(iω(s− r) · (x−xj)).
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Therefore, the low-rank factorizations of Aij and Aik are solely determined by the factorization of
h(rs, x). This implies that it is possible to construct low-rank factorizations for Aij and Aik:

(28) Aij ≈ UijV ∗ij , Aik ≈ UikV ∗ik,

such that V ∗ij = V ∗ik. Since this is true for all possible j, k, one can pick low-rank factorizations so
that V0 = V1 = · · · = VP−1.

As a final remark in this section, this low complexity factorization (25) for A can be easily
converted to one for A∗ since

(29) A∗ ≈ V Σ∗U∗,

where U,Σ, V are provided in (21), (22), and (23).

3.4. Neural networks. Based on the low-rank property of A in Section 3.2 and its low-complexity
factorization in Section 3.3, we propose new NN architectures for representing the inverse map d→ η
and the forward map η → d.

3.4.1. NN for the inverse map d→ η. As pointed out earlier, d ≈ Aη when η is sufficiently small.
The usual filtered back-projection algorithm [25] solves the inverse problem d→ η via

(30) η ≈ (A∗A+ εI)−1A∗d,

where ε is the regularization parameter. In the far field pattern problem, (A∗A + εI)−1 can be
understood as a deconvolution operator. To see this, a direct calculation reveals that

(A∗A)(x, y) =
∑

rs∈R×S
eiω(s−r)·ye−iω(s−r)x =

∑
rs∈R×S

e−iω(s−r)(x−y)(31)

for x, y ∈ X. (31) shows that A∗A is a translation-invariant convolution operator. Therefore, the
operator (A∗A+εI)−1, as a regularized inverse of A∗A, simply performs a deconvolution. In summary,
the above discussion shows that in order to obtain η from the scattering pattern d in the regime of
small η, one simply needs to apply sequentially to d

• the operator A∗,
• a translation-invariant filter that performs the deconvolution (A∗A+ εI)−1.

Although these two steps might be sufficient when η is small, a nonlinear solution is needed when
η is not so. For this purpose, we propose a nonlinear neural network SwitchNet for the inverse map.
There are two key ingredients in the design of SwitchNet.

• The first key step is the inclusion of a Switch layer that sends local information globally, as
depicted in Figure 4. The structure of the Switch layer is designed to mimic the matrix-vector
multiplication of the operator A∗ ≈ V Σ∗U∗ in (20). However unlike the fixed coefficients
in (20), as an NN layer, the Switch layer allows for tunable coefficients and learns the right
values for the coefficients from the training data. This gives the architecture a great deal of
flexibility.

• The second key step is to replace the linear deconvolution in the back-projection algorithm
with a few convolution (Conv) layers. This enriches the architecture with nonlinear capabilities
when approximating the nonlinear inverse map.

The pseudo-code for SwitchNet is summarized in Algorithm 1. The input d is a CM×M matrix,
while the output η is a CN×N matrix. The first three steps of Algorithm 1 mimics the application of
the operator A∗ ≈ V Σ∗U∗. The Switch layer does most of the work, while the Vect and Square

layers are simply operations that reshape the input and output data to the correct matrix form at
the beginning and the end of the Switch layer. In particular, Vect groups the entries of the 2D field
d according to squares defined by the partition D0, . . . , DPD−1 and Square does the opposite. The
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Algorithm 1 SwitchNet for the inverse map d→ η of far field pattern.

Require: t, PD, PX , N,w, α, L, d ∈ CM×M
Ensure: η ∈ CN×N

1: d1 ← Vect[PD](d)
2: d2 ← Switch[t, PD, PX , N

2](d1)
3: e0 ← Square[PX ](d2)
4: for ` from 0 to L− 1 do
5: e`+1 ← Conv[w,α](e`)
6: end for
7: η ← Conv[w, 1](eL)
8: return η

remaining lines of Algorithm 1 simply apply the Conv layers with window size w and channel number
α.

