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Abstract. This paper proposes a new approach for solving ill-posed nonlinear inverse problems.
For ease of explanation of the proposed approach, we use the example of lung electrical impedance
tomography (EIT), which is known to be a nonlinear and ill-posed inverse problem. Conventionally,
penalty-based regularization methods have been used to deal with the ill-posed problem. However,
experiences over the last three decades have shown methodological limitations in utilizing prior
knowledge about tracking expected imaging features for medical diagnosis. The proposed method’s
paradigm is completely different from conventional approaches; the proposed reconstruction uses a
variety of training data sets to generate a low dimensional manifold of approximate solutions, which
allows to convert the ill-posed problem to a well-posed one. Variational autoencoder was used to
produce a compact and dense representation for lung EIT images with a low dimensional latent
space. Then, we learn a robust connection between the EIT data and the low-dimensional latent
data. Numerical simulations validate the effectiveness and feasibility of the proposed approach.

1. Introduction. Electrical impedance tomography (EIT) aims to provide to-
mographic images of an electrical conductivity distribution inside an electrically con-
ducting object such as the human body [6, 9, 5, 26, 27, 52]. In EIT, we attach
an array of surface electrodes around a chosen imaging slice of the object to inject
currents and measure the induced voltages. Noting that current-voltage relation re-
flects the conductivity distribution according to Ohm’s law, an accurate conductivity
reconstruction by EIT is theoretically possible [4, 10, 32, 36, 46, 47, 55].

However, EIT in a clinical setting has suffered from the fundamental limitations
that current-voltage data is very sensitive to the forward modeling errors involving
the boundary geometry and the electrode configuration, whereas it is insensitive to
local perturbation of the conductivity. Since the inverse problem of EIT is highly
ill-posed, the most common techniques are regularized model-fitting approaches (e.g.
least square minimization combined with regularization) [13, 41]. Unfortunately, in a
clinical environment, these techniques have not provided satisfactory results in terms
of accuracy and resolution, despite of numerous endeavours in the last four decades.
Within conventional regularization frameworks including Tikhonov [56] and total vari-
ation regularization, it seems to be very difficult to enforce prior knowledge of possible
solutions effectively.

This paper suggests a new paradigm of EIT reconstruction using a specially de-
signed deep learning framework to leverage prior knowledge of solutions. For ease
of explanations, this paper focuses on the mathematical model of the time-difference
EIT imaging of air ventilation in the lungs. We denote by γt(r) the conductivity at
time t and position r. The input data for the deep learning is the time-difference of
the current-voltage data V̇t := Vt −Vt0 in EIT (see section 2 for V̇) and the output
is the difference conductivity image γ̇t := γt − γt0 , where t0 denotes a reference time.

∗Department of Computational Science and Engineering, Yonsei University, Korea
(seoj@yonsei.ac.kr, kangcheol@yonsei.ac.kr, j.ariungerel@gmail.com, imlkh84@gmail.com)
†Department of Mathematics, Goethe University Frankfurt, Germany (harrach@math.uni-

frankfurt.de)

This is a preprint version of a journal article published in
SIAM J. Imaging Sci. 12(3), 1275–1295, 2019 (https://doi.org/10.1137/18M1222600).

1

ar
X

iv
:1

81
0.

10
11

2v
3 

 [
m

at
h.

N
A

] 
 3

1 
Ju

l 2
01

9

mailto:seoj@yonsei.ac.kr
mailto:kangcheol@yonsei.ac.kr
mailto:j.ariungerel@gmail.com
mailto:imlkh84@gmail.com
mailto:harrach@math.uni-frankfurt.de
mailto:harrach@math.uni-frankfurt.de
https://doi.org/10.1137/18M1222600


With fixing time t, we will use the shorter notations γ̇ and V̇ instead of γ̇t and V̇t,
respectively. The goal is to learn an EIT reconstruction map fEIT from training data
set {(V̇n, γ̇n) : n = 1, . . . , N} such that fEIT(V̇) produces a useful reconstruction for
γ̇.

The standard deep learning paradigm is to learn a reconstruction function fEIT :
V̇ 7→ γ̇ using many training data {(V̇n, γ̇n) : n = 1, . . . , N}. The main issue is to find
a suitable deep learning network (DL) which allows to learn a useful reconstruction
map fEIT from

(1) fEIT = argmin
f∈DL

1

N

N∑

n=1

‖f(V̇n)− γ̇n‖2.

The deep learning-based reconstruction method exploits an integrated knowledge syn-
thesis from the training data in order to get a direct reconstruction γ̇ = fEIT(V̇) from
a new measurement V.

The deep learning method is very different from the conventional regularized
model-fitting method, which can be expressed as:

(2) γ̇ = argmin
γ̇∈H

‖V̇ − Sγ̇‖2 + λReg(γ̇),

where S ≈ ∂V̇
∂γ̇ is the Jacobian matrix or sensitivity matrix (see Section 2.1 for de-

tails) and Reg(γ̇) is the regularization term enforcing the regularity of γ̇, and λ is
the regularization parameter controlling the trade-off between the residual norm and
regularity. Here, H is a space for representing images. In the case when the total
number of pixels in the image is d, H = Rd. Since the dimension of H mostly is
much bigger than the number of independent components in the measurement data
V̇, a large number of possible images are consistent with the measurements up to the
model and measurement error. Regularization is used to incorporate a-priori informa-
tion in order to choose the image for which the regularization functional is smallest.
The success of this approach depends on whether the regularization term is indeed a
good indicator for realistic lung images. In order to improve image quality it seems
desirable to go beyond standard regularization frameworks and add more specific a
priori information.

