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MIXED-DIMENSIONAL GEOMETRIC MULTIGRID METHODS FOR
SINGLE-PHASE FLOW IN FRACTURED POROUS MEDIA*
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Abstract. This paper deals with the efficient numerical solution of single-phase flow problems
in fractured porous media. A monolithic multigrid method is proposed for solving two-dimensional
arbitrary fracture networks with vertical and/or horizontal possibly intersecting fractures. The key
point is to combine two-dimensional multigrid components (smoother and intergrid transfer opera-
tors) in the porous matrix with their one-dimensional counterparts within the fractures, giving rise
to a mixed-dimensional geometric multigrid method. This combination seems to be optimal since it
provides an algorithm whose convergence matches the multigrid convergence factor for solving the
Darcy problem. Several numerical experiments are presented to demonstrate the robustness of the
monolithic mixed-dimensional multigrid method with respect to the permeability of the fractures,
the grid size, and the number of fractures in the network.
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1. Introduction. The numerical simulation of subsurface flow through fractured
porous media is a challenging task which is getting increasing attention in recent years.
The essential role played by fractures in different applications—ranging from petro-
leum extraction to long-term CO5 and nuclear waste storage—demands the design of
efficient discretization methods for solving the corresponding flow models. Depending
on the spatial scale under consideration, fractures can be incorporated into such mod-
els in essentially two ways. At small scales, when specific locations of microfractures
are difficult to determine, the so-called dual-porosity models [11, 12] are used. In
this case, the network of fractures and the bulk or porous matrix are two interacting
continua related by a transfer function. On the other hand, at large scales, geological
discontinuities represented by localized networks of faults and macrofractures require
the use of discrete fracture models [29, 52]. In these models, fractures can behave ei-
ther as preferential flow paths or as geological barriers, depending on the permeability
contrast between the porous matrix and the fractures themselves.
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Henceforth, we shall consider this latter approach. Discrete fracture models typ-
ically require fine meshing of the fracture domain to guarantee accurate approxima-
tions. Provided that the fracture aperture is small as compared to the characteristic
length of the flow domain, this fact can yield computationally expensive discretiza-
tions. To avoid such limitations and based on geometrical model reduction tech-
niques, fractures are represented as (n — 1)-dimensional interfaces immersed into an
n-dimensional porous matrix. The resulting model is called a mixed-dimensional
[44, 59] or reduced [30, 69] model. In this framework, flow can be described by sev-
eral models within the fractures and in the porous matrix. In [6, 8, 16, 23, 30, 52],
incompressible single-phase Darcy flow is considered in both domains. Extensions
to two-phase flow can be found, e.g., in [35, 39]. Alternatively, models that consider
high-velocity flows within the fractures include Darcy—Brinkman [19, 47], Forchheimer
[33, 45], and Reynolds lubrication [38] equations.

In this paper, we focus on the single-phase Darcy—Darcy coupling between the
fractures and the porous matrix. The governing equations comprise a system of
mixed-dimensional partial differential equations [15] defined on the n-dimensional
porous matrix, (n — 1)-dimensional fractures, and (n — 2)-dimensional intersections
between fractures. This problem has been extensively addressed in the literature by
means of different discretization techniques. Raviart—Thomas mixed finite element
schemes are studied, e.g., in [6, 52] for the case of conforming meshes on the fracture
interfaces. Their extension to nonmatching grids is discussed in [32] and, suitably
combined with mortar methods, in [16]. In both cases, however, the geometry of the
fractures is respected by the meshes. Alternative strategies that permit meshing the
entire domain independently of the fractures include the so-called embedded discrete
fracture-matrix methods [41, 56] and the extended finite element methods (XFEM)
[23, 29] (and references therein). In the former case, the fracture grid points are
located at the intersection between the background mesh and the fracture itself. In
the latter, they can be arbitrarily placed with respect to the matrix mesh. In addi-
tion, further discretization schemes have been proposed for handling general elements
and distorted grids, namely, mimetic finite difference methods [10, 31], discontinuous
Galerkin methods [9], virtual element methods [14, 34], hybrid high-order methods
[21], or multipoint flux approximation methods [5, 66]. Here, we consider a rectangu-
lar grid that is conforming at the fractures and a discretization based on mixed finite
element methods which is equivalent to a finite volume scheme after the application
of appropriate quadrature rules.

Although a lot of effort has been put into developing numerical schemes for the
discretization of fracture models, efficient solvers for the resulting linear systems have
not been so deeply investigated. A first step in this direction is the design of linear
solvers for discrete fracture network models, which consider the solution of the flow
equations only within the fracture network without taking into account the coupling
with the surrounding porous matrix. The discussion of different solution approaches
in this context can be found in [24]. Some relevant works related to the development of
solvers for the discretization of the mixed-dimensional model considered here include
iterative strategies in a domain decomposition framework [23, 52] (see also [29] for a
discussion on linear solvers and [43] for an extension to time-dependent problems),
physics-based preconditioners [67], or iterative multiscale methods [41, 77]. In this
context, the aim of this paper is to develop a monolithic geometric multigrid method
for solving mixed-dimensional Darcy problems on fractured porous media. To the
best of our knowledge, this is the first time that a similar approach is proposed in the
literature. For the ease of presentation, we shall assume a distribution of horizontal
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and vertical fractures that can intersect with each other in virtually any way. This
fracture configuration can be efficiently discretized by means of conforming mixed
methods based on Raviart-Thomas elements. Further applying suitable quadrature
rules, we can derive finite volume schemes that extend the ideas proposed in [65] for
unfractured domains. This scheme yields a linear system with a saddle-point structure
to solve. This is an important property of the system that influences the design of the
multigrid method described below. Other discretization approaches, such as mixed
hybrid finite element methods, would give rise to a symmetric positive definite (SPD)
matrix, which could be efficiently solved by using, e.g., a preconditioned conjugate
gradient method. In that same framework, the velocities could be eliminated, thus
resulting in a linear system with only pressure unknowns involving a Schur comple-
ment matrix that would also be SPD. The idea of applying multigrid methods could
be considered in such a context as well, providing very efficient solution strategies for
the SPD system, either as stand-alone solvers or as preconditioners for the conjugate
gradient method. In addition to the monolithic multigrid solver, we also introduce
here a novel representation of the network of fractures based on graph theory.

It is well known that multigrid methods [17, 40, 73, 78, 80] are among the fastest
numerical techniques for solving the large systems of equations arising from the dis-
cretization of partial differential equations. They have shown optimal complexity in
solving many problems in different areas of application [78]. However, it is the first
time that multigrid is applied for solving a mixed-dimensional flow problem in frac-
tured porous media. These algorithms strongly depend on the appropriate choice
of their components, mainly the intergrid transfer operators and the smoother. In
this work, a mixed-dimensional geometric multigrid method is proposed to deal with
the complex mixed-dimensional problem at once. In a two-dimensional setting, the
proposed multigrid solver suitably combines two-dimensional smoother and intergrid
transfer operators in the porous matrix with their one-dimensional counterparts within
the fracture network. Due to the saddle-point character of the whole resulting system,
we choose a multiplicative Schwarz smoother, which has been proved to be efficient
for different problems in porous media. The resulting mixed-dimensional monolithic
multigrid method shows robustness with respect to the mesh size, the permeability of
the fractures, and the number of fractures in the network.

The rest of the paper is organized as follows. Section 2 describes the mixed-
dimensional model problem and the spatial discretization considered. In particular,
we first focus on the case of a single fracture, and then we address the general case of
multiple intersecting fractures. Section 3 introduces a mixed-dimensional monolithic
multigrid method that combines two-dimensional components in the porous matrix
with one-dimensional components in the fractures. Section 4 shows several numerical
experiments considering various fracture configurations and permeability distributions
that confirm the robustness of the proposed solver. Finally, section 5 contains some
concluding remarks.

2. Model problem and discretization. In this section, we introduce the sys-
tem of equations modeling single-phase Darcy flow in a fractured porous medium. For
the ease of presentation, the model is first derived for the case of a single fracture. The
weak formulation and its MFE discretization are then obtained. Next, we address the
case of intersecting fractures and emphasize the key points of this extended model. In
both cases, the resulting algebraic system for the approximation scheme is provided.

2.1. A single fracture model problem. Let 2 C R? be an open, bounded,
and convex polygonal domain whose boundary is denoted by I' = 9Q2. We consider a
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Fi1c. 1. Schematic representation of the original domain (left) and the reduced domain (right).

single-phase, incompressible flow in €2, governed by Darcy’s law in combination with
the mass conservation equation, i.e.,

u=-KVp in €,
(2.1) V-u=gq in €,
p=20 on I'.