These basic building blocks of SwitchNet are detailed in the following subsection. We also take
the opportunity to include the details of the pointwise multiplication PM layer that will be used in
later on.

3.4.2. Layers for SwitchNet. In this section we provide the details for the layers that are used
in SwitchNet. Henceforth, we assume that the entries of a tensor is enumerated in the Python
convention, i.e., going through the dimensions from the last one to the first. One operation that will
be used often is a reshape, in which a tensor is changed to a different shape with the same number of
entries and with the enumeration order of the entries kept unchanged.

Figure 3 An illustration of the Vect and Square layers. The detail descriptions
of the layers are provided in Section 3.4.2. For the purpose of illustration we let
P = 4. The Vect layer vectorize a 4× 4 matrix on the left hand side according to
the partitioning by 2× 2 blocks, to give the size 16 vector on the right hand side.
The Square layer is simply the adjoint map of the Vect layer.

Vectorize layer. zO = Vect[P ](zI) with input zI ∈ Cn×n. Henceforth we assume that
√
P is an

integer and
√
P divides n. This operation partitions zI into

√
P ×
√
P square sub-blocks of equal size.

Then each sub-block is vectorized, and the vectorized sub-blocks are stacked together as a vector in
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Cn2

. Intuitively, these operations cluster the nearby entries in a sub-block together. The details of
the Vect layer are given in the following:

• Reshape the zI to a
√
P × n√

P
×
√
P × n√

P
tensor.

• Swap the second and the third dimensions to get a
√
P ×

√
P × n√

P
× n√

P
tensor.

• Reshape the result to an n2 vector and set it to zO.

Square layer. zO = Square[P ](zI) with input zI ∈ Cn2

, where
√
P is an integer. The output

is zO ∈ Rn×n. Essentially as the adjoint operator of the Vect layer, this layer fills up each square
sub-block of the matrix zO with a segment of entries in zI. The details are given as followed:

• Reshape the zI to a
√
P ×

√
P × n√

P
× n√

P
tensor.

• Swap the second and the third dimensions to get a
√
P × n√

P
×
√
P × n√

P
tensor.

• Reshape the result to an n× n matrix and set it to zO.

. . . . 

. . . . 

. . . . 

!!

"#
"$ "%

"&

'(

)&
*&

)#

)#
*#

)&

Figure 4 An illustration of the Switch layer where the detail description of it is
provided in Section 3.4.2. For the purpose of illustration we let nI = nO = 20, PI =
PO = 4.

Switch layer. zO = Switch[t, PI, PO, nO](zI) with input zI ∈ CnI . It is assumed that nI and nO

are integer multiples of PI and PO, respectively. This layer consists the following steps.

• Apply UT to zI:

z1 = UT zI ∈ CPOPIt,

UT =

U
T
0

. . .

UTPI−1

 , UT0 , . . . , U
T
PI−1 ∈ CtPO×

nI
PI

• Reshape z1 to be a CPO×PI×t tensor. Here we follow the Python convention of going through
the dimensions from the last one to the first one. Then a permutation is applied to swap the
first two dimensions to obtain a tensor of size CPO×PI×t. Finally, the result is reshaped to a
vector z2 ∈ CPIPOt again going through the dimensions from the last to the first.
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• Apply V to z2:

zO = V z2 ∈ RnO ,

V =

V0

. . .

VPO−1

 , V0, . . . , VPO−1 ∈ C
nO
PO
×tPI .

Here the non-zero entries of U, V are the trainable parameters. The Switch layer is illustrated
in Figure 4.

