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BEST NONNEGATIVE RANK-ONE APPROXIMATIONS OF TENSORS

SHENGLONG HU, DEFENG SUN, AND KIM-CHUAN TOH

Abstract. In this paper, we study the polynomial optimization problem of multi-forms over the
intersection of the multi-spheres and the nonnegative orthants. This class of problems is NP-hard
in general, and includes the problem of finding the best nonnegative rank-one approximation of a
given tensor. A Positivstellensatz is given for this class of polynomial optimization problems, based
on which a globally convergent hierarchy of doubly nonnegative (DNN) relaxations is proposed. A
(zero-th order) DNN relaxation method is applied to solve these problems, resulting in linear matrix
optimization problems under both the positive semidefinite and nonnegative conic constraints. A
worst case approximation bound is given for this relaxation method. Then, the recent solver
SDPNAL+ is adopted to solve this class of matrix optimization problems. Typically, the DNN
relaxations are tight, and hence the best nonnegative rank-one approximation of a tensor can be
revealed frequently. Extensive numerical experiments show that this approach is quite promising.

1. Introduction

Nonnegative factorizations of data observations are prevalent in data analysis, which have been
popularized to an unprecedented level since the works of Paatero and Tapper [43], and Lee and
Seung [28]. In many applications, data are naturally represented by the third order or higher order
tensors (a.k.a. hypermatrices). For example, a color image is stored digitally as a third order
nonnegative tensor comprised of three nonnegative matrices, representing the red, green and blue
pixels, and therefore a set of such images or a video is actually a fourth order nonnegative tensor.
In the literature, however, these fourth order tensors are typically flattened into matrices before
data analysis is applied [8, 22, 28, 43]. As we can see, the intrinsic structures of an image or a
video are destroyed after the flattening. Therefore, direct treatments of tensors are necessary, and
correspondingly nonnegative factorizations of higher dimensional data are needed. As a result,
tensor counterparts of the nonnegative matrix factorizations have become a new frontier in this
area [1, 11, 24, 29, 42, 53, 54, 61]. As expected, nonnegative tensor factorizations have their own
advantages over the traditional nonnegative matrix factorizations, see for examples [22, 55] and
references therein.

Nonnegative tensor factorizations have found diverse applications, such as latent class models in
statistics, spectroscopy, sparse image coding in computer vision, sound source separation, and pat-
tern recognition, etc., see [8,15,22,54] and references therein. Several methods have been proposed
for computing nonnegative tensor factorizations, see [7, 9, 16, 27, 31, 42, 56, 61, 64] and references
therein. Due to errors in measurements of the data collected or simply because of inattainability,
the problem of approximating a given tensor by a nonnegative tensor factorization occurs more
often in practice than the problem of finding the exact factorization of a given tensor. Existence
and uniqueness of nonnegative tensor factorizations are well studied in [31,51]. For a given tensor,
a classical method to compute a nonnegative tensor factorization/approximation is by multiple best
nonnegative rank-one approximations, proposed by Shashua and Hazan [54]. The principle is alter-
natively splitting/approximating the given tensor by several (nonnegative) ones and approximating
each (nonnegative) tensor by a best nonnegative rank-one tensor. Therefore, in this framework,
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finding the best nonnegative rank-one approximation of a given tensor is of crucial importance
in nonnegative tensor factorizations/approximations. This problem is also the cornerstone of the
heuristic methods based on greedy rank-one downdating for nonnegative factorizations [2, 4, 5, 19].

This article will focus on the problem of computing the best nonnegative rank-one approxima-
tion of a given tensor from the perspective of mathematical optimization. The problem will be
formulated as a polynomial minimization problem over the intersection of the multi-sphere and the
nonnegative orthant. With this formulation, the study can also be applied to the problem of test-
ing the copositivity for a homogeneous polynomial, which is important in the completely positive
programming [45].

A negative aspect from the computational complexity point of view is that the problem under
consideration is NP-hard in general [14,21,34,60]. Thus, no algorithm with polynomial complexity
exists unless P=NP. Consequently, in practical applications, approximation or relaxation methods
are employed to solve this problem. In this article, instead of adopting the traditional sums of
squares (SOS) relaxation methods for a polynomial optimization problem (cf. [26, 35–37, 44]), we
will introduction a doubly nonnegative (DNN) relaxation method to solve this problem. DNN
relaxation methods will provide tighter approximation results, since the cone of SOS polynomials
in strictly contained in the cone of polynomials which can be written as sums of SOS polynomials
and polynomials with nonnegative coefficients. While the standard SOS relaxations of a polynomial
optimization problem will give rise to standard SDP problems with variables in the SDP cones,
the DNN relaxation method will give rise to DNNSDP problems whose variables are constrained
to be in the SDP cones and the cones of nonnegative matrices, in addition to linear equality
constraints. It has been well recognized that solving the DNNSDP problems by primal-dual interior-
point methods as implemented in popular solvers such as Mosek, SDPT3 [59], or SeDuMi [57] is
computationally much more challenging than solving the standard SDP counterparts. Fortunately,
with the recent advances on augmented Lagrangian based methods for solving SDP problems with
bound constraints [58, 62], we have reached a stage where solving the DNNSDP problems are
computationally not much more expensive than the standard SDP counterparts. In this paper, we
will employ the Newton-CG augmented Lagrangian method implemented in the solver SDPNAL+
[62] to solve the DNNSDP problems arising from best nonnegative rank-one tensor approximation
problems. Extensive numerical computations will show that our new approach is quite promising.

The remaining parts of this article are organized as follows. Preliminaries will be given in Sec-
tion 2, in which nonnegative tensor approximations and in particular the best nonnegative rank-one
approximation problems will be presented in Section 2.1, and the problem of testing the coposi-
tivity of a tensor will be given in Section 2.2. Both the problems in Section 2 will be formulated
as minimizing a multi-form over the intersection of the multi-sphere and the nonnegative orthants
in Section 3. In ensuing section, basic properties of this polynomial optimization problem will be
investigated, including a Positivstellensatz for this problem (cf. Section 3.3), the DNN relaxation
(cf. Section 3.4), a worst case approximation bound (cf. Section 3.6), and the extraction of a non-
negative rank-one tensor from a solution of the DNN problem (cf. Sections 3.7 and 3.8). Numerical
computations will be presented in Section 4, in which extensive examples on best nonnegative
rank-one approximations and examples on testing the copositivity of a tensor will be given. Some
conclusions will be given in the last section.

2. Preliminaries

In this article, tensors will be considered in the most general setting. Given positive integers
n1, . . . , nr, a tensor A ∈ R

n1 ⊗ · · · ⊗ R
nr is a collection of n1 · · ·nr scalars ai1...ir , termed the

entries of A, for all ij ∈ {1, . . . , nj} and j ∈ {1, . . . , r}. If n1 = · · · = nr = n, Rn1 ⊗ · · · ⊗ R
nr is

abbreviated as ⊗r
R
n. Given positive integers p, α1, . . . , αp, n1, . . . , np, we denote by Sym(⊗αiR

ni)
the symmetric subspace of the tensor space ⊗αiR

ni , consisting of real symmetric tensors with order
αi and dimension ni, and Sym(⊗α1R

n1) ⊗ · · · ⊗ Sym(⊗αpR
np) the tensor space with p symmetric
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factors. Note that when p = 1, the tensor space is the usual space of symmetric tensors; and
when α1 = · · · = αp = 1, the tensor space is the usual space of non-symmetric tensors. A tensor
A ∈ Sym(⊗α1R

n1) ⊗ · · · ⊗ Sym(⊗αpR
np) is usually referred to as a partially symmetric tensor,

which appears in many applications. A symmetric rank-one tensor in Sym(⊗αiR
ni) is an element

(
x(i)

)⊗αi for some vector x(i) ∈ R
ni , where

(
x(i)

)⊗αi is a short hand for

x(i) ⊗ · · · ⊗ x(i)
︸ ︷︷ ︸

αi copies

.

Therefore, a rank-one tensor in Sym(⊗α1R
n1)⊗· · ·⊗Sym(⊗αpR

np) is of the form xα :=
(
x(1)

)⊗α1⊗

· · · ⊗
(
x(p)

)⊗αp for some vectors x(i) ∈ R
ni , i = 1, . . . , p.

As an Euclidean space, the inner product 〈A,B〉 of two tensors A,B ∈ R
n1 ⊗ · · · ⊗R

nr is defined
as

〈A,B〉 :=

n1∑

i1=1

· · ·

nr∑

ir=1

ai1...irbi1...ir .

The Hilbert-Schmidt norm ‖A‖ is then defined as

‖A‖ :=
√

〈A,A〉.

We refer the readers to [30] and references therein for basic notions on tensors.

2.1. Nonnegative tensor approximation. In the context of computer vision, chemometrics,
statistics, and spectral intensity, the multi-way (tensor) data often cannot take negative values.
Therefore, one expects to approximate as much as possible the observed data with a summation of
rank-one nonnegative tensors

A ≈

r∑

i=1

λix
⊗α
i λi ≥ 0, xi ≥ 0 (1)

for some nonnegative integer r, with

xi := (x
(1)
i , . . . ,x

(p)
i ) ∈ R

n1 × · · · × R
np ,

and

x⊗α
i :=

(
x
(1)
i

)⊗α1 ⊗ · · · ⊗
(
x
(p)
i

)⊗αp .

