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Abstract. We analyze the sensitivity of the extremal equations that arise from the first order optimality
conditions for time dependent optimization problems. More specifically, we consider parabolic PDEs with distributed
or boundary control and a linear quadratic performance criterion. We prove the solution’s boundedness with respect to
the right-hand side of the first order optimality condition which includes initial data. If the system fulfills a particular
stabilizability and detectability assumption, the bound is independent of the time horizon. As a consequence, the
influence of a perturbation of the right-hand side decreases exponentially backward in time. We use this property for
the construction of efficient numerical discretizations in a Model Predictive Control scheme. Moreover, a quantitative
turnpike theorem in the W ([0, T ])-norm is derived.
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1. Introduction. Model predictive control (MPC) is a control method in which the solution
of optimal control problems on infinite or indefinitely long horizons is split up into the successive
solution of optimal control problems (OCPs) on finite time horizons T . Only a first part with given
length τ of this solution is implemented, where usually τ � T . The resulting state is then set as an
initial condition and the process is repeated. This means that in a numerical solution of the optimal
control problem only the first part of the optimal control must be computed accurately. Motivated
by this observation, we will study the effect of perturbations near the end of the optimization horizon
on the initial part of the control. It will turn out that under suitable assumptions, their influence
decays exponentially in time. Thus, they are indeed negligible if the horizon is long enough. In
this paper, we consider linear quadratic optimal control problems, more precisely tracking type
objective functionals and dynamics described by linear parabolic differential equations, e.g. a linear
heat equation.

An in depth introduction to model predictive control can be found in [15]. A central assumption
for the approximation of the infinite horizon solution by a solution controlled with an MPC-feedback
is that the dynamics of the optimal control problem exhibit turnpike behavior, i.e. the time depen-
dent solution of the optimal control problem remains close to a constant value for the majority of
the time [13]. This value is called the turnpike of the OCP. There are several different turnpike
characterizations and a wide literature thereon, cf. [2, 6, 18, 30, 31, 14, 9, 17, 16]. A particular
kind of turnpike behavior is the so called exponential turnpike property, cf. [26, 25, 22, 23, 4]. The
approach in this paper is inspired by the idea of establishing exponential turnpike behavior by
analysis of the extremal equations as done in recent works [26, 25] in order to provide a rigorous
error propagation result.

In the works [26, 25, 22, 23], the proofs of the turnpike property exploit the fact that the
dynamics of the so called approaching arc and the leaving arc can be decoupled. Due to this, as
depicted in Figure 1, one might conjecture that if the dynamics of an optimal control problem imply
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turnpike behavior, perturbations at the end of the trajectory do not affect the initial part if the
time horizon T is large.

t = T

t = 0 exact solution
perturbed solution

τ

Implemented in MPC-loop

Fig. 1: Turnpike behavior of the OCP’s solution and possible perturbation ε at the end of the
optimization horizon.

In this paper, we will show that this property can be proven rigorously for linear-quadratic optimal
control problems with dynamics satisfying a particular kind of stabilizability and detectability
assumption.

We emphasize that in an optimal control context it is not a priori clear how perturbations or
source terms occuring at times t >> 0 influence the solution at the beginning of the time horizon.
This is due to the structure of the optimality system, involving a backwards-in-time equation, i.e.
the adjoint equation, which could transport perturbations from the end of the horizon to the initial
part. Hence, a particular structure of the optimal control problem is needed in order to ensure
that this backwards-in-time error propagation does not occur. To this end, the stabilizability and
detectability assumption on the problem data is needed. As we will see, this assumption also implies
the turnpike property and the same mechanism that drives the optimal solutions to the turnpike
also causes the exponential damping of perturbations occuring at times t >> 0.

The paper is organized as follows. In Section 2, we introduce the involved function spaces,
the weak time derivative, and the resulting formulation of the PDE. Moreover, we define a lin-
ear quadratic optimal control problem with dynamics governed by a parabolic PDE and derive
optimality conditions.

Section 3 contains two central results regarding the error estimation motivated by MPC. We
first present an estimate in Theorem 3.1 which proves that the influence of perturbations decays
exponentially backwards in time. However, it involves the norm of an operator mapping the per-
turbations to the absolute error of the variables. To allow for arbitrary large time horizons T we
prove in Corollary 3.16 that under the stabilizability and detectabiliy assumption the operator norm
occurring in Theorem 3.1 is bounded independently of T .

A numerical example is presented in Section 4. In an MPC-feedback loop, the theoretical
results established in Section 3 motivate the use of temporal grids for the computation of the
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optimal controls that are fine at the beginning and get coarser exponentially towards the end time.
Consequently, the MPC-feedbacks can be computed with higher accuracy for a given computational
cost, as more grid points are used in the area of interest (the interval [0, τ ]) or we can speed up
the computation for a given desired accuracy. As a result, the cost functional value of the resulting
MPC closed loop trajectory can be reduced by several orders of magnitude. Moreover, for unstable
PDEs with reaction terms, the required number of grid points to achieve stabilization by MPC is
significantly lower when using an exponential grid in contrast to a conventional uniform grid.

Eventually, we present an exponential turnpike theorem in Theorem 5.2 similar to the result
presented in [25], where we, however, also conclude a turnpike result for the space and time deriva-
tives.

2. Setting and preliminaries. In this section, we will briefly introduce the involved spaces
and formulations for the linear quadratic optimal control problem of interest. We will recall some
functional analytic results from the literature which are important in our context. We refer to [10],
[20] and [32, Section 23.2ff] for an in-depth treatment of these topics.

2.1. Vector valued functions and generalized time derivatives. Assume (V, ‖ · ‖V ) is
a separable and reflexive Banach space and let [0, T ] be a bounded proper interval on R. By
Lp(0, T ;V ) we denote the space of Bochner integrable functions f : [0, T ] → V endowed with the
norm

‖f‖Lp(0,T ;V ) :=

 T∫
0

‖f(t)‖pV dt


1
p

.

If V is reflexive, then Lp(0, T, V ) is, and if p <∞, it holds that

Lp(0, T ;V )∗ ∼= Lp′(0, T ;V ∗), where
1

p
+

1

p′
= 1.

We will assume, that V ↪→ L2(Ω) continuously and densely. Together with V ∗, the dual space of
V , these spaces then form a so called Gelfand triple (or evolution triple) V ↪→ L2(Ω) ↪→ V ∗. For
a function v ∈ Lp(0, T ;V ) we denote the time derivative in the sense of V -valued distributions
by v′ or d

dtv. By W ([0, T ]) we mean the space of functions in L2(0, T ;V ) with weak derivative in
L2(0, T ;V ∗), i.e. W ([0, T ]) := {v ∈ L2(0, T ;V ) | v′ ∈ L2(0, T ;V ∗)}. A well-known result is that
W ([0, T ]) ↪→ C([0, T ], L2(Ω)) continuously (cf. [32, Proposition 23.23]). Note that for functions
v, w ∈W ([0, T ]) integration by parts is allowed and

〈v(s), w(s)〉L2(Ω) +

t∫
s

v′(τ)(w(τ)) dτ = 〈v(t), w(t)〉L2(Ω) −
t∫
s

w′(τ)(v(τ)) dτ.

Again, we refer to [10] and [32] for these results. For brevity of notation, we will denote L2(0, T ;V )
by L2(V ) and L2(0, T ;L2(Ω)) by L2(L2(Ω)):

To formulate parabolic PDEs as abstract operator equations, we define the time differential
operator

D : W ([0, T ])→ L2(V )∗ × L2(Ω)
∗

(Dy)(v, v0) :=

T∫
0

y′(t)(v(t)) dt+ 〈y(0), v0〉L2(Ω) ∀(v, v0) ∈ L2(V )× L2(Ω).
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With this operator, the abstract evolution equation

y′ = f in L2(V ?)

y(0) = y0 in L2(Ω)

where f ∈ L2(V ?) and y0 ∈ L2(Ω) can be formulated via

(Dy)(v, v0) = f(v) + 〈y0, v0〉 ∀(v, v0) ∈ L2(V )× L2(Ω).