Convolution layer. zO = Conv[w, cO](zI) with input zI = Cn×n×cI . Here cI, cO denote the
input and output channel numbers and w denotes the window size. In this paper we only use the
convolution layer with stride 1 and with zero-padding:

zO(k1, k2, k3) = ReLU

( min(n−1,k1+ w−1
2 )∑

l1=max(0,k1−w−1
2 )

min(n−1,k2+ w−1
2 )∑

l2=max(0,k2−w−1
2 )

cI−1∑
l3=0

W

(
l1 − k1 +

w − 1

2
, l2 − k2 +

w − 1

2
, l3, k3

)
zI(l1, l2, l3) + b(k3)

)
(32)

with k1, k2 = 0, . . . , n− 1, k3 = 0, . . . , cO − 1. Here ReLU(x) = max(0, x) and w is assumed to be
odd in the presentation. Both W ∈ Cw×w×cI×cO and b ∈ CcO are the trainable parameters.

Pointwise multiplication layer. zO = PM(zI) with input zI ∈ Cn×n×cI . It is defined as

(33) zO(k1, k2) = W (k1, k2)zI(k1, k2) + b(k1, k2),

k1, k2 = 0, . . . , n− 1. Both W ∈ Cn×n and b ∈ Cn×n are trainable parameters.
We remark that, among these layers, the Switch layer has the most parameters. If the input and

output to the Switch layer both have size n× n, the number of parameter is 2tPn2 where P is the
number of squares that partition the input field and t is the rank of the low-rank approximation.

3.4.3. NN for the forward map η → d. We move on to discuss the parameterization of the forward
map η → d. The proposal is based on the simple observation that the inverse of the inverse map is
the forward map.

More precisely, we simply reverse the architecture of the inverse map proposed in Algorithm 1.
This results in an NN presented Algorithm 2. The basic architecture of this NN involves applying a
few layers of Conv first, then followed by a Switch layer that mimics A ≈ UΣV ∗.

Algorithm 2 SwitchNet for the forward map η → d of far field pattern.

Require: t, PD, PX ,M,w, α, L, η ∈ RN×N
Ensure: d ∈ RM×M×2

1: η0 ← η
2: for ` from 0 to L− 1 do
3: η`+1 ← Conv[w,α](η`)
4: end for
5: d1 ← Conv[w, 1](ηL)
6: d2 ← Vect[PX ](d1)
7: d3 ← Switch[t, PX , PD,M

2](d2)
8: d← Square[PD](d3)
9: return d
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We would also like to mention yet another possibility to parameterize the forward map η → d, via
a recurrent neural network [24]. Let

(34) Eeff = E + EG0E + EG0EG0E + · · · =: E1 + E2 + E3 + · · · .
One can leverage the following recursion

(35) Ek+1 = EG0Ek k = 1, 2, . . .K

to approximate Eeff by treating each Ek as an N2 ×N2 image and using a recurrent neural network.
At the k-th level of the recurrent neural network, it takes Ek and E as inputs and outputs Ek+1.
More specifically, in order to go from Ek to Ek+1, one first apply G0 to each column of the image
Ek, then each row of the image is reweighted by the diagonal matrix E. Stopping at the K-th level
for a sufficiently large K, Eeff can be approximated by

(36) Eeff ≈
K+1∑
i=1

Ei.

Once holding such an approximation to Eeff , we plug it into (10)

(37) d(r, s) =
∑
x∈X

∑
y∈X

eiωr·xEeff(x, y)e−iωs·y =
∑
x∈X

eiωr·x

∑
y∈X

Eeff(x, y)e−iωs·y

 .

This shows that the map from Eeff to d can be realized by applying a matrix product to Eeff first on
the y-dimension, then on the x-dimension. If we view applying the Green’s function G0 as applying
a convolution layer in an NN, the above discussion shows that the forward map can be obtained by
first applying a recurrent NN followed by a convolutional NN. The main drawback of this approach
is the large memory requirement (i.e., N2 ×N2) to store each individual Ek. In addition, the use
of a recurrent NN may lead to difficulty in training [26] due to the issue of exploding or vanishing
gradient. Moreover, since the weights for parameterizing G0 are shared over multiple layers in the
recurrent NN, one might not be able to efficiently use back-propagation, which may lead to a longer
training time. These are the main reasons why we decided to adopt the approach in Algorithm 2.