For a given continuous distance measure φ over the tensor space, we can formulate problem (1) as

min

{

φ(A,

r∑

i=1

λix
⊗α
i ) : λi ≥ 0, xi ≥ 0

}

. (2)

In most cases, φ is chosen as the Hilbert-Schmidt norm distance, i.e., φ(A,B) := ‖A−B‖. Problem
(2) is well-defined for each r ∈ N, while NP-hard in most cases. Moreover, numerical difficulty arises
for problem (1) when we do not know prior r, and even if we are luck enough to know the exact r, it
is still very difficulty to solve (2). Thus, one procedure to solve (1) is by multiple best nonnegative
rank-one approximations and another is by successive best nonnegative rank-one approximations.

Therefore, we focus on the problem (2) with fixed r = 1 in this article, i.e., the best nonnegative
rank-one approximation of the tensor A. We will see that this problem is already hard, both
theoretically and numerically. The computational complexity is NP-hard in general.

With the common choice of φ as the Hilbert-Schmidt norm distance, problem (2) becomes

minλ,x ‖A − λx⊗α‖2

s.t. λ ≥ 0, 〈x(i),x(i)〉 = 1, x(i) ≥ 0, for all i = 1, . . . , p,
(3)
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where x := (x(1), . . . ,x(p)). It is easy to see that (3) always has an optimal solution (λ,x) with

λ :=

{

〈A,x⊗α〉, whenever 〈A,x⊗α〉 > 0,

0, otherwise,
(4)

and in both cases

‖A − λx⊗α‖2 = ‖A‖2 − λ2.

Therefore, (3) is equivalent to

min 〈−A,x⊗α〉

s.t. 〈x(i),x(i)〉 = 1, x(i) ≥ 0, for all i = 1, . . . , p
(5)

in the sense that

(1) if the optimal value of (5) is nonnegative, then the zero tensor is the best nonnegative
rank-one approximation of A,

(2) if the optimal value λ of (5) is negative with optimal solution x∗, then −λx⊗α
∗ is the best

nonnegative rank-one approximation of A.

2.2. Copositivitiy of tensors. A tensor A ∈ Sym(⊗α1Rn1)⊗ · · · ⊗ Sym(⊗αpRnp) is called copos-
itive, if

〈A,x⊗α〉 ≥ 0 for all x ∈ R
n1
+ × · · · × R

np

+ .

The copositivity of a tensor is a generalized notion of both the nonnegativity of a matrix and the
copositivity of a symmetric matrix. When p = 1 and α1 = 2, it reduces to the copositivity of
a symmetric matrix; and when α1 = · · · = αp = 1, it reduces to the nonnegativity of a tensor.
The problem of deciding the copositivity of a tensor is therefore co-NP-hard [14,34]. When p = 1,
discussions on copositive tensors can be found in [40,50] and references therein.

Testing the copositivity of a tensor can also be formulated as a polynomial optimization problem
as in (5). Indeed, a tensor A is copositive if and only if the optimal value of

min 〈A,x⊗α〉

s.t. 〈x(i),x(i)〉 = 1, x(i) ≥ 0, for all i = 1, . . . , p
(6)

is nonnegative.

3. Homogeneous Polynomials

Since both the problem of finding the best nonnegative rank-one approximation of a tensor and
the copositivity certification of a tensor can be equivalently reformulated as (5) (or (6)), we focus
on this polynomial optimization problem in this section.

Let x := (x(1), . . . ,x(p)) ∈ R
n1 × · · · × R

np . A polynomial f(x) is multi-homogeneous or multi-

form, if each monomial of f has the same degree with respect to each group variables x(i) for all
i ∈ {1, . . . , p}. We consider the following optimization problem

fmin := min f(x(1), . . . ,x(p))

s.t. ‖x(i)‖ = 1, x(i) ≥ 0, x(i) ∈ R
ni , i = 1, . . . , p,

(7)

where f(x(1), . . . ,x(p)) ∈ R[x] is a multi-form of even degree di = 2τi for some τi ≥ 0 with respect to
each x(i) for all i ∈ {1, . . . , p}. Problem (7) covers all instances of minimizing a multi-form over the
intersection of the multi-sphere and the nonnegative orthants, since the cases with odd di’s can be
equivalently formulated into (7) as in Section 3.1. Polynomial optimization over the multi-sphere
is one research direction in recent years, see [32,35,39,41] and references therein. Moreover, in [32]
a biquadratic optimization over the joint sphere (multi-sphere with p = 2) with one group variables
being nonnegative is discussed as well.
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For easy references, in the following, we will denote the n− 1-dimensional sphere in R
n as Sn−1,

i.e., Sn−1 := {x ∈ R
n : xTx = 1}. The nonnegative part of the n− 1-dimensional sphere is denoted

by S
n−1
+ , i.e., S

n−1
+ := {x ∈ R

n
+ : xTx = 1}. Thus, the feasible set of (7) can be called as the

nonnegative multi-sphere.

3.1. Odd order case. If f(x(1), . . . ,x(p)) is of odd degree d > 0 for x(1) (without loss of generality),
then we introduce a variable t and let

f̃(x̃(1),x(2), . . . ,x(p)) := tf(x(1), . . . ,x(p))

with x̃(1) = ((x(1))T, t)T. It can be shown that

fmin =

√

(d+ 1)d+1

dd
f̃min,

since

max{tαd : α2 + t2 = 1} =

√

dd

(d+ 1)d+1

with a positive optimal t.
If the degree of f for x(1) is one, we can construct

g(x(2), . . . ,x(p)) :=

n1∑

j=1

(
f(e

(1)
j ,x(2), . . . ,x(p))

)2
,

where e
(1)
j ∈ Rn1 is the jth standard basis vector. In some cases, (7) can be solved via minimizing

g over the nonnegative multi-sphere, i.e.,

min{g(x(2), . . . ,x(p)) : ‖x(i)‖ = 1, x(i) ≥ 0, x(i) ∈ R
ni , 2 = 1, . . . , p}. (8)

Actually, if (x(2), . . . ,x(p)) is an optimal solution of (8) with positive optimal value and f(e
(1)
j ,x(2), . . . ,x(p))’s

are all nonpositive, then we can construct a solution for (7) from a solution for (8). Indeed, one
optimal solution of (7) is given by

(x(1) := −
u−

‖u‖
,x(2), . . . ,x(p))

with

u := (f(e
(1)
1 ,x(2), . . . ,x(p)), . . . , f(e(1)n1

,x(2), . . . ,x(p)))T

and (u−)i := min{0, ui}. This is based on the fact that

min{xTy : ‖y‖ = 1, y ≥ 0} = −‖x−‖

with the optimizer y∗ := − x−

‖x−‖ when x− 6= 0. Note that the number of variables is reduced from

(7) to (8).
Before proceeding to the computation of (7), we state the computational complexity of it.

3.2. NP-hardness.

Proposition 3.1. Problem (7) is NP-hard in general.

Proof. We will construct a subclass of (7), which is NP-hard. Let G = (V,E) be a simple graph
with the set of vertices being V = {1, . . . , n} and the set of edges being E. Let ∆n ⊂ R

n
+ be the

standard simplex. Then

1−
1

α(G)
= 2 max

x∈∆n

∑

(i,j)∈E

xixj
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by the famous Motzkin-Straus theorem [33], where α(G) is the stability number of G. It is well
known that computing α(G) is an NP-hard problem [18,34]. On the other hand, we have that

max
x∈∆n

∑

(i,j)∈E

xixj = max
‖y‖=1

∑

(i,j)∈E

y2i y
2
j = max

‖y‖=1, y≥0

∑

(i,j)∈E

y2i y
2
j ,

where the second equality follows from the fact that in the objective function only squared y2i ’s
are involved. Immediately, the last optimization problem is of the form given in (7). The required
result then follows. �

A standard SOS relaxation can be applied to the polynomial optimization problem (7), see [26].
However, in order to reduce the size of the resulting SDP, we would like to combine the spherical
constraints as follows.

The homogeneity property implies that (7) is equivalent to

fmin := min f(x(1), . . . ,x(p))

s.t.
∏p

i=1 ‖x
(i)‖di = 1,

x(i) ≥ 0, x(i) ∈ R
ni , i = 1, . . . , p

(9)

in the sense that they have the same optimal objective value and we can get an optimal solution
for one from the other.

3.3. A Positivstellensatz. Testing the nonnegativity of a polynomial over a (compact) semial-
gebraic set is a very difficult problem [6]. Thus, certifications of nonnegativity of a polynomial
are foundations for polynomial optimization [26]. In the literature, such certifications are called
Positivstellensatz. Of crucial importance are Putinar’s Positivstellensatz [48], Pólya’s theorem [46]
and Reznick’s theorem [52].