Here, p denotes the pressure, u is the Darcy velocity, K € R?*? is the permeability
tensor, and ¢ is the source/sink term. We suppose that K is a diagonal tensor whose
entries are strictly positive and bounded in 2. Homogeneous Dirichlet boundary
conditions have been considered for simplicity, but other types of boundary data can
also be handled.

To begin with, we suppose that the porous matrix (or bulk) Q contains a subset
Q representing a single fracture, which divides the flow domain into two disjoint,
connected subdomains 1 and s, i.e.,

O\Qy = Q1 UQy, Q1 NQy =0.

We further denote I'; = 9€; NI for ¢ = 1,2, f and v; = 0Q; N0y N for ¢ = 1,2.
The unit vector normal to 7; pointing outward from €2; is denoted by n; for ¢ = 1,2;
see Figure 1 (left).

If we denote by p;, u;, K;, and ¢; the restrictions of p, u, K, and ¢, respectively,
to Q; for ¢ = 1,2, f, then (2.1) are equivalent to the following transmission problem
fori=1,2,fand j=1,2:

(2.2a) u;, = —K;Vp; in €;,
(2.2b) V-u; =g in Q;,
(2.2¢) pj = Df on v;,
(2.2d) u;-n; =uy-n; on v;j,
(2.2¢) p; =0 on I';.

Note that (2.2c) and (2.2d) provide coupling conditions that guarantee the continuity
of the pressure and the normal flux, respectively, across the interfaces between €2
and Q; fori=1,2.

The model provided by (2.2a)—(2.2e) is sometimes referred to as an equidimen-
sional model [29] and assumes that both the bulk and the fracture domains share
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the same dimension. As an alternative to this model, we shall define the so-called
mixed-dimensional or reduced model, in which the fracture is viewed as a manifold
of codimension one (that is, an interface between the bulk subdomains ©; and Q5).
Based on model reduction techniques, this idea was first proposed in [52] and is com-
monly used in the framework of fractured porous media [7, 25, 29, 30, 32]. From
a numerical viewpoint, the mixed-dimensional approach avoids fine meshing of the
fracture domain, thus reducing the computational cost of the overall discretization.

According to [52], there exists a nonself-intersecting one-dimensional manifold ~y
such that the fracture can be expressed as

d
Qf:{er:x:s+9n7forsomesE’yand 9|<(QS)}7

where d(s) > 0 denotes the thickness of the fracture at s in the normal direction and
n, is the outward unit normal to v with a fixed orientation from £); to £25. Note
that, with this definition, ny, = n; = —ny (see Figure 1). We will assume that the
thickness is smaller than the other characteristic dimensions of the fracture.

The key point in this procedure is to collapse the fracture Q¢ into the line v and
integrate (2.2a) and (2.2b) for the index f along the fracture thickness. In doing so, we
need to split up such equations into their normal and tangential parts. Let us denote
the projection operators onto the normal and tangent spaces of v as P, = nwnf
and P, =1 — Py, I being the identity tensor. For regular vector- and scalar-valued
functions g and g, the tangential divergence and gradient operators on the fracture
are defined, respectively, as

(2.3) VT .g=P,: Vg, V7g=P,.Vg.
Following [30], we assume that the permeability tensor K; decomposes additively as
(2.4) Ky=K{Pn+ K{Pr,

where K and K7 are defined to be strictly positive and bounded in €2;.

In this framework, we introduce the so-called reduced variables, namely, the re-
duced pressure p,, the reduced Darcy velocity u., and the reduced source/sink term
¢y, formally defined as [25, 52|

1
Py(8) = d(s (Pf; Doy, uy(s) = (Prup, gs),  a4(8) = (g5, Ds),

~—

where £(s) = (—d(;), d(;)). Hence, we obtain the following interface problem for
i=1,2:

(2.53) u; = —Kini in Qi,

(25b) V-u = q; in Qia

(2.5¢) u, = —dK;V7p, on 7,

(2.5d) V7 -u, =¢y+ (u; -0y +uy - ny) on 7,

(2.5¢) ay(pi —py) =60 -n; — (1 = &) w1 - nyp on 7,

(2.5¢) p; =0 on I';,

(2.5g) py =0 on 0,
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where ay = 2Kjr}/d and the index i is supposed to vary in Z/27Z so that if i = 2, then
i1+ 1 = 1. Following [8, 52], £ € (1/2,1] is a closure parameter related to the pressure
cross profile in the fracture. The ratio K% /d and the product K7%d are sometimes
referred to as effective permeabilities in the normal and tangential directions to the
fracture, respectively [29].

In the preceding system, (2.5¢) represents Darcy’s law in the tangential direction
of the fracture, while (2.5d) models mass conservation inside the fracture. Remark-
ably, the additional source term u; - n; + us - ny is introduced on v to take into
account the contribution of the subdomain flows to the fracture flow. In turn, (2.5e)
is obtained by averaging Darcy’s law in the normal direction to the fracture and using
a quadrature rule with weights £ and 1 — & for integrating uy - n; across the fracture
for ¢+ = 1,2. Formally, it can be regarded as a Robin boundary condition for the sub-
domain €; that involves the pressure in the fracture p, and the normal flux from the
neighboring subdomain ;1. It is quite usual to express (2.5¢) in terms of average
operators for the pressures and normal fluxes, and jump operators for the pressures
across the fracture [23, 25].

2.2. Weak formulation. In this subsection, we present the weak formulation
of the interface problem stated above. To this end, we first introduce the function
spaces

W = {v = (v1,va,v,) € H(div, Q) x H(div, Q) x H(div",v) : v; - n; € L*(7)
for i = 1,2},

M = {r = (r1,r2,ry) € L*(2) x L*(Q) x L*(7)}

endowed with the norms [52]

2

VI = (IvillZe@ + 1V - Villdzgay + Ivi - millago))
i=1

+vallZae) + IV7vyllZa (),

2
P13 = D lrillZo,) + 74122 s
i=1

Here, we use the well-known spaces

H(diV, Qz) = {Vi € (LQ(QZ))2 :V.v; € Lz(QZ)}, 1=1,2,

H(div™,y) = {vy € (L*(7))*: V7 - vy € L*(7)}

and assume that the elements v, € H(div",~) are aligned with ~, that is, v, = v,T,
where 7 denotes the tangent vector to . Note that, in order to take into proper
account the Robin boundary condition, we need more regularity in W than the usual
H(div, -)-regularity commonly used for weak formulations in the context of mixed
finite element methods [52].
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Let a: W x W — Rand b: W x M — R be the bilinear forms defined by

2
Z (K; ', vi),, + ((dKF)™ uw"v)»y

=1
2

+ (agl(fui'ni*(lff)uz‘ﬂ‘nz‘+1),Vi'Hi)7,
1

1=

2
b(u,r) = Z (Vg ri)g, + (V7 uy,ry) = (ur-my +uz - ma,my)
i=1

Accordingly, let L : M — R be the linear form associated with the source terms, i.e.,

(qiari)ﬂi + (Q’yar'y)»y .

2
=1

i

In this framework, the weak formulation of the interface problem (2.5) reads as follows:
Find (u,p) € W x M such that

(2.6a) a(u,v) —b(v,p) =0 Vvew,
(2.6b) b(u,r) = L(r) Vre M.

The existence and uniqueness of solution to this problem is proved in [52] for the case
¢ > 1/2, assuming that the permeabilities in both subdomains and the coefficients
K% /d and K7 d are bounded by positive constants.

3. Mixed finite element approximation. Let us assume that the subdo-
mains (2; admit rectangular partitions 7;", for i = 1,2, that match at the interface .
Such meshes T;* induce a unique partition on v denoted by 7;h.

Let W x M} be the lowest order Raviart-Thomas mixed finite element spaces
defined on 7;h7 for i = 1,2,~, and let us introduce the global spaces

P wi, M= @ M

i=1,2,y i=1,2,7

Following [13, 65], we will use numerical quadrature rules for evaluating some of the
integrals in (2.6). More specifically, based on the expression for a(u, v) defined above,
we set the following discrete bilinear form:

2
Z K u’mvl Q;,TM ((dKf) u'Y’V'Y) , T
i=1

2

+Z (i (€w; - my — (1= &) uipr -mq),vi-my)

v
i=1

where (-, ), T denotes the application of the trapezoidal rule for computing the inner-
product integral over v and (-,-)q, ™ is defined, for any vector-valued functions
f,g € R?, as [13, 65

(f,8)a,, ™™ = (f1,91)0,, Tx™M + (f2, 92)0, MxT-
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In this case, the integral of the ith component of the vectors, for i = 1,2, is computed
by using the trapezoidal rule in the ith direction and the midpoint rule in the other
direction. On the other hand, the discrete counterpart to L(r) is given by

2
Ln(r) = Z (Qz‘J’i)Qi,M + (qwrv)%M )
i=1

where (-, )¢,m means the application of the midpoint rule for computing the cor-
responding inner-product integral over GG. In this context, the mixed finite element
approximation to (2.6) may be written as follows: Find (up,pn) € W" x M" such
that

(2.7a) ap(up,vy) — b(vp,pn) =0 Vv € Wh,

(2.7b) b(up, ) = Li(rs) Vr, € M.