In this work, we propose to use a deep learning method to find a useful constraint
on EIT solutions for the lung ventilation model. We use a variational autoencoder
learning technique (or manifold learning approach) to get a nonlinear expression of
practically meaningful solutions γ̇ by variables h in a low dimensional latent space,
i.e., a decoder Ψ is learned from training data to get the nonlinear representation
γ̇ = Ψ(h). This generates the tripled training data {(V̇n, γ̇n,hn) : n = 1, . . . N}.
Next, we use the training data to learn a nonlinear regression map fVh : V̇→ h, which
makes a connection between the latent variables h and the data V̇. The nonlinear
regression map fVh is obtained by

(3) fVh = argmin
fVh∈DLh

1

N

N∑

n=1

‖fVh(V̇n)− hn‖2.

where DLh is a deep learning network described in section 2.3. Then, the reconstruc-
tion map fEIT is expressed as fEIT = Ψ ◦ fVh. The feasibility of the proposed method
is demonstrated by using numerical simulations. The performance can be enhanced
by accumulating high quality training data (clinically useful EIT images).
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Before closing this introduction section, we should mention that our method does
not use ground-truth labeled data for training, because lung EIT lacks a known ground
truth at present. Although we have collected many human experiment data using 16
channel EIT system [39], its ground truthiness is not clear from a clinical point of
view. Phantom experimental results cannot be used for ground-truth data, which
are far from realistic. The collection of ground-truth training data may require a
tough and complex process involving expensive clinical trials. The issue of collecting
training data is beyond the scope of this paper.

2. Time-difference EIT and conventional reconstruction methods.

2.1. Time-difference EIT. We briefly explain the mathematical model of an
E-channel time-difference EIT system in which E ∈ N electrodes are placed around
the human thorax. See Fig. 1 for a sketch of a 16-channel EIT system. We assume
that measurements are taken in the following adjacent-adjacent pattern. A current
of strength I is driven through the j-th pair of adjacent electrodes (Ej , Ej+1) keeping
all other electrodes insulated, where we use the convention that EE+1 = E1. Then
the resulting electric potential ujt satisfies approximately the shunt model equations
(ignoring the contact impedances underneath the electrodes):

(4)





∇ · (γt∇ujt ) = 0 in Ω,∫
Ej γ∇u

j
t · n ds= I = −

∫
Ej+1 γ∇ujt · n ds,

(γt∇ujt ) · n = 0 on ∂Ω \ ∪Ei E i,∫
Ei γt∇u

j
t · n = 0 for i ∈ {1, . . . , E} \ {j, j + 1},
ujt |Ei = const. for i = 1, . . . , E,∑E

i=1 u
j
t |Ei = 0,

where γt is the conductivity distribution inside the imaging domain Ω at time t, n is
the outward unit normal vector to ∂Ω, and ds is the surface element.

Driving the current through the j-th pair of adjacent electrodes, we measure the
voltage difference between the k-th pair of adjacent electrodes

V jkt = ujt |Ek − ujt |Ek+1 .

We measure V jkt for all combinations of j, k ∈ {1, . . . , E} excluding voltage mea-
surements on current-driven electrodes since they are known to be highly affected
by skin-electrode contact impedance which is ignored in the shunt model [21] for a
possible remedy. Thus the EIT measurements at time t are given by the E(E − 3)-
dimensional vector

Vt = (V 1,3
t , . . . , V 1,E−1

t , V 2,4
t , . . . , V 2,E

t , . . . , V E,2t , . . . , V E,E−2
t )T ∈ RE(E−3),

where the superscript T stands for the transpose of the vector.
In time-difference EIT, we use the difference of two measurements

(5) V̇ := Vt −Vt0 ∈ RE(E−3),

between sampling time t and reference time t0 in order to provide an image of the
conductivity difference

γ̇ := γt − γt0 .
From the variational formulation of (4), one obtains the following linear approxima-
tion:

(6)
V̇ jk := V jkt − V jkt0 = 1

I

∫
Ω

[
γt∇ujt · ∇ukt − γt0∇ujt0 · ∇ukt0

]
dr

≈ 1
I

∫
Ω
γ̇∇ujt0 · ∇ukt0dr.

3
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Fig. 1. 16 channel EIT system for monitoring regional lung ventilation. 16 electrodes are
attached around the thorax to inject currents and measure boundary voltages. The set of current-
voltage data (i.e., a discrete version of Neumann-to-Dirichlet data) is used to reconstruct time-
difference conductivity images.

For a computerized image reconstruction, we discretize Ω into finite elements ∆m,
m = 1, 2, . . . , d, as Ω ≈ ∪dm=1∆m, and assume that γ̇ is approximately constant on
each element ∆m. Let γ̇m ∈ R denote the value of γ̇ on ∆m and identify γ̇ with the
column vector

γ̇ = (γ̇1, . . . , γ̇d)
T ∈ Rd.