While Putinar’s result is more general, and the theorems of Pólya and Reznick are applicable
only to homogeneous polynomials over the simplices and spheres respectively, the resulting SDP
problems obtained from the latter two theorems have sizes that are about half of those obtained by
using Putinar’s Positivstellensatz directly. Since the cost of solving SDP problems grow rapidly with
the sizes of problems, Pólya’s theorem and Reznick’s theorem are more important for homogeneous
problems.

In this section, we will derive a Positivstellensatz for the optimization problem (9) by taking into
account both the homogeneity structures of the objective function and constraints, as well as the
nonnegativity constraints.

Let g(x) :=
∏p

i=1 ‖x
(i)‖di and F be the feasible set of problem (9). Suppose that γ := fmin is

the optimal value of (9). It follows that

f(x)− γg(x) ≥ 0 for all x ∈ F .

We then have
f(x)− γg(x) ≥ 0 for all x ∈ S

n1−1
+ × · · · × S

np−1
+ ,

which is equivalent to

f(x)− γg(x) ≥ 0 for all x ∈ ∆n1 × · · · ×∆np ,

where ∆ni is the standard simplex in R
ni , i.e., ∆ni := {x ∈ R

ni
+ : eTx = 1}. In the following, we

will discuss the positivity of a multi-form over the joint simplex. The next proposition is the well
known Pólya theorem on positive polynomials over the simplex [46].

Proposition 3.2. Let h be a homogeneous polynomial and positive on the simplex ∆n. Then, there
is a positive integer N such that for all r ≥ N , the polynomial

(eTx)rh(x)

has positive coefficients.
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Next, we will generalize Proposition 3.2 to multi-forms over the joint simplex. It will serve as a
theoretical foundation for the DNN relaxation methods to be introduced later for (9). The proof
is in the spirit of Pólya [46], see also [20].

Proposition 3.3. Let f be a multi-form of degree di with respect to each x(i) for i = 1, . . . , p. If
f is positive on ∆n1 × · · · ×∆np, then

[ p
∏

i=1

(eTx(i))ri
]

f(x)

is a polynomial with positive coefficients for all sufficiently large ri with i ∈ {1, . . . , p}.

Proof. For any γ = (γ(1), . . . , γ(p)) ∈ N
n1 × · · · × N

np, let

γ(i)! :=
|γ(i)|!

∏ni
j=1 γ

(i)
j !

for all i ∈ {1, . . . , p}

and
γ! := γ(1)! . . . γ(p)!.

If γ ≤ α (i.e., γ
(i)
j ≤ α

(i)
j for all j ∈ {1, . . . , ni} and i ∈ {1, . . . , p}), then

(
α(i)

γ(i)

)

:=

ni∏

j=1

(
α
(i)
j

γ
(i)
j

)

for all j ∈ {1, . . . , p}.

Suppose that the polynomial f has the expansion

f(x) =
∑

α∈Λ(d1,...,dp)

α!aα

p
∏

i=1

(
x(i)

)α(i)

,

where
Λ(d1, . . . , dp) := {α ∈ N

n1 × · · · × N
np : |α(i)| = di for all i = 1, . . . , p}.

Let

φ(x, t) :=

p
∏

i=1

tdii
∑

α∈Λ(d1,...,dp)

aα

p
∏

i=1

(
x(i)t−1

i

α(i)

)

,

where x ∈ N
n1 × · · · × N

np and t ∈ N
p
++. Note that for all i ∈ {1, . . . , p}, we have

tdii

(
x(i)t−1

i

α(i)

)

= tdii

(
x
(i)
1 t−1

i

α
(i)
1

)

. . .

(
x
(i)
ni t

−1
i

α
(i)
ni

)

=
x
(i)
1 (x

(i)
1 − ti)(x

(i)
1 − 2ti) . . . (x

(i)
1 − (α

(i)
1 − 1)ti)

α
(i)
1 !

. . .
x
(i)
ni (x

(i)
ni − ti)(x

(i)
ni − 2ti) . . . (x

(i)
ni − (α

(i)
ni − 1)ti)

α
(i)
ni !

.

Therefore, we have that

φ(x, t) →

p
∏

i=1

1

di!
f(x) as t → 0. (10)

By the multinomial expansion, we have
p
∏

i=1

(eTx(i))ri =

p
∏

i=1

( ∑

|γ(i)|=ri

γ(i)!(x(i))γ
(i)
)

. (11)
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Therefore, multiplying (11) to the expansion of f , we have
[ p
∏

i=1

(eTx(i))ri
]

f(x) =

p
∏

i=1

( ∑

|γ(i)|=ri

γ(i)!(x(i))γ
(i)
)( ∑

α∈Λ(d1,...,dp)

α!aα

p
∏

i=1

(
x(i)

)α(i)
)

=
∑

α∈Λ(d1,...,dp)

∑

|γ(1)|=r1

· · ·
∑

|γ(p)|=rp

α!aα

( p
∏

i=1

γ(i)!
) p
∏

i=1

(
x(i)

)α(i)+γ(i)

=

∏p
i=1 di!

∏p
i=1 ri!∏p

i=1 si!

∑

κ∈Λ(s1,...,sp)

p
∏

i=1

(
x(i)

)κ(i)




∑

α∈Λ(d1,...,dp)

( p
∏

i=1

κ(i)!
)

aα

p
∏

i=1

(
κ(i)

α(i)

)




=

∏p
i=1 di!

∏p
i=1 ri!∏p

i=1 si!

∑

κ∈Λ(s1,...,sp)

( p
∏

i=1

κ(i)!
)(

x(i)
)κ(i)




∑

α∈Λ(d1,...,dp)

aα

p
∏

i=1

(
κ(i)

α(i)

)




=

∏p
i=1 di!

∏p
i=1 ri!∏p

i=1 si!

p
∏

i=1

sdii
∑

κ∈Λ(s1,...,sp)

( p
∏

i=1

κ(i)!
)(

x(i)
)κ(i)

φ(κ/s, 1/s),

where the third equality follows from the fact that for all i ∈ {1, . . . , p}

|α(i)|!

α
(i)
1 ! . . . α

(i)
ni !

|γ(i)|!

γ
(i)
1 ! . . . γ

(i)
ni !

=
di!ri!

(α
(i)
1 + γ

(i)
1 )! . . . (α

(i)
ni + γ

(i)
ni )!

ni∏

j=1

(
α
(i)
j + γ

(i)
j

α
(i)
j

)

=
di!ri!

κ
(i)
1 ! . . . κ

(i)
ni !

ni∏

j=1

(
κ
(i)
j

α
(i)
j

)

=
di!ri!

|κ(i)|!

|κ(i)|!

κ
(i)
1 ! . . . κ

(i)
ni !

ni∏

j=1

(
κ
(i)
j

α
(i)
j

)

=
di!ri!

si!
κ(i)!

(
κ(i)

α(i)

)

.

In the above,

κ/s := (κ(1)/s1, . . . , κ
(p)/sp)

and

si := di + ri for all i ∈ {1, . . . , p}.

Since f is positive over the joint simplex ∆n1 × · · · × ∆np which is compact, we have that there
exists µ > 0 such that

f(x) ≥ µ > 0 for all x ∈ ∆n1 × · · · ×∆np .

Obviously, κ/s ∈ ∆n1 × · · · ×∆np . Thus for sufficiently large s (of course component-wisely), by
using (10), we have

φ(κ/s, 1/s) ≥
µ

2
> 0.

Consequently, the result follows. �

The complexity of this Positivstellensatz can be investigated, as in [38,47]. But we will leave it
for the future research since this article is focused on the zero-th order relaxation.

3.4. DNN relaxation. In this section, we will introduce a doubly nonngeative (DNN) relaxation
method for solving problem (9).

Let z = (z1, . . . , zn)
T, and

z[s] :=
(
zs1, z

s−1
1 z2, z

s−1
1 z3, . . . , z

s−2
1 z22 , z

s−2
1 z2z3, . . . , z

s
2, . . . , z

s
n

)
T
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be the monomial basis of degree s in n variables. The order is the lexicographic order and z1 ≻
z2 ≻ · · · ≻ zn. Note that the length of z[s] is

ν(s, n) :=

(
n+ s− 1

s

)

.

Let τ = (τ1, . . . , τp) ∈ Z
p
+, x ∈ R

n1 × · · · × R
np , and

x[τ ] :=
(
x(1)

)[τ1] ⊗ · · · ⊗
(
x(p)

)[τp].

The monomials are ordered in the lexicographic order with x(1) ≻ · · · ≻ x(p) for the groups of
variables. Let

ν(τ, n1, . . . , np) :=

p
∏

j=1

ν(τj , nj),

and Aα ∈ R
ν(τ,n1,...,np)×ν(τ,n1,...,np) be the coefficient matrix of x[τ ]

(
x[τ ]

)
T
in the standard basis x[2τ ],

i.e.,

x[τ ]
(
x[τ ]

)
T
=

∑

α∈N
n1
2τ1

×···×N
np
2τp

Aαx
α, (12)

where N
n
m := {γ ∈ N

n : γ1 + · · · + γn = m}.
Before stating the DNN relaxation problem, we first give a simple observation on the nonnega-

tivity of moment sequences.

