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ON THE DYNAMICS OF FERROFLUIDS: GLOBAL WEAK SOLUTIONS TO

THE ROSENSWEIG SYSTEM AND RIGOROUS CONVERGENCE TO

EQUILIBRIUM

RICARDO H. NOCHETTO, KONSTANTINA TRIVISA, AND FRANZISKA WEBER

Abstract. This article establishes the global existence of weak solutions to a model proposed
by Rosensweig [27] for the dynamics of ferrofluids. The system is expressed by the conservation
of linear momentum, the incompressibility condition, the conservation of angular momentum,
and the evolution of the magnetization. The existence proof is inspired by the DiPerna-Lions
theory of renormalized solutions. In addition, the rigorous relaxation limit of the equations
of ferrohydrodynamics towards the quasi-equilibrium is investigated. The proof relies on the
relative entropy method, which involves constructing a suitable functional, analyzing its time
evolution and obtaining convergence results for the sequence of approximating solutions.

1. Introduction

1.1. Motivation. Ferrofluids are stable colloidal dispersions of nano-sized particles of ferro- or
ferrimagnetic particles in a carrier liquid. A crucial property of ferrofluids is that they can be
actuated by magnetic fields, upon changing the position and strength of magnets, and be forced
to flow to precise locations or display a specific patterns. These complex fluids have an array
of engineering and biomedical applications. Ferrofluids have the capability of reducing friction,
making them useful in a variety of electronic and transportation applications. They can also be
used as a liquid seal in many electronic devices, for instance in computer hard-drives where they
can be utilized to form a seal around the rotating shaft [23, 28] or in loudspeakers for cooling
and damping unwanted resonances [16]. On the other hand, ferrofluids have been instrumental
in transporting medications to exact locations within the human body (drug delivery), they have
been of use as contrasting agents for Magnetic Resonance Imaging (MRI) scans. More recently,
ferrofluids have been of use in on-going research investigations aiming at the creation of an artificial
heart; by surrounding the heart with magnets, the ferrofluid fixed to frame of the heart will expand
and contract when needed, imitating the pumping of the real organ. We refer the reader to [22]
and [34] for an overview of relevant biomedical applications.

Although our understanding of the dynamics of ferrofluids has evolved in recent years, many
aspects of ferrohydrodynamics remain largely unexplored, especially experimentally. This article
is part of a research program which aims at enhancing our understanding of the properties and
dynamics of ferrofluids through the analysis of models that are relevant to practical applications.

1.2. Governing Equations. The goal of this work is the rigorous investigation of the solvability
of the equations proposed by Rosensweig [27] that describe the flow of an incompressible ferrofluid
subjected to an external magnetic field. In this model, the dynamics of the linear velocity u, the
pressure p, the angular momentum w and the magnetization m on a bounded simply connected
domain Ω ⊂ Rd, d = 2, 3, are governed by the conservation of linear momentum, the incompress-
ibility condition, the conservation of angular momentum, the transport of the magnetization and
the magnetostatic equation for the magnetic field h as follows (cf. [27, 26, 21]):

ut + (u · ∇)u− (ν + νr)∆u+∇p = 2νr curlw + µ0(m · ∇)h, (1.1a)

divu = 0, (1.1b)
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wt + (u · ∇)w − c1∆w − c2∇ divw+ 4νrw = 2νr curlu+ µ0m× h, (1.1c)

mt + (u · ∇)m = w×m− 1

τ
(m− κ0h), (1.1d)

curlh = 0, (1.1e)

div(h+m) = 0, (1.1f)

with suitable boundary conditions discussed later. The forcing term

F = µ0(m · ∇)h
in the linear momentum equation is the so-called Kelvin force. The term µ0m represents the
vector moment per unit volume. The effective magnetizing field h is given by

h = ha + hd, (1.2)

where ha is the so-called applied magnetic field and hd is the demagnetizing field. The former is
assumed to be smooth and both rotation and divergence free in R3. The latter is rotation free
in R3. Equation (1.1f) is the Maxwell equation divb = 0 in R3 for the magnetic induction given
by b = µ0(h +m) in Ω and b = µ0h outside Ω where the magnetization m vanishes. Invoking
the customary, although somewhat arbitrary, assumption that hd = 0 outside Ω along with the
continuity of the normal components of b and ha across the boundary Γ of Ω, we deduce

hd · n = −m · n on Γ, (1.3)

where n is the unit outer normal on Γ. Whenever the magnetization m is small relative to ha, the
demagnetizing field hd is negligible and the effective magnetic field satisfies h ≈ ha. If h is a given
field rather than the solution of the magnetostatics equations (1.1e)–(1.1f)), then the analysis of
the reduced system (1.1a)–(1.1d) simplifies considerably. However, recent numerical simulations
for a related two-phase flow model [18] indicate that the reduced system may not be able to
capture the whole physical behavior of ferrofluids. The famous Rosensweig instability, for example,
can only be reproduced when hd is present or equivalently when h solves the magnetostatics
equation (1.1e)–(1.1f) (see [18, Figures 6 and 7]). We will therefore focus here on the analysis of
the full system (1.1).

The model (1.1) is derived under the following physically grounded, yet restrictive, hypotheses:

(A1) The ferromagnetic particles are spherical.
(A2) The ferrofluid is a monodisperse mixture, in the sense that the ferromagnetic particles are

of the same mass/size.
(A3) The density of ferromagnetic particles (number of particles per unit volume) in the carrier

liquid is considered to be homogeneous.
(A4) No agglomeration, clumping, anisotropic behavior (e.g. formation of chains), nor particle-

to-particle interactions are considered.
(A5) The induced fields (m and hd) are unable to perturb the applied magnetic field ha.

Even though these assumptions might restrict the applicability of the Rosensweig model, there is a
large class of physical situations in which they apply (cf. [27]). The derivation follows the strategy
that is common in the theory of thermodynamics, namely we start stating fundamental principles
such as the conservation of linear and angular momentum, the conservation of mass and the evolu-
tion of the magnetization in the presence of stress tensors and other quantities which satisfy rather
general constitutive laws. Next, one proceeds by writing the Clausius-Duhem inequality and with
the calculation the entropy production rate, which according to the second law of thermodynam-
ics is assumed to be a nonnegative measure. This requirement imposes additional restrictions on
various quantities (tensors, forces and parameters) in the system, which result to the form of the
nonlinear system stated above. In particular, the material constants ν, νr, µ0, j, cα, cd, c0, κ0 are
assumed to be nonnegative and are chosen in such a way so that the Clausius-Duhem inequality
is satisfied (cf. [27, 21, 15]).