The corresponding adjoint operator is given by

D∗ : L2(V ∗)× L2(Ω)→W ([0, T ])∗

(D∗(v, v0))(y) =

T∫
0

y′(t)(v(t)) dt+ 〈y(0), v0〉L2(Ω) ∀y ∈W ([0, T ]).

As shown in [24, Section 3.2], for λ, y ∈W ([0, T ]), the adjoint operator corresponds to a backwards-

in-time differential operator (D−λ)(y, y(T )) := −
T∫
0

λ′(t)(y(t)) dt+〈λ(T ), y(T )〉L2(Ω) via the identity

(D∗(λ, λ(0))(y) = (D−λ)(y, y(T )) ∀λ, y ∈W ([0, T ])

2.2. Parabolic PDEs. After having defined the time derivative, we introduce a linear and
bounded operator

Λ : L2(V )→ L2(V ∗)

which could represent, e.g., a Laplacian in weak form, i.e., (Λy)λ =
T∫
0

∫
Ω

∇y · ∇λ dωdt.

An operator corresponding to a parabolic PDE in weak form can then be defined by A :
W ([0, T ])→ L2(V ∗)× L2(Ω)

∗
, where

(Ay)(v, v0) := (Dy)(v, v0) + (Λy)(v) =

T∫
0

y′(t)(v(t)) dt+ 〈y(0), v0〉L2(Ω) + (Λy)(v),(2.1)

for (v, v0) ∈ L2(V )× L2(Ω), with adjoint operator A∗ : L2(V )× L2(Ω)→W ([0, T ])∗.
A possible problem formulation could then be given by

(Ay)(v, v0) =

T∫
0

∫
Ω

f(t, ω)v(t, ω) dωdt+ 〈y0, v0〉L2(Ω) ∀(v, v0) ∈ L2(V )× L2(Ω),(2.2)

where f ∈ L2(V ∗) is a source term and y0 ∈ L2(Ω) the initial datum.
The formulation (2.2) represents a so called variational approach which is treated extensively

in [8, 20, 29, 32] and is often used in the context of Galerkin methods. Another classical approach
is the semigroup theory, cf. [3, 28, 21, 7]. Both, the variational and the semigroup approach are
presented in [5, Chapter XVII f.]. Both approaches offer a powerful framework for the analysis
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of linear and nonlinear PDEs and both lead, for initial values y0 ∈ L2(Ω) and inhomogenities
f ∈ L2(L2(Ω)) to solutions in C(L2(Ω)). In this work, we chose the variational approach, as less
regular inhomogenities f ∈ L2(V ?) are naturally included, and lead, together with initial value
y0 ∈ L2(Ω) to solutions y ∈W ([0, T ]). This allows us to deduce estimates in the strongest possible
norm in a straight-forward fashion. For non-parabolic equations, where this regularity property of
the state, i.e. y ∈ L2(V ) does not hold, the semigroup approach can be considered and we refer to
section 6 for an outlook to future work.

Concerning the variational approach, solvability of problems of above type (2.2) was discussed
e.g. in [24] and in the above cited literature. Under a (weak) ellipticity assumption on Λ it can be
shown that A and A∗ are continuously invertible [24, Theorem 3.4]. The following proposition is
also a central result of the aforementioned reference and characterizes the regularity of solutions of
adjoint equations with particular right-hand sides.

Proposition 2.1. [24, Proposition 3.8]
For a given (λ, λ0) ∈ L2(V )× L2(Ω), the following assertions are equivalent:

1. There exist (l, l0, lT ) ∈ L2(V ∗) × L2(Ω) × L2(Ω) such that for all w ∈ W ([0, T ]) it holds
that

(A∗(λ, λ0))(w) =

T∫
0

l(t)(w(t)) dt+ 〈l0, w(0)〉L2(Ω) + 〈lT , w(T )〉L2(Ω).

2. λ ∈W ([0, T ]).
If one, and hence both of these assertions hold, then λ(T ) = lT and λ0 − λ(0) = l0.

Therefore, if we restrict the range of the adjoint operator to L2(V ∗)×L2(Ω), we obtain a Lagrange
multiplier λ ∈W ([0, T ]) with a prescribed end-time value. As a consequence, the rule of integration
by parts holds and the adjoint equation can be interpreted as a backwards-in-time equation (see
[24, Section 3.2]).

2.3. Optimization problems with parabolic PDEs. In this section, we will move to
optimization problems governed by parabolic PDEs. We recall the Gelfand or evolution triple
V ↪→ L2(Ω) ↪→ V ∗. The variable’s spaces are given by

• W ([0, T ]) for the state,
• L2(0, T ;U) for the control, where U is a Hilbert space. Possible choices could be L2(Ω) for

distributed control or L2(∂Ω) in the case of boundary control.
• L2(0, T ;Y ) for the output space, where Y is a Hilbert space. As for the control, one could

choose L2(Ω) for distributed observation or L2(∂Ω) for boundary observation.
• L2(V ) for the test functions of the dynamics,
• L2(Ω) for the test functions of the initial value.

For the definition of the objective function, we use a linear bounded state observation operator

C : L2(V )→ L2(Y )

and a linear, bounded and L2(U)-elliptic operator for the weighting of the control

R : L2(U)→ L2(U).

For the definition of the dynamics, we assume A : W ([0, T ])→ L2(V )×L2(Ω) of the form A = D+Λ
with D and Λ as introduced in the previous section, i.e. for test functions v, v0 ∈ L2(V ) × L2(Ω)
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we have

(Ay)(v, v0) = (Dy)(v, v0) + (Λy)(v) =

T∫
0

y′(t)(v(t)) dt+ 〈y(0), v0〉L2(Ω) + (Λy)(v)

Moreover, the control is incorporated by a linear bounded operator

B : L2(U)→ L2(V ∗)

For given y0 ∈ L2(Ω), the optimization problem is stated as following:

min
(y,u)

J(y, u) s.t. Ay −Bu = 〈y0, ·〉(2.3)

where the cost functional is given by

J(y, u) :=
1

2
‖C(y − yd)‖2L2(Y ) + ‖R(u− ud)‖2L2(U)

for yd ∈ V and ud ∈ U . We note that source terms in the PDE could be incorporated straightfor-
wardly. However, in order to simplify the presentation, we only consider the case without source
terms.

A central tool for the analysis in this work is the characterization of minimizers via the first
order necessary optimality conditions. Due to convexity of the problem, these conditions are also
sufficient. The following proposition states the optimality conditions at a minimizer.