Proposition 3.4 (Nonnegativity Equivalence). Let all notation be as above. Then, the coefficient
matrices in the set {Aα} are nonnegative and orthogonal to each other, and thus

y ∈ R
ν(d,n1,...,np)
+ if and only if M(y) :=

∑

α∈N
n1
d1

×···×N
np
dp

Aαyα ≥ 0. (13)

Proof. According to the definition, each Aα is a nonnegative matrix. Therefore, the necessity is
obvious. The sufficiency follows from the fact that

〈Aα, Aγ〉 = 0

for all α 6= γ, and
∑

α∈N
n1
d1

×···×N
np
dp

Aα = E,

where E is the matrix of all ones. �

Denote d := 2τ = (2τ1, . . . , 2τp). Let f ∈ R
ν(d,n1,...,np) be the coefficient vector of the polynomial

f(x(1), . . . ,x(p)) in the standard basis x[d], and let g ∈ R
ν(d,n1,...,np) be that for the polynomial

g(x) :=
∏p

j=1

[(
x(j)

)
T
x(j)

]τj .

The basic idea of the SOS relaxation in [26] is by relaxing the rank characterization of a moment
vector y ∈ Rν(d,n1,...,np). Without the nonnegativity constraint, it is classically relaxed asM(y) � 0,
i.e., the positive semidefiniteness of the moment matrix, see [26, 35, 41]. It can be shown that the
dual problem under this method is an SDP problem obtained by representing a polynomial as a sum
of squares (SOS). Therefore, this relaxation method is usually referred to as the SOS relaxation.
With Proposition 3.4, a moment vector generated by a nonnegative vector is then naturally relaxed
as M(y) � 0 and M(y) ≥ 0, i.e., the moment matrix is both positive semidefinite and component-
wisely nonnegative. A matrix that is both positive semidefinite and component-wisely nonnegative
is said to be doubly nonnegative.
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Naturally, a standard doubly nonnegative (DNN) relaxation of problem (9) is

fdnn := min 〈f ,y〉

s.t. M(y) � 0,

M(y) ≥ 0,

〈g,y〉 = 1, y ∈ R
ν(d,n1,...,np),

(14)

and the dual of which is
max γ

s.t. f − γg ∈ Σ+
d,n1,...,np

,
(15)

where

Σ+
d,n1,...,np

:=
{
h : h(x) ∈ R[x]d, h(x) =

(
x[τ ]

)
T
(S + T )(x[τ ]) for some S � 0 and T ≥ 0

}
.

Here R[x]d ⊂ R[x] is the set of multi-forms being homogeneous of degree di with respect to x(i) for
all i ∈ {1, . . . , p}. Note that the cone of sums of squares

Σd,n1,...,np =
{
h : h(x) ∈ R[x]d, h(x) =

(
x[τ ]

)
T
S(x[τ ]) for some S � 0

}

is strictly contained in Σ+
d,n1,...,np

. If there is no confusion, we sometimes will write h(x) ∈ Σ+
d,n1,...,np

for a multi-form h(x), meaning its coefficient vector h ∈ Σ+
d,n1,...,np

.

The above DNN relaxation, together with Proposition 3.3, motivates a hierarchy of DNN relax-
ations for the optimization problem (9).

Proposition 3.5. Let η ∈ N
p and γη be the optimal value of the following problem

γη := max

{

γ :

p
∏

i=1

(eTx(i))2ηi(f(x)− γg(x)) ∈ Σ+
d+2η,n1,...,np

}

. (16)

Then
fdnn ≤ γη ≤ fmin, and γη ≤ γη whenever η ≤ η, (17)

and
γη → fmin as min{ηi : i = 1, . . . , p} → ∞.

Proof. The relations in (17) follows directly from the fact that each eTx(i) is a polynomial with
positive coefficients.

Given an arbitrary ǫ > 0, we know that the multi-form f(x)− (fmin − ǫ)g(x) is positive on the
nonnegative multi-sphere. Since f(x)− (fmin− ǫ)g(x) is a multi-form, it is still positive on the joint
simplex. Thus, it follows from Proposition 3.3 that there are positive integers ri’s such that

p
∏

i=1

(eTx(i))2ηi(f(x)− (fmin − ǫ)g(x)) ∈ Σ+
d+2η,n1,...,np

for all η ≥ r. Therefore, for all η ≥ r,

fmin − ǫ ≤ γη ≤ fmin.

The conclusion thus follows. �

Proposition 3.5 gives the global convergence of the hierarchy of DNN relaxations (cf. (16)) for
the problem (9), parallel to that of SOS relaxations (cf. [26, Theorem 3.4]). Problem (15) is the
zero-th order DNN relaxation, i.e., η = 0 in (16).

In the following, some properties on the two matrix optimization problems (14) and (15) will be
investigated.

Lemma 3.6. There exists a y ∈ R
ν(d,n1,...,np) such that M(y) ≻ 0 and M(y) > 0, i.e., the linear

conic problem (14) is strictly feasible.
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Proof. Let λ be the Lebesgue measure on S
n1−1 × · · · × S

np−1. Let µ be the normalized standard
measure over the nonnegative multi-sphere S := (Rn1

+ ∩ S
n1−1) × · · · × (R

np

+ ∩ S
np−1), also known

as the uniform probability measure on S
n1−1
+ × · · · × S

np−1
+ , defined as

µ(A) :=
1

λ(S)
λ(A ∩ S) for any Borel set A.

Define

yα :=

∫

xα dµ for all α ∈ N
n1
d1

× · · · × N
np

dp

to be the truncated moment sequence of µ. It is obvious that y > 0, and

〈g,y〉 =

∫

g(x) d µ = 1,

since g(x) ≡ 1 over the support S of µ.
For any f(x) ∈ R[x]τ , we have

fTM(y)f =

∫

f(x)2 dµ.

Since the support of µ is the nonnegative orthant part of the multi-sphere, if fTM(y)f = 0, we
then must have that

f(x) = 0 for all x ∈ S := (Rn1
+ ∩ S

n1−1)× · · · × (R
np

+ ∩ S
np−1).

Since f is multi-homogeneous, we immediately have that

f(x) = 0 for all x ∈ R
n1
+ × · · · × R

np

+ .

Note that Rn1
+ × · · · × R

np

+ is a set with the Zariski closure being the whole space R
n1 × · · · × R

np .
We conclude that f ≡ 0. Thus, the matrix M(y) is positive definite. �

Lemma 3.7. There exists a scalar γ, a matrix S ≻ 0, and a matrix T > 0 such that f(x)−γg(x) =
(
x[τ ]

)
T
(S + T )(x[τ ]), i.e., the linear conic problem (15) is strictly feasible.

Proof. Note that there exists a nonnegative diagonal matrix D such that

g(x) =
(
x[τ ]

)T
D(x[τ ])

and the minimum diagonal element being one. Thus, D ≻ 0. The result follows immediately if a
sufficiently small γ < 0 is chosen. �

Proposition 3.8. Both (14) and (15) are solvable, and there is no duality gap.

Proof. Both (14) and (15) have strictly feasible solutions by Lemmas 3.6 and 3.7 respectively.
The conclusion then follows from standard duality theory for linear conic optimization problems
(cf. [3]). �

Proposition 3.9 (Exact Relaxation). Let di = 2τi for all i = 1, . . . , p. If (14) has an optimal
solution y∗ such that

rank(M(y∗)) = 1, (18)

then the relaxation is tight, i.e., fmin = fdnn, and an optimal solution for (7) can be extracted from
y∗.

Proof. It follows from [10,44] that y∗ is a monomial vector in this situation. Let

M(y∗) = x
[τ ]
∗

(
x
[τ ]
∗

)T

with x∗ = (x
(1)
∗ , . . . ,x

(p)
∗ ). Then, we have from M(y∗) ≥ 0 that

x
(i)
∗ ≥ 0 or x

(i)
∗ ≤ 0
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for each i = 1, . . . , p. Since each di is even, the monomial vector z∗ with

M(z∗) = w
[τ ]
∗

(
w

[τ ]
∗

)
T
and w∗ = (|x

(1)
∗ |, . . . , |x

(p)
∗ |)

satisfies that

y∗ = z∗.

Therefore, the results follow. �

We will see from later numerical experiments that (18) is a typical property, i.e., it holds with
high probability if we randomly generate f from a continuous probability distribution.

3.5. DNN reformulation. In this section, we formulate (14) as a linear optimization problem
over the cone of doubly nonnegative matrices more explicitly. We shall replace the variable vector
y by exploiting the hidden constraints on the matrix M(y). We have already show that the
ν(d, n1, . . . , np) matrices (cf. (12))

Aα : α ∈ N
n1
2τ1

× · · · × N
np

2τp

are orthogonal to each other. Let
{
Bi : 1 ≤ i ≤ µ(d, n1, . . . , np) := ν(τ, n1, . . . , np)(ν(τ, n1, . . . , np) + 1)/2 − ν(d, n1, . . . , np)

}

be the set of matrices that are orthogonal to each other such that
{
Aα : α ∈ N

n1
2τ1

× · · · × N
np

2τp

}
∪
{
Bi : i = 1, . . . , µ(d, n1, . . . , np)

}

forms an orthogonal basis of the space of ν(τ, n1, . . . , np)×ν(τ, n1, . . . , np) real symmetric matrices.
Let

w ∈ R
ν(d,n1,...,np) with wα = 〈Aα, Aα〉 for all α.