Note that the definition of the global spaces W’ and M" implies u;, = (u?,uf, uf;)
and pp, = (p}f,pg,p’,;). Following [65], it can be proved that this method is closely
related to the so-called two-point flux approximation method [26].

2.4. Algebraic linear system. Let {sz}?:kl and {rg; iclﬁ denote the basis
functions of WZ and M,é‘, respectively, for k = 1,2,~. Here, E} and C} stand for the
number of edges and cells in 77;‘, respectively. Thus, the unknowns in (2.7) can be
expressed as

Ey Ck

h h

uy = E Uk.i Vie,is Dy = E Py i T4
im1 i=1

for k =1,2,v. If we define the vectors U, € Rr and P, € R with components Uk,
and Py ;, respectively, for k = 1,2,~, then the algebraic linear system stemming from
(2.7) is a saddle-point problem of the form

A4, DT o BF o Fyrunl 107
D A4 0 o BY FI'||U; 0
(2.8) 0 0 A, 0 0 BY|Uy _|0
B, 0 0 0 0 O0f|P Q1
0 B, 0 0 0 O0f|P Q2
/R F, B, 0 0 o0]Llr] Q]

In particular, the entries of the matrices A, € REx*Fx B, € RE*EFr and F, €
RE Bk for k=1,2, D € RE2xE1, A, € RE¥*F~ and B, e RE*E~ are

[Ak]i,j = (Klzlvkﬁ’vk)i)ﬂk,TM —+ a;l (kaq,j ‘N, Vi nk)’Y , k = 1’ 27
[Bilij = = (ki V * Vi ) s k=1,2,
[Fklig = (ryi Vi -1k, k=12,
[D]m = a;l ((€— 1)V2,i "Ny, Vy '111),y )

[A)ig = ((AKF) Va5, V) s

[Blig = = (10 V7 ¥,
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where [];; indicates the (7,7)th element of the matrix. Note that the use of the
quadrature rules (-,-)q, v and (-,-), 1 diagonalizes the matrices A1, Ay, and A,.
In turn, the components of the vectors Q) € R, for k = 1,2,+, are given by

(Qrl; = —(qks Tk, M, k=1,2,

[@Q+]5 = —(@y:74,5)v M

where [-]; denotes the jth component of the vector.

The next subsection is devoted to the general case of multiple intersecting frac-
tures. With the aim of achieving a unified notation, we shall group the unknowns cor-
responding to the two-dimensional bulk subdomains into the vectors U? = [Uy, Us]T
and P2 = [Py, P57 and those associated with the one-dimensional fractures into
U' = U, and P! = P,. In these cases, the superscripts stand for the corresponding
dimensions. Using such notations, the preceding system can be rewritten as

Ao 0 BQTJ Fg?l U? 0
0o A o BT Ul 0
(2.9) N - 2| = 2| >
By 0 0 0 P Q
FQ,l Bl,l 0 0 Pt Ql

where, accordingly, Q% = [Q1,Q2]” and Q' = Q,,.

Remark 1. In the case of considering nonhomogeneous Dirichlet boundary con-
ditions at any part of the boundary of the porous matrix and/or the fracture, the
right-hand side of (2.6a) and (2.7a) would be different from zero. As a consequence,
some of the upper components of the independent term in systems (2.8) and (2.9)
would also be nonzero. In turn, assuming Neumann boundary conditions at any part
of the boundary of the porous matrix and/or the fracture would affect not only the
systems (2.8) and (2.9) but also the definition of the function spaces W and W,.

2.5. The case of multiple intersecting fractures. Let us now consider prob-
lem (2.1) posed on a geological domain subdivided into m subdomains Q; for i € Zo =
{1,2,...,m}, naturally separated by a collection of fractures €; ; for (¢,j) € Z;. Here
and henceforth, Z; is a set of indices (i, ), with i, j € Zs, and ¢ < j, that permits
us to label the fractures. In particular, €2; ; denotes a fracture that is adjacent to
subdomains 2; and €2;. In this framework, it holds that

O\ U Qi :UQ,»

(i,9)€Z1 1€7,

with Q; N Q; =0 for i # j.

Following the ideas of the preceding subsection, let us suppose that there exist
certain nonself-intersecting one-dimensional manifolds «y; ; such that the fractures can
be defined as

d; ;
;= {x €Q:x=s+0n,; for somes €~ ; and |0| < 32(5)}’

where d; ;(s) denotes the thickness of the fracture €2, ; at s in the normal direction
and n, ; is the outward unit normal to 7, ; oriented from Q; to Q; for (i,5) € I;.
Let us denote by {0} jk)ezr the T-shaped intersections of three fractures (i.e.,
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FI1G. 2. Schematic representation of the reduced domain (left) and the associated graph (right).

Cije = Vi Ve Vi) and by {0 5.k} (i 5 k.1yezx the X-shaped intersections of four
fractures (for instance, o j k1 =75, ; N7 % NV N Vi)

In the following, we present an example to illustrate the used notations for a
flow domain containing both horizontal and vertical fractures that may intersect.
Figure 2 (left) shows the schematic representation of a domain that contains m = 10
subdomains and 18 fractures. This geometry will be later considered as a benchmark
problem in the section devoted to the numerical experiments (cf. subsection 4.3).

In general, given 4 = 1,2,...,m — 1, let us define the set A; that contains the
indices of the subdomains €2;, with j > 4, that are adjacent to €2;. Specifically, in this
example, we have

N ={2,6,7,10}, Ni={58,9}, N;={8},
N2:{37758}a N5:{65879}7 /\/8:@,
N3 = {4}, Ng = {7,9}, Ny = {10}.

Then the set of indices Z; denoting the one-dimensional collapsed fractures may be
defined as
7 ={(i,j) e N* i€ {1,2,...,m — 1}, j € Ni}.

It is straightforward to see that the number of fractures, in this case 18, is equal to
er:ll |N;|, where |V;| denotes the cardinal of the set A;. In this case, Z; is given by

T ={(1,2),(1,6), (1,7),(1,10),(2,3), (2,7),(2,8), (3,4), (4,5), (4,8), (4,9),
(5,6), (5,8),(5,9), (6,7),(6,9),(7,8), (9,10)}.

In order to define the sets of indices Z!" and Zg that refer to the zero-dimensional
intersections of fractures, we will introduce a suitable graph representing the problem.
In particular, the graph assigns a node to each subdomain and considers a path
connecting the nodes 7 and j as long as j € N; (or, equivalently, whenever the pair of
indices (4, j) € Z1). In other words, the graph nodes stand for the subdomains {§2;}7,,
and the paths represent the collapsed fractures {v; ;} (i j)ez,. Figure 2 (right) shows
the graph corresponding to the reduced domain on the left. In this framework, the
set of indices Z7 associated to T-shaped intersections of three fractures is defined as

I8 = {(i,5,k) € N® 14,5,k € Ty, with i < j <k, such that the graph contains
a closed path passing through the nodes i, j, k}.
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In the example under consideration, the T-shaped intersections—marked with a bullet
in Figure 2 (left)—are given by the set of indices

Iy ={(1,2,7),(1,6,7),(2,7,8),(4,5,8), (4,5,9), (5,6,9)}.

On the other hand, the set of indices Zg* corresponding to X-shaped intersections of
four fractures is defined as

T = {(i,j,k,1) € N* 14,5, k,1 € Tp, with i < j < k < I, such that the graph
contains a closed path passing through the nodes i, j, k,1, and (i, j, k),

(i,5.0), (i, k1), (G, k,0) ¢ Tg }.

In the example, the X-shaped intersections—marked with a cross in Figure 2 (left)—
are given by the set of indices

¥ =1{(2,3,4,8),(5,6,7,8),(1,6,9,10)}.

Note that the set of indices (4,5,6,9) also defines a closed path in the graph, but
(4,5,9),(5,6,9) € T, so it does not represent an X-shaped intersection. Something
similar applies to the sets of indices (1,2,6,7), (4,5,8,9), and (1,2,7,8).