Proposition 2.2. Let (y, u) ∈ W ([0, T ])× L2(U) be a minimizer of problem (2.3). Then if A
is closed and surjective, there exists (λ, λ0) ∈ L2(V )× L2(Ω), such that

〈Cy,Cv〉L2(Y ) + (A∗(λ, λ0))(v) = 〈Cyd, Cv〉L2(Y ) ∀v ∈W ([0, T ])

〈Ru,Rw〉L2(U) − (B∗λ)(w) = 〈Rud, Rw〉L2(U) ∀w ∈ L2(U)

(Ay)(p, p0)− (Bu)(p) = 〈y0, p0〉L2(Ω) ∀(p, p0) ∈ L2(V )× L2(Ω)

Proof. [24, Theorem 1.1, Remark 1.2]

Writing this as an equation in the respective dual spaces, we getC∗MyC 0 A∗

0 R∗MuR −B∗
A −B 0

 y
u

(λ, λ0)

 =

C∗MyCyd
R∗MuRud
〈y0, ·〉

 ,

where My,Mu are the Riesz isomorphisms from L2(Y ) to L2(Y )∗ and L2(U) to L2(U)∗ respectively.
Defining

Q := R∗MuR,(2.4)

we can eliminate the control via u = Q−1B∗λ+ ud and obtain(
C∗MyC A∗

A −BQ−1B∗

)(
y

(λ, λ0)

)
=

(
0
〈y0, ·〉

)
+

(
C∗MyCyd
Bud

)
.(2.5)
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In the following, we will refer to (2.5) as the extremal equations or the extremal system. First, we
present a regularity result for the adjoint state. The first line of (2.5) corresponding to the adjoint
equation maps into W ([0, T ])∗. As a consequence, we obtain a Lagrange multiplier (δλ, δλ0) ∈
L2(V ) × L2(Ω). If we restrict ourselves to more regular right-hand sides, we obtain an improved
regularity of the Lagrange multiplier, as the following lemma shows.

Lemma 2.3. Let (y, (λ, λ0)) ∈ (W ([0, T ])× (L2(V )× L2(Ω))) solve

(C∗MyCy + (A∗(λ, λ0)))w = l1w + 〈λT , w(T )〉 ∀w ∈W ([0, T ])

where l1 ∈ L2(V ∗) and λT ∈ L2(Ω). Then λ ∈W ([0, T ]) and λ(0) = λ0.

Proof. Follows from Proposition 2.1 with l(t) = l1(t) + C∗MyCy(t) for a.e. t ∈ [0, T ], l0 = 0
and lT = λT .

For brevity of notation, we define a linear operator corresponding to the extremal equations by

M : W ([0, T ])2 → (L2(V ∗)× L2(Ω))2

M :=

(
C∗MyC A∗

A −BQ−1B∗

)
=

(
C∗MyC (D + Λ)∗

(D + Λ) −BQ−1B∗

)
(2.6)

Note, that we only admit right-hand sides in L2(V ∗) × L2(Ω) for the adjoint equation and hence
obtain a more regular Lagrange multiplier. This allows us to omit the second argument of the
Lagrange multiplier (λ, λ0), as λ(0) = λ0. Additionally, the improved regularity λ ∈ W ([0, T ])
enables us to use integration by parts not only for the state, but also for the adjoint state, which
will be crucial in the remainder.

3. Error estimation motivated by model predictive control. In this section, we present
the main result of this paper. We aim to quantify, how perturbations of the right-hand side of
the extremal equations influence the solution. The motivation is that these perturbations could
stem from discretization errors, i.e. they may resemble the residual of the discretization scheme
which corresponds to the meshsize. We show that perturbations that increase exponentially in time
only influence the initial part of the solution by an amount that corresponds to the size of the
perturbation at the initial time. This follows from two results we shall present in the following,
namely Theorem 3.1 and Corollary 3.16. This result motivates the coarsening of grids in time in
an MPC-context, as it suggests that the interesting part of the control, i.e. the control on an initial
interval which actually is implemented in an MPC-controller, is only affected negligibly by larger
discretization errors towards the end of the time horizon. Again, we want to stress that this is not
clear a priori, as the backwards-in-time adjoint equation could propagate perturbations from close
to the end time T to the initial part. In the following we will denote the perturbation of the adjoint
equation by ε1 ∈ L2(V ∗) and the perturbation of the state equation by ε2 ∈ L2(V ∗).

3.1. An abstract error estimation result. First, we present a preliminary result. For this,
we will refer to the solution (y, λ) of (2.5) as the exact solution. We will now assume that we have
a second pair of variables (ỹ, λ̃) ∈W ([0, T ])2 solving the perturbed system(

C∗MyC A∗

A −BQ−1B∗

)(
ỹ

λ̃

)
=

(
0
〈y0, ·〉

)
+

(
C∗MyCyd
Bud

)
+

(
ε1

ε2

)
.

for (ε1, ε2) ∈ L2(V ∗)2. This solution will be referred to as the perturbed solution. The terms ε1

and ε2 are perturbations of the dynamics which could stem from discretization errors in time or
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space. In this subsection we will give an estimate for the norm of the difference of (ỹ, λ̃) and (y, λ),
which represents the absolute error. It follows by linearity that the difference between exact and

perturbed solution

(
δy
δλ

)
:=

(
ỹ − y
λ̃− λ

)
fulfills the system of equations

(
C∗MyC A∗

A −BQ−1B∗

)(
δy
δλ

)
=

(
ε1

ε2

)
.(3.1)

The main question in the remaining part of this paper is now the following: How does the behaviour
of the perturbations ε1 and ε2 over time influence the behaviour of the error δy and δλ? The first
central result reads as follows:

Theorem 3.1. Assume (δy, δλ) ∈ W ([0, T ]) solves (3.1) for given ε1, ε2 ∈ L2(V ∗) and choose
µ > 0 and ρ > 0 such that

0 ≤ µ < 1

‖M−1‖L2(V ∗)2→W ([0,T ])2

and

‖e−µtε1(t)‖L2(V ∗) + ‖e−µtε2(t)‖L2(V ∗) ≤ ρ.

Then it holds that

‖e−µtδy‖W ([0,T ]) + ‖e−µtδλ‖W ([0,T ]) ≤ ρ
‖M−1‖L2(V ∗)2→W ([0,T ])2

1− β
,

‖e−µtδu‖L2(U) ≤ ρ‖R−1B∗‖L2(V ∗)→L2(U)

‖M−1‖L2(V ∗)2→W ([0,T ])2

1− β
,

where β := µ‖M−1‖L2(V ∗)2→W ([0,T ])2 < 1 and δu = R−1B∗δλ.

Proof. First, we introduce scaled variables δ̃y := e−µtδy ∈ W ([0, T ]) and δ̃λ := e−µtδλ ∈
W ([0, T ]) and compute, for (v, v0) ∈ L2(V )× L2(Ω) and scaled test function ṽ := eµtv:

(Dδy)(v, v0) = (D(eµtδ̃y))(v, v0) =

T∫
0

d

dt
(eµtδ̃y)(v) dt+ 〈δ̃y(0), v0〉

= µ

T∫
0

ṽδ̃y dt+

T∫
0

d

dt
δ̃y(ṽ) dt+ 〈δ̃y(0), v0〉

=

(
(µI +D) δ̃y

)
(ṽ, v0)
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and as δλ ∈W ([0, T ]), δλ(0) = δλ0 we proceed for the adjoint

(D∗(δλ, δλ(0)))v = (Dv)(δλ, δλ(0))

=

T∫
0

d

dt
(δλ) dt+ 〈v(0), δλ(0)〉 = −

T∫
0

d

dt
δλ(v) dt+ 〈v(T ), δλ(T )〉

= −
T∫

0

d

dt
(eµtδ̃λ)(v) dt+ 〈ṽ(T ), δ̃λ(T )〉

= −µ
T∫

0

ṽδ̃λ dt−
T∫

0

d

dt
δ̃λ(ṽ) dt+ 〈ṽ(T ), δ̃λ(T )〉

= −µ
T∫

0

ṽδ̃λ dt+

T∫
0

d

dt
ṽδ̃λ dt+ 〈ṽ(0), δ̃λ(0)〉

=

(
(−µI +D)ṽ

)
(δ̃λ, δ̃λ(0)) =

(
(−µI +D)∗(δ̃λ, δ̃λ(0))

)
(ṽ).