We refer the reader to Rinaldi and Zahn [25], Sunil, Chand and Bharti [31], Zahn and Greer [35]
for further remarks.
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Initial and Boundary Conditions. We assume that the initial data is such that

u(0, x) = u0(x) ∈ L2
div(Ω), w(0, x) = w0(x) ∈ L2(Ω), m(0, x) = m0(x) ∈ L2(Ω). (1.4)

The external applied field ha is assumed to be smooth in space and time and divergence free.
Moreover, we use the boundary conditions on Γ := ∂Ω

u(t, ·)|Γ = 0, w(t, ·)|Γ = 0, t ∈ [0, T ]. (1.5)

Under the assumption that the domain Ω is simply-connected, we can write h as the gradient of
a potential h = ∇ϕ, by (1.1e), whence (1.1f) becomes an elliptic equation for the potential ϕ

−∆ϕ = divm. (1.6)

In view of (1.2) and (1.3), we infer h ·n = (ha−m) ·n and a Neumann boundary condition for ϕ

∂ϕ

∂n
= (ha −m) · n on [0, T ]× Γ with

ˆ

Ω

ϕ(t, x)dx = 0. (1.7)

We refer to [19, Section 2.2] for a physically motivated discussion of boundary conditions. We
observe that m dictates hd. Since curlhd = 0 there exists a scalar potential ζ such that ∇ζ = hd

in Ω. Invoking div(h+m) = div(hd +m) = 0 along with (1.3), we deduce

−∆ζ = divm in Ω,
∂ζ

∂n
= −m · n on Γ.

This determines a unique function ζ with vanishing mean-value, hence the crucial field hd.
Existence of global weak solutions to the system (1.1a)-(1.1f) in the presence of additional

diffusion σ∆m, σ > 0, in (1.1e) has been shown by Amirat et al. [2]. Results on the local in time
existence of strong solutions has been shown [1]. To the best of our knowledge our article is the
first that establishes the global existence of weak solutions in the absence of additional diffusion
in the magnetization equation. In particular, we prove the following existence result,

Theorem 1.1 (Global Existence). Assume the initial data (u0,w0,m0) satisfies (1.4), the ef-
fective magnetizing field h is given by (1.2) and the applied magnetizing field ha is smooth and
divergence free. Then the problem (1.1a)–(1.1f) with boundary conditions (1.5) and (1.7) has a
global weak solution U := (u,w,m,h), as in Definition 2.1, satisfying the energy inequality

ˆ

Ω

E(U)(t)dx +

ˆ t

0

ˆ

Ω

D(U)(s) dxds ≤
ˆ

Ω

E(U)(0)dx + µ0

ˆ t

0

ˆ

Ω

∂tha · h dxds, (1.8)

where the energy E is defined by

E(U) = 1

2

(
|u|2 + |w|2 + µ0

κ0
|m|2 + µ0|h|2

)
, (1.9)

and the dissipation functional D is defined by

D(U) =
(
ν|∇u|2 + c1|∇w|2 + c2| divw|2 + νr| curlu− 2w|2 + µ0

τκ0
|m− κ0h|2

)
. (1.10)

Remark 1.2. Since by Young’s inequality
∣∣∣∣µ0

ˆ t

0

ˆ

Ω

∂tha · h dxds
∣∣∣∣ ≤

µ0

2

ˆ t

0

ˆ

Ω

|∂tha|2 dxds+
µ0

2

ˆ t

0

ˆ

Ω

|h|2 dxds,

and ha is smooth, we combine the energy inequality (2.1) with Grönwall’s inequality to obtain that

u,w ∈ L∞(0, T ;L2(Ω)) ∩ L2(0, T ;H1(Ω)), m,h ∈ L∞(0, T ;L2(Ω)),

and hence the term µ0

´ t

0

´

Ω
∂tha · h dxds on the right hand side of the energy inequality (2.1) is

bounded.

Remark 1.3. The technique used to prove this result can be extended in a straightorward fashion
to prove existence of global weak solutions of the diffusive interface model for two-phase ferrofluid
flows that was introduced in [18].
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This theorem is established by constructing a suitable sequence of approximating solutions
inspired by the result of Amirat et al. [2]. The lack of sufficient regularity in the sequence of
approximate solutions, as obtained employing the energy estimate, presents a big challenge in the
analysis. More specifically, the main energy bound only yields m ∈ L∞(0, T ;L2(Ω)) uniformly
for the approximating sequence of solutions. The reader should contrast this space setting to the
result in [2], where the additional artificial dissipation term in the magnetization equation yields
H1-regularity in space.

Another major difficulty arises due to the presence of the a priori unbounded Kelvin force term
µ0(m · ∇)h in the momentum equation. This challenge is addressed by deriving a new identity
(see Lemma 2.3) that allows us to define the Kelvin force term in a distributional sense, and the
definition of weak solutions of (1.1) is modified accordingly in light of the new formulation.

In addition, passing to the limit in the approximations requires us to establish compactness in
L2 for the approximating sequence of the magnetization m. This is achieved by proving that the
magnetization is ‘renormalized’ in the spirit of DiPerna-Lions theory for compressible fluids [13, 14].
Combining this new feature of the equation with an additional identity obtained for the weak
limits of the magnetization and the magnetic field from the magnetostatics equation assists in
establishing the result.

The long term goal of this research effort is the construction of convergent numerical schemes
for the approximation of this nonlinear system.

1.3. Relaxation time and quasi-equilibrium. In practical applications, the parameter τ > 0
in equation (1.1d), the relaxation time, is often very small. According to [29], it is given by

1

τ
=

1

τB
+

1

τN
, or τ =

τBτN
τN + τB

,

where τB is the Brownian time and τN is the Néel time. In Brownian relaxation, the magnetiza-
tion vector m rotates synchronically with the particle, while in the Néel relaxation mechanism,
the magnetization vector m rotates inside the particle and the particle itself does not rotate. De-
pending on the particle size, one or the other mechanism dominates. For particles with a smaller
diameter than the so-called Shliomis’ diameter dS , the Néel time satisfies τN ≪ τB and hence
τ ≈ τN . For bigger particles, τB ≪ τN and hence τ ≈ τB . The Néel time can be very small: For
example for particles with diameter d ≈ (0.3 − 0.5)dS it is of order τ ≈ τN ≈ 10−9s and hence
the magnetization vector m becomes parallel to the magnetic field vector h almost immediately.
For the opposite case, τ ≈ τB ≈ 10−5 − 10−4s and hence the magnetization vector does not need
to be parallel to h [29]. Rinaldi [24, page 54] states that the relaxation time may be of the order
τ ≈ 10−7 − 10−5s. One may therefore assume that it is of interest to investigate the behavior
solutions of (1.1) as τ → 0. Formally, setting τ = 0 in (1.1), we obtain the following system:

Ut + (U · ∇)U− (ν + νr)∆U +∇P = 2νr curlW + µ0(M · ∇)H, (1.11a)

divU = 0, (1.11b)

Wt + (U · ∇)W − c1∆W − c2∇ divW + 4νrW = 2νr curlU, (1.11c)

M = κ0H, (1.11d)

curlH = 0, (1.11e)

div(H+M) = 0, (1.11f)

with boundary conditions

U = 0, W = 0, H · n =
1

1 + κ0
ha · h, on [0, T ]× ∂Ω.