Finally, let us denote by 7(i) the set of all adjacent fractures to subdomain 2;
for i € Z. In particular, v(1) = {y1,2, 71,6, 71,7 71,10}, V(2) = {71,2, V2.3, V2.7, V2.8}
and so on. In turn, o(¢,j) is defined as the set of all intersecting points in which
the fracture ~y; ; is involved for (i,7) € Z;. In this case, 0(1,2) = {0127}, 0(1,6) =
{0'1,6,75 0'1,6,9,10} and so on.

With the aim of defining an interface problem, each fracture permeability K; ;
is decomposed in a similar way to that introduced in (2.4) with corresponding coeffi-
cients K7; and K7';. In this framework, the following mixed-dimensional problem is
formulated for i € Zy and (¢,5) € Zy [7]:

u; = *szpi in Qi,
V.u;, =g¢ in Q;,
w; ;= —dij K, V7pij in 7y 4,
(2.10) Vij Wi =q;+ (wi-n+u;-n;) %n Viri»
@i j(pi — pij) =&ui-n; — (1 = &) uy - n; in v j,
@;j(p; —pij) =&uj-n; — (1 -&ui-n; in 7 j,
pi = 0 on Fiv
Pi; =0 on I' ;,

where a; j = 2K}, /d; j and T'; j = 0, jNI". The notations V7 ;- and V7 ; stand for the
tangential dlvergence and gradient operators, as defined by (2 3), on the fracture ; ;.
At the intersections, we shall impose mass conservation and pressure continuity. In
particular, at every T-shaped intersecting point o; j i, with (4, j, k) € ¥, we impose

E Um,n " iy on = Oa

(2.11)  mnefigk}, (mn)ens
Pm,n = Pi,jk vmvn € {ivjvk}v (m,n) SYAR
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In turn, at every X-shaped intersecting point o; ; k1, with (i, j, k,1) € ZgX, we impose
Z Um.n mn = 0,
(2.12) m.nefi gk}, (mn)els
Pm,n = Pi,j,k,l vm)’n € {iajak?l}a (man) eIl'
For a discussion on more general compatibility conditions at the intersections, we refer
the reader to [29, 30, 34, 69].

In order to define the weak formulation of problem (2.10)-(2.12), we introduce
the spaces for the velocity unknowns [7]

W2 = @{vl € H(div,Q;) : v; -n; € L*(y) Vv € (i)},
i€Zo

W' = @ {vij € H(div];,7ij) : vij-nij; € L*(o) Vo €0a(i,j)},
(i,j)EIl

together with the spaces for the pressures

*= P e, M= P L)

i€y (6,5)€Th
0,7 2 0,X 2
MT = @@ Loin), MY = P L*oijm)-
(i,.k) ETT (i.. k) ETE

Note that the superscript notation of these spaces provides information about the
dimensionality of the corresponding domain in which they are defined. This dimen-
sional decomposition framework has been proposed in [16]. Then the global spaces
W=W?@W!and M =M2a M'® M>T ¢ M°X are endowed with the norms

[v[lv = Z Vil 7200 + IV - Vill72 0, + Z Vi - 4|72
i€Z1s yEY(i)

+ Z ||Vz‘,j||2L2(%j) + Vi, 'Vi,j||2L2(%j) + Z Vi, 'ni,jH%Q(g) ;

(i,5)€TL o€o(i.j)
7[5 = Z 17illZ2 (0, + Z HT%JHL2(VU) + Z 175,k \%2(01-,]-,@
i€ls (4,5)€ETh (i,4,k) €Ly

+ Z ||7”i,j,k,l||i2(a7~,,j,k,l)-

(4,3,k,1) €TEC

In this framework, the bilinear forms a : W x W — R and b: W x M — R are
given, respectively, by

a(mv)zZ(K;lumvi)Qi-i- Z ((dij KT, i) umvvw)%j

i1€Ls (4,9)€T1

+ Z guz n; —(1-¢) u; 'nj)’vi.ni)%,j

(4,J)€T1

+ Z @ j i (€uy-n; — (1 =& u-n;),v;-n;)

(4,J)€T1

Vi, j
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and

b(ur) =Y (Vowirig + » (VIj-wigrig)

1,7
1€1s (1,7)€Ty

— > (winituyomgrg)
(1,5)€Th

- § § Um,n * mn, a5k

(i3 RETd \(mam)e{igk}, (mn)eTs o

- E E Um,n " mon, T4k,

(i,j,k,l)elg( (m,n)e{i,j,k,l}, (m,n)ELy o
Tij,k,l

In turn, the linear form L : M — R associated with the source terms is defined as

L(r) = Z (qirmi)g, + Z (Qi,jari,j)%’j .

i€l (i,5)€Zy

In this setting, the weak formulation of problem (2.10)—(2.12) shows the same struc-
ture as (2.6). However, since the function spaces and forms are newly defined in this
case, we reproduce it here for convenience: Find (u,p) € W x M such that

(2.13) a(u,v) —b(v,p) =0 VveWw,
b(u,r) = L(r) Vr € M.

Following [7, 52|, if the permeabilities in the subdomains and the coefficients K7, /d; ;
and K[ ,d; j are bounded by positive constants, the existence and uniqueness of solu-
tion of this problem can be proved for the case & > 1/2.

In the rest of this subsection, we introduce a mixed finite element discretization
for problem (2.13). Along the lines of subsection 2.3, we suppose that the subdomains
Q; admit a rectangular partition 7, for i € Z,. Further, the meshes 7;" are assumed
to match at the interfaces v; ;; i.e., they induce a unique partition 773 on v;,; for
(i,4) € Zr. Note that the intersecting points of the fractures {0 ;x}q jrezr and
{Ji,j,k,l}(i7j,k,l)ezg( are vertices of some of the preceding meshes. For instance, given

(i,7,k) € I7', the intersecting point o; ;5 is a vertex of the two-dimensional meshes

", 7}h, and T;* and also a vertex of the one-dimensional meshes 77’], 7;hk, and T

In this context, let W x M/ be the lowest order Raviart-Thomas mixed finite
element spaces defined on 7, for i € Zo; let Wf ;X M{fj be the lowest-order Raviart—

Thomas mixed finite element spaces defined on 773 for (i,7) € Zy; and let Mi’fj)k and

M" , be equal to R for (i,7,k) € Z! and (4,4, k,1) € Z5*. Based on the notations

1,5k,
h,2 _ h R, _ h
W2 = (P W/, wh= Wi,
€Ly (i,4)€Ty
h,2 _ h R, _ h
M"? = P M), MM = B M,
i€Zy (4,j)€T1
h,0,T _ h h,0,X _ h
MMOT = My, M = @D MYy

(i,5,k)€TT (4,4,k,1) €T
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the approximation spaces are obtained as W = W2 @ W1 for the velocities and

MM = M2 @ Mt g MPOT @ MM0X for the pressures. Then, using the quadrature
rules introduced in the previous subsection, we define the discrete forms

ah(u,v)zz(K;lui,vi)Q“TM—i— Z (dij K7 ) uZJ’V’J)%J,T

€Ly (4,7)ET,
+ Z fuZ n; — (1—§)uj~nj),vi-ni)7”
(4,J)€TH ’
+ Z o ; CHéwony — (1-¢) u¢~ni),vj'nj)%j,
(4,5)€T1
Lh(T) = Z (Qiaﬁ)gi,M + Z (Qi,jari,j)%’ij-
i€l (4,9)€T1

Finally, the mixed finite element approximation to (2.13) takes the form (2.7) for the
newly defined discrete spaces and forms: Find (up,,pn) € W" x M" such that

an(up, vp) —b(vh,pn) =0 Vv, € W,

(2.14)
b(uh,rh) = Lh(’l’h) Vr, € M".

In order to derive the algebraic linear system underlying (2.14), we group the pres-
sure and velocity unknowns taking into account their dimensions, i.e., uj, = [U?, U]
and p;, = [P2%, P!, P°]T. Note that U? and U' are vectors related to the velocity
unknowns on the two-dimensional subdomains and the one-dimensional fractures, re-
spectively. In turn, P2, P!, and P are vectors related to the pressure unknowns
on the two-dimensional subdomains, the one-dimensional fractures, and the zero-
dimensional intersections, respectively. In this context, the algebraic linear system
stemming from (2.14) may be written as the saddle-point problem

Ao 0 BI, Ffi 0 U? 0
0 Ay, o Bf FE| U 0
(2.15) Bss 0 0 0 0 P?| = |Q?
Fy Biix 0 0 0 p! Q!
0 Fo O 0 0 po 0

This is a generalization of the linear system (2.9) obtained in the case of a single
fracture. In such a case, U? and P? were composed of two blocks, one per subdomain,
while U' and P! consisted of one block corresponding to the only fracture v and
P was lacking since there were no intersecting points. In contrast, for the example
shown in Figure 2, U? and P? would be composed of 10 blocks, one per subdomain;
U' and P! would consist of 18 blocks, one per fracture; and PY would group 9 pressure
unknowns, one per intersecting point of fractures.