Defining ε̃1 := e−µtε1, ε̃2 := e−µtε2, we obtain an equivalent representation of the extremal system(
C∗MyC A∗

A −BQ−1B∗

)(
δy
δλ

)
=

(
ε1

ε2

)

⇐⇒


(
C∗MyC A∗

A −BQ−1B∗

)
+ µ

(
0 −I
I 0

)
︸ ︷︷ ︸

=:P


(
δ̃y

δ̃λ

)
=

(
ε̃1

ε̃2

)

Introducing z̃ :=

(
δ̃x

δ̃λ

)
, ε̃ :=

(
ε̃1

ε̃2

)
we compute

(M + µP )z̃ = ε̃ in L2(V ∗)2

(I + µM−1P )z̃ = M−1ε̃ in W ([0, T ])2(3.2)

By a standard Neumann argument, cf. [19, Theorem 2.14], if we choose µ > 0, such that β :=
µ‖M−1‖L2(V ∗)2→W ([0,T ])2 < 1, we get invertibility of (I + µM−1P ) as operator from W ([0, T ])2 to
W ([0, T ])2, as clearly ‖P‖W ([0,T ])2→L2(V ∗)2 = 1. Moreover, using the Neumann series representation
of (I + µM−1P )−1 yields

‖(I + µM−1P )−1‖W ([0,T ])2→W ([0,T ])2 ≤
∞∑
i=0

‖(µM−1P )i‖W ([0,T ])2→W ([0,T ])2 ≤
∞∑
i=0

βi =
1

1− β
.

Thus, we conclude

z̃ = (I − µM−1P )−1︸ ︷︷ ︸
W ([0,T ])2→W ([0,T ])2

M−1︸ ︷︷ ︸
L2(V ∗)2→W ([0,T ])2

ε̃
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which implies the estimate

‖z̃‖W ([0,T ])2 ≤
‖M−1‖L2(V ∗)2→W ([0,T ])2

1− β
‖ε̃‖L2(V ∗)2 ≤

‖M−1‖L2(V ∗)2→W ([0,T ])2

1− β
ρ,

where ‖ε̃‖L2(V ∗)2 ≤ ρ follows from our assumption on the bound of ε1 and ε2. Writing this in the
original variables yields

‖e−µtδy‖W ([0,T ]) + ‖e−µtδλ‖W ([0,T ]) ≤
‖M−1‖L2(V ∗)2→W ([0,T ])2

1− β
ρ.

For the control we conclude

‖e−µtδu‖L2(U) = ‖e−µtR−1B∗δλ‖L2(U) = ‖R−1B∗e−µtδλ‖L2(U)

≤ ‖R−1B∗‖L2(V )→L2(U)

‖M−1‖L2(V ∗)2→W ([0,T ])2

1− β
ρ,

where we used that R and B do not involve time derivatives.

Corollary 3.2. Let the assumptions of Theorem 3.1 hold. Then there exists K > 0 indepen-
dent of T such that

‖e−µtδy‖C(0,T ;L2(Ω))) + ‖e−µtδλ‖C(0,T ;L2(Ω)) ≤ Kρ
‖M−1‖L2(V ∗)2→W ([0,T ])2

1− β
,

Proof. This follows by W ([0, T ]) ↪→ C(0, T ;L2(Ω)). For the fact, that the embedding constant
K is independent of T , see e.g. the proof of [10, Satz 1.17].

The parameter of exponential decay µ and the right-hand side of the estimates depend on the
operator norm ‖M−1‖(L2(V ∗))2→W ([0,T ])2 . To obtain estimates independent of the end time T , we
will show in the next section, that under a stabilizability and detectability assumption this norm
can be bounded independently of T .

Remark 3.3. We observe the dependence of the right-hand side of the estimate for the control
on ‖B∗‖L2(V )→L2(U∗). It is therefore desirable to bound this term independent on the end time T ,
to obtain estimates which do not deteriorate for large T . Two examples of operators L : L2(X1)→
L2(X2) on Hilbert spaces X1, X2 for which this is the case are

• Ly =
T∫
0

Ly dt, where L : X1 → X2, as then ‖L‖ ≤ ‖L‖,

• Ly =
T∫
0

L(t)y dt, where L : [0, T ]→ L(X1, X2) is a continuous mapping and

sup
t∈[0,∞[

‖L(t)‖L(X1,X2) <∞.

3.2. Boundedness of the extremal equations’ solution operator. In this section, we will
deduce a bound on the extremal equations’ solution operator norm ‖M−1‖(L2(V ∗)×L2(Ω))2→W ([0,T ])2 .
We include initial data in the domain of M−1, i.e. the right-hand side, which allows us to deduce
a turnpike result in the last section. The operator norm occuring in Theorem 3.1 can easily be
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estimated via ‖M−1‖L2(V ∗)2→W ([0,T ])2 ≤ ‖M−1‖(L2(V ∗)×L2(Ω))2→W ([0,T ])2 . First, we rewrite the
extremal equations for an arbitrary right-hand side l1, l2 ∈ L2(V ∗) and y0, λT ∈ L2(Ω):(

C∗MyC A∗

A −BQ−1B∗

)(
y
λ

)
=

(
l1
l2

)
+

(
〈λT , ·〉
〈y0, ·〉

)
(3.3)

We will now introduce a particular notion of stability, characterized by an ellipticity condition.

Definition 3.4. An operator S : L2(V )→ L2(V ∗) is called L2(V )-elliptic, if there exists α > 0
independent of T such that

(Sv)(v) ≥ α‖v‖2L2(V )(3.4)

Remark 3.5.
• If S fulfills the L2(V )-ellipticity condition (3.4) for α > 0, it can be shown by a simple

scaling argument, that the solution of

Dv + Sv = 〈v0, ·〉

fulfills ‖eµtv‖L2(V ) ≤ 1√
α−µ‖v0‖L2(Ω) for µ < α and also ‖v(t)‖L2(Ω) ≤ e−αt‖v(0)‖L2(Ω) for

t ≥ 0, i.e., we obtain immediate energy dissipation. If S = (Λ +BK) for a control operator
B and feedback operator K, the latter estimate clearly excludes wave-like equations with
finite speed of propagation and control or observation not on the whole domain. The
condition may also not be satisfied as the operator might be only elliptic in a weaker space,
i.e. the space of the initial condition. We will further discuss this issue in section 6.

• It is clear, that S is L2(V )-elliptic if and only if S∗ is.
• An example of a H1

0 (Ω)-elliptic operator is the Laplacian in weak form

(Sv)(v) =

T∫
0

∫
Ω

∇y · κ(t, ω)∇v dωdt,

where κ(t, ω) is a uniformly bounded measurable function from [0, T ] into the set of real
matrices, satisfying an uniform ellipticity condition v · κ(t, ω)v ≥ c|v|2.

The exponential estimates in the previous remark motivate the notion of the following definition,
namely V -exponential stabilizabilty.

Definition 3.6.
• A pair of operators (Λ, B), where Λ : L2(V ) → L2(V ∗) and B : L2(U) → B : L2(V ∗) is

called V -exponentially stabilizable, if there exists a feedback operator KB : L2(V )→ L2(U),
such that (Λ +BKB) is L2(V )-elliptic, i.e. fulfills condition (3.4).

• A pair of operators (Λ, C) where Λ : L2(V ) → L2(V ∗) and C : L2(V ) → L2(Y ) is called
V -exponentially detectable, if (Λ∗, C∗) is V -exponentially detectable, i.e. there exists KC :
L2(Y )→ L2(V ∗) such that (Λ∗ + C∗K∗C) = (Λ +KCC)∗ is V -exponentially stable.

To illustrate this property, we present two examples that fulfill Definition 3.6, which are given by
an unstable heat equation with distributed and Neumann boundary control, respectively.