Then the problem (14) can be equivalently reformulated as

fdnn := min
〈∑

α∈N
n1
2τ1

×···×N
np
2τp

fα
wα

Aα,X
〉

s.t. 〈Bi,X〉 = 0, i = 1, . . . , µ(d, n1, . . . , np),
〈∑

α∈N
n1
2τ1

×···×N
np
2τp

gα
wα

Aα,X
〉
= 1,

X � 0, X ≥ 0.

(19)

The optimization problem (19) is classified as a doubly nonnegative (DNN) problem, since it requires
the matrix variable X to be both positive semidefinite and component-wisely nonnegative. As a
linear conic problem, it can be reformulated as a standard semidefinite programming (SDP) problem
introducing a new variable Y and add the constraints that X − Y = 0 so that the original doubly
nonnegative conic constraint can be replaced by X � 0 and Y ≥ 0. However, this reformulation
introduces too many new equality constraints which not only make the resulting standard SDP
problem computationally much more expensive to solve but we are also likely to encounter numerical
difficulties when solving the standard SDP reformulation since it is likely to be constraint degenerate
(cf. [63]).

The next table gives some information on the sizes of the DNN relaxation problem (19) for
different sizes d and n1, . . . , np. When di is odd, we use the technique in Section 3.1 to transform
it into the standard formulation involving only even orders. In this table, # eq. means the number
of equality constraints, and dim means the dimension of the matrix variable. Except the first
case of a quartic polynomial in 100 variables, all the other cases are almost hopeless to solve at
present [62]. On the other hand, all the cases are tensors with small to moderate dimensions,
showing the difficulty of the problem (7) from another perspective.
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(d, n1, . . . , np) : (# eq.; dim) (d, n1, . . . , np) : (# eq.; dim)
(4, 100) : (8,332,501; 5,050) (4,150) : (42,185,626; 11,325)

((2,2), 100,100) : ( 24,502,501; 10,000) ((2,3),50,20) : (53,158,876; 11,550)
((2,2,2), 20,20,20) : ( 22,743,001; 8,000) ((2,2,3),15,10,10) : (42,403,351; 9,900)

((2,2,2,2), 10,10,10,10) : (40,854,376; 10,000) ((2,2,2,3),6,6,6,8) : ( 42,659,866; 9,720)
Table 1. (d, n1, . . . , np) : (number of equations; dimension of the matrix space) of
(19) for several d’s and (n1, . . . , np)’s

3.6. Worst case approximation bound. In this section, we present a worst case approximation
bound for fdnn.

Given a positive integer n, define the matrix Θn by

Θn :=

∫

S
n−1
+

x[n]
(
x[n]

)T
dµ(x),

where µ(x) is the uniform probability measure on S
n−1
+ . It is easy to see that Θn is positive definite,

since the set S
n−1
+ is of dimension n − 1 and the monomial vector x[n] consists of homogeneous

monomials. Let

δn1,...,np :=

p
∏

i=1

√

λmin(Θni),

where λmin(Θni) is the smallest eigenvalue of the matrix Θni . Since each Θni is positive definite,
we have that δn1,...,np > 0.

Since the set S
n−1
+ is involved in this article instead of Sn−1, λmin(Θni) is different from those

given in [35, Table 1]. For example,

Θ2 =
1

8π





3π 4 π
4 2π 4
π 4 3π



 .

Consequently, δ2 =
√

λmin(Θ2) = 0.4849, which is different from 0.5 in [35] with respect to S
n−1.

Let fmax and fmin be the maximum and minimum values of the objective function f over the
feasible set of problem (7). We then have the next proposition, whose proof is almost the same as
that in [35, Theorem 3.4].

Proposition 3.10. Suppose that ni ≥ di for all i ∈ {1, . . . , p} and all notation are as above. Then
we have that

1 ≤
fmax − fdnn
fmax − fmin

≤
1

δd1,...,dp

√
(
n1

d1

)

. . .

(
np

dp

)

. (20)

With δ2 computed as above, we have that for a biquadratic form over the intersection of the
multi-sphere and the nonnegative orthant

1 ≤
fmax − fdnn
fmax − fmin

≤ 4.2535

√
(
n1

2

)(
n2

2

)

.

The upper bound is slightly different from that with respect to the multi-sphere, see [35, Corol-
lary 3.5].

If the polynomial is sparse, i.e., with fewer terms in its polynomial expansion, then an improved
worst case approximation bound in terms of the number of monomials Ω(f) can be derived as
in [35, Section 4]. In particular, if the polynomial is a monomial or the number of monomials
is bounded by a constant, then a constant worst case approximation bound, independent of the
problem dimensions, can be given.
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3.7. Solution extraction for even order tensors. Let y∗ be an optimal solution for (14). By
Proposition 3.4, y∗ ≥ 0. Let

y∗2γ := max{y∗2µ : xµ ∈ x[τ ]}.

Since the set {y∗2µ : xµ ∈ x[τ ]} forms the diagonal elements of the positive semidefinite matrix

M(y∗) and y∗ 6= 0, we have that

y∗2γ > 0.

Denote

γ := (γ1, . . . , γp)

with

γi := (γi1, . . . , γ
i
ni
)

for all i = 1, . . . , p. Then γi 6= 0 for all i = 1, . . . , p. Let

γiki := max{γi1, . . . , γ
i
ni
}.

Define

z
(i)
∗ := (y∗

γ+(γ1,...,γi−1,γi−e
(i)
ki

+e
(i)
1 ,γi+1,...,γp)

, . . . , y∗
γ+(γ1,...,γi−1,γi−e

(i)
ki

+e
(i)
ni

,γi+1,...,γp)
)T

x
(i)
∗ := |z

(i)
∗ |/‖z

(i)
∗ ‖ for all i = 1, . . . , p.

The approximation solution is then

x∗ = (x
(1)
∗ , . . . ,x

(p)
∗ ),

and the approximation value is

fapp := f(x
(1)
∗ , . . . ,x

(p)
∗ ).

If rank(M(y∗)) = 1, then it holds that (cf. Proposition 3.9)

M(y∗) = x
[τ ]
∗

(
x
[τ ]
∗

)
T
.

3.8. Solution extraction for odd order tensors. Let y∗ be an optimal solution for (14). Sup-
pose that the tensor space is Sym(⊗α1R

n1) ⊗ · · · ⊗ Sym(⊗αpR
np), and without loss of generality

that α1, . . . , αq are odd for some q ≤ p. Let d = (α1 + 1, . . . , αq + 1, αq+1, . . . , αp). By the scheme
in Section 3.1, we have that

y∗ ∈ R
ν(d,n1+1,...,nq+1,nq+1,...,np).

Let

y∗γ := max
{
y∗µ : µ =

(
(µ1, 1), . . . , (µq, 1), µq+1, . . . , µp

)
with µi ∈ N

ni
αi

}
.

If y∗γ = 0, it follows from Section 2.1 that zero is the best approximation solution, since in this case
the optimal value of (14) is zero. In the following, we assume that

y∗γ > 0.

Denote

γ := (γ1, . . . , γp)

with

γi := (γi1, . . . , γ
i
ni
, 1)

for all i = 1, . . . , q, and

γi := (γi1, . . . , γ
i
ni
)

for all i = q + 1, . . . , p. Let

γiki := max{γi1, . . . , γ
i
ni
}.
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Define

z
(i)
∗ := (y∗

γ+(γ1,...,γi−1,γi−e
(i)
ki

+e
(i)
1 ,γi+1,...,γp)

, . . . , y∗
γ+(γ1,...,γi−1,γi−e

(i)
ki

+e
(i)
ni+1,γ

i+1,...,γp)
)T

x̃
(i)
∗ := |z

(i)
∗ |/‖z

(i)
∗ ‖ for all i = 1, . . . , q.

and

z
(i)
∗ := (y∗

γ+(γ1,...,γi−1,γi−e
(i)
ki

+e
(i)
1 ,γi+1,...,γp)

, . . . , y∗
γ+(γ1,...,γi−1,γi−e

(i)
ki

+e
(i)
ni

,γi+1,...,γp)
)T

x
(i)
∗ := |z

(i)
∗ |/‖z

(i)
∗ ‖ for all i = q + 1, . . . , p.

The approximation solution for the extended problem is then

x̃∗ = (x̃
(1)
∗ , . . . , x̃

(q)
∗ ,x

(q+1)
∗ , . . . ,x

(p)
∗ ).

Let

x̃
(i)
∗ = (x(i), ti) for i = 1, . . . , q.

For i = 1, . . . , q, if ti 6= 1, then we take

x
(i)
∗ := x(i)/‖x(i)‖.