3. Monolithic multigrid methods for mixed-dimensional elliptic prob-
lems. In this work, we propose an efficient monolithic geometric multigrid solver for
flow in fractured porous media. Multigrid methods [17, 78] aim to accelerate the slow
convergence of classical iterative methods by using coarse meshes. Since these latter
have a strong smoothing effect on the error of the solution, this error can be properly
represented in coarser grids where the computations are much less expensive.
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Fi1c. 3. Coarsest grid corresponding to the fracture network shown in Figure 2.

Suppose that Ay up = fi is the system to solve, where the matrix Ay corresponds
to a discretization of a partial differential equation on a grid G*, fj, is the right-hand
side, and wy is the unknown vector. In order to apply a standard two-grid cycle for
solving this problem, we perform the following steps:

1. Apply v, iterations of a classical iterative method, called smoother, on G*
(pre-smoothing step).

2. Compute the residual of the current fine grid approximation.

3. Restrict the residual to the coarse grid G¥~1 by using a restriction operator
REL.

4. Solve the residual equation on the coarse grid.

5. Interpolate the obtained correction to the fine grid G* by using a prolongation
operator P,f_l.

6. Add the interpolated correction to the current fine grid approximation.

7. Apply v, iterations of a classical iterative method on G* (post-smoothing
step).

Since we do not need to solve the problem on the coarse grid exactly, we can apply
the same algorithm in a recursive way by using a hierarchy of coarser meshes, giving
rise to the well-known multigrid cycle. It is clear that many details have to be fixed
for the design of an efficient multigrid method since all the components have to be
properly chosen. In particular, we need to specify the hierarchy of grids, the coarse-
grid operators, the type of cycle, the intergrid transfer operators, and the smoothing
procedure. Next, we explain our choices in this work.

3.1. Hierarchy of meshes, coarse-grid operators, and cycle type. The
implementation of a geometric multigrid method requires defining the problem on
grids of various sizes, namely, a hierarchy of grids. Here, such a hierarchy is con-
structed in the following way. First, we consider a coarse grid which is built taking
into account the location of the fractures. This mesh is generated by assuming that
every fracture coincides with an edge of some element in the porous medium grid.
As explained in section 2, we suppose that the grids in the subdomains match at the
interfaces. Thus, in the case of considering m subdomains, we define G° = (J;" | T
as the coarsest possible grid fulfilling this criterion. As an example, if we consider the
fracture configuration shown in Figure 2, the coarsest grid G is given in Figure 3.

Then the hierarchy of computational grids is created by applying a regular refine-
ment process to each cell in that initial mesh. This means that we obtain a sequence



MIXED-DIMENSIONAL GMG FOR FRACTURED POROUS MEDIA B1097

Gk Gk+1
+ + +
4 X + x 4+
+ x + : :
1« 1 < 1 X pressure in the porous matrix
+ velocity in the porous matrix
O pressure in the fracture
+ X 4+ X + I
® velocity in the fracture
+ X + | |
1 x 4 x 4+
il il il
} } }

Fic. 4. Grid refinement procedure and location of the unknowns for both porous matriz and
fracture (in bold line).

of successively finer grids G, G',...,GM. In particular, since we are considering a
quadrilateral partition of the porous medium, G**! is obtained from G* by dividing
each cell into four new elements for the next finer grid, as shown in Figure 4, and this
process continues until a fine enough target grid G is obtained.

Once the mesh hierarchy is generated, we consider a direct discretization of our
problem on each grid. As for the type of cycle, we use W-cycles since we have seen
that this choice gives very good results for solving difficult coupled problems like the
Darcy—Stokes system [48] and the Biot—Stokes system [49].

3.2. Intergrid transfer operators. Now we define the restriction and interpo-
lation operators involved in the multigrid method for solving the mixed-dimensional
problem. We consider different transfer operators for the unknowns belonging to the
matrix and for those located at the fractures. In particular, we choose two-dimensional
and one-dimensional transfer operators, respectively. This means that we implement
mixed-dimensional transfer operators in our multigrid algorithm in order to handle
the problem at once. In matrix form, the chosen restriction operator R,’j_l from grid
G* to G*~! is a block diagonal matrix since the velocity and pressure variables are
uncoupled, and the unknowns in the porous matrix and those in the fractures are
uncoupled too.

Due to the use of quadrature rules in this work, the mixed finite element method
turns into a finite difference scheme on a staggered grid. As a consequence, we con-
sider the standard restriction operators used for this type of mesh. Regarding the
unknowns of the porous medium, we take into account the staggered arrangement
of their location. Thus, the intergrid transfer operators that act in the porous me-
dia unknowns are defined as follows: a six-point restriction is considered at velocity
grid points, and a four-point restriction is applied at pressure grid points, as can be
seen in Figure 5. The prolongation operator P,f;l is chosen to be the adjoint of the
restriction.

Regarding the intergrid transfer operators for the unknowns at the fractures, we
again take into account their one-dimensional staggered arrangement, yielding the
restriction transfer operators shown in Figure 6. Finally, the prolongation operators
are chosen to be the corresponding adjoints.
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F1G. 6. Restriction operators acting at the fracture unknowns.

3.3. Smoother. The performance of a multigrid method is essentially influenced
by the smoothing algorithm. Here, in order to deal with the difficulties generated
by a saddle-point problem, we consider a relaxation iteration among the class of
multiplicative Schwarz smoothers. Basically, this type of iteration can be described
as an overlapping block Gauss—Seidel method, where a small linear system of equations
for each grid point has to be solved at each smoothing step. A particular case of such
relaxation schemes is the so-called Vanka smoother, introduced in [79] for solving the
staggered finite difference discretization of the Navier—Stokes equations.

Due to the mixed-dimensional character of our problem, we propose a smoother
Sy = 525 }LS,% which is written as the composition of three relaxation procedures acting
on the two-dimensional cells of the porous matrix (S7), the one-dimensional elements
in the fractures (Si), and the zero-dimensional intersection points (S3). Next, we
describe these partial relaxation procedures.

1. Relaxation for the porous matriz. The smoother considered for the unknowns
located outside the fractured part of the domain is based on simultaneously
updating all the unknowns appearing in the discrete divergence operator in
the pressure equation. This way of building the blocks is very common in
the Vanka-type smoothers used for Stokes and Navier—Stokes problems. This
approach implies that four unknowns corresponding to velocities and one
pressure unknown (see Figure 7(a)) are relaxed simultaneously, making it
necessary to solve a 5 x 5 system for each cell. Then we iterate over all the
elements in lexicographic order, and for each of them the corresponding box
is solved.

2. Relazxation for the fractures. The relaxation step applied to the unknowns
located at the fractures is again based on simultaneously updating all the
unknowns appearing in the discrete divergence operator in the pressure equa-
tion. This means that, in this case, for each element in the fracture we update
five unknowns: three of them corresponding to the fracture and two of them
to the matrix. In particular, each pressure unknown in the fracture is up-
dated together with the two fracture velocities within the same element and
the two porous matrix velocities located at the edges of the corresponding
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Fi1G. 7. Unknowns updated together by the vanka-type smoothers applied (a) outside the fractures
and (b) within the fractures.

two-dimensional elements that match with that particular fracture element.
This can be seen in Figure 7(b). Notice that there are three unknowns lo-
cated at the same point: the pressure in the fracture and the two velocities
corresponding to the elements adjacent to the fracture.

3. Relazxation for the intersections. At the intersection points of the fractures we
apply a block Gauss—Seidel smoother coupling the fracture velocity unknowns
located at each intersection so that we need to solve a 2 x 2, 3 x 3, or 4 x 4
system of equations on each of these grid points.