Example 3.7. Let Ω ⊂ Rd be a C0,1-domain, where d = 1, 2 or 3, V = {v ∈ H1(Ω) | ∂νv = 0}.
For the control we consider U = L2(Ωc) where Ωc ⊆ Ω is of measure larger than zero. For y, v ∈
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L2(V ) let (Λy)v :=
T∫
0

∫
Ω

∇y · κ(t, ω)∇v − γyv dωdt for γ > 0, where κ(t, ω) is a uniformly bounded

measurable function from [0, T ] into the set of real matrices, satisfying the uniform ellipticity
condition v · κ(t, ω)v ≥ c|v|2. For arbitrary small γ > 0, the solutions of (D + Λ)y = y0 would be
unstable. Firstly, we observe that

(Λy)(y) + (γ + c)‖y‖2L2(L2(Ω)) ≥ c‖y‖L2(H1
0 (Ω)),

therefore by [24, Theorem 3.4, Corollary 3.5] A := D + Λ and A∗ are continuously invertible.

To stabilize the system V -exponentially, we consider a control operator (Bu)v :=
T∫
0

∫
Ωc

uv dωdt

and observation on the whole domain, i.e. C is the identity on L2(V ) and Y = V . Defining the
feedback-operator KB : L2(V ) → L2(L2(Ωc)) by KBy(t) := −Ky(t)∣∣Ωc for K > 0 and a.e. t, we

conclude

(Λ +BKB)(y)(y) ≥
T∫

0

∫
Ω

c‖∇y‖2 − γy2 + χΩcKy
2 dωdt ≥ C(γ, c,K,Ω)‖y‖2L2(V ).

For given c,Ω,Ωc, positivity of C(γ, c,K,Ω) can be assured if γ > 0 is small enough. This follows
by the generalized Poincaré inequality, cf. [27, Lemma 2.5]. If Ωc = Ω,, we note that KB defined
above is V -exponentially stabilizing for every γ > 0. Thus, for KC we can choose γI where I is the
identity on L2(V ), which yields the L2(V )-ellipticity of (Λ +KCC) for all γ > 0.

Example 3.8. A similar result holds, if we replace the distributed control in Example 3.7 by
Neumann boundary control of the form ∂νy = u on Γ = ∂Ω. Defining V = H1(Ω) yields the

bounded control operator (Bu)(v) =
T∫
0

∫
Γc

u tr(v) dsdt where tr : H1(Ω) → L2(Ω) is the trace

operator. Therefore, a feedback KB can be defined via KBy = −K tr y for K > 0 leading to H1(Ω)
elliptictiy of (Λ + BKB) if γ is moderate. This follows by the generalized Friedrichs inequality cf.
[27, Lemma 2.5].

Remark 3.9. In the above examples the instability constant γ has to be moderate to show V -
exponential stability using the Friedrichs and Poincaré inequality if the control and observation
region is not the whole domain. Classical exponential stability, i.e. ‖y(t)‖ ≤ Me−µt‖y0‖ can be
shown, however, for arbitrary γ, cf. [1, Section 3.4.1]. We recall that if an operator is V -elliptic, the
solutions satisfy the property ‖y(t)‖ ≤M‖y0‖e−µt with M = 1. Considering the case of Neumann
boundary control, it was shown that the equation is exponentially stabilizable for arbitrary γ > 0
with overshoot constants M = 1 for the case where γ is smaller than the constant of the generalized
Friedrichs or Poincaré inequality and with M > 1 for arbitrary large γ. For this fact, we again refer
to [1, Section 3.4.1].

After having illustrated this notion of stabilizability and detectability, we will use it to show a
bound on the solution operators norm. We start with a preliminary result on the time derivative
operator D : W ([0, T ])→ L2(V )∗ × L2(Ω)∗, cf. [24, Section 2.3].

Proposition 3.10. For w ∈W ([0, T ]) it holds that

(Dw)(w,w(0)) =
1

2

(
‖w(T )‖2L2(Ω) + ‖w(0)‖2L2(Ω)

)
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Proof. Follows by (Dw)(w,w(0)) =
T∫
0

w′(t)(w(t)) dt+ ‖w(0)‖2L2(Ω) and integration by parts.

We summarize the needed properties in the following assumption.

Assumption 3.11. We assume the following for the optimal control problem 2.3 and the feedback
operators:

• (Λ, B) is V -exponentially stabilizable,
• (Λ, C) is V -exponentially detectable,
• all operator norms that appear in the estimates, i.e. of the problem formulation ‖Λ‖, ‖B‖,
‖R‖, ‖C‖ and of the stabilizing feedbacks ‖KB‖ and ‖KC‖, cf. Definition 3.6, are bounded
independent of T . For examples where this is the case, we refer to Remark 3.3.

Lemma 3.12. Assume (y, λ) ∈W ([0, T ]) solves (3.3) and let Assumption 3.11 hold. Then there
are constants c1, c2 > 0 independent of T , such that

‖y(T )‖2L2(Ω) + ‖y‖2L2(V ) ≤ c1
(
‖Cy‖2L2(Y ) + ‖R−∗B∗λ‖2L2(U) + ‖l2‖2L2(V ∗) + ‖y0‖2L2(Ω)

)
‖λ(0)‖2L2(Ω) + ‖λ‖2L2(V ) ≤ c2

(
‖Cy‖2L2(Y ) + ‖R−∗B∗λ‖2L2(U) + ‖l1‖2L2(V ∗) + ‖λT ‖2L2(Ω)

)
Proof. For the result on the state, we test the second equation of (3.3) with (y, y0) and obtain

(Dy)(y, y0) + (Λy)(y) = (BQ−1B∗λ)(y) + l2(y) + ‖y0‖2L2(Ω)

Adding the term (KCCy)(y), where KC is a stabilizing feedback for (Λ, C) from Definition 3.6 on
both sides and Proposition 3.10 yields

1

2

(
‖y(T )‖2 + ‖y(0)‖2

)
+ (Λ +KCC)(y)(y) = (KCCy)(y) + (BQ−1B∗λ)(y) + l2(y) + ‖y0‖2L2(Ω)

Using the V -exponential stability of Λ + KCC which follows by V -exponential stability of (Λ +
KCC)∗, cf. Remark 3.5, we obtain α1 > 0 such that

1

2
‖y(T )‖2L2(Ω) + α1‖y‖2L2(V ) ≤ ‖KC‖‖Cy‖‖y‖+ ‖BR−1‖‖R−∗B∗λ‖‖y‖+ ‖l2‖‖y‖+

1

2
‖y0‖2

First, we bound the left-hand side from below by min{ 1
2 , α1}(‖y(T )‖2L2(Ω) + ‖y‖2L2(V )). Then,

computing

‖KC‖‖Cy‖‖y‖ ≤
4

min{ 1
2 , α1}

‖KC‖2‖Cy‖2 +
min{ 1

2 , α1}
4

‖y‖2

and similar for the three remaining terms involving ‖y‖ yields

min{ 1
2 , α1}
4

(‖y(T )‖2L2(Ω) + ‖y‖2L2(V )) ≤

4

min{ 1
2 , α1}

(‖KC‖2 + ‖BR−1‖2+1)(‖Cy‖2 + ‖R−∗B∗λ‖2 + ‖l2‖2 + ‖y0‖2)

The claim for the state follows with c1 :=
16(‖KC‖2+‖BR−1‖2+1)

min{ 1
4 ,α

2
1}

. For the adjoint, we test the first

equation of (3.3) with (λ, λ(T )) and add the term (BKBλ)(λ) on both sides. The constant in this

case is given by c2 :=
16(‖KB‖2‖R∗‖2+‖C∗‖2+1)

min{ 1
4 ,α

2
2}

.



14 L. GRÜNE, M. SCHALLER, AND A. SCHIELA

The estimates in Lemma 3.12 still include right-hand sides depending on y and λ. This dependence
can be eliminated with the following lemma.