The second objective of this article is to establish with rigorous arguments that under suitable
assumptions on the initial data, we have that in the relaxation limit τ → 0,

m→ κ0H

and the sequence of solutions (uτ ,wτ ,mτ ,hτ ) converges to a solution of (1.11) when τ → 0. In
fact, the following can be shown rigorously:
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Theorem 1.4. Denote Uτ := (uτ ,wτ ,mτ ,hτ ), hτ = ∇ϕτ a weak solution of system (1.1) for
a given τ > 0. Then as τ → 0, a subsequence of {Uτ}τ>0 converges in L2([0, T ]× Ω) to a weak
solution of (1.11).

When the solution of the limiting system (1.11) is smooth, which is the case for short times and
smooth data and in two space dimensions for smooth enough data (this is shown in Appendix A),
we show a convergence rate in τ for the approximate solutions of (1.1):

Theorem 1.5. If the solution of (1.11) satisfies U,W ∈ L∞(0, T ; Lip(Ω)), H = ∇Φ ∈ L2(0, T ;H1(Ω)),
∂tH ∈ L2([0, T ]× Ω); and the initial data for (1.1) and (1.11) satisfy

‖u0 −U0‖2L2(Ω) + ‖w0 −W0‖2L2(Ω) + ‖m0 −M0‖2L2(Ω) ≤ Cτ,
then the solutions Uτ of (1.1) converge as τ → 0 to the solution of the limiting system (1.11) at
the rate:

‖uτ −U‖L2(Ω) (t) + ‖wτ −W‖L2(Ω) (t) + ‖mτ −M‖L2(Ω) (t)

+ ‖hτ −H‖L2(Ω) (t) + ‖∇(uτ −U)‖L2([0,t]×Ω) + ‖∇(wτ −W)‖L2([0,t]×Ω) ≤ C
√
τ(1 + exp(Ct)).

The proof of the latter result uses the relative entropy method that was introduced by Dafer-
mos [5, 6] and DiPerna [7] in the context of hyperbolic systems of conservation laws, see also [4].
One constructs a suitable relative entropy functional that quantifies the difference between Uτ and
the solution of the limiting system U0 = (U,W,M,H) in L2 and bounds its time evolution in
terms of τ . This is achieved by a careful estimation of all the resulting growth terms using the
available bounds for the solution in an appropriate way.

1.4. Outline of this article. The outline of this article is as follows: In Section 2 we present
preliminaries and the energy law that governs the Rosensweig model. In Section 3 we present
the proof of the global existence results for the Rosensweig model. Section 4 is devoted to the
relaxation to equilibrium and the proof of Theorems 1.4 and 1.5. Finally, in Appendix A we
discuss the global existence of classical solutions in R2.

2. Preliminaries

We start by introducing some notation: We denote by L2
div(Ω) the space of divergence free

L2(Ω) functions and by H1
div(Ω) the space of divergence free functions in H1

0 (Ω) (these can be
obtained as the closures of C∞

0 (Ω) ∩ {div u = 0} in L2(Ω) and H1
0 (Ω) respectively (c.f. [32]):

L2
div(Ω) = {u ∈ L2(Ω); div u = 0, u · n|∂Ω = 0},

H1
div(Ω) = {u ∈ H1(Ω); div u = 0, u|∂Ω = 0}.

For a Banach space X we let Cw(0, T ;X) be the space of functions that are weakly continuous in
time, that is, if v ∈ Cw(0, T ;X), then for any s→ t,

〈v(tn), g〉 → 〈v(t), g〉, for s→ t, ∀ g ∈ X∗,

where we denoted by X∗ the dual space of X and by 〈·, ·〉 the dual product on X,X∗. Now we
are ready to define a notion of weak solution for the Rosenzweig system (1.1):

Definition 2.1 (Distributional solution of the Rosensweig model). Let T > 0, Ω ⊂ Rd, d = 2, 3,
a smooth, simply connected domain. We say that U := (u,w,m,h) is a global weak solution of
the system (1.1) if the following conditions are satisfied:

(i) The solution U := (u,w,m,h) satisfies the regularity requirements:

u ∈ L∞(0, T ;L2
div(Ω)) ∩ L2(0, T ;H1

div(Ω)) ∩ Cw(0, T ;L
2(Ω))

w ∈ L∞(0, T ;L2(Ω)) ∩ L2(0, T ;H1
0 (Ω)) ∩ Cw(0, T ;L

2(Ω))

m ∈ L∞(0, T ;L2(Ω)) ∩ Cw(0, T ;L
2(Ω))

h ∈ L∞(0, T ;L2(Ω)) ∩ Cw(0, T ;L
2(Ω));
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(ii) the function h is such that h = ∇ϕ, where ϕ ∈ L∞(0, T ;H1(Ω)) and satisfies for all
ψ ∈ H1(Ω),

ˆ

Ω

∇ϕ · ∇ψdx =

ˆ

Ω

(ha −m) · ∇ψ dx,

with Neumann boundary conditions:

∂ϕ

∂n
= (ha −m) · n on [0, T ]× Γ with

ˆ

Ω

ϕ(t, x)dx = 0;

(iii) Equations (1.1a)–(1.1d) hold weakly, that is for any test functions ψi ∈ C1
c ([0, T ) × Ω)

i = 1, . . . , 4 with vanishing trace on ∂Ω and divψ1(t, x) = 0 for all (t, x) ∈ [0, T ]× Ω,

ˆ T

0

ˆ

Ω

[u · ∂tψ1 + ((u · ∇)ψ1) · u− (ν + νr)∇u : ∇ψ1] dxdt +

ˆ

Ω

u0 · ψ1(0, x)dx

=

ˆ T

0

ˆ

Ω

[−2νrw · curlψ1 + µ0 ((((m + h) · ∇)ψ1) · h)] dxdt
ˆ

Ω

u(t, x) · ∇ψ2(t, x)dx = 0, a.e. t ∈ [0, T ]

ˆ T

0

ˆ

Ω

[w · ∂tψ3 + ((u · ∇)ψ3) ·w − c1∇w : ∇ψ3 − c2 divw divψ3] dxdt+

ˆ

Ω

w0 · ψ3(0, x)dx

=

ˆ T

0

ˆ

Ω

[4νrw · ψ3 − 2νru · curlψ3 − µ0 (m× h) · ψ3] dxdt

ˆ T

0

ˆ

Ω

[m · ∂tψ4 + (u · ∇)ψ4 ·m] dxdt+

ˆ

Ω

m0 · ψ4(0, x)dx

=

ˆ T

0

ˆ

Ω

[
−(w×m) · ψ4 +

1

τ
(m− κ0h) · ψ4

]
dxdt

where u0 ∈ L2
div(Ω), w0,m0 ∈ L2(Ω) are the initial conditions;

(iv) The solution U := (u,w,m,h) satisfies the following energy inequality,
ˆ

Ω

E(U)(t)dx +

ˆ t

0

ˆ

Ω

D(U)(s) dxds ≤
ˆ

Ω

E(U)(0)dx + µ0

ˆ t

0

ˆ

Ω

∂sha · h dxds. (2.1)

where the energy E is defined by

E(U) = 1

2

(
|u|2 + |w|2 + µ0

κ0
|m|2 + µ0|h|2

)
, (2.2)

and the dissipation functional D is defined by

D(U) =
(
ν|∇u|2 + c1|∇w|2 + c2| divw|2 + νr| curlu− 2w|2 + µ0

τκ0
|m− κ0h|2

)
. (2.3)

Remark 2.2. For smooth solutions, the energy inequality (2.1) in fact becomes an equality and
can be obtained by taking the inner product of equation (1.1a) with u, equation (1.1c) with w,
equation (1.1d) with (µ0

κ0
m − µ0h) and the time-differentiated equation (1.1f) with −µ0ϕ, adding

all of them, integrating over Ω, and then integrating by parts a couple of times.