The previously defined partial relaxation procedures can be formally written as

NBn
Sh = H (I = Vg, (AP") V0 A) forn=0,1,2,
B=1

where A is the system matrix in (2.15), Np ,, is the number of n-dimensional elements
in the partition, Vg , represents the projection operator from the unknown vector to
the vector of unknowns involved in the block to solve, and matrix AZ" is defined as
ABm = VBJLAV];W

3.4. Implementation and computational cost. The proposed monolithic
mixed-dimensional multigrid method is implemented in a blockwise manner. Given
an arbitrary fracture network composed of vertical and horizontal fractures, the first
step is to construct a uniform rectangular coarse grid so that the fracture network
is contained in the set of edges of the grid. After that, a regular refinement process
is applied on each block in the coarse grid until a target mesh with an appropriate
fine grid scale to solve the problem is obtained. Then, for each step of the multigrid
method, the two-dimensional components are performed in the porous matrix grid
points, whereas within the fractures one-dimensional components are implemented
(notice that in the smoother, for example, this one-dimensional computation includes
also unknowns from the porous matrix). In particular, in the smoother, first the
unknowns in the porous matrix are relaxed by using the standard two-dimensional
Vanka smoother for the Darcy problem, and, after that, a one-dimensional Vanka
smoother is used to update the unknowns located within the fractures. Finally, at the
intersection points between different fractures, the velocities from different fractures
are simultaneously relaxed.
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The computational cost of an algorithm is an important indicator of the efficiency
of the method. Within the framework of multigrid methods, it is well known that, in
general, the most time-consuming part is the relaxation procedure. In particular, for
the mixed-dimensional multigrid method proposed here, the most costly component
is the Vanka-type smoother in the two-dimensional porous matrix due to the fact that
it has to solve small dense 5 x 5 systems of equations for each pressure grid point.
Therefore, the complexity of the proposed two-dimensional Vanka smoother will give
us a good approximation of the computational cost of the multigrid method. Within
this smoothing iteration, the most expensive parts are the matrix-vector multiplica-
tions required to calculate the local residual and the solution of each dense system.
The cost of the calculation of each local defect is O(n), where n is the total number
of degrees of freedom. The cost of solving the system depends on the chosen method:
if the inverse of the system matrix or the resulting L and U factors in a block LU-
factorization are stored, the cost of calculating the correction is O(n). Consequently,
the computational cost per iteration of the Vanka-type relaxation is O(n).

Remark 2. Notice that this strategy can be easily extended to triangular grids in
order to deal with more complex fracture networks. The idea would be to construct
an unstructured coarse triangulation in such a way that the fracture network is part
of its edges and then to apply a regular refinement to the input triangles in order to
obtain a semi-structured triangular grid in which the geometric multigrid method can
be easily applied (see [62, 63]).

4. Numerical results. In this section, we will demonstrate the robustness of the
proposed monolithic mixed-dimensional multigrid method through different numerical
experiments. In addition to seeing that the behavior of multigrid is independent
of the spatial discretization parameter, we will also analyze the robustness of the
algorithm with respect to fracture properties as the permeability. We will consider
the proposed multigrid method as a stand-alone solver and as a preconditioner for
a Krylov subspace iteration. Further, we will study how the multigrid performance
is influenced by considering several fractures and also illustrate the good behavior
of the method on a benchmark problem from the literature. Throughout the whole
section, we will consider £ = 1 in the model, and we will use a W-cycle with two
pre- and two post-smoothing steps since this choice has been shown to provide very
good results when monolithic multigrid solvers are considered for coupled problems
[48, 49]. In our case, we will see that it gives multigrid textbook efficiency [78]. All
the numerical computations have been carried out on a MacBook Pro with a Core i5
2.7 GHz processor and 8 GB RAM running OS X 10.10511 (Yosemite).

4.1. One-fracture test. We first consider a test problem presented in [52] in
which the domain consists of an horizontal rectangular slice of porous medium ) =
(0,2) x (0,1) with impermeable bottom and top boundaries and a prescribed pressure
of zero and one in the left and right sides, respectively. For the permeability of
the porous medium, we consider that K = KT with I the identity tensor. We will
study the case of unit permeability (K = 1), and we will also perform some tests
considering a heterogeneous random medium. Such domain is divided into two equally
sized subdomains by a vertical fracture of width d = 10~2 for which we consider two
different cases: constant permeability in the whole fracture and different values of the
permeability within the fracture. Also, two different types of boundary conditions
are considered in the extremities of the fracture. All these settings are displayed in
Figure 8 for both Case 1 and Case 2.
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Fic. 8. Domain and boundary conditions for the first numerical experiment.

pressure

F1G. 9. Pressure solution for the fracture permeabilities (a) Ky = 100 and (b) K¢ = 0.01 for
the first numerical experiment (Case 1).

4.1.1. Case 1: Constant permeability in the fracture. In this first case
we consider the setting displayed in Figure 8(a). The boundary conditions for the
fracture are Dirichlet in this case. More concretely, py = 1 on the top extremity of
the fracture, and py = 0 on the bottom. The permeability tensor in the fracture is
given by Ky = KI, and we want to study the influence of different values of Ky
on the performance of the multigrid solver. We consider both conductive fractures
and blocking fractures, characterized by high or low permeabilities, respectively. As
an example, in Figure 9 we show the pressure solution obtained for two different
values of Ky: one representative of a high permeability (left side) and the other one
characteristic of a low permeability (right side) in the fracture.

Now, to study the robustness of the mixed-dimensional multigrid method with
respect to different values of the permeability, in Table 1 we display the number of
iterations needed to reduce the initial residual in a factor of 10710 for different grid
sizes and for low and high permeabilities.

We can observe that, for all the values of K, the performance of the multigrid
method is independent of the spatial discretization parameter. Moreover, only a few
iterations are required to satisfy the stopping criterion. In Table 1 we also present the
number of iterations needed to solve this first test case by using the proposed mixed-
dimensional multigrid method as preconditioner of the flexible GMRES (FGMRES)
method. In this case, applying the multigrid method as preconditioner means a single
W (2, 2)-multigrid iteration. The numbers of iterations needed by the preconditioned
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TABLE 1
Number of iterations necessary to solve the first numerical experiment (Case 1) with different
values of a constant permeability tensor in the fracture by using the proposed multigrid method as
stand-alone solver (MG) and as preconditioner (Prec).

32 x 16 64 x 32 128 x 64 256 x 128 512 x 256
Ky MG/Prec MG/Prec MG/Prec MG/Prec MG/Prec

Low 106 8/8 8/8 9/9 9/9 9/9

it 104 8/8 8/8 9/9 9/9 9/9

permeability 5 8/8 8/8 9/9 9/9 9/9
High 102 10/9 9/9 9/9 10/9 10/10
. 104 8/9 9/9 9/10 9/10 10/10
permeability 46 8/9 9/9 9/10 9/10 10/10

0 0.5 1 1.5 2 0 0.5 1 1.5 2

&) = (0.5,0.3,1) &, = (0.5,0.1,3)

Fic. 10. Logarithm of the permeability in the porous matriz, generated using two different sets
of parameters ® = (ve, Ac, 02).

FGMRES are almost identical to those obtained with the direct application of the
multigrid solver.

The application of the proposed multigrid as preconditioner seems more appealing
when dealing with a heterogeneous porous medium. Thus, next we consider the same
example in which the permeability in the porous matrix is represented by a lognormal
random field; that is, the logarithm of the permeability, log;, K, is modeled by a zero-
mean Gaussian random field. In order to generate samples of the Gaussian random
field, we consider the Matérn covariance function

9 2171/(:

7 T (2\/7;> K, (2\5;) :

which is characterized by the set of parameters ® = (v, ., 02) that denote the field
smoothness, the correlation length, and the variance, respectively. Argument r of
function Cg represents the distance between two points, I' is the gamma function,
and K, is the modified Bessel function of the second kind. For our study, we consider
two Matérn reference parameter sets ®; = (0.5,0.3,1) and ®3 = (0.5,0.1,3) with
increasing complexity, and in Figure 10 we display an example of the logarithm of the
permeability for each of the parameter sets. It is clearly observed that for the more
complex set, @5, the fluctuations of the permeability field are much larger than for
D;.

When applying the FGMRES method preconditioned with the proposed mixed-
dimensional multigrid algorithm until the initial residual is reduced in a factor of
10719 we obtain an average number of 9 iterations for the parameter set ®; and
around 13 iterations when the more difficult set @, is considered. In both cases, we

O@ (7‘) =
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Fic. 11. (a) Pressure solution and (b) history of the convergence of the proposed multigrid
method for the first numerical experiment (Case 2).

obtain a preconditioner with a robust convergence independently of the discretization
parameter h.

4.1.2. Case 2: Variable permeability in the fracture. We consider now
the setting displayed in Figure 8(b). In this case, the boundary conditions for the
fracture are homogeneous Neumann conditions on both extremities of the fracture.
The permeability tensor in the fracture is now given by

Kpnl if 0<y<gi or 2<y<l,
K=

Kpl if 1 <y<

FNT S L

In particular, we consider Ky = 102 and Kg =2 x 1073. Due to the low value of
Ky the fluid tends to avoid the middle part of the fracture, representing a geological
barrier. This behavior can be clearly seen in the pressure distribution depicted in
Figure 11(a).