Then (6) can be written as

V̇ jk ≈
d∑

m=1

smjkγ̇m with smjk :=
1

I

∫

∆m

∇ujt0 · ∇ukt0dr.

To write this in matrix-vector form, we fix m = 1, . . . , d, and write the elements of
smjk as a E(E − 3)-dimensional vector

(7) Sm =
(
sm1,3, . . . , s

m
1,E−1, s

m
2,4, . . . , s

m
2,E , . . . , s

m
E,2, . . . , s

m
E,E−2

)T ∈ RE(E−3).

Using these vectors as columns, we define the sensitivity matrix S ∈ RE(E−3)×d, and
can thus write (6) as

(8) V̇ ≈
d∑

m=1

γ̇mSm =



| |

S1 · · · Sd

| |







γ̇1

...
γ̇d


 = S γ̇.

2.2. Conventional penalty-based regularization methods. In most prac-
tical applications, d (the total number of pixels for γ̇) is much bigger than E(E − 3)
(the number of measurements), so that the linearized problem Sγ̇ = V̇ is a highly
under-determined system. When a 16-channel EIT system is used to produce images
with 128×128 pixels, then the kernel dimension of S is at least 1282−16∗13, so that
a solution of Sγ̇ = V̇ is only unique up to addition of an image coming from a more
than 16000-dimensional vector space.

Moreover, the linearized problem is only a rough approximation of the real sit-
uation and the measurements contain unavoidable noises. Hence, all conductivity
distributions γ̇ in the wide region

(9) Solε(V̇) := {γ̇ ∈ Rd : ‖Sγ̇ − V̇‖fid ≤ ε}
4



16384 γ̇ V̇

2
0
8

S =
dV

dγ
=

ker S > d− E(E − 3)

{γ̇ : ‖Sγ̇
− V̇‖ ≤

ε}

· · ·

· · ·

Fig. 2. The system Sγ̇ = V̇ on the left figure is a highly underdetermined problem. The set
Solε(V̇) in (9) can be viewed as a ε-neighborhood of a space with dimension more than 16000. The
image on the right describes conventional penalty-based regularization methods that selects an image
from the set Solε(V̇).

have to be regarded as consistent with the measurements, where ε is a tolerance
reflecting modeling and measurement errors, and ‖ · ‖fid is a norm measuring the data
fidelity. In the following we simply use ‖ · ‖2 as fidelity norm.

Conventional penalty-based regularization methods reconstruct the conductivity
image by choosing γ̇ from all consistent candidates in Solε(V̇), so that it is smallest in
some norm that penalizes unrealistic results. Popular approaches include the simple
Euclidean norm and the total variation norm which lead to the minimization problems

(10) γ̇ = argmin
γ̇
‖V̇ − Sγ̇‖22 + λ‖γ̇‖22

and

(11) γ̇ = argmin
γ̇
‖V̇ − Sγ̇‖2 + λ‖Dγ̇‖1,

where λ > 0 is a regularization parameter and Dγ̇ is the discretized gradient of γ̇.
The performance of these approaches depends on whether the norm in the penal-

ization term is indeed a good indicator for realistic images. In order to improve image
quality it seems desirable to add more specific a priori information.

2.3. Generic deep learning-based method. Generic deep learning methods
or lung monitoring in E-channel EIT system rely on a training data set of conductivity
images and voltage measurements

{(γ̇n, V̇n) ∈ Rd × RE(E−3) : n = 1, . . . , N},

and aim to learn a useful reconstruction map fEIT from a suitable class of functions
described by a deep learning network DL through the minimization problem:

(12) fEIT = argmin
f∈DL

1

N

N∑

n=1

‖f(V̇n)− γ̇n‖2.

By using a training set, these methods incorporate very problem-specific a-priori
information. But they do not take explicitly into account that the EIT reconstruction
problem is highly under-determined and ill-posed.

5



3. A manifold learning based image reconstruction method.

3.1. Motivation: Adding a manifold constraint. To solve the highly under-
determined system Sγ̇ = V̇, we follow the new paradigm that realistic lung images
lie on a non-linear manifold that is much lower dimensional than the space of all
possible images. If we can identify a suitable set M including images representing
lung ventilation, then we can solve the constrained problem

(13)

∥∥∥∥
Solve Sγ̇ ≈ V̇
subject to the constraint γ̇ ∈M.

The unknown constraint M is hoped to be a low dimensional manifold of images
displaying lung ventilation such that the intersection M∩ Solε(V̇) is non-empty and
of small diameter. With this M, it is hoped that the constraint problem is “ap-
proximately well-posed” in the following approximate version of the Hadamard well-
posedness [19]:

(a) (Approximate uniqueness and stability) If two images γ̇, γ̇′ ∈M satisfy Sγ̇ ≈
Sγ̇′, then γ̇ ≈ γ̇′.

(b) (Approximate existence) For any lung EIT data V̇, there exist γ̇ ∈ M such
that Sγ̇ ≈ V̇.

Many new theoretical and practical problems arise with this new paradigm. It is a
highly challenging question how to identify and describe manifolds displaying lung
ventilation on which the constrained inverse problem (13) is robustly solvable. A
recent step in this direction is the result in [23] which shows that the inverse problems
of EIT with sufficiently many electrodes is uniquely solvable and Lipschitz stable on
finite dimensional linear subsets of piecewise-analytic functions.