Lemma 3.13. Let (y, λ) solve (3.3). Then

‖Cy(s)‖2L2(Y ) + ‖R−∗B∗λ(s)‖2L2(U) = −〈y0, λ(0)〉L2(Ω) + 〈λT , y(T )〉L2(Ω) − l2(y) + l1(λ)

≤
(
a
(
‖λ(0)‖2 + ‖y(T )‖2 + ‖y‖2 + ‖λ‖2

)
+
‖y0‖2 + ‖λT ‖2 + ‖l2‖2 + ‖l1‖2

a

)
for arbitrary a > 0.

Proof. Testing the first equation of (3.3) with (y, y(T )) and the second equation of (3.3) with
(λ, λ(0)) and subtracting the former from the latter yields the result. The second estimate follows

from the classical estimate xy ≤ ax2 + y2

a for all x, y ∈ R and a > 0.

Eventually, we obtain the following stability estimate.

Proposition 3.14. Assume (y, λ) ∈ W ([0, T ])2 solves (3.3) and let Assumption 3.11 hold.
Then, there exists a constant c3 > 0 independent of T , such that the following stability estimate
holds

‖λ(0)‖2L2(Ω) + ‖y(T )‖2L2(Ω) + ‖y‖2L2(V ) + ‖λ‖2L2(V )

≤ c3(‖l1‖2L2(V ∗) + ‖l2‖2L2(V ∗) + ‖y0‖2L2(Ω) + ‖λT ‖2L2(Ω))

Proof. Adding the stability estimates from Lemma 3.12 and using the estimate of Lemma 3.13
with a = 1

(c1+c2) yields the result for c3 = 4(c1 + c2)2, as c1, c2 ≥ 1 and hence (c1 + c2)2 ≥ c1 + c2.

Eventually, the stability estimate for the variables in the L2(V )-norm allows for the deduction of
an estimate in the W ([0, T ])-norm.

Theorem 3.15. Assume (y, λ) ∈ W ([0, T ]) solves (3.3) and let Assumption 3.11 hold. Then,
there exists a constant c4 > 0 independent of T such that

‖y‖2W ([0,T ]) + ‖λ‖2W ([0,T ]) ≤ c4(‖l1‖2L2(V ∗) + ‖l2‖2L2(V ∗) + ‖y0‖2L2(Ω) + ‖λT ‖2L2(Ω))

Proof. With (3.3) and A = D + Λ we deduce for v ∈ L2(0, T ;V )

(Dy)(v, 0) = −(Λy)(v)− (BQ−1B∗λ)(v) + l2(v)

implying

‖y′‖L2(V ∗) ≤ ‖Λ‖‖y‖L2(V ) + ‖BQ−1B∗‖‖λ‖L2(V ) + ‖l2‖L2(V ∗).

Proceeding analogously for the adjoint and using the estimate on ‖y‖2L2(V ) + ‖λ‖2L2(V ) from Propo-
sition 3.14 this yields the result.

Corollary 3.16. Let Assumption 3.11 hold. Then, with the constant c4 > 0 independent of
T defined in Theorem 3.15 it holds that

‖M−1‖(L2(V ∗)×L2(Ω))2→W ([0,T ])2 ≤ c4

As a consequence, all estimates in Theorem 3.1 and the choice of the exponential decay parameter
µ are independent of the horizon T .
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To conclude this theoretical part, we recall the most important result. Using the abstract scaling
result Theorem 3.1 together with Corollary 3.16, we showed for systems fulfilling Assumption 3.11,
and thus especially Example 3.7 and Example 3.8, that perturbations of the extremal equation’s
right-hand side growing exponentially in time only lead to errors in the variables that are growing
exponentially in time. In particular, perturbations, that are small at the initial part of the time
interval lead to disturbances of the solutions that are small at the initial part. This result is of
special interest in the context of an MPC-controller, as the control on the initial part of the time
interval is used as a feedback there.

4. Performance analysis of exponential grids in an MPC-feedback loop. In this sec-
tion, we use the theoretical results to construct temporal grids for a numerical discretization that
are tailored to the application in an MPC-feedback loop. To this end, we interpret the perturbations
ε1(t), ε2(t) of the right hand side of the extremal equation as numerical errors. The coarser the
meshsize, the larger the perturbations will be and vice versa. For systems of ordinary differential
equations, an analysis of the relation between such perturbations and the meshsizes of an implicit
Euler scheme was given in [11]. All computations were performed using the C++-library Spacy1

and the finite element C++-library Kaskade7 [12].
We first introduce the MPC-algorithm for an optimal control problem.

Algorithm 4.1 Standard MPC Algorithm

1: Initialize T > τ > 0, k = 0 and y(0)
2: while k < K do
3: Solve OCP on [0, T ] with initial data y(kτ) save optimal control in uk

4: Simulate model on [0, T ] with source uk and initial data y(kτ), save in yk.
5: Build trajectory: y∣∣[kτ,(k+1)τ ]

:= yk∣∣[0,τ ]
, u∣∣[kτ,(k+1)τ ]

:= uk∣∣[0,τ ]

6: k = k + 1
7: end while

As stated in the introduction of this paper, the standard MPC-algorithm only implements the
first part of the trajectory until a time τ , see Algorithm 4.1, Line 4. Therefore, we are especially
interested in a high accuracy of the computed control on [0, τ ]. Since the estimate from Theorem 3.1
allows for an exponential increase of the perturbations, the specialized grids’ meshsize grows expo-
nentially in time. In the following, we will compare the cost of closed loop trajectories generated
by Algorithm 4.1 for uniform grids and the specialized, exponential grids for the same number of
total grid points.

As a model problem, we consider the optimization problem on a unit square Ω := [0, 1]2:

min
(y,u)

1

2
‖(y − yd)‖2L2([0,T ]×Ω) +

0.01

2
‖u‖2L2([0,T ]×Ω)

subject to the parabolic PDE with parameters d > 0 , µ ≥ 0, given in classical form

y′ + d∆y − µy = u on ]0, T ]× Ω

y = 0 on ]0, T ]× ∂Ω

y(0) = 0 on Ω

1https://spacy-dev.github.io/Spacy/
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or in weak form, where the natural space in this case is V = H1
0 (Ω):

(Dy)(v, v0) + d

T∫
0

∫
Ω

∇y · ∇v dωdt− µ
T∫

0

∫
Ω

yv dωdt−
T∫

0

∫
Ω

uv dωdt = 0

for all test functions (v, v0) ∈ L2(V )×L2(Ω). We note that for µ = 0, this equation models a linear
heat equation with zero initial condition which is stable due to the ellipticity of ∇ · ∇· in H1

0 (Ω).
The parameter µ allows us to reduce the stability, or even obtain an unstable problem as soon as
µ is chosen larger than d times the smallest eigenvalue of ∇ · ∇·, given by 2π on the unit square.
It can be easily seen, that the problem is V -exponentially stabilizable for arbitrary µ by choosing
a feedback Ky = (µ+ d)y, leading to (Λ +BK)(y)(y) = d‖y‖L2(H1

0 (Ω))

We apply Algorithm 4.1 with different grids for the solution of the OCP, see Algorithm 4.1,
Line 3. The simulation of the model (Line 4) is always performed on a very fine temporal mesh
on the interval [kτ, (k + 1)τ ] for every iteration index k. The spatial mesh was kept constant for
all timesteps. Table 1 shows the parameters for the four different problem settings for which the
performance was tested. Figure 2 depicts the performance measured by the cost functional values of

d µ T τ MPC-loops

Stable problem 1
0.01 0

3 0.5
4

Stable problem 2 2 1
Unstable problem 1

0.1
3 2

1 8
Unstable problem 2 4 4

Table 1: Parameters of the different problem settings.