Finally, we want to study if these changes of permeability within the fracture have
some effect on the multigrid performance. For this purpose, in Figure 11(b) we display
the history of the convergence of the multigrid solver for different mesh sizes. More
concretely, the reduction of the residual is depicted against the number of iterations,
and the stopping criterion is to reduce the initial residual until 1078. It is clearly
seen that the convergence of the monolithic mixed-dimensional multigrid method is
independent of the spatial discretization parameter, and the number of iterations are
very similar to those obtained in the previous case with a constant permeability in
the fracture.

4.2. Four-fracture network. In this numerical experiment we want to see the
performance of the proposed multigrid method when several fractures are considered.
For this purpose, we consider a network of four fractures whose width is d = 1072. We
perform two different tests corresponding to nonconnected and connected fractures.
In both cases, we consider a unit square porous medium domain with impermeable
lateral walls and a given pressure on the top (p = 1) and the bottom (p = 0). The
permeability of the porous matrix is given by the identity tensor, and the permeability
in the fractures is given by K¢; = K;I, with Ky; certain constants to be determined
below, for ¢ = 1,2,3,4. Following [8, 31], immersed fracture tips are modeled by
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Fic. 12. (a) Fracture network and settings and (b) corresponding pressure distribution for the
four-fracture experiment (Case 1).

homogeneous flux conditions. Note that, since we are using a reduced model for the
fractures, locally refined grids are not required near the fracture tips.

4.2.1. Case 1: Four nonconnected fractures. The settings considered in this
first case are based on [8] and schematized in Figure 12(a). A set of four horizontal

fractures {v;},_; , is considered, where

71 ={(z,y) |ly=08, 0 <z <08},
vo={(z,y) |y=06, 02 <z <1},
3 ={(z,y) |ly=04, 0< 2 <08},
ya={(r,y) |y=02, 02< 2z <1}.

Fractures 71, v2, and 74 are assumed to be barriers with Ky = Kyy = Kpy = 102,
whereas fracture 3 is highly conductive with K3 = 102

The effect of these fractures on the pressure distribution within the porous medium
domain can be seen in Figure 12(b).

4.2.2. Case 2: Four connected fractures. In the second case, we assume a
fracture network with four fractures which are connected. A schematic picture of the
network together with the properties of the fractures can be seen in Figure 13(a).

In particular, we consider two vertical fractures

3 ={(z,y) |z =02, 0<y <08},
Y2 ={(z,y) | =06, 0 <y <0.6},

with constant permeabilities given by K3 = 102 and K 4 = 1072, respectively.
Moreover, we consider two horizontal fractures

7 ={(z,y) |y=08, 0< 2z <0.6},
vo={(z,y) |y=0.6, 0.2 <z <1}.

The first one has a constant permeability given by Ky = 102, whereas the second
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Fic. 13. (a) Fracture network and settings and (b) corresponding pressure distribution for the
four-fracture experiment (Case 2).

TABLE 2
Number of iterations of the mized-dimensional multigrid method necessary to solve the four-
fracture experiments for different grid sizes.

40 x40 80 x80 160 x 160 320 x 320 640 x 640 1280 x 1280
Case 1 9 9 10 10 11 11

Case 2 11 11 11 12 13 13

one has a variable permeability given by

{m% if 0.2<z<0.6,

Ko = o .

107=%, if 0.6 <z <1.

The pressure solution is shown in Figure 13(b), where we can observe the effect of the
different permeabilities of the fractures on the pressure at the porous matrix.

We perform the proposed monolithic multigrid method for solving both test cases.
Table 2 shows the number of multigrid iterations needed to reduce the initial residual
in a factor of 10710 for different mesh sizes. We can see a very robust behavior of
the multigrid algorithm for both cases since few iterations are enough to satisfy the
stopping criterion.

From this experiment, we observe that the monolithic mixed-dimensional multi-
grid method is also robust when several fractures (connected and/or nonconnected)
are considered.

4.3. Benchmark problem. The last numerical experiment considered in this
work is a benchmark problem for single-phase flow in fractured porous media stated
in [28]. This test is based on a problem proposed in [36] with different boundary
conditions and material properties. The fracture network embedded in the unit square
domain is shown in Figure 14.

We have the Dirichlet condition p = 1 on the right side. Homogeneous Neumann
boundary conditions on the top and bottom are prescribed, whereas on the left side,
we have a constant inflow flow, u-n = —1 (see Figure 14). The permeability matrix
is fixed to K = I, and all the fractures have a constant width d = 1074. As in [28], we
consider two cases for the permeability tensor in the fracture Ky = K(I: a case where



B1106 A. ARRARAS, F. GASPAR, L. PORTERO, AND C. RODRIGO

y A
un=20
1
33
(Z'Z)
un=-1 p=1
11
(3
0
0 u;n:O 1 X

Fic. 14. Configuration and boundary conditions for the network of fractures in the benchmark
problem.
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F1G. 15. (a) Pressure solution and (b) history of the convergence of the proposed multigrid
method for the benchmark problem with highly conductive fractures.

the fluid tends to flow rapidly along the fracture, i.e., Ky = 10%, and a case where
the fluid tends to avoid the fracture, i.e., Ky = 107%. Both cases have been solved
by the proposed mixed-dimensional multigrid method, giving rise to a very efficient
solver independent of the fracture network.

For the first case in which we deal with a highly conductive network, the obtained
pressure distribution is displayed in Figure 15(a). Such a distribution is in accordance
with the reference solution of the benchmark problem published in [28].

The history of the convergence of the monolithic multigrid method is depicted
in Figure 15(b), where the residual reduction is shown for different grid sizes. The
stopping criterion is to reduce the initial residual until 1078, We can observe that,
as expected, the performance of the multigrid method is independent of the spatial
discretization parameter. Moreover, it results in a very efficient solver since only
around 10 iterations are enough to solve the whole fracture network.

Similar results are obtained for the second case, corresponding to a blocking frac-
ture network. Again, the pressure distribution matches perfectly with the reference
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Fi1G. 16. (a) Pressure solution and (b) history of the convergence of the proposed multigrid
method for the benchmark problem with blocking fractures.

solution in [28], as shown in Figure 16(a). We can observe in the picture the pressure
discontinuities reminiscent of the low permeability in the fractures.

In Figure 16(b), we display the history of the convergence of the proposed mixed-
dimensional multigrid method for this second case of the benchmark problem. The
convergence results for the blocking fracture network are similar to those presented for
the conducting fractures. For both cases, the monolithic mixed-dimensional multigrid
method shows an excellent performance.

4.4. Local Fourier analysis test. Local Fourier analysis (LFA) [17, 18, 81]
is the main quantitative analysis to predict the convergence rates of multigrid algo-
rithms. LFA assumes that all operators involved in the multigrid procedure are local,
have constant coefficients, and are defined on an infinite grid neglecting the effect of
boundary conditions. It seems not possible, or at least it is not clear, how to carry
out LFA for the mixed-dimensional multigrid method proposed here. Nevertheless, we
have performed LFA to predict the convergence of the multigrid based on the Vanka
smoother for the Darcy problem considered in the porous matrix. The analysis of
Vanka-type smoothers by LFA requires a special strategy, and here we have followed
the ideas presented in [64]. A detailed explanation of the analysis performed here can
be found in Appendix A. From this analysis, we observe that the convergence rates
obtained for the whole problem including fractures are very close to those provided
in the case of simple Darcy flow. This can be seen in Table 3, where the two-grid
convergence factor predicted by LFA for Darcy flow is compared with the asymptotic
convergence rates obtained in the numerical experiments carried out in this work.
We consider here four smoothing steps, as in the numerical tests performed. It is
observed that the computationally obtained convergence factors are very similar to
the one estimated by LFA and vary from 0.04 in the first experiment to 0.085 in the
benchmark problem, which represents the worst case. This means that the imple-
mentation and the treatment in the fractures is done in an optimal way since the
convergence of the whole fracture network problem is very similar to that for the
Darcy flow problem.

5. Conclusions. We have proposed a monolithic mixed-dimensional multigrid
method for solving single-phase flow problems in porous media with intersecting frac-
tures. The geometric multigrid algorithm is based on combining two-dimensional
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TABLE 3
Comparison between the predicted LFA two-grid convergence factor for the Darcy problem and
the asymptotic convergence factors experimentally obtained from the numerical erperiments per-
formed in the fractured porous media.

One fracture Four fractures
Test 4.1.1 | Test 4.1.2 | Test 4.2.1 | Test 4.2.2

004 ] 0039 [ 0077 [ 0045 [ 008 [ 0.08

LFA Benchmark

smoother and intergrid transfer operators in the porous matrix with their one-
dimensional counterparts within the fracture network. This exotic union gives rise
to a very efficient solver for this type of problem. The robustness of the proposed
method with respect to the permeability of the fractures, the number of fractures,
and the grid size has been shown through different numerical experiments, including
a benchmark problem from the literature.