3.2. Well-posedness of the inverse conductivity problem on compact

sets. The average image γ̇1+γ̇2

2 of two different images γ̇1 and γ̇2 displaying lung
ventilation may not be a useful representation of lung ventilation. Hence, it is desir-
able to work with low dimensional non-linear manifolds for the conductivity image
rather than with low dimensional vector spaces. As a first result to show that the in-
verse conductivity can be approximately well-posed under non-linear constraints, we
will now show that the inverse conductivity problem with continuous measurements
(modeled by the Neumann-Dirichlet-operator) uniformly continuously determines the
conductivity in compact sets of piecewise analytic functions. We expect that the result
also holds for voltage measurements on a sufficiently high number of electrodes though
that would require results on the approximation of the Neumann-Dirichlet-operator
with the shunt electrode model that are outside the scope of this work.

For the following result let us also stress that the unique solvability of the inverse
conductivity problem for piecewise analytic conductivity functions and the continuum
model is a classical result from Kohn and Vogelius [36, 25]. Without further restric-
tion, the inverse conductivity problem is highly ill-posed, and due to the non-linearity,
stability is not a trivial consequence of restricting the conductivity to compact sub-
sets. Alessandrini and Vessella [3] have proven Lipschitz stability for the continuum
model when the conductivity belongs to an a-priori known bounded subset of a finite-
dimensional linear subspace of C2-functions, and [23] shows Lipschitz stability for
bounded subsets of finite-dimensional linear subspace of piecewise-analytic functions
for the complete electrode model with sufficiently many electrodes. The following
result follows the ideas from [22, 23] (see also [24]) to show that stability holds on
any (possibly non-linear) compact subset of piecewise-analytic functions. It indicates

6



that our new approach of constructing a low-dimensional non-linear manifold of useful
lung images may indeed convert the ill-posed problem into a well-posed one.

Theorem 1. Let C ⊆ L∞+ (Ω) be a compact set of piecewise analytic functions (in
the sense of [25]). For γ ∈ C let Λ(γ) denote the Neumann-Dirichlet-operator, i.e.,

Λ(γ) : L2
�(∂Ω)→ L2

�(∂Ω), g 7→ u|∂Ω,

where u ∈ H1
� (Ω) solves ∇ · (γ∇u) = 0 in Ω.

Then for all ε > 0 there exists δ > 0 so that for all γ1, γ2 ∈ C

‖Λ(γ1)− Λ(γ2)‖ < δ implies ‖γ1 − γ2‖ < ε.

Proof. Let ε > 0. As in [23], we have that for all γ1, γ2 ∈ C with ‖γ1 − γ2‖ ≥ ε

‖Λ(γ1)− Λ(γ2)‖ ≥ sup
g∈L2

�(∂Ω), ‖g‖=1

f(γ1, γ2, γ2 − γ1, g)

≥ inf
τ1,τ2∈C, κ∈K

sup
g∈L2

�(∂Ω), ‖g‖=1

f(τ1, τ2, κ, g),

where f is defined by taking the maximum of two values arising from monotonicity
inequalities in [23]

f : L∞+ (Ω)× L∞+ (Ω)× L∞(Ω)× L2
�(∂Ω)→ R,

f(τ1, τ2, κ, g) := max{〈(Λ′(τ1)κ)g, g〉,−〈(Λ′(τ2)κ)g, g〉},

and

K := {κ = τ1 − τ2 : τ1, τ2 ∈ C, ‖τ1 − τ2‖ ≥ ε}.

From the compactness of C, it easily follows that also K is compact. The function

(τ1, τ2, κ) 7→ sup
g∈L2

�(∂Ω), ‖g‖=1

f(τ1, τ2, κ, g)

is lower semicontinuous (see [23]) and thus attains its minimum over the compact set
C × C ×K. With the same arguments as in [23, Lemma 2.11] it follows that

sup
g∈L2

�(∂Ω), ‖g‖=1

f(τ1, τ2, κ, g) > 0 for all (τ1, τ2, κ) ∈ C × C ×K,

so that we obtain

δ := inf
τ1,τ2∈C, κ∈K

sup
g∈L2

�(∂Ω), ‖g‖=1

f(τ1, τ2, κ, g) > 0.

Hence,

‖Λ(γ1)− Λ(γ2)‖ ≥ δ for all γ1, γ2 ∈ C with ‖γ1 − γ2‖ ≥ ε,

so that the assertion follows by contraposition.

7



3.3. Filtered data. Before we aim to find a manifold representation of lung ven-
tilation images, we preprocess the voltage measurements to remove geometry modeling
errors. In practical lung EIT, it is cumbersome to take account of patient-to-patient
variability in terms of the boundary geometry and electrode positions, and it requires
considerable effort to accurately estimate geometry information. Moreover, the volt-
age measurements V̇ can be affected by respiratory motion artifacts. Hence, it is
desirable to filter out these boundary uncertainties as much as possible, to extract a
ventilation-related signal, denoted by V̇lung.