3.5. Numerical results. In this section, we present numerical results of SwitchNet for far field
pattern at a frequency ω ≈ 60. The scatterer field η(x) supported in Ω = [−0.5, 0.5]2 is assumed to
be a mixture of Gaussians

(38)

ns∑
i=1

β exp

(
−|x− ci|

2

2σ2

)
where β = 0.2 and σ = 0.015. When preparing the training and testing examples, the centers {ci}ns

i=1

of the Gaussians are chosen to be uniformly distributed within Ω. The number ns of the Gaussians in
the mixture is set to vary between 2 and 4. In the numerical experiments, the domain Ω = [−0.5, 0.5]2

is discretized by an 80× 80 Cartesian grid X. To discretize the source and receiver directions, we
set both R and S to be a set of 80 equally spaced unit directions on S1. Therefore in this example,
N = M = 80.

In Algorithm 1, the parameters are specified as t = 3 (rank of the low-rank approximation),
PX = 82, PD = 42, w = 10 (window size of the convolution layers), α = 18 (channel number of the
convolution layers), and L = 3 (number of convolution layers), resulting 3100K number of parameters.
The parameters for Algorithm 2 are chosen to be t = 4, PX = 82, PD = 42, w = 10, α = 24, and
L = 3, with a total of 4200K parameters. Note that for both algorithms the number of parameters is
significantly less than the one of a fully connected NN, which has at least 804 = 40960K parameters.

SwitchNet is trained with the ADAM optimizer [15] in Keras [4] with a step size of 0.002 and a
mini-batch size of size 200. The optimization is run for 2500 epochs. Both the training and testing
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data sets are obtained by numerically solving the forward scattering problem with an accurate finite
difference scheme with a perfectly matched layer. In the experiment, 12.5K pairs of (η, d) are used
for training, and another 12.5K pairs are reserved for testing. The errors are reported using the
mean relative errors

(39)
1

Ntest

Ntest∑
i=1

‖dNN
i − di‖F
‖di‖F

,
1

Ntest

Ntest∑
i=1

‖ηNN
i − ηi‖F
‖ηi‖F

,

where dNN
i and di denote the predicted and ground truth scattering patterns respectively for the i-th

testing sample, and ηNN
i and ηi denote the predicted and ground truth scatterer field respectively.

Here ‖ · ‖F is the Frobenius norm.
Table 1 summarizes the test errors for Gaussian mixtures with different choices of ns. For the

purpose of illustration, we show the predicted d and η by SwitchNet along with the ground truth in
Figure 5 for one typical test sample.

ns Forward map Inverse map

2 9.4e-03 1.2e-02
3 4.0e-02 1.4e-02
4 4.8e-02 2.4e-02

Table 1 Prediction error of SwitchNet for the maps η → d and d→ η for far field
pattern.

4. SwitchNet for seismic imaging

4.1. Problem setup. This section considers a two-dimensional model problem for seismic imaging.
The scatterer η(x) is again assumed to be supported in a domain Ω with an O(1) diameter, after
appropriate rescaling. Ω is discretized with a Cartesian grid X = {x}x∈X at the rate of at least a
few point per wavelength. Compared to the source and receiver configurations in Section 3.1, the
experiment setup here is simpler. One can regard both S = {s}s∈S and R = {r}r∈R to be equal to
a set of uniformly sampled points along a horizontal line near the top surface of the domain. The
support of η is at a certain distance below the top surface so that it is well-separated from the sources
and the receivers (see Figure 6 for an illustration of this configuration).

The source and receiver operators in (6) take a particularly simple form. For the sources, the
operator (G0ΠS) is simply given by sampling:

(G0ΠS)(x, s) = G0(x, s).

Similarly for the receivers, the operator (ΠT
RG0) is given by

(ΠRG0)(r, y) = G0(r, y).

After plugging these two formulas back into (6), one arrives at the following representation of the
observation data d(r, s) for r ∈ R and s ∈ S

d(r, s) =
∑
x∈X

∑
y∈X

G0(r, x)(E + EG0E + · · · )(x, y)G0(y, s).
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(a) Ground truth scattering pat-

tern d.