Otherwise, we conclude that the best approximating nonnegative rank-one tensor is the zero tensor.

4. Numerical Experiments

In this section, we present some preliminary numerical experiments for solving problem (7) via
the DNN relaxation method developed in Section 3. All the tests were conducted on a Dell PC with
4GB RAM and 3.2GHz CPU running 64bit Windows operation system. All codes were written
in Matlab with some subroutines in C++. All the linear matrix conic problems were solved by
SDPNAL+ [62].

4.1. Best nonnegative rank-one approximation of tensors. In this section, computational
results for numerous instances of the best nonnegative rank-one approximation of tensors will be
presented. The tested tensors are taken from the literature.

Given a tensor A, we use fdnn to denote the optimal value of the corresponding DNN relaxation
problem. The approximation solution x of problem (7) is extracted according to Sections 3.7
and 3.8. Then λx⊗d with λ giving by (4) is the best nonnegative rank-one approximation found.
Therefore, fapp := λ is the approximate optimal value of (7) found by the method. We use the
relative approximation error

appr(A) :=
|fdnn − fapp|

max{1, fdnn}
,

and the relative approximation error with respect to the problem data size

apprnm(A) :=
|fdnn − fapp|

max{1, ‖A‖}
,

to measure the approximation quality. Note that due to the accuracy tolerance (the default is
10−6) set in solving the DNN relaxation problem of (7), even if the matrix M(y∗) for the optimal
y∗ of (14) has rank one (thus the approximation is tight), we may still have fdnn 6= fapp. But their
difference should have the same magnitude as the accuracy tolerance used.

Numerically, we regard the relaxation to be tight (e.g., when rank(M(y∗)) = 1) whenever the
second largest singular value of M(y∗) is smaller than 1.0 × 10−6.
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Example 4.1. This example comes from [12, Example 2]. This is a tensor A in Sym(⊗3
R
2) with

the independent entries being

a111 = 1.5578, a222 = 1.1226, a112 = −2.4443, a221 = −1.0982.

The relaxation is tight. The best nonnegative rank-one approximation tensor found is

λ = 1.5578, x∗ = (1, 0)T.

The errors apperr(A) = 3.5924 × 10−6, and apperrnm(A) = 1.1142 × 10−6.

Example 4.2. This example comes from [12, Example 3]. This is a tensor A in ⊗4
R
2 with nonzero

entries being

a1111 = 25.1, a1212 = 25.6, a2121 = 24.8, a2222 = 23.

This is a nonnegative and nonsymmetric tensor. The best nonnegative rank-one approximation
tensor is the best rank-one approximation tensor (cf. [51]), which is found as

λ = 25.6000, x1
∗ = x3

∗ = (1, 0)T, x2
∗ = x4

∗ = (0, 1)T.

The errors apperr(A) = 9.1676 × 10−6, and apperrnm(A) = 4.7616 × 10−6. The numerical
computation is consistent1 with [39, Example 3.11].

There is also a slight variation of A, i.e., the tensor B in ⊗4
R
2 with nonzero entries being (cf. [12])

b1111 = 25.1, b1212 = 25.6, b2121 = 24.8, b2222 = 23, b1121 = 0.3, b2111 = 0.3.

The best nonnegative rank-one approximation tensor is

λ = 25.6000, x1
∗ = x3

∗ = (1, 0)T, x2
∗ = x4

∗ = (0, 1)T,

the same as that for A. The errors apperr(B) = 2.395×10−6, and apperrnm(B) = 1.2439×10−6 .
We see that apperr(B) is smaller than apperr(A). This is because there are more positive entries
in B than those in A, which improves the numerical computation and stability.

Example 4.3. This example comes from [49, Example 2]. This is a tensor A in Sym(⊗3
R
3) with

the independent entries being

a111 = 0.0517, a112 = 0.3579, a113 = 0.5298, a122 = 0.7544, a123 = 0.2156,

a133 = 0.3612, a222 = 0.3943, a223 = 0.0146, a233 = 0.6718, a333 = 0.9723.

This is a also nonnegative tensor. The best nonnegative rank-one approximation tensor is the best
rank-one approximation tensor, which is found as

λ = 2.1110, x∗ = (0.5204, 0.5113, 0.6839)T .

The errors apperr(A) = 3.261× 10−6, and apperrnm(A) = 2.796× 10−6. The numerical compu-
tation is consistent with [39, Example 3.3].

Example 4.4. This example comes from [23, Example 1]. It is a tensor A in Sym(⊗4
R
3) with the

independent entries being

a1111 = 0.2883, a1112 = −0.0031, a1113 = 0.1973, a1122 = −0.2485, a1123 = −0.2939,

a1133 = 0.3847, a1222 = 0.2972, a1223 = 0.1862, a1233 = 0.0919, a1333 = −0.3619,

a2222 = 0.1241, a2223 = −0.3420, a2233 = 0.2127, a2333 = 0.2727, a3333 = −0.3054.

1We remark on the different errors obtained in our computation and that in [39]. Actually, Nie and Wang
reported smaller approximation error. This is due to the facts that: (i) the SDP solvers are different (SDPNAL vs.
SDPNAL+). Our formulation has an extra nonnegative constraint on the matrix variable. Although the SDPs have
the same optimal values, the numerical computations adopt different termination accuracy tolerances. (ii) When we
extract the solution for x∗, we also take the absolute values to make sure that x∗ ≥ 0. This will introduce another
difference.
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The relaxation is not tight. The nonnegative rank-one approximation tensor found is

λ = 0.6416, x∗ = (0.9328, 0, 0.3603)T .

The errors apperr(A) = 5.8364 × 10−2, and apperrnm(A) = 2.5910 × 10−2.

Example 4.5. This example comes from [25, Example 3.6]. It is a tensor A in Sym(⊗3
R
3) with the

independent entries being

a111 = −0.1281, a112 = 0.0516, a113 = −0.0954, a122 = −0.1958, a123 = −0.1790,

a133 = −0.2676, a222 = 0.3251, a223 = 0.2513, a233 = 0.1773, a333 = 0.0338.

The relaxation is tight. The best nonnegative rank-one approximation tensor found is

λ = 0.6187, x∗ = (0, 0.8275, 0.5615)T .

The errors apperr(A) = 2.9194 × 10−6, and apperrnm(A) = 2.9194 × 10−6.

Example 4.6. This example comes from [39, Example 3.8]. It is a tensor A in Sym(⊗6
R
3) with the

nonzero independent entries being

a111111 = 2, a111122 = 1/3, a111133 = 2/5, a112222 = 1/3, a112233 = 1/6,

a113333 = 2/5, a222222 = 2, a222233 = 2/5, a223333 = 2/5, a333333 = 1.

This is a nonnegative tensor, and the best nonnegative rank-one approximation tensor found is

λ = 2, x∗ = (0, 1, 0)T .

The errors apperr(A) = 2.2927 × 10−3, and apperrnm(A) = 9.2979 × 10−4. The relaxation is
not tight, but we know the tensor found is the best nonnegative rank-one (cf. [39, Example 3.3]).
The numerical computation is consistent with [39, Example 3.3].

Example 4.7. This example comes from [39, Example 3.5]. The tensor A ∈ Sym(⊗m
R
n) with the

entries being

ai1...im =

m∑

j=1

(−1)ij

ij

The numerical computations are recorded in Table 2, in which λ is the norm of the computed best
rank-one tensor, Time is the computation time taken in the format of hours:minutes:seconds. In
the table, the notation “8.9 − 6” is a shorthand for “8.9 × 10−6” and so on so forth. We can see
that in all cases, the method can find a very good best nonnegative rank-one approximation.

Example 4.8. This example comes from [39, Example 3.6]. The tensor A ∈ Sym(⊗m
R
n) with the

entries being

ai1...im =
m∑

j=1

arctan

(
(−1)ij ij

n

)

.

The numerical computations are recorded in Table 3.

Example 4.9. This example comes from [39, Example 3.7]. The tensor A ∈ Sym(⊗m
R
n) with the

entries being

ai1...im =
m∑

j=1

(−1)ij log(ij).