To this end, we preprocess the voltage measurements as in [39]. We extract the
boundary error, denoted by V̇err, by using the boundary sensitive Jacobian matrix
Sbdry:

V̇err := Sbdry

(
STbdrySbdry + λI

)−1 STbdryV̇

where λ is a regularization parameter, I is the identity matrix, and Sbdry is a sub-
matrix of S consisting of all columns corresponding to the triangular elements located
adjacent to the boundary. Then, the filtered data V̇lung = V̇−V̇err is not so sensitive
to the boundary ∂Ω and motion artifacts [39].

From now on, we use this filtered data V̇lung for the reconstruction instead of

V̇, in order to alleviate the boundary error and motion artifacts. For notational
simplicity, we use the same notation V̇ for the filtered data V̇lung.

3.4. Low dimensional manifold representation. Assume that we are given a
training data set of conductivity images and voltage measurements from an E-channel
EIT system

{(γ̇n, V̇n) ∈ Rd × RE(E−3) : n = 1, . . . , N}.
Instead of directly applying a generic deep learning approach as described in sub-
section 2.3, we follow the new paradigm described in subsection 3.1 that images of
lung ventilation lie on a low dimensional manifold M on which the inverse problem
is approximately well-posed.

We therefore first use the conductivity images in the training data set

{γ̇n ∈ Rd : n = 1, . . . , N}
to generate the low dimensional manifold M. In an E-channel EIT system, the
number of independent information of current-voltage data is at most E(E − 3)/2,
due to the reciprocity V̇ ji = V̇ ij . Hence, in order to make the inverse problem
approximately well-posed, we aim to generateM with dimension less than E(E−3)/2.

3.4.1. Autoencoder. Given a dataset of lung EIT images, a variational autoen-
coder (VAE) [33] technique is used to learn the distribution of lung EIT images with
the assumption that lung EIT image data (high dimensional) actually lies on a low
dimensional manifold M. For the ease of explanation of our idea, we start by first
explaining the proposed method with the well-known standard autoencoder, instead
of VAE. Autoencoder uses the training data set {γ̇n ∈ Rd : n = 1, . . . , N} to learn
two functions (called encoder and decoder)

Φ : Rd → Rk and Ψ : Rk → Rd

from a class of functions AE described by a deep learning network by minimizing

(14) (Ψ,Φ) = argmin
(Ψ,Φ)∈AE

1

N

N∑

n=1

‖Ψ ◦ Φ(γ̇n)− γ̇n‖2.

8



γ̇i

hi

γ̇j

hj

(1− t)hi + thj for 0 < t < 1

︷ ︸︸ ︷

Fig. 3. Interpolation between two points hi and hj in the latent space. Given two images
γ̇i = Ψ(hi) and γ̇j = Ψ(hj), VAE allows to generate the interpolated image Ψ((1− t)hi + thj) for
0 < t < 1.

Image γ̇ = Ψ(h)

︸ ︷︷ ︸
Tangents

Fig. 4. Tangent vector ofM. Assuming that γ̇ = Ψ(h) is the image on the top left, its gradient
∇Ψ(h) can be expressed as the images on the right side.

Choosing k << d, one can interpret the encoder’s output h = Φ(γ̇) as a compressed
latent representation, whose dimensionality is much less than the original size of the
image γ̇. The decoder Ψ converts h to an image similar to the original input

(15) Ψ ◦ Φ(γ̇) ≈ γ̇.
For our application of lung imaging using an E-channel EIT system, we choose the
class of functions AE to contain encoder functions Φ of the form

(16) Φ(γ̇) := W `−1 ~
(
η(W `−2 ~ η

(
· · · η

(
W 1 ~ γ̇

)
· · ·
))

and decoder functions Ψ of the form:

(17) Ψ(h) = tanh
(
W 2` ~†

(
η(W 2`−1 ~† η

(
· · · η

(
W `+1 ~† h

)
· · ·
)))

Here, W~x and W~†x, respectively, are the convolution and transposed convolution
[58] of x with weight W ; tanh is the hyperbolic tangent function; η is the rectified
linear unit activation function ReLU . The dimension k (the number of the latent
variables) is chosen to be smaller than E(E−3)/2 as motivated in subsection 3.4. We
hope that Φ and Ψ satisfy:

(P1) Ψ(Φ(γ̇n)) ≈ γ̇n, i.e., the lung ventilation conductivity images in the training
data set approximately lie on the low dimensional manifold

M = {Ψ(h) : h ∈ Rk}.
(P2) M is a manifold of useful lung EIT images. In particular, this means that

for two images γ̇i = Ψ(hi) and γ̇j = Ψ(hj) in M, the interpolated image
Ψ((1− t)hi + thj) should represents a lung EIT image between γ̇i and γ̇j .

9



Definitely, the autoencoder approach aims to fulfill (P1) by minimizing the reconstruc-
tion loss of (14). However, the second property (P2), as shown in Fig. 3, may not be
satisfied by the classical deterministic autoencoder approach (14). There may be holes
in the latent space on which the decoder is never trained [48]. Hence, Ψ((1−t)hi+thj)
for some t may be an unrealistic lung ventilation image. This is the reason why we
use variational autoencoder, which can be viewed as a regularized autoencoder or
nonlinear principal component analysis[8, 33].