2.1. Auxiliary results. If h does not have more spatial regularity than L2(Ω), the Kelvin force
µ0(m ·∇)h in (1.1a) is not well-defined, not even in a weak sense. Therefore, we used the following
identity to define weak solutions in Definition 2.1, which allows us to make sense of the Kelvin
force for m and h with little regularity.

Lemma 2.3. Any sufficiently smooth solution of (1.1) satisfies

(m · ∇)h = div ((m+ h)⊗ h)− 1

2
∇
(
|h|2

)
. (2.4)
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Proof. We write the differential operators in terms of their components:

((m · ∇)h)(j) =
3∑

i=1

m(i)∂ih
(j)

=

3∑

i=1

∂i

(
m(i)h(j)

)
−

3∑

i=1

∂im
(i)h(j)

= div
(
mh(j)

)
− divm h(j).

(2.5)

We use equation (1.1f) to replace the divergence of m in the last expression:

div
(
mh(j)

)
− divm h(j) = div

(
mh(j)

)
+ divhh(j). (2.6)

By (1.1e), h is the gradient of a potential ϕ, therefore

divhh(j) = ∆ϕ∂jϕ

=

3∑

i=1

∂2iiϕ∂jϕ

=

3∑

i=1

(∂i (∂iϕ∂jϕ)− ∂iϕ∂i∂jϕ)

=

3∑

i=1

(
∂i (∂iϕ∂jϕ)−

1

2
∂j |∂iϕ|2

)

= div (∇ϕ∂jϕ)−
1

2
∂j

(
|∇ϕ|2

)

= div
(
hh(j)

)
− 1

2
∂j

(
|h|2

)
,

where we replaced ∇ϕ by h again in the last equation. We combine the last calculation with (2.5)
and (2.6) and obtain

((m · ∇)h)(j) = div
(
mh(j)

)
+ div

(
hh(j)

)
− 1

2
∂j

(
|h|2

)

= div
(
(m + h)h(j)

)
− 1

2
∂j

(
|h|2

)
,

which is the component form of (2.4). �

Remark 2.4. If we only require m ∈ L2(Ω), h ∈ H1(Ω), identity (2.4) still holds in the sense of
distributions for smooth enough and compactly supported in Ω test functions ψ:

ˆ

Ω

((m · ∇)h) · ψdx = −
ˆ

Ω

[
(((m+ h) · ∇)ψ) · h− 1

2
|h|2 divψ

]
dx. (2.7)

The right hand side of equation (2.7) is bounded even if m,h ∈ L2(Ω) (and ψ is smooth enough,
i.e., in C1

c (Ω) with bounded derivatives). It therefore allows us to define weak solutions of the
Rosensweig model (1.1) when m and h ∈ L2(Ω) only.

3. Existence of global weak solutions

In this section we prove the global existence of weak solutions to system (1.1), by constructing a
sequence of solutions that satisfies an approximating system and by establishing that the sequence
converges to a solution of (1.1). As an approximating sequence, we use weak solutions of the
regularized system,

uσ
t + (uσ · ∇)uσ − (ν + νr)∆uσ +∇pσ = 2νr curlw

σ + µ0(m
σ · ∇)hσ, (3.1a)

divuσ = 0, (3.1b)

wσ
t + (uσ · ∇)wσ − c1∆wσ − c2∇ divwσ + 4νrw

σ = 2νr curlu
σ + µ0m

σ × hσ, (3.1c)
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mσ
t + (uσ · ∇)mσ − σ∆mσ = wσ ×mσ − 1

τ
(mσ − κ0hσ), (3.1d)

curlhσ = 0, (3.1e)

div(hσ +mσ) = 0, (3.1f)

which is identical to (1.1) up to the extra term σ∆mσ in the magnetization equation (3.1d),
where σ > 0, that yields additional regularity for mσ and so also for hσ. In the literature, this
regularized equation for mσ is sometimes called a Bloch-Torrey type equation [2, 33, 12] because
it was proposed by Torrey [33] and can be seen as a generalization of the Bloch equations [3] to
describe situations in which the diffusion of the spin magnetic moment is not negligible.

Since equation (3.1d) is parabolic for σ > 0, additional boundary conditions for mσ have to
be imposed in contrast to the case σ = 0. A discussion of several reasonable choices of boundary
conditions for mσ can be found in [19, Section 2.3]. We use the natural boundary conditions

curlmσ × n = 0, divmσ = 0, on (0, T )× ∂Ω, (3.2)

which allow obtaining an energy-stable system for the chosen boundary conditions for hσ (i.e.
(1.7)). The energy inequality is needed to show existence of weak solutions of the system (3.1) using
a Galerkin approximation, as it was done for a slightly different system by Amirat, Hamdache,
Murat in [2]. In particular, in their system, equation (3.1f) is replaced by

div(hσ +mσ) = f, hσ = ∇ϕσ,

with boundary conditions

∂ϕ

∂n
= 0, curlmσ × n = 0, mσ · n = 0, on (0, T )× ∂Ω,

for ϕσ and mσ instead of (3.2). Up to this difference, which implies that mσ is sought in a different
space, one defines weak solutions of (3.1) in the same way as in [2] (see upcoming Definition 3.1)
and also existence of weak solutions is proved in the same way (the modifications needed due to
the changed boundary conditions are sketched in Appendix B). The solution mσ(t) now lies for
almost every t ∈ [0, T ] in the space

K := {q ∈ L2(Ω) | div q ∈ L2(Ω), curl q ∈ L2(Ω)} = H(div) ∩H(curl), (3.3)

equipped with the inner product

〈q1, q2〉 :=
ˆ

Ω

q1 · q2 dx+

ˆ

Ω

div q1 div q2 dx+

ˆ

Ω

curl q1 · curl q2 dx.