The numerical computations are recorded in Table 4.
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Table 2. Computational results for Example 4.7

m n Time λ apperr apperrnm

3 10 4.3 9.4878 8.9-6 3.8-6
3 20 29 19.2494 5.9-10 2.5-10
3 30 5:38 28.7246 3.0-5 1.3-5
3 50 2:13:01 47.167 4.5-5 1.9-5

4 10 1.4 33.4925 1.0-5 4.4-6
4 20 35 97.6098 2.5-8 1.0-8
4 30 4:52 179.5584 5.7-9 2.4-9
4 50 32:49 382.44 1.3-9 5.7-10

5 5 1 20.8284 1.1-5 3.1-6
5 10 25 114.8631 1.5-8 6.1-9
5 20 4:27:04 480.19 1.2-5 5.1-6

6 5 0.59 46.6667 1.4-5 3.4-6
6 10 13 386.0448 3.2-8 1.2-8
6 20 2:32:18 2319.3 3.4-5 1.3-5

7 5 6.4 103.02 7.8-6 1.6-6
7 10 11:29 1278.4 3.5-8 1.2-8

8 5 5.8 225.37 2.7-5 5.1-6
8 10 3:41 4186.1 1.2-7 4.4-8

Table 3. Computational results for Example 4.8

m n Time λ apperr apperrnm

3 10 6.6 21.1979 7.5-6 5.5-6
3 20 1:24 55.5867 5.5-6 3.9-6
3 50 2:26:47 209.19 1.1-5 7.9-6

4 10 2.4 77.0689 7.5-6 5.4-6
4 20 44 282.9708 7.0-6 4.8-6
4 50 2:56:48 1672.7 3.7-6 2.5-6

5 5 17 30.5470 1.2-3 5.1-4
5 10 39 273.3958 2.7-5 1.9-5
5 20 5:20:51 1407.8 1.7-9 1.1-9

6 10 21 953.06 4.2-6 3.1-6
6 20 2:56:40 6890.5 1.3-9 9.0-10

7 5 44 162.21 2.8-3 1.0-3
7 10 28:44 3280 7.6-5 5.6-5

8 5 1.8 370.33 6.0-6 2.0-6
8 10 14:00 11178 4.4-5 3.2-5

Example 4.10. This example comes from [39, Example 3.10]. The tensor A ∈ Sym(⊗m
R
n) with

the entries being

ai1...im = sin
(

m∑

j=1

ij
)
.

The numerical computations are recorded in Table 5.
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Table 4. Computational results for Example 4.9

m n Time λ apperr apperrnm

3 10 21 68.0631 3.7-6 2.7-6
3 20 !:02 246.1904 9.7-6 6.8-6
3 50 2:25:17 1289.8 1.3-5 8.8-6

4 10 2.3 248.2981 8.5-6 6.2-6
4 20 36 1253.3842 1.0-5 7.2-6
4 50 2:12:51 10306 3.7-5 2.4-5

5 5 18 69.8570 2.8-4 1.3-4
5 10 1:10 883.2849 4.7-10 3.4-10
5 20 5:00:10 6236.7 5.9-10 4.1-10

6 10 21 3086.6 2.1-5 1.6-5
6 20 3:43:30 30529 2.6-5 1.8-5

7 5 42 383.84 7.0-4 3.1-4
7 10 2:09:53 10645 1.1-4 8.6-5

8 5 2.1 889.93 7.0-6 3.0-6
8 10 14:09 36349 2.5-5 1.8-5

Table 5. Computational results for Example 4.10

m n Time λ apperr apperrnm

3 10 2.2 2.9121 5.2-1 1.4-1
3 15 4.8 5.6006 4.8-1 1.3-1
3 20 28 10.2134 3.8-1 9.9-2
3 50 57:24 44.541 2.9-1 7.3-2

4 10 1.5 8.0140 4.1-1 7.8-2
4 15 4.3 22.0576 2.8-1 5.4-2
4 20 14 21.9602 5.6-1 1.0-1
4 50 48:15 158.22 4.9-1 8.9-2

5 5 0.68 2.7205 6.6-1 1.3-1
5 12 1:36 17.3683 6.4-1 9.1-2

6 10 24 22.85 6.6-1 6.4-2
6 20 2:18:31 103.43 8.2-1 8.3-2

Example 4.11. This example comes from [39, Example 3.14]. The tensor A ∈ ⊗m
R
n with the

entries being

ai1...im = cos
(

m∑

j=1

j · ij
)
.

The numerical computations are recorded in Table 6.

Example 4.12. This example comes from [39, Example 3.16]. The tensor A ∈ ⊗m
R
n with the

entries being

ai1...im =
m∑

j=1

(−1)j+1 · j · exp(−ij).

The numerical computations are recorded in Table 7.
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Table 6. Computational results for Example 4.11

m n Time λ apperr apperrnm

3 4 13 2.4412 3.7-3 1.6-3
3 5 18 2.9581 4.3-2 1.6-2
3 6 32 2.8464 2.5-1 9.1-2

4 2 0.88 1.2392 9.4-6 4.2-6
4 3 95 1.7608 9.7-2 2.9-2

5 2 8.5 1.4061 1.0-5 3.8-6

Table 7. Computational results for Example 4.12

m n Time λ apperr apperrnm

3 4 16 636.9974 3.3-6 3.0-6
3 5 1:08 2230.7114 3.7-6 3.3-6
3 6 4:24 7411.5508 4.7-6 4.2-6

4 2 1 16.0454 3.4-6 8.5-7
4 3 38 148.8945 2.5-6 9.3-7

5 2 15 123.1144 5.3-6 5.0-6

Example 4.13. This example comes from [39, Example 3.18]. The tensor A ∈ ⊗m
R
n with the

entries being

ai1...im = tan

( m∑

j=1

(−1)j+1 ·
ij
j

)

.

The numerical computations are recorded in Table 8.

Table 8. Computational results for Example 4.13

m n Time λ apperr apperrnm

3 4 9.2 15.3005 3.3-6 1.7-6
3 5 1:09 22.1109 1.2-1 5.9-2
3 6 2:52 22.0969 2.0-1 8.2-2
4 2 1.0 7.1928 1.0-5 9.3-7
4 3 8.8 14.8249 1.4-4 1.5-5

5 2 19 242.2146 1.6-6 1.6-6

Example 4.14 (Determinant Tensor/Levi-Civita Tensor). This example considers the tensor A ∈
⊗n

R
n of the determinant for n× n matrices. Given a matrix A = [aij ] ∈ R

n×n, its determinant is

detn(A) :=
∑

σ∈G(n)

sign(σ)

n∏

i=1

aiσ(i)

where G(n) is the permutation group on n elements and sign(σ) is the sign of a permutation
σ. We can view detn(A) as a multilinear form over the groups of variables {a11, . . . , a1n}, . . . ,
{an1, . . . , ann}. Likewise, it can be uniquely regarded as a tensor in ⊗n

R
n. When n = 3, the

determinant tensor A ∈ ⊗3R3 has the nonzero entries

a123 = a231 = a312 = −a132 = −a213 = −a321 = 1.
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This tensor is usually referred as the Levi-Civita symbol [30, Section 15.2]. It captures the structure
constants of the Lie algebra so(3). In general, we call the tensor A ∈ ⊗n

R
n with the nonzero entries

being

ai1...in = sign(σ) if ij = σ(j) for all j = 1, . . . , n

as the Levi-Civita tensor of order n. It is easy to see that the Levi-Civita tensor is the determinant
tensor.

When n = 5, the matrix dimension of the DNN relaxation problem is 117649 × 117649, which
is far too large for our computer’s memory. Thus, we compute the problems up to n = 4. The
approximations are all tight, and the computed best rank-one approximation tensor is

e1 ⊗ · · · ⊗ en

with ei ∈ R
n the ith standard basis vector.

The numerical computations are recorded in Table 9.

Table 9. Computational results for Example 4.14

n Time λ apperr apperrnm

2 0.25 1.0000 1.6-6 1.1-6
3 0.47 1.0000 2.9-6 1.2-6
4 1:17 1.0000 9.5-6 1.9-6

Example 4.15 (Permanent Tensor). This example considers the tensor A ∈ ⊗n
R
n of the permanent

for n× n matrices. Given a matrix A = [aij] ∈ R
n×n, its permanent is

petn(A) :=
∑

σ∈G(n)

n∏

i=1

aiσ(i),

petn(A) can be viewed as a multilinear form over the groups of variables {a11, . . . , a1n}, . . . ,
{an1, . . . , ann}. Likewise, it can be uniquely regarded as a tensor in ⊗n

R
n. This tensor is nonneg-

ative. It follows from [13] that the best nonnegative rank-one approximation tensor has norm

λ∗ =
n!

nn/2
.

Similar to the determinant tensor, we can only handle the permanent tensor up to n = 4. The
relaxation is tight only for n = 2. The computed best rank-one approximation tensor is

eσ(1) ⊗ · · · ⊗ eσ(n)

for all permutations σ ∈ G(n), since the tensor is nonnegative.
The numerical computations are recorded in Table 10.

Table 10. Computational results for Example 4.15

n Time n!
nn/2 λ apperr apperrnm

2 0.21 1 1.0000 1.2-6 8.8-7
3 0.67 1.1547 1.0000 1.3-1 6.3-2
4 2:06 1.5 1.0000 3.3-1 1.0-1
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Example 4.16 (Matrix Multiplication Tensor). Given positive integers m,n, q, this example consid-
ers the tensor A ∈ R

mq ⊗ R
mn ⊗ R

nq arising from the matrix multiplication of matrices of sizes
m × n and n × q. Given two matrices A = [aij ] ∈ R

m×n and B = [bjk] ∈ R
n×q, their matrix

multiplication C = AB ∈ R
m×q is

[cik] =
[

n∑

j=1

aijbjk
]
.

The bilinear map R
mn × R

nq → R
mq can be represented as a tensor A ∈ R

mq ⊗ R
mn ⊗ R

nq, such
that

C = 〈A, A⊗B〉2,3:1,2,

where the equality is of course understood in the sense of the standard isomorphism and 〈·, ·〉2,3:1,2
is a tensor contraction by contracting the second and third indices of the first argument with the
first and second indices of the second argument (cf. [30]). This tensor is nonnegative.