Let us also stress, that the mappings Ψ and Φ will only be approximately inverse
to each other, so that M might not be a manifold in the strict mathematical sense.
However, the set M constructed by this approach (also including the VAE-approach
described in the next subsection) will always be an image of the low-dimensional
latent space Rk under the continuous mapping Ψ. For the sake of readability, we
keep the somewhat sloppy terminology and refer to M as low-dimensional manifold.
Moreover, note that the image of Ψ of a closed bounded subset of the latent space Rk
will be compact.

3.4.2. Variational autoencoder (VAE). The idea of VAE is to add variations
in the latent space to the minimization problem (14), in order to achieve (P2). More
precisely, in VAE, the encoder Φ is of the following nondeterministic form:

(18) Φ(γ̇) = Φme(γ̇) + Φstd(γ̇)� hnoise

where Φme outputs a vector of means µ = (µ(1), · · · , µ(k)) ∈ Rk; Φstd outputs a
vector of standard deviation σ = (σ(1), · · · , σ(k)) ∈ Rk; hnoise is an auxiliary noise
variable sampled from standard normal distribution N (0, I); and � is the element-
wise product (Hadamard product). Here, Φme and Φstd are of the form (16) and
describe the mean vector µ = Φme(γ̇) and the standard variation vector σ = Φstd(γ̇)
of the non-deterministic encoder function.

According to (18),

Φ(γ̇) = h ∼ N (µ,Σ),

where Σ is a diagonal covariance matrix Σ = diag(σ(1)2, · · · , σ(k)2). With this non-
deterministic approach, we can fulfill the property (P2) since the same input γ̇ can
now be encoded as a whole range of perturbations of h in the latent space, and thus we
can determine a decoder function Ψ that maps a whole range of perturbations of h to
useful lung images. To find Ψ, note that for all images γ̇, the concatenation Ψ(Φ(γ̇)) is
now a random vector. Since we can also interpret γ̇ as a random vector which always
takes the same value, we could ensure the desired property (P1) by simply minimizing
(14) with ‖ · ‖ now denoting the energy distance between two random vectors. But
this trivial approach would obviously still prefer a deterministic encoder, i.e., Φme will
be the encoder function from the standard autoencoder approach, and Φstd ≡ 0.

Hence, in order to ensure variations in the latent space to achieve (P2), we ad-
ditionally enforce that the distribution of the encoder output is close to a normal
distribution. We thus minimize (14) we minimize (14) with an additional term that
penalizes the Kullback-Leibler (KL) divergence loss between N (µn,Σn) and N (0, I))
for all n = 1, · · · , N

(19) DKL(N (µn,Σn) ‖ N (0, I)) =
1

2

k∑

j=1

[
(µn(j)2 + σn(j)2 − log σn(j)− 1

]
.
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We thus obtain the VAE method

(20) (Ψ,Φ) = argmin
(Ψ,Φ)∈VAE

1

N

N∑

n=1

[
‖Ψ ◦ Φ(γ̇n)− γ̇n‖2 +DKL(N (µn,Σn) ‖ N (0, I))

]

where µn = Φme(γ̇n) and σn = Φstd(γ̇n). We should note that the covariance Σn
and the term DKL(N (µn,Σn) ‖ N (0, I)) allows smooth interpolation and compactly
encoding, resulting in generating compact smooth manifold.

3.5. The image reconstruction algorithm. Now, we are ready to explain the
reconstruction algorithm fEIT. Given a set of training data, the key idea is that we do
not aim to learn a nonlinear regression map that directly reconstructs the conductivity
γ̇ from the voltage measurements V̇ as this will be a highly under-determined and ill-
posed problem. Instead we first use the variational autoencoder method as explained
in the last subsection to identify a low dimensional latent space encoding the manifold
of useful lung images, and then learn the nonlinear regression map that reconstructs
the low-dimensional latent variable as this problem can be expected to be considerably
better posed.

To explain this in more detail, let {(V̇n, γ̇n) : n = 1, . . . , N} be a set of training
data. Using the learned encoder Φme in (18), we obtain a set of training data for the
latent variable {(V̇n,hn) : n = 1, . . . , N} with

(21) hn := Φme(γ̇n).

In order to learn a nonlinear reconstruction map that reconstructs the latent variable
from the voltage measurements, i.e.

(22) fVh(V̇) ≈ h,

we minimize

(23) fVh = argmin
fVh∈DLh

1

N

N∑

n=1

‖fVh(V̇n)− hn‖2

where DLh is the multilayer perceptrons with their mathematical representation given
by

(24) f∗Vh(V̇) = W `−1
]

(
η
(
W `−2
]

(
· · · η

(
W 1
] V̇
)
· · ·
)))

,

where W]x is the matrix multiplication of x with weight W] and η is ReLU . See Fig.
5 for details.

After finding fVh by solving the minimization problem (23), we can reconstruct
the conductivity from the latent variable by applying the decoder Ψ in (17). In
summery, the proposed lung EIT reconstruction map is:

(25) fEIT := Ψ ◦ fVh : V̇ −→ h −→ γ̇.

4. Experiments and Results.
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Fig. 5. Architecture of the proposed image reconstruction method. In the first stage, variational
autoencoder is used to learn a 16-dimensional manifold representation for getting prior knowledge
of lung EIT images. In the second stage, a map fVh : V̇ → h is trained with {(V̇n,hn)}Nn=1. Here
hn were given by encoder; Φme(γ̇n). In the third stage, fEIT := Ψ ◦ f∗Vh works with trained f∗Vh and
Ψ.