Then, weak solutions of (3.1) are defined as follows:

Definition 3.1 (Distributional solution of (3.1), [2]). Let T > 0, Ω ⊂ R3 a smooth, simply
connected domain. We say that Uσ := (uσ,wσ,mσ,hσ) is a global weak solution of the system
(3.1) if the following conditions are satisfied:

(i) The solution Uσ = (uσ,wσ,mσ,hσ) has the regularity properties:

uσ ∈ L∞(0, T ;L2
div(Ω)) ∩ L2(0, T ;H1

div(Ω)) ∩ Cw([0, T ];L
2
div(Ω))

wσ ∈ L∞(0, T ;L2(Ω)) ∩ L2(0, T ;H1
0 (Ω)) ∩ Cw([0, T ];L

2(Ω))

mσ ∈ L∞(0, T ;L2(Ω)) ∩ L2(0, T ;K) ∩ Cw([0, T ];L
2(Ω))

hσ ∈ L∞(0, T ;L2(Ω)) ∩ L2(0, T ;H1(Ω));

(ii) the function hσ is such that hσ = ∇ϕσ, where ϕσ ∈ L∞(0, T ;H1(Ω)) ∩ L2(0, T ;H2(Ω))
solves the problem

−∆ϕσ = divmσ, in [0, T ]× Ω, (3.4a)

∂ϕσ

∂n
= (ha −mσ) · n, on [0, T ]× ∂Ω,

ˆ

Ω

ϕσ dx = 0, in (0, T ), (3.4b)

in the distributional sense;
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(iii) Equations (3.1a)–(3.1d) hold weakly, that is, for any test functions ψ1 ∈ H1
div(Ω), ψ2 ∈

H1
0 (Ω), ψ3 ∈ K, we have

d

dt

ˆ

Ω

uσ · ψ1 dx+

ˆ

Ω

[(uσ · ∇)uσ] · ψ1 dx+ (ν + νr)

ˆ

Ω

∇uσ : ∇ψ1 dx

= µ0

ˆ

Ω

(mσ · ∇)hσ · ψ1 dx+ 2νr

ˆ

Ω

curlwσ · ψ1 dx, in D′((0, T )), (3.5)

uσ(0, ·) = u0;

d

dt

ˆ

Ω

wσ · ψ2 dx+

ˆ

Ω

[(uσ · ∇)wσ] · ψ2 dx+ c1

ˆ

Ω

∇wσ : ∇ψ2 dx+ c2

ˆ

Ω

divwσ divψ2 dx

= µ0

ˆ

Ω

(mσ × hσ) · ψ2 dx+ 2νr

ˆ

Ω

(curluσ − 2wσ) · ψ2 dx, in D′((0, T )), (3.6)

wσ(0, ·) = w0;

d

dt

ˆ

Ω

mσ · ψ3 dx−
ˆ

Ω

[(uσ · ∇)ψ3] ·mσ dx+ σ

ˆ

Ω

curlmσ : curlψ3 dx+ σ

ˆ

Ω

divmσ divψ3 dx

=

ˆ

Ω

(wσ ×mσ) · ψ3 dx −
1

τ

ˆ

Ω

(mσ − κ0hσ) · ψ3 dx, in D′((0, T )), (3.7)

mσ(0, ·) = m0;

where u0 ∈ L2
div(Ω), w0,m0 ∈ L2(Ω) are the initial conditions.

Remark 3.2. Using Lemma 2.3, the weak formulation for uσ can be rewritten as

d

dt

ˆ

Ω

uσ · ψ1 dx+

ˆ

Ω

[(uσ · ∇)uσ] · ψ1 dx+ (ν + νr)

ˆ

Ω

∇uσ : ∇ψ1 dx

= −µ0

ˆ

Ω

(((mσ + hσ) · ∇)ψ1) · hσ dx+ 2νr

ˆ

Ω

curlwσ · ψ1 dx, in D′((0, T )).

3.1. Energy inequality. In [2, Theorem 1], it was proved that weak solutions as in Definition 3.1
exist if u0 ∈ L2

div(Ω), w0,m0 ∈ L2(Ω) and that they satisfy in addition an energy inequality.
The energy inequality proved there is slightly different from the one we are going to use in the
following, but can be proved in the same way. Formally, one can use ψ1 = uσ, ψ2 = wσ and
ψ3 = µ0

κ0
mσ − µ0h

σ as test functions in (3.5), (3.6), and (3.7) respectively, and add; take the

derivative of (3.4a), multiply with µ0ϕ
σ, integrate over Ω and add as well, to obtain,

1

2

d

dt

ˆ

Ω

(
|uσ|2 + |wσ|2 + µ0

κ0
|mσ|2 + µ0|hσ|2

)
dx

+

ˆ

Ω

(
ν|∇uσ|2 + c1|∇wσ|2 + c2| divwσ|2 + νr| curluσ − 2wσ|2 + µ0

τκ0
|mσ − κ0hσ|2

)
dx

+ σµ0

ˆ

Ω

(
1

κ0
| curlmσ|2 +

(
1

κ0
+ 1

)
| divmσ|2

)
dx = µ0

ˆ

Ω

∂tha · hσdx,

(3.8)

where we have also used that

∆mσ = − curl2 mσ +∇ divmσ,

and that this identity combined with (3.4a), and the boundary conditions for mσ and hσ, yields
ˆ

Ω

∆mσ · hσ dx = −
ˆ

Ω

(curl2 mσ −∇ divmσ) · hσ dx

= −
ˆ

Ω

curlmσ · curlhσ dx−
ˆ

Ω

divmσ divhσ dx

+

ˆ

∂Ω

(curlmσ × n) · hσ dS +

ˆ

∂Ω

divmσ(hσ · n) dS
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= −
ˆ

Ω

divmσ divhσ dx

=

ˆ

Ω

| divmσ|2 dx.

Since all of this has to be done at the level of the Galerkin approximation first, then passing to
the limit in the approximation, (3.8) holds only as an inequality.

Remark 3.3. The existence proof in [2] also shows that mσ satisfies

1

2

ˆ

Ω

|mσ|2(t)dx + σ

ˆ t

0

ˆ

Ω

(
| curlmσ|2 + | divmσ|2

)
dxds

≤ 1

2

ˆ

Ω

|mσ
0 |2dx−

1

τ

ˆ t

0

ˆ

Ω

mσ · (mσ − κ0hσ)dxds (3.9)

3.2. Renormalized solutions. In the proof of Proposition 3.6, we will make use of the fact that
the magnetization equation (1.1d) has the structure of a transport equation. In fact, we prove
here that m is ‘renormalized’ as in the sense of DiPerna and Lions [8, 14, 20, 10]. We will need
the following lemma:

Lemma 3.4. Let m ∈ L∞(0, T ;L2(Ω)) be a distributional solution of

∂tm+ (u · ∇)m = w×m− 1

τ
(m− κ0h), (3.10)

for given u ∈ L∞(0, T ;L2
div(Ω)) ∩ L2(0, T ;H1

div(Ω)), w ∈ L∞(0, T ;L2(Ω)) ∩ L2(0, T ;H1
0 (Ω)) and

h ∈ L∞(0, T ;L2(Ω)). Then the components m(i) of m satisfy for any b ∈ C1(R) with b′(·) bounded,
and b(0) = 0,

∂tb(m
(i)) + u · ∇b(m(i)) = b′(m(i))(w ×m)(i) − 1

τ
b′(m(i))(m(i) − κ0h(i)),

in the sense of distributions.