The DNN relaxations are always tight. The computed best nonnegative rank-one tensor is

ei ⊗ ej ⊗ ek

for some standard basis vectors ei ∈ R
mn, ej ∈ R

nq, and ek ∈ R
mq.

The numerical computations are recorded in Table 11. The matrix multiplication tensor A is
not invariant with respect to m, n and q. However, we can see from the table that when {m,n, q}
is a fixed set, the tensors share the same approximation errors.

Table 11. Computational results for Example 4.16

m n q Time λ apperr apperrnm

2 2 2 1.7 1.0000 3.6-6 1.2-6

2 2 3 7.1 1.0000 2.9-6 8.5-7
3 2 2 6.9 1.0000 2.9-6 8.5-7
2 3 2 7.0 1.0000 2.9-6 8.5-7

2 3 3 43 1.0000 3.5-6 8.2-7
3 2 3 44 1.0000 3.5-6 8.2-7
3 3 2 34 1.0000 3.5-6 8.2-7

2 2 4 21 1.0000 2.3-6 5.8-7
2 2 5 59 1.0000 2.0-6 4.6-7
2 2 6 2:14 1.0000 6.4-6 1.3-6
2 2 7 5:52 1.0000 4.3-7 8.1-8
2 2 8 11:43 1.0000 8.3-6 1.4-6
2 2 9 20:59 1.0000 2.3-6 3.9-7

2 3 4 2:25 1.0000 7.2-7 1.4-7
2 3 5 6:23 1.0000 1.7-6 3.2-7
2 3 6 26:37 1.0000 2.6-6 4.4-7

3 3 3 3:56 1.0000 4.5-6 8.7-7
3 3 4 21:26 1.0000 2.4-6 4.0-7
2 4 4 10:05 1.0000 2.5-6 4.4-7
2 4 5 39:56 1.0000 1.0-6 1.6-7

4.2. Copositivitiy of tensors. In this section, we test some tensors for their copositivities. Let
fdnn be the optimal value of the DNN relaxation and fapp be the approximation value found as
before. Then

(1) if fdnn ≥ 0, then we can conclude that the tensor is copositive,
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(2) if fapp < 0, then we can conclude that the tensor is not copositive.

Example 4.17. This example comes from [50, Page 237]. It is a tensor A in Sym(⊗3
R
3) with nonzero

entries being

a113 = 2, a223 = 2, a123 = −1.

It can be show that

〈A,x⊗3〉 = 6x3(x
2
1 + x22 − x1x2),

and hence A is copositive. We have that

fdnn = 9.3650 × 10−15, and fapp = 2.3094.

Therefore we can conclude that the numerical computation gives the correct answer.

Example 4.18. This example comes from [50, Theorem 10]. It is a tensor A ∈ Sym(⊗m
R
n) such

that

aii...i ≥ −
∑

{aii2...im : (i, i2, . . . , im) 6= (i, i, . . . , i) and aii2...im < 0} for all i = 1, . . . , n.

Tensors satisfying the above assumption are always copositive. For each case, we randomly generate
the tensor A ∈ Sym(⊗m

R
n) and set

aii...i = 10−6 −
∑

{aii2...im : (i, i2, . . . , im) 6= (i, i, . . . , i) and aii2...im < 0} for all i = 1, . . . , n.

We simulate rep times for each case, and use prob to denote the percentage of the instances which
are tested as copositive. From the theory, we know that prob should be one. The numerical
computations are recorded in Table 12.

Table 12. Computational results for Example 4.18

m n rep Time (min;mean;max) fdnn (min;mean;max) prob

3 2 100 0.11 ; 0.24; 1.1 0.0074; 0.5658 ; 1.4161 1.0000
3 4 100 0.20 ; 0.81; 13 0.9781; 1.9254 ; 3.2333 1.0000
4 4 100 0.21 ; 1.3; 41 1.7688; 3.4358 ; 5.5922 1.0000
4 10 20 2.4 ; 6.9; 13 30.8177; 35.9170 ; 41.1639 1.0000

Example 4.19 (Random Examples). We test randomly generated tensors to estimate the probability
for the tensors to be copositive. Each entry of the tensor is generated randomly uniformly from
[−1, 1]. The numerical computations are recorded in Table 13.

Table 13. Computational results for Example 4.19

m n rep Time (min;mean;max) fdnn (min;mean;max) prob

3 2 100000 0.04 ; 0.22; 3:01 -1.4627; 0.3318 ; 2.4426 0.7878
3 3 100 0.05; 0.41; 2.3 -1.2454; 0.6822 ; 2.7819 0.7400
3 4 100 0.21; 2.2; 2:28 -1.7732; 1.1233 ; 2.9112 0.8300

4 2 100 0.07; 0.21; 1.7 -0.7297; 0.7144 ; 2.4577 0.8800
4 3 100 0.10; 0.37; 4.8 -0.7667; 1.2694 ; 4.3429 0.9000
4 4 100 0.14; 0.52; 4.2 -0.7705; 2.0959 ; 5.1505 0.9500

5 2 100 0.06; 0.65; 15 -1.3392; 0.7664 ; 3.9843 0.7900
5 3 100 0.18; 3.7; 4:36 -2.1679; 1.0422 ; 5.5006 0.6100
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4.3. Comparison with SDPNAL. We have already mentioned before that the DNN problems
can be formulated as standard SDP problems by introducing extra variables and constraints, and
the resulting standard SDP problems can also be solved directly by the solver SDPNAL [63]. But
we also know that the new enhanced version SDPNAL+ is designed with the focus on solving DNN
problems [62]. Thus, we would expect the latter solver to be more efficient in solving our DNN
problems (19). To see this, finally, we have a comparison between the performance of SDPNAL
and SDPNAL+ in solving Example 4.11. The results are recorded in Tables 14 and 15 respectively.
We can see the superiority of SDPNAL+ in solving large scale problems coming from the cases
m ∈ {5, 6, 7}.

Table 14. SDPNAL on Example 4.11

m n (# sdp; # con.) Time λ apperr apperrnm

3 8 729; 441046 11:59 5.0068 0.12 0.04
3 10 1331; 1485397 2:27:36 6.9074 0.15 0.05
3 12 2197; 4075436 5:48:46 7.2059 0.27 0.09
4 4 625; 340626 3:52 3.1353 0.14 0.04
4 5 1296; 1486432 1:00:53 3.8602 0.33 0.10
4 6 2401; 5152547 10:33:23 3.8465 0.45 0.12
5 3 1024; 949601 1:32:58 1.1975 0.52 0.12
6 2 729; 485515 9:52 1.9076 7.5-8 2.5-8
7 2 2187; 4505221 5:56:23 2.5485 0.10 0.03

Table 15. SDPNAL+ on Example 4.11

m n ( # sdp; # con.) Time λ apperr apperrnm

3 8 729; 174961 15:04 5.0069 0.12 0.04
3 10 1331; 598951 1:52:06 6.9068 0.07 0.02
3 12 2197; 1660933 8:49:04 7.2052 0.26 0.09
4 4 625; 145001 3:32 3.1353 0.14 0.04
4 5 1296; 645976 1:13:09 3.8602 0.31 0.10
4 6 2401; 2268946 11:27:18 3.8465 0.45 0.12
5 3 1024; 424801 36:00 1.1974 0.50 0.11
6 2 729; 219430 2:04 1.9076 3.0-5 1.0-5
7 2 2187; 2112643 55:40 2.5485 0.10 0.03

5. Conclusions

This article studied the problem of minimizing a multi-form over the nonnegative multi-sphere.
This problem is a special polynomial optimization problem. Although standard SOS relaxation
method can be employed to solve this problem, there are computational advantages to consider
the more specialized approach in this paper. Take the biquadratic case for example, i.e., d1 =

d2 = 2. The matrix in the resulting SDP is of dimension (n1+n2+1)(n1+n2)
2 . However, the matrix

dimension in the DNN relaxation method introduced here is n1n2. We can see that the latter
method provides a linear matrix conic optimization problem with matrix size that is about half
of the former when n1 = n2, and the ratio is even smaller when n1 ≪ n2 or n2 ≪ n1. Given the
current limitations of SDP solvers for handling large scale problems with high-dimensional matrix
variables (cf. [17,57,59,63]), the DNN method proposed in this article is promising. Our approach
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is made practical by the recent solver SDPNAL+ [62], which is designed to efficiently handle large-
scale problems with a particular focus on DNN problems having moderate matrix dimensions while
allowing the number of linear constraints to be very large.

The method is applied to the problem of finding the best nonnegative rank-one approximation
of a given tensor and the problem of testing the copositivity of a given tensor. Based on the
promising numerical results, we are motivated to carry out further investigations of the DNN
relaxation methods for multi-form optimization over the nonnegative multi-sphere in the future.
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et applications, Master’s Thesis, Université Catholique de Louvain, Louvain-la-Neuve, Belgium, 2006.
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