4.1. Generating labeled data. We numerically generate a set of labeled data
{(V̇n, γ̇n) : n = 1, · · ·N} using the forward model (4) with 16-channel EIT system and
the filtering process in section 3.3. To mimic practical situations, we use some human
experiment results by the fidelity-embedded reconstruction method [39] to collect a
set of labeled data {(V̇m, γ̇m) : m = 1, · · · , k}. We also interpolate these data to
generate an additional data by computing the forward problem (4) and (5). The
number of training data {(V̇n, γ̇n) : n = 1, · · ·N} was 21360. For data augmentation
purpose, we added 10 different 5% Gaussian random noise to V̇. The size of images
γ̇n is 128 × 128. All training was performed using an NVIDIA GeForce GTX 1080ti
GPU.

4.2. Training procedure and reconstruction result. The proposed method
consists of three stages: (i) Training variational autoencoder to find a low-dimensional
representation; (ii) Training the nonlinear regression map fVh from EIT data to latent
variables; (iii) EIT Image Reconstruction.

We used the AdamOptimizer [34] to minimize loss. The batch normalization [29]
was also applied. After finishing the training process (stage1, 2), a EIT reconstruction
images were given by fEIT(V̇) = Ψ ◦ fVh(V̇). The reconstruction result is shown in
Fig. 6.
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Algorithm 1 The proposed training and reconstruction algorithm.

Stage 1. Training variational autoencoder to find a low-dimensional rep-
resentation

for number of training step do
• Sample the minibatch of m image {γ̇1, · · · , γ̇m} from training data.
• Sample the minibatch of m auxiliary noise {hnoise,1, · · · ,hnoise,m} from
standard normal N (0, I).
• Update the parameters of VAE using the gradient of the loss L1 in (20)
with respect to the parameters of VAEs for the minibatch:

L1 =
1

m

m∑
n=1

[
‖Ψ ◦ Φ(γ̇n)− γ̇n‖2 +DKL(N (µn,Σn) ‖ N (0, I))

]
end for

Stage 2. Training the nonlinear regression map fVh

for number of training step do
• Sample the minibatch of m image {γ̇1, · · · , γ̇m} from training data and
encode the sampled images to generate {Φme(γ̇1), · · · ,Φme(γ̇m)}.
• Sample the minibatch of m paired voltage data {V̇1, · · · , V̇m} from
training data set.
• Update the parameters of fVh using gradient of loss L2 in (23) with
respect to the parameters of fVh for the minibatch:

L2 =
1

m

m∑
n=1

‖fVh(V̇n)− hn‖2

end for

Stage 3. EIT Image Reconstruction
Using the trained nonlinear regression map fVh and decoder Ψ, a EIT recon-
struction map fEIT is acheived by

fEIT(V̇) = Ψ ◦ fVh(V̇).

Reconstruction by proposed deep learning based method

Fig. 6. Reconstruction result of deep learning based method from real experimental data. The
reconstruction were given by fEIT(V̇) = Ψ ◦ fVh(V̇).

4.3. Visualizations of learned manifold. Our experimental result shows that
lung EIT images lie on the low-dimensional smooth compact manifold. For easy
visualization purpose, we visualized the lung EIT manifold with two dimensional
latent space to project the high dimensional image to low dimensional manifold. Here
we choose the equally spaced latent variables h ∈ [−3, 3]2 and we decoded them to
generate the images as shown in Fig. 7.

We also visualized manifold with 16-dimensional latent space. Since we can not
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Fig. 7. Visualization of learned lung EIT manifold with two-dimensional latent space.

directly visualize 16-dimensional manifold, we visualized the manifold along each axis
of the 16-dimensional latent space as shown in Fig. 8 (a). Here, each i-th row in Fig.
7 (a) shows lung EIT image Ψ(hi,j) with hi,j = δjei where ei is unit vector whose i-th
component is one and otherwise zero with δj ∈ {−6, · · · , 0, · · · , 6} for i ∈ {1, · · · , 16}
and j ∈ {1, · · · , 13}. Each (i, j) image in Fig. 8 (b) shows the tangent which denotes
the direction from (i, j) image to (i, j + 1) image in Fig. 8 (a) for i ∈ {1, · · · , 16}
and j ∈ {1, · · · , 12}. From manifold visualization, we can verify that change of lung
images(e.g., lung ventilations) are observed when we walk in the latent space.

4.4. Advantages on VAE-based manifold constraint. The proposed method
is advantageous over the conventional regularization methods due to the low dimen-
sional manifold constraint in reconstructing lung images fitting EIT data. The con-
ventional methods does not work for obese people, which is the case where lung is
placed away from the surface electrodes. The conventional regularization methods
may produce merged images due to their fundamental nature penalizing image per-
turbation, as shown in Fig. 9. On the other hand, the proposed method always
generate lung-like images due to the learning constraint of lung images.