Proof. First we see that we can extend u, w and m by zero outside Ω to make them functions of
the whole Rd, since w and u have zero trace and m is assumed to be a function of L2(Ω) only
with no requirements on the boundary traces. Since (3.10) holds in the sense of distributions,
we can use a mollifier ωǫ(x) = ǫ−dω(x/ǫ), where ω ∈ C∞

c (Rd) is supported on [−1, 1]d and

normalized
´

Rd ωdx = 1, as a test function in one componentm(i) ofm. Denotingm
(i)
ε := m(i)∗ωε,

h
(i)
ε := h(i)∗ωε, we observe that the componentsm

(i)
ε ofmε satisfy the following equation pointwise

in (t, x):

∂tm
(i)
ε + (u · ∇m(i)) ∗ ωε = (w ×m)(i) ∗ ωε −

1

τ
(m(i)

ε − κ0h(i)ε ).

We can thus multiply this equation by b′(m
(i)
ε ) and apply the chain rule:

∂tb(m
(i)
ε ) + b′(m(i)

ε )(u · ∇m(i)) ∗ ωε = b′(m(i)
ε )(w ×m)(i) ∗ ωε −

1

τ
b′(m(i)

ε )(m(i)
ε − κ0h(i)ε ).

The term b′(m
(i)
ε )(u · ∇m(i)) ∗ ωε can be written as

b′(m(i)
ε )(u · ∇m(i)) ∗ ωε = u · ∇b(m(i)

ε ) + b′(m(i)
ε )

(
(u · ∇m(i)) ∗ ωε − u · ∇m(i)

ε

)

:= u · ∇b(m(i)
ε ) + b′(m(i)

ε )Rε,

hence for any ψ ∈ C∞
c (Rd)

ˆ

Rd

b(m(i)
ε (t, x))ψ(x)dx −

ˆ

Rd

b(m(i)
ε (0, x))ψ(x)dx −

ˆ t

0

ˆ

Rd

b(m(i)
ε )u · ∇ψ(x)dxds

=

ˆ t

0

ˆ

Rd

(
b′(m(i)

ε )(w ×m)(i) ∗ ωε −
1

τ
b′(m(i)

ε )
(
m(i)

ε − κ0h(i)ε

))
ψdxds
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−
ˆ t

0

ˆ

Rd

b′(m(i)
ε )Rεψdxds.

Since b ∈ C1(R) with bounded derivative, andm(i), h(i) ∈ L∞(0, T ;L2(Rd)), and u,w ∈ L2(0, T ;H1(Ω)),
we can pass to the limit in all the terms except the term involving Rε. That one converges to
zero in L1

loc([0,∞)×Rd) by [13, Lemma 2.3], therefore, since b′(·) is bounded and ψ is compactly
supported, the term involving Rε converges to zero. We obtain in the limit ε→ 0,

ˆ

Rd

b(m(i)(t, x))ψ(x)dx −
ˆ

Rd

b(m(i)(0, x))ψ(x)dx −
ˆ t

0

ˆ

Rd

b(m(i))u · ∇ψ(x)dxds

=

ˆ t

0

ˆ

Rd

(
b′(m(i))(w ×m)(i) − 1

τ
b′(m(i))

(
m(i) − κ0h(i)

))
ψdxds. (3.11)

Instead of a test function ψ only depending on space, we could also have used a test function

ψ ∈ C∞
c ([0,∞)×Rd) and integrated by parts in the term involving the time derivative of b(m

(i)
ε ).

In that case, we obtain, after passing to the limit ε→ 0,
ˆ ∞

0

ˆ

Rd

b(m(i))∂tψdxdt+

ˆ

Rd

b(m(i)(0, x))ψ(x)dx +

ˆ ∞

0

ˆ

Rd

b(m(i))u · ∇ψdxdt

= −
ˆ ∞

0

ˆ

Rd

(
b′(m(i))(w ×m)(i) − 1

τ
b′(m(i))

(
m(i) − κ0h(i)

))
ψdxdt,

which is what we wanted to prove (since m(i), u and w are all zero outside Ω, we can replace the
integration over Rd by the integration over Ω). �

Using that m ∈ L∞(0, T ;L2(Ω)), we can use the previous lemma to prove the following special
case:

Lemma 3.5. Let m ∈ L∞(0, T ;L2(Ω)) be a distributional solution of

∂tm+ (u · ∇)m = w×m− 1

τ
(m− κ0h),

for given u ∈ L∞(0, T ;L2
div(Ω)) ∩ L2(0, T ;H1

div(Ω)), w ∈ L∞(0, T ;L2(Ω)) ∩ L2(0, T ;H1
0 (Ω)),

h ∈ L∞(0, T ;L2(Ω)) and initial data m0 ∈ L2(Ω). Then m satisfies for almost any t ∈ [0, T ],

1

2

ˆ

Ω

|m(t, x)|2dx =
1

2

ˆ

Ω

|m0|2dx−
1

τ

ˆ t

0

ˆ

Ω

(|m|2 − κ0h ·m)dxds. (3.12)

Proof. The starting point is identity (3.11). We would like to use b(y) = y2/2 as a test function
there and sum the equations for the components m(i) over i = 1, 2(3). However, such a b does
not satisfy the assumptions of Lemma 3.4 because it does not have bounded derivative which
could potentially make the term involving (w×m)(i) unbounded. Nonetheless, because the cross
product is orthogonal to the two vectors involving it, that term would formally be zero when using
b′(m(i)) = m(i) after summing over m(i). This indicates that to prove rigorously that we can use

b(y) =
∑d

i=1 b(y
(i)) =

∑d
i=1(y

(i))2/2 as a test function, we should use approximations of it with

gradient parallel to m. Given a finite 0 < K < ∞, let b
(i)
K be the function with b

(i)
K (0) = 0 and

derivative

(b
(i)
K )′(m(i)) = m(i) · 1|m|≤K +K

m(i)

|m| 1|m|>K =

{
m(i), |m| ≤ K,
K · m(i)

|m| , |m| > K,

where |m| =
√∑d

i=1(m
(i))2. The derivative of b

(i)
K is obviously bounded by definition, however,

it might be discontinuous. We can therefore convolve it with some smooth mollifier ωδ(x) =
δ−1ω(x/δ) (as defined in Lemma 3.4 but in R instead of Rd) to make it smooth and see that (3.11)

holds for the primitive of the regularized (b
(i)
K,δ)

′ := (b
(i)
K )′ ∗ ωδ,

ˆ

Rd

b
(i)
K,δ(m

(i)(t, x))ψ(x)dx −
ˆ

Rd

b
(i)
K,δ(m

(i)(0, x))ψ(x)dx −
ˆ t

0

ˆ

Rd

b
(i)
K,δ(m

(i))u · ∇ψ(x)dxds
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=

ˆ t

0

ˆ

Rd

(
(b

(i)
K,δ)

′(m(i))(w ×m)(i) − 1

τ
(b

(i)
K,δ)

′(m(i))
(
m(i) − κ0h(i)

))
ψdxds.