the closed loop trajectory for the MPC-feedback computed with the exponential grid and the MPC-
feedback computed with the uniform grid. For comparison, the horizontal lines in each of the four
figures depict the closed loop cost for and MPC-feedback computed on a very fine grid as reference.
For the stable problems we observe a monotone decrease of the closed loop cost if we increase the
number of grid points. However, one can see that the particular distribution of grid points, i.e.,
using exponentially many points at the beginning of the time interval, leads to significant decrease
of the cost. Moreover, when moving to unstable dynamics, in the case of the exponential grid, a
very low cost functional value is achieved for very few gridpoints. Also, non-monotone behavior
of the cost functional value with respect to the number of grid points is observed, which could be
due to non-uniform refinement. Moreover, on the bottom left and right, we observe some kind of
saturation effect, i.e. using even more grid points in [0, τ ] does not increase the performance. In the
last example on the bottom right, for 8 grid points, the feedback computed with the uniform grid led
to an unstable behaviour of the resulting closed loop trajectory and very high cost functional value.
Therefore, it was not depicted in this figure. The exponential grid feedback however, stabilized the
system and moreover was able to achieve a very low cost functional value.

5. An exponential turnpike property. Another consequence of the bounded operator norm
of M−1, see Corollary 3.16, is an exponential turnpike property, which will be derived in this section
and is similar to Theorem 3.1. The difference is that we will not have an L2(V ∗)-perturbation of
the right-hand side, but initial conditions not equal to zero. Moreover, we will not estimate the
distance to a perturbed solution, but to a steady state solution.
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Fig. 2: Illustration of the cost functional value of the closed loop trajectory generated by MPC-
feedbacks computed with different numbers of temporal gridpoints.

A similar result was proven in [26] for nonlinear finite dimensional problems. This was extended
to a general Hilbert spaces setting in [25]. Moreover, the interested reader is referred to [22, 23].
The novelty of our result compared to these references is that the algebraic Riccati equation is used
in these references. In contrast to this, our result on the operator norm bound enables us to derive
a turnpike theorem without the use of the Riccati Theory.

Note that the previous results of this paper allowed for time dependent operators in the cost
function or the dynamics. To define a steady state problem corresponding to (2.3) we will now

restrict ourselves to time independent operators of the type (Λy)(v) =
T∫
0

(Λy)(v) dt, where Λ :

L2(V )→ L2(V ∗) and Λ : V → V ∗. Similarly, we assume B to be derived from B, C from C and R
from R. The first pair of variables (y, λ) ∈ W ([0, T ])2 we consider is the solution of the extremal
equations (2.5). Secondly, we introduce the solution of a steady state optimization problem, namely
(ȳ, λ̄) ∈ V 2 being a minimizer of

min
ȳ,ū

1

2
‖C(ȳ − yd)‖2Y + ‖R(ū− ud)‖2U

s.t. Λȳ −Bū = 0.



18 L. GRÜNE, M. SCHALLER, AND A. SCHIELA

or, equivalently, a solution of the corresponding first order conditions

(
C∗C Λ∗

Λ −BQ−1B∗

)(
ȳ
λ̄

)
=

(
C∗Cyd
Bud

)
,(5.1)

where Q = R∗R.

Lemma 5.1. Let (y, λ) and (ȳ, λ̄) solve (2.5) and (5.1) respectively. Then

(
δy
δλ

)
:=

(
y − ȳ
λ− λ̄

)
solves

(
C∗MyC (D + Λ)∗

(D + Λ) −BQ−1B∗

)
︸ ︷︷ ︸

=M

(
δy
δλ

)
=

(
−〈λ̄, ·〉
〈y0 − ȳ, ·〉

)
.(5.2)

Proof. Using (5.1), integrating both equations over [0, T ] yields that (ȳ, λ̄) satisfies

(
C∗MyC Λ∗

Λ −BQ−1B∗

)(
ȳ
λ̄

)
=

(
C∗MyCyd
Bud

)
.

As ȳ and λ̄ are independent of the time, we obtain Dȳ = D∗λ̄ = 0 and thus

(
C∗MyC (D + Λ)∗

(D + Λ) −BQ−1B∗

)(
ȳ
λ̄

)
=

(
〈λ̄, ·〉
〈ȳ, ·〉

)
+

(
C∗MyCyd
Bud

)
.

Now the result follows by linearity.

In the following, whenever we denote ‖M−1‖, we mean the norm as an operator from (L2(V ∗) ×
L2(Ω))2 →W ([0, T ])2. For the sake of brevity, we will omit the explicit notation.

Theorem 5.2. Assume (δy, δλ) ∈W ([0, T ])2 solves (5.2) . Then, for 0 ≤ µ < 1
‖M−1‖

∥∥∥∥ 1

e−µt + e−µ(T−t) δy

∥∥∥∥
W ([0,T ])

+

∥∥∥∥ 1

e−µt + e−µ(T−t) δλ

∥∥∥∥
W ([0,T ])

≤ ‖M
−1‖

1− β
(‖y0 − ȳ‖L2(Ω) + ‖λ̄‖L2(Ω))∥∥∥∥ 1

e−µt + e−µ(T−t) δu

∥∥∥∥
L2(U)

≤ ‖R−1B∗‖L2(V )→L2(U)
‖M−1‖
1− β

(‖y0 − ȳ‖L2(Ω) + ‖λ̄‖L2(Ω)),

where β := µ‖M−1‖ < 1 and δu = R−∗B∗δλ. If, moreover, (Λ, B) is V -exponentially stabilizable
and (Λ, C) is V -exponentially detectable in the sense of Definition 3.6, then ‖M−1‖ is independent
of T .

Proof. We introduce scaled variables δ̃y := 1
(e−µt+e−µ(T−t))

δy and δ̃λ := 1
(e−µt+e−µ(T−t))

δλ. For
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v ∈W ([0, T ]) and ṽ = (e−µt + e−µ(T−t))v, ṽ0 = (1 + e−µT )v0 we compute

(Dδy)(v, v0) = (D((e−µt + e−µ(T−t))δ̃y))(v, v0)

=

T∫
0

d

dt
((e−µt + e−µ(T−t))δ̃y)v dt+ 〈δy(0), v0〉

= µ

T∫
0

δ̃y(e−µ(T−t) − e−µt)v dt+

T∫
0

d

dt
δ̃yṽ dt+ (1 + e−µT )〈δ̃y(0), v0〉

=

(
(µF +D) δ̃y

)
(ṽ, ṽ0),

where (Fv)w =
T∫
0

(e−µ(T−t)−e−µt)
(e−µt+e−µ(T−t))

v(t)w(t) dt. Similarly,

(D∗δλ)(v) = (Dv)(δλ) =

T∫
0

d

dt
v(δλ) dt+ 〈v(0), δλ(0)〉

= −
T∫

0

d

dt
δλ(v) + 〈v(T ), δλ(T )〉 = −

T∫
0

d

dt
((e−µt + e−µ(T−t))δ̃λ)(v) dt+ 〈v(T ), δλ(T )〉

=

T∫
0

µ

(
(e−µt − e−µ(T−t))δ̃λv − d

dt
δ̃λ((e−µt + e−µ(T−t))(v))

)
dt+ 〈ṽ(T ), δ̃λ(T )〉

= −µ(F δ̃λ)(ṽ)−
T∫

0

d

dt
δ̃λ(ṽ) dt+ 〈ṽ(T ), δ̃λ(T )〉

= −µ(F δ̃λ)(ṽ) +

T∫
0

d

dt
ṽ(δ̃λ) dt+ 〈ṽ(0), δ̃λ(0)〉

=

(
(−µF +D)ṽ

)
(δ̃λ) =

(
(−µF +D)∗δ̃λ

)
(ṽ).