(b) Predicted scattering pattern

dNN.

(c) Ground truth scatterers η =
ω2(1/c2 − 1/c20).

(d) Predicted scatterers ηNN.

Figure 5 Results for a typical instance of the far field pattern problem with ns = 4.
(a) The ground truth scattering pattern. (b) The scattering pattern predicted by
SwitchNet with a 4.9e-02 relative error. (c) The ground truth scatterers. (d) The
scatterers predicted by SwitchNet with a 2.4e-02 relative error.

4.2. Low-rank property. Following the approach taken in Section 3.2, we start with the linear ap-
proximation under the assumption that η(x) is weak. Since E = diag(η), the first order approximation
is

(40) d(r, s) ≈
∑
x∈X

G0(r, x)G0(x, s)η(x),

By regarding η as a vector in RN2

and d as a vector ∈ CM2

, one obtains the linear system

(41) d ≈ Aη, A ∈ CM
2×N2

,

where the element A at (r, s) ∈ R× S and x ∈ X is given by

(42) A(rs, x) = G0(r, x)G0(x, s) = G0(r, x)G0(s, x).
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Figure 6 Illustration of a simple seismic imaging setting. The sources (S) and
receivers (R) are located near the surface level (top) of the domain Ω. The scatterer
field η(x) is assumed to be well-separated from the sources and the receivers.

Under the assumptions that the sources S and receivers R are well-separated from the support of
η(x) and that c0(x) varies smoothly, the matrix A satisfies a low-rank property similar to Theorem
1. To see this, we again partition X into Cartesian squares X0, . . . , XPX−1 of side-length equal to
1/
√
ω. Since R = S is now the restriction of X on the surface level, this partition also induces

a partitioning for R × S. When c0(x) varies smoothly, it is shown (see for example [7]) that the
restriction of the matrix [G0(r, x)]r∈R,x∈X (or [G0(s, x)]s∈S,x∈X) to each piece of the partitioning
is numerically low-rank. Since the matrix A is obtained by taking the Khatri-Rao product [22] of
[G0(r, x)]r∈R,x∈X , [G0(s, x)]s∈S,x∈X , the low-rank property is preserved with the guarantee that the
rank at most squares in the worst case.

By following the same argument in Section 3.3, one can show that the matrix A has a low-
complexity matrix factorization A ≈ UΣV ∗ of exactly the same structure as (20). The corresponding
factorization for A∗ is A∗ ≈ V Σ∗U∗.

4.3. Neural networks. Based on the low-rank property in Section 4.2, we propose here SwitchNet
for seismic imaging.

4.3.1. NN for the inverse map d→ η. When the linear approximation is valid (i.e., (41) holds) η can
be obtained from d via a filtered projection approach (or called migration in the seismic community)

(43) η ≈ (A∗A+ εI)−1A∗d,

where εI is a regularizing term. Since A∗ has a low-complexity factorization A∗ ≈ V Σ∗U∗, the
application A∗ to a vector can be represented by a Switch layer.

Concerning the (A∗A+ εI)−1 term, note that

(44) (A∗A)(x, y) ≈
∑

rs∈R×S
G0(x, r)G0(x, s)G0(r, y)G0(s, y),

which, unlike (31), is no longer a translation-invariant kernel as the data gathering setup is not
so. For example, even when the background velocity c0(x) = 1, the different terms of the Green’s
function G0(·) in (44) scale like

1√
|x− r|

,
1√
|x− s|

,
1√
|y − r|

,
1√
|x− s|

,

which fail to give a translation-invariant kernel of form K(x − y). As a direct consequence, the
operator (A∗A+ εI)−1 is not translation-invariant either.
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In order to capture the loss of translation-invariance, we include an extra pointwise multiplication
layer PM (defined in Section 3.4.2) when dealing with the inverse map. The pseudo-code of the NN
for the inverse map is given in Algorithm 3.