Since |b(i)K,δ(m
(i))| ≤ C(|m(i)| + |m(i)|21|m(i)|≤K) and |(b(i)K,δ)

′(m(i))| ≤ CK uniformly in δ > 0,

m(i), h(i) ∈ L∞(0, T ;L2(Ω)), u ∈ L∞(0, T ;L2(Ω)) and w ×m ∈ Lγ([0, T ] × Ω) for some γ > 1
(using Sobolev embeddings for w), all the quantities in the last expression are uniformly integrable
in δ > 0 and we can pass to δ → 0 to obtain, by the properties of convolution

ˆ

Rd

b
(i)
K (m(i)(t, x))ψ(x)dx −

ˆ

Rd

b
(i)
K (m(i)(0, x))ψ(x)dx −

ˆ t

0

ˆ

Rd

b
(i)
K (m(i))u · ∇ψ(x)dxds

=

ˆ t

0

ˆ

Rd

(
(b

(i)
K )′(m(i))(w ×m)(i) − 1

τ
(b

(i)
K )′(m(i))

(
m(i) − κ0h(i)

))
ψdxds.

Now, let us choose a smooth test function ψ ∈ C∞
c (Rd) that satisfies ψ(x) ≡ 1 inside Ω, which

implies that the convective term vanishes and we are left with
ˆ

Ω

b
(i)
K (m(i)(t, x))dx −

ˆ

Ω

b
(i)
K (m(i)(0, x))dx

=

ˆ t

0

ˆ

Ω

(
(b

(i)
K )′(m(i))(w ×m)(i) − 1

τ
(b

(i)
K )′(m(i))

(
m(i) − κ0h(i)

))
dxds.

Now sum these identities over i = 1, . . . , d, define bK(m) =
∑d

i=1 b
(i)
K (m(i)) and notice that

((b
(1)
K )′, . . . , (b

(d)
K )′)⊤ is parallel to m or zero, which means that

d∑

i=1

(b
(i)
K )′(m(i))(w ×m)(i) = 0, a.e. (t, x) ∈ [0,∞)× Rd,

and thanks to the integrability properties on w and m also in L1([0,∞)× Rd). So,

ˆ

Ω

bK(m(t, x))dx −
ˆ

Ω

bK(m0)dx = − 1

τ

d∑

i=1

ˆ t

0

ˆ

Ω

(b
(i)
K )′(m(i))

(
m(i) − κ0h(i)

)
dxds.

All the quantities in the last identity are uniformly integrable with respect to K > 0, hence we

can pass K → ∞, and get, since bK(m) → |m|2/2 and ((b
(1)
K )′, . . . , (b

(d)
K )′)⊤ → m, as K → ∞,

equation (3.12). �

3.3. Passing to the limit in the approximating sequence. We are now ready to prove
existence of weak solutions of (1.1a)-(1.1f):

Proposition 3.6. Let {σn}n∈N be a sequence of nonnegative parameters such that σn
n→∞−→ 0

and denote Un = (un,wn,mn,hn, ϕn) := Uσn = (uσn ,wσn ,mσn ,hσn , ϕσn) the solutions of (3.1)
with σ = σn. Assume that the initial data u0,w0 and m0 satisfy (1.4), ha ∈ L∞(0, T ;L2(Ω)) ∩
H1(0, T ;L2(Ω)) with divha = 0 a.e. and that the boundary conditions (1.5), (1.7) and (3.2)
are satisfied. Then, as n → ∞, a subsequence of {(un,wn,mn,hn, ϕn)}n∈N converges to a weak
solution of (1.1) as in Definition 2.1.

Proof. From the energy estimate (3.8), we obtain that Un satisfies, uniformly in n,

{un}n∈N ⊂ L∞(0, T ;L2
div(Ω)) ∩ L2(0, T ;H1

div(Ω)),

{wn}n∈N ⊂ L∞(0, T ;L2(Ω)) ∩ L2(0, T ;H1(Ω)),

{mn}n∈N ⊂ L∞(0, T ;L2(Ω)),

{hn}n∈N ⊂ L∞(0, T ;L2(Ω)),

{ϕn}n∈N ⊂ L∞(0, T ;H1(Ω)),

{√σn curlmn}n∈N, {
√
σn divmn}n∈N ⊂ L2([0, T ]× Ω),

(3.13)
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Hence, from the Banach-Alaoglu theorem, we obtain that (un,wn,mn,hn, ϕn)n∈N has a weak∗

convergent subsequence, which we denote by n again for convenience, such that as n→∞,

un
⋆
⇀ u, in L∞(0, T ;L2(Ω)) ∩ L2(0, T ;H1(Ω)),

wn
⋆
⇀ w, in L∞(0, T ;L2(Ω)) ∩ L2(0, T ;H1(Ω)),

mn
⋆
⇀m, in L∞(0, T ;L2(Ω)),

hn
⋆
⇀ h, in L∞(0, T ;L2(Ω)),

ϕn
⋆
⇀ ϕ, in L∞(0, T ;H1(Ω)),

(3.14)

where the limits satisfy

‖u‖L∞([0,T ];L2(Ω))∩L2([0,T ];H1(Ω)) ≤ C, ‖w‖L∞([0,T ];L2(Ω))∩L2([0,T ];H1(Ω)) ≤ C,
‖m‖L∞([0,T ];L2(Ω)) ≤ C, ‖ϕ‖L∞([0,T ];H1(Ω)) ≤ C, ‖h‖L∞([0,T ];L2(Ω)) ≤ C.

Combining the equations forwn andmn, (3.1c) and (3.1d) respectively, with the uniform bounds (3.13),
we obtain by Sobolev embeddings that

{∂twn}n∈N, {∂tmn}n∈N ⊂ Lp(0, T ;W−k,q(Ω)), (3.15)

for p, q > 1 and some k > 0 large enough. Combining the equation (3.1a) with the uniform
bounds (3.13), we obtain for the velocity field un

{∂tun}n∈N ⊂ L2(0, T ;H−s
div(Ω)), for s ≥ 1 large enough, (3.16)

where H−s
div(Ω) denotes the dual space of Hs

div(Ω) := H1
div(Ω) ∩ Hs(Ω), s ≥ 1, the space of

divergence free functions in Hs(Ω) with vanishing trace. Since H1(Ω)
c→֒ L2(Ω) →֒ W−k,p(Ω)

and H1
div(Ω)

c→֒ L2
div(Ω) →֒ H−s

div(Ω), where the first embeddings are compact and the second ones
continuous, we can use Aubin-Lions’ Lemma [30] to obtain

un → u, wn → w, in L2([0, T ]× Ω), (3.17)

as n→∞ up to a subsequence. We use these convergence properties (3.14) and (3.17) to pass to
the limit in the weak formulations of (3.1a), (3.1c) and (3.1d):

0 =

ˆ T

0

ˆ

Ω

[un · ∂tψ1 + ((un · ∇)ψ1) · un − (ν + νr)∇un : ∇ψ1] dxdt +

ˆ

Ω

u0 · ψ1(0, x)dx

+

ˆ T

0

ˆ

Ω

[2νrwn · curlψ1 − µ0 (((mn + hn) · ∇)ψ1) · hn] dxdt

n→∞−−−−→
ˆ T

0

ˆ

Ω

[u · ∂tψ1 + ((u · ∇)ψ1) · u− (ν + νr)∇u : ∇ψ1] dxdt+

ˆ

Ω

u0 · ψ1(0, x)dx

+

ˆ T

0

ˆ

Ω

[
2νrw · curlψ1 − µ0(((m + h) · ∇)ψ1) · h

]
dxdt

where we denoted by (((m+ h) · ∇)ψ1) · h the weak limit of (((mn + hn) · ∇)ψ1) · hn,