The substitution of variables now yields for the initial resp. terminal data

i1(v0) := 〈δy0, v0〉 = 〈δy0,
1

1 + e−µT
ṽ0〉 =

1

1 + e−µT
〈δy0, ṽ0〉,

i2(vT ) := 〈δλT , vT 〉 = 〈δλT ,
1

e−µT + 1
ṽT 〉 =

1

1 + e−µT
〈δλT , ṽT 〉,
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where ṽT = (e−µT + 1)vT . Using this substitution, we transform the extremal system(
C∗MyC (D + Λ)∗

(D + Λ) −BQ−1B∗

)(
δy
δλ

)
=

(
i1
i2

)

⇐⇒


(
C∗MyC (D + Λ)∗

(D + Λ) −BQ−1B∗

)
− µ

(
0 F
−F 0

)
︸ ︷︷ ︸

=:P


(
δ̃x

δ̃λ

)
=

1

1 + e−µT

(
i1
i2

)
.

Defining z :=

(
δ̃y

δ̃λ

)
, ĩ := 1

1+e−µT

(
i1
i2

)
, we compute

(M − µP )z = ĩ⇐⇒ (I − µM−1P )z = M−1ĩ.

If we now use β = µ‖M−1‖ < 1, we get invertibility of (I − µM−1P ) by [19, Theorem 2.14], as
‖P‖W ([0,T ])2→L2(V ∗)2 ≤ 1 (this will be shown at the end of this proof), and using the Neumann
series representation of (I − µM−1P )−1 yields

‖(I − µM−1P )−1‖W ([0,T ])2→W ([0,T ])2 ≤
∞∑
i=0

‖(µM−1P )i‖W ([0,T ])2→W ([0,T ])2 ≤
∞∑
i=0

βi =
1

1− β
,

z = (I − µM−1P )−1M−1ĩ,

‖z‖X2 ≤ ‖M
−1‖

1− β
‖̃i‖(L2(Ω)∗)2 ≤

‖M−1‖
1− β

‖i‖(L2(Ω)∗)2 .

where ‖̃i‖(L2(Ω)∗)2 =
1

1 + e−µT︸ ︷︷ ︸
<1

‖i‖(L2(Ω)∗)2 ≤ ‖i‖(L2(Ω)∗)2 was used. Writing this in the original

variables yields∥∥∥∥ 1

e−µt + e−µ(T−t) δy

∥∥∥∥
W ([0,T ])

+

∥∥∥∥ 1

e−µt + e−µ(T−t) δλ

∥∥∥∥
W ([0,T ])

≤ ‖M
−1‖

1− β
(‖y0 − ȳ‖L2(Ω) + ‖λ̄‖L2(Ω)).

Eventually, for the control we arrive at∥∥∥∥ 1

e−µt + e−µ(T−t) δu

∥∥∥∥
L2(U)

= ‖e−µtR−∗B∗δp‖L2(U)

≤ ‖R−1B∗‖L2(V )→L2(U)
‖M−1‖
1− β

(‖y0 − ȳ‖L2(Ω) + ‖λ̄‖L2(Ω))

It now remains to show the assumption ‖P‖W ([0,T ])2→L2(V ∗)2 ≤ 1. This follows immediately from

P =

(
0 −F
F 0

)



SENSITIVITY ANALYSIS OF OPTIMAL CONTROL FOR A CLASS OF PARABOLIC PDES 21

and

|(Fv)(w)| = |
T∫

0

(e−µ(T−t) − e−µt)
(e−µt + e−µ(T−t))︸ ︷︷ ︸

|·|<1

v(t)w(t) dt| ≤
T∫

0

v(t)w(t) dt ≤ ‖v‖W ([0,T ])‖w‖V

for v ∈W ([0, T ]) and w ∈ L2(V ).

This result allows us to conclude a turnpike result similar to [25, Theorem 1].

Corollary 5.3. Let the assumptions of Theorem 5.2 hold. Then there exists c > 0 such that
for all t ∈ [0, T ]

‖y(t)− ȳ‖L2(Ω) + ‖λ(t)− λ̄‖L2(Ω) ≤ c(e−µT + e−µ(T−t))
(
‖y0 − ȳ‖L2(Ω) + ‖λ̄‖L2(Ω)

)
If (Λ, B) is V -exponentially stabilizable and (Λ, C) is V -exponentially detectable in the sense of
Definition 3.6, the constants c and µ can be chosen independent of T .

Proof. Analogous to the proof of Corollary 3.2 this follows by W ([0, T ]) ↪→ C(0, T ;L2(Ω)) and
the embedding constant being independent of T .

6. Conclusion and Outlook. In this work, we considered linear quadratic optimization prob-
lems with parabolic PDEs and showed under a particular stabilizability and detectability assump-
tion, that the norm of the extremal equation’s solution operator can be bounded independently of
the end time T . This allowed us to conclude two results. Firstly, we obtained that the influence of
perturbations decays exponentially in time, which is of particular interest in the context of Model
Predictive Control as it allows for efficient grid generation. This was illustrated by a numerical
example. Secondly, the bound on the solution operator’s norm enabled us to conclude a turnpike
result in the W ([0, T ])-norm.

We note the similarity of Corollary 5.3 to the turnpike theorem in [25, Theorem 1], where
the authors proved the same result under classical stabilizability and detectability assumptions,
i.e. the closed-loop semigroups being exponentially stable. These assumptions are weaker than our
assumption of L2(V )-ellipticity of the closed loop operator, as L2(V )-ellipticity implies L2(L2(Ω))-
ellipticity which implies ‖y(t)‖L2(Ω) ≤ e−µt‖y(0)‖L2(Ω) for the solution y, i.e. classical exponential
stability with overshoot constant 1. In the context of parabolic PDEs, however, the L2(V )-ellipticity
enabled us to conclude a turnpike result in the W ([0, T ])-norm in Theorem 5.2, i.e., an integral
turnpike property on the time and space derivatives. Another advantage of using L2(V )-ellipticity
of the closed loop operator is that boundary control and observation can be easily incorporated using
the regularity of the solutions, as y, λ ∈ L2(V ) and boundary control and observation operators are
bounded on this space.

The approach taken in this paper, i.e. the abstract scaling result of the error estimate The-
orem 3.1 or the turnpike result Theorem 5.2 can be generalized to general, hence in particu-
lar hyperbolic, evolution equations on a Hilbert space X. In this context, it has to be shown
that under classical stabilizability assumptions, i.e. that there is a feedback operator such that
the closed loop is exponentially stable, that the operator norm ‖M−1‖(L2(X)×L2(Ω))2→L2(X)2 and
‖M−1‖(L2(X)×L2(Ω))2→C(X)2 can be bounded independently of T . As a consequence, this would
allow for a generalization of the error estimation result to hyperbolic evolution equations. Likewise,
one could deduce turnpike results for general evolution equations with admissible boundary control
or observation operators under stabilizability and detectability conditions, a setting for which, to
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the authors best knowledge, there are no turnpike results for space dimension 2 or 3. For boundary
controlled hyperbolic equations in one space dimension, turnpike results are given in [17, 16]. For
parabolic equations with boundary control or observation, a turnpike result was shown in [25, The-
orem 6]. The restriction of [25, Section 2.4] to parabolic equations in this case of boundary control
or observation is due to the utilization of Algebraic Riccati theory, which is well established for
analytic semigroups if, but not for general semigroups if the control or observation is unbounded.
The abstract scaling approach given in Theorem 5.2 could overcome this difficulty. Details will be
subject to further research.

Acknowledgments. The authors are grateful to Enrique Zuazua, Felix L. Schwenninger and
Hannes Meinlschmidt for valuable discussions.
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