Algorithm 3 SwitchNet for the inverse map d→ η of seismic imaging.

Require: t, PD, PX , N,w, α, L, d ∈ CM×M
Ensure: η ∈ RN×N

1: d1 ← Vect[PD](d)
2: d2 ← Switch[t, PD, PX , N

2](d1)
3: e0 ← Square[PX ](d2)
4: for ` from 0 to L− 1 do
5: e`+1 ← Conv[w,α](e`)
6: end for
7: η ← Conv[w, 1](eL)
8: η ← PM(η)
9: return η

4.3.2. NN for the forward map η → d. As in Section 3.4.3, for the forward map from η → d, we
simply reverse the architecture of the NN for the inverse map in Algorithm 3. For completeness we
detail its structure in Algorithm 4. The main difference between Algorithm 2 and Algorithm 4 is
again the inclusion of an extra pointwise multiplication layer.

Algorithm 4 SwitchNet for the forward map η → d of seismic imaging.

Require: t, PD, PX ,M,w, α, L, η ∈ CN×N
Ensure: d ∈ CM×M

1: η0 ← PM(η)
2: for ` from 0 to L− 1 do
3: η`+1 ← Conv[w,α](η`)
4: end for
5: d1 ← Conv[w, 1](ηL)
6: d2 ← Vect[PX ](d1)
7: d3 ← Switch[t, PX , PD,M

2](d2).
8: d← Square[PD](d3)
9: return d

4.4. Numerical results. In the numerical experiments, we set Ω = [−0.5, 0.5]2 and discretize it by
a 64× 64 Cartesian grid. As mentioned before, the sources S and the receivers R are located on a
line near the top surface of Ω, similar to the setting in Fig. 6. This line is discretized uniformly with
M = 80 points. Therefore, the size of η and d are 64× 64 and 80× 80, respectively. We assume a
Gaussian mixture model for η as in (38), where β = 0.2, σ = 0.015. Unlike before, the centers {ci}ns

i=1

are kept away from the top surface of Ω in order to ensure that they are well-separated from the
sources and receivers.

In Algorithm 3 and Algorithm 4, the parameters are set to be t = 3, PX = 82, PD = 42, N = 64,
M = 80, w = 8, α = 18, and L = 3, resulting NNs with 2900K parameters. The procedure of training
the NNs is the same as the one used in Section 3.5. Table 2 presents the test errors for this model
problem. The predicted and the ground truth d, η are visually compared in Figure 7 for one typical
test sample.
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ns Forward map Inverse map

2 5.6e-02 2.1e-02
3 7.7e-02 2.2e-02
4 8.0e-02 5.1e-02

Table 2 Prediction error of SwitchNet for the maps η → d and d→ η for seismic
imaging.

(a) Ground truth scattering pat-

tern d.

(b) Predicted scattering pattern

dNN.

(c) Ground truth scatterers η =

ω2(1/c2 − 1/c20).

(d) Predicted scatterers ηNN.

Figure 7 Results for a typical instance of the seismic imaging setting with ns = 4.
(a) The ground truth scattering pattern. (b) The scattering pattern predicted by
SwitchNet with a 7.7e-02 relative error. (c) The ground truth scatterers. (d) The
scatterers predicted by SwitchNet with a 6.9e-02 relative error.

5. Discussion

In this paper, we introduce a neural network, SwitchNet, for approximating forward and inverse
maps arising from the time-harmonic wave equation. For these maps, local information at the input
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has a global impact at the output, therefore they generally require the use of a fully connected NN
in order to parameterize them. Based on certain low-rank property that arises in the linearized
operators, we are able to replace a fully connected NN with the sparse SwitchNet, thus reducing
complexity dramatically. Furthermore, unlike convolutional NNs with local filters, the proposed
SwitchNet connects the input layer with the output layer globally. This enables us to represent
highly oscillatory wave field resulted from scattering problems, and to solve for the associated inverse
problems.
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