A limitation of the proposed method is the need for a configuration of possibly
intersecting horizontal and vertical fractures. The extension of the algorithm to more
general situtations involving fractures with any orientation would require the use
of unstructured coarse meshes. Accordingly, the discretization scheme, now based
on the two-point flux approximation method, should be replaced by multipoint flux
approximation techniques. This primary extension is under current research.

On the other hand, throughout this work, we have considered nondeformable
porous media in the presence of fractures. A further extension of the proposed solver
would be the approximation of flow problems in poroelastic fractured media. In the
framework of hydraulic fracturing, such problems have been extensively tackled in the
literature. Some significant contributions in this field can be found in [20, 22, 27, 37,
42, 46, 53, 55, 58, 60, 61, 68, 70, 71]. More specifically, the crack propagation process
has been handled using phase-field [51, 54] and XFEM [74, 75, 76] methods. Some
recent approaches to control the conditioning of these latter on elastic fractured media
are proposed in [1, 2, 3, 4]. The design of multigrid solvers for fracture problems in
poroelastic media will be a topic of future research.

Appendix A. LFA for Darcy flow. In this appendix, we present the basis to
perform LFA for a multigrid method for the Darcy equation based on the five-point
Vanka smoother introduced in Figure 7(a) in section 3.3. To perform this analysis, we
first extend the two-dimensional staggered grid considered in this work to an infinite
mesh (see Figure 17).

In particular, this infinite grid is composed of three different types of grid points
so that we can decompose the global mesh into three infinite subgrids as G* = G¥ U
G% U G% such that

G? = {(xjayj) = (klakQ)hk + (61762) | kl?kQ S Z}7
where
(0,0) for G¥ pressure grid points,

(61,02) = { (h/2,0) for G§ grid points for the horizontal velocities,
(0, h/2) for G§ grid points for the vertical velocities.

According to this decomposition of the infinite grid, we need to define suitable vector-

grid functions
elemxl/hk ele?j’yl /h;€

@k(eyxk) = elezmz/hke’beyyz/hk
elewwg/hk eleyyg/hk
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X pressure in the porous medium
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+ wvelocity in the porous medium
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+ x 4+ x 4+ x + x 4
t t t t

F1c. 17. Infinite grid and location of the unknowns for the Darcy problem.

where 0 = (0,,0,), x* = (x},x§,x§) with x¥ = (2;,9;) € G¥, and hy, is the
spatial grid size in the mesh G*, which is considered equal in every direction for
simplicity in the presentation. These vector-grid functions are the so-called Fourier
modes, and they form a unitary basis yielding the so-called Fourier space F(G*) :=
span{px(0,x*); 8 € © = (—7,7]?}. Notice that the definition of the Fourier com-
ponents is different from the standard LFA on collocated grids and yields a more
involved LFA approach. It is still fulfilled, however, that the Fourier modes are for-
mal eigenfunctions of any discrete operator Ay that satisfies the assumptions of the
LFA stated in section 4.4, that is, Appi(0,x%) = AL(0)pr(0,x*), where A (0) is
the so-called Fourier symbol of operator Ay and denotes the representation of such
operator on the Fourier space. By denoting u, v, and p the horizontal and vertical
velocity and the pressure unknowns in our problem, respectively, we can write the
discrete operator in block form as

Apu Ao AU KT 0 o,
Ap= | A Avw A | =| o K- 9, |,
AP APY APP o, 9, 0

and the corresponding Fourier symbol would be given as

Auu Auv Aup
B é/c fik ’ik K1 0 s, Sy = 2 sin a—x,
Ap= | Apv A AP | = 0 K' s, |, where 2hz 92
Aviu Aviv Avip Sy Sy 0 Sy = E sin ?y

Similar computations can be done to obtain the Fourier symbol of classical relaxation
methods, which provides the relation between the initial and the fully corrected er-
rors for the involved variables. Let us denote e,’™, '™, and e}"™ the initial errors
at m-iteration for u, v, and p, respectively, and eZ"mH, eZ’mH, and ei’mﬂ the cor-
responding final errors. The overlapping block smoothers considered here, however,
require a special LFA. This is due to the fact that they update some variable more
than once because of the overlapping of the local subdomains which are simultane-
ously solved, and this has to be taken into account in the analysis since it causes
some intermediate errors to appear in addition to the initial and final errors. Since
the velocities are the unknowns that are updated twice, we need to introduce the

1 1
intermediate errors eZ’er? and eZ’erQ. Following the LFA techniques presented in
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[50, 57, 64, 72], we apply this analysis to the five-point Vanka smother considered for
the two-dimensional Darcy flow. This smoother simultaneously updates the equations
of the unknowns p; j, w;11/2.5, Wi—1/2,5, Vi j+1/2, and v; j_1/2, as shown in Figure 7(a).
We can write the system to solve for each pressure grid point (i,7) in terms of cor-
rections and residuals as follows:

Kfl 0 0 0 —% 5ui+1/27j T7Z+1/2,j
. 0 K1 0 ) 0 —lg gvi,j+1/2 Tii+1/2
1 0 0 K- 0 1 Ui . — ré .
. o o o Kk I Sty n o2
! ) ) . n i,j—1/2 i,j—1/2

AR T T A oPi; "

Taking into account that within such a block it is the first time that we update w; ;12 ;
and v; ji1/2, whereas u;_y/5 ; and v; j_1/o are updated for the second time, we can
write the corrections in terms of the errors as follows:

u,m+ 3

2
§ui+1/2,j = x7,+1/2 ]) - ek ( i+1/2,j)v

(
0V; j1/2 _ek 2(95 ]+1/2) ey " (z ?j+1/2)7

u,m+1

um+
5Ui—1/2,j: T 1/2]) €k 2@?4/2,;‘)7
)

(7
+1

5UZ,J 1/2_ek ({E?] 1/2
( 1

;m+1
B (@) - <$ij)-

opij = e

Similarly, we can write the residuals on the right-hand side in terms of the errors. The
LFA assumptions state that the errors can be written as a formal linear combination
of Fourier modes. Without loss of generality, let the initial, intermediate, and fully
corrected errors be given by a single Fourier mode multiplied by a coefficient a(l)(G),

1(,)(6?)7 or af,l)(a), where the superscript | represents the number of times that the
variable in the subscript has been already updated in the current smoothing iteration
(1=0,1,2). In this way, (A.1) can be rewritten in terms of such coefficients as

(1)(9)
) I
Pl a2 | =Q| oV (6
G ) (0)
()

so that the updated Fourier coefficients can be given in terms of the nonupdated ones
as follows:

at”(0)
at” () ot (0)
aP@) | =PQ) | ()
() oy (0)
o (6)

From the previous expression, we can obtain the relation between the initial and fully
corrected errors, which is the Fourier symbol of the relaxation, by considering the
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bottom 3 x 3 block of matrix (P~1Q), that is,

o) ] ol () B
agfka) = Si(8) a5,2><9> , where Sy,(8) = (P7'Q) (3.5,1.3}-
) ay (8)

In order to study the behavior of the two-grid cycle (and as a consequence of the
multigrid method), we investigate the effect of the multigrid components and con-
sequently of the two-grid operator My, 1 = S;* (I, — P,iﬂlA,;EIRﬁ_lAk) 2 acting
on the Fourier space. With this purpose, we need to distinguish the low- and high-
frequency Fourier components. This distinction depends on the coarsening strategy
under consideration. Since standard coarsening (i.e., coarsening by a factor of two)
is assumed here, the low- and high-frequency sets are given by 0, = (-7, 5]2 and
Ohigh = O\Ojow, respectively. This is important because in the transition from the
fine grid G* to the coarse grid G*~!, each low frequency 8 = 8°° ¢ ©,,,, is coupled
with three high frequencies, 8'', 8'°, and 6°!, given by

07 = 0" — (isign(0,), jsign(6,))r, i,5 =0, 1.

This coupling gives rise to a decomposition of the Fourier space into four-dimensional
subspaces, the so-called subspaces of 2h-harmonics, which are generated by the Fourier
modes associated with coupled frequencies as follows:

f4(000) := span {W(aoo, ), <pk(011, ), gok(Olo, s gok(0017 )} , where 8°° € ©,,,,.

Since the two-grid operator leaves the four-dimensional subspaces F*(6°) invariant,
the representation of Mj ;1 on the Fourier space, Mk,k,l(é?), has a block-diagonal
structure regarding the partitioning in 2h-harmonics, and therefore it is possible to
efficiently calculate the LFA two-grid convergence factor peo, = p(Mpy k—1) as the
maximum of the spectral radius of the corresponding 4 x 4 blocks, that is,

P2g = Sup P(Mk,kA(@OO))'
eooeglow
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