In this experiment, we use a simulated image γ̇ and compute the corresponding
simulated data V̇ using the forward model (4) with γ = 1 + γ̇ and 16-channel EIT
system. Here, we added 5% Gaussian random noise to V̇. For each image of γ̇, 10
different data are computed by adding the noise. Totally 21360(=2136× 10) data pairs
are used for the training process. The images in Fig. 9 compares the proposed method
with regularized data fitting methods argmin

γ̇
‖V̇−Sγ̇‖2 +λ‖γ̇‖22 by using a simulated

EIT data. In case2, as shown in Fig. 9, two lungs are merged in the reconstructed
images by the regularized data fitting methods, but not in the reconstructed image
by the proposed method. It is because the measured data are highly sensitive to
conductivity changes near the current-injection electrodes, whereas the sensitivity
drops rapidly as the distance increases[7].
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(a) (b)

Fig. 8. Visualization of learned manifold with 16-dimensional latent space. (a) shows Ψ(hi,j)
where hi,j have value δj ∈ {−6, · · · , 6} in i-th component and otherwise zero. (b) shows the its
tangents. We expected that small changes in latent space produce small changes in image space.
Here each blue and red color denote the positive and negative value.

5. Discussion and Conclusion. This paper addressed the problem of handling
ill-posed nonlinear inverse problems by suggesting a low dimensional representation of
target images. ElT is a typical example of ill-posed nonlinear inverse problems where
the dimension of measured data is much lower than the number of unknowns (pixels of
the image). Moreover, there exist complicated nonlinear interrelations among inputs
(a practical version of Dirichlet-to-Neuman data), outputs (impedance imaging), and
system parameters. Finding a robust reconstruction map fEIT for clinical practice
requires to use prior knowledge on image expression. Regularization techniques have
been used widely to deal with ill-posedness, but the conventional Lp-norm based
regularization may not provide a proper prior of target images in practice. See Fig.
2.

Deep learning framework may provide a nonlinear regression on training data
which acts as learning complex prior knowledge on the output. VAE allows to
achieve compact representation (or low dimensional manifold learning) for prior in-
formation of lung EIT images, as shown in Fig. 3 and Fig. 4. Dai et al. [15]
viewed VAE as the natural evolution of robust PCA models, capable of learning non-
linear manifolds of unknown dimension obscured by gross corruptions. Given data
{γ̇n ∈ Rd : n = 1, . . . , N}, the encoder Φ(γ̇) in (18) can be viewed as a conditional
distribution q(h|γ̇) that satisfies q(h|γ̇) = N (µ,Σ). The decoder Ψ can be repre-
sented by a conditional distribution p(γ̇|h) with p(h) = N (0, I). VAE tries to match
p(h|γ̇) and q(h|γ̇). VAE encoder covariance can help to smooth out undersirable
minima in the energy landscape of what would otherwise resemble a more traditional
deterministic autoencoder [15].

Given the training data {(V̇n, γ̇n) : n = 1, · · · , N}, the encoding-decoding pair
(Φ,Ψ) and the nonlinear regression map fVh in (23) satisfy the following properties
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Ground truth

Regularized least square method

Case1:
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Person Proposed deep learning based method

Ground truth

Regularized least square method

Case2:

Obese

Person Proposed deep learning based method

Fig. 9. Comparison of reconstruction methods with simulated data. We compare the proposed
deep learning method 4.2 with the standard regularized least square method (10) for two cases:
normal person and obese person. In case 1 (normal person), both methods produces reasonably
accurate reconstructions. In case 2 (obese person), however, the standard method gives merged
image because electrodes positions are distant from the support of γ̇. On the other hand, the proposed
method provides useful reconstruction. Here, we resized our result of deep learning to the same ratio
of reconstruction of conventional method for the comparison.

as in the sense of Hadamard [19]:
• Approximate Existence : Given V̇, there exist h such that fVh(V̇) ≈ h.
• Approximate Uniqueness : For any two different EIT data V̇, V̇′, we have
‖Φ(V̇)− Φ(V̇′)‖ & ‖fVh(V̇)− fVh(V̇′)‖.
• Stability : V̇ ≈ V̇′ implies Φ(V̇) ≈ Φ(V̇′)

The proposed deep learning approach is a completely different paradigm from
regularized data-fitting approaches that use a single data-fidelity with regularization.
The deep learning approach instead uses a group data fidelity to learn an inverse
map from the training data. The deep learning framework can provide a nonlinear
regression for the training data, which acts as learning complex prior knowledge of the
output. Let us explain this using the well-known example of sub-Nyquist sampling
(compressive sensing) MRI, which is an ill-posed inverse problem with fewer equations
than unknowns. The well-known compressed sensing (CS) method with random sam-
pling is based on the regularized data-fitting approach (single data fidelity), where
total variation regularization is used to enforce the image sparsity to compensate for
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undersampled data [11, 31]. The CS method requires non-uniform random subsam-
pling, since it is effective to reduce noise. On the other hand, the deep learning-based
method [28] provides a low-dimensional latent representation of MR images, which
can be learned from the training set (group data fidelity). The learned reconstruction
function from the group data fidelity appears to have highly expressive representation
capturing anatomical geometry as well as small anomalies [28].

Deep learning techniques have expanded our ability by sophisticated “disentan-
gled representation learning” though training data. DL methods appear to overcome
limitations of existing mathematical methods in handling various ill-posed problems.
Deep learning methods will improve their performance as training data and experi-
ence accumulate over time. However, we do not have rigorous mathematical grounds
behind why deep learning methods work so well. We need to develop mathematical
theories to ascertain their reliabilities.
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