0 =

ˆ

Ω

un(t, x) · ∇ψ2(t, x)dx
n→∞−−−−→

ˆ

Ω

u(t, x) · ∇ψ2(t, x)dx,

0 =

ˆ T

0

ˆ

Ω

[wn · ∂tψ3 + ((un · ∇)ψ3) ·wn − c1∇wn : ∇ψ3 − c2 divwn divψ3] dxdt

+

ˆ T

0

ˆ

Ω

[−4νrwn · ψ3 + 2νrun · curlψ3 + µ0 (mn × hn) · ψ3] dxdt+

ˆ

Ω

w0 · ψ3(0, x)dx

n→∞−−−−→
ˆ T

0

ˆ

Ω

[w · ∂tψ3 + ((u · ∇)ψ3) ·w− c1∇w : ∇ψ3 − c2 divw divψ3] dxdt

+

ˆ T

0

ˆ

Ω

[
−4νrw · ψ3 + 2νru · curlψ3 + µ0

(
m× h

)
· ψ3

]
dxdt+

ˆ

Ω

w0 · ψ3(0, x)dx.
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Note that we denoted the weak limit of mn × hn by m× h, and

0 =

ˆ T

0

ˆ

Ω

[mn · ∂tψ4 + (un · ∇)ψ4 ·mn − σn curlmn · curlψ4 − σn divmn divψ4] dxdt

+

ˆ

Ω

m0 · ψ4(0, x)dx+

ˆ T

0

ˆ

Ω

[
(wn ×mn) · ψ4 −

1

τ
(mn − κ0hn) · ψ4

]
dxdt

n→∞−−−−→
ˆ T

0

ˆ

Ω

[m · ∂tψ4 + (u · ∇)ψ4 ·m] dxdt+

ˆ

Ω

m0 · ψ4(0, x)dx

+

ˆ T

0

ˆ

Ω

[
(w ×m) · ψ4 −

1

τ
(m− κ0h) · ψ4

]
dxdt.

Passing to the limit in the equation for ϕn, (3.4a), and the equation for hn, hn = ∇ϕn, we obtain
that h = ∇ϕ in L2(Ω) and that ϕ satisfies the equation

ˆ

Ω

∇ϕ · ∇ψdx =

ˆ

Ω

h · ∇ψdx =

ˆ

Ω

(ha −m) · ∇ψdx (3.18)

for any test function ψ ∈ H1(Ω). In essence, to arrive at the conclusion that (u,w,m,h, ϕ) is a
weak solution of (1.1), we need to show that the weak limits

(((m+ h) · ∇)ψ1) · h = (((m+ h) · ∇)ψ1) · h, and m× h = m× h, (3.19)

on [0, T ]×Ω in the sense of distribution. This can be achieved by showing that either a subsequence
of {mn}n∈N or {hn}n∈N converges strongly in L2([0, T ]× Ω). We will show in the following that
the sequence {mn}n∈N converges strongly (which will imply that also {hn}n∈N converges strongly
in L2).

First we notice that we can use ϕ as a test function in (3.18), since it is in L∞(0, T ;H1(Ω)).
This yields

ˆ

Ω

|∇ϕ|2dx =

ˆ

Ω

|h|2dx =

ˆ

Ω

(ha −m) · ∇ϕdx =

ˆ

Ω

(ha −m) · h dx, a.e. t. (3.20)

where we have substituted h for ∇ϕ. We can also use ϕn as a test function at the level of
approximation (3.4a):

ˆ

Ω

|∇ϕn|2dx =

ˆ

Ω

|hn|2dx =

ˆ

Ω

(ha −mn) · ∇ϕndx =

ˆ

Ω

(ha −mn) · hndx.

Passing to the limit n→∞ in this last expression, we get
ˆ

Ω

|∇ϕ|2dx =

ˆ

Ω

|h|2dx =

ˆ

Ω

(
ha · ∇ϕ−m · ∇ϕ

)
dx =

ˆ

Ω

(
ha · h−m · h

)
dx, a.e. t (3.21)

where |∇ϕ|2 and |h|2 denote the weak limits of the sequences |∇ϕn|2 and |hn|2 respectively.
Combining (3.20) and (3.21), and rearranging (the terms containing

´

Ω ha ·hdx are identical), we
get the expression

ˆ

Ω

(
|h|2 +m · h

)
dx =

ˆ

Ω

(
|h|2 +m · h

)
dx. (3.22)

This looks not very exciting at first sight, but we will see later how it is useful. Next, we note
that from (3.9), we have,

1

2

ˆ

Ω

|mn(t, x)|2dx ≤
1

2

ˆ

Ω

|m0|2dx−
1

τ

ˆ t

0

ˆ

Ω

(
|mn|2 − κ0hn ·mn

)
dxds.

As n→∞, this converges to

1

2

ˆ

Ω

|m(t, x)|2dx ≤ 1

2

ˆ

Ω

|m0|2dx−
1

τ

ˆ t

0

ˆ

Ω

(
|m|2 − κ0h ·m

)
dxds, (3.23)

where we denoted the weak limit of |mn|2 by |m|2. By Lemma 3.5, the weak limit m satisfies

1

2

ˆ

Ω

|m(t, x)|2dx =
1

2

ˆ

Ω

|m0|2dx−
1

τ

ˆ t

0

ˆ

Ω

(|m|2 − κ0h ·m)dxds
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Subtracting this identity from (3.23), we get

1

2

ˆ

Ω

(
|m(t, x)|2 − |m(t, x)|2

)
dx ≤ − 1

τ

ˆ t

0

ˆ

Ω

(
|m|2 − |m|2 − κ0

(
h ·m− h ·m

))
dxds.

We replace h ·m− h ·m using (3.22):

1

2

ˆ

Ω

(
|m(t, x)|2 − |m(t, x)|2

)
dx ≤ − 1

τ

ˆ t

0

ˆ

Ω

(
|m|2 − |m|2 + κ0

(
|h|2 − |h|2

))
dxds. (3.24)

By [20, Corollary 3.33],
ˆ

G

|v|2dx ≤ lim inf
n→∞

ˆ

G

|vn|2dx ≤
ˆ

G

|v|2dx, and |v|2 ≤ |v|2 a.e. on G, (3.25)

v ∈ {m,h}, G ∈ {Ω, [0, T ] × Ω}, therefore the left hand side of (3.24) is nonnegative while the
right hand side is nonpositive. Hence we have

1

2

ˆ

Ω

(
|m(t, x)|2 − |m(t, x)|2

)
dx = 0.

Thus, by (3.25), |m(t, x)|2 = |m(t, x)|2 for almost every (t, x) ∈ [0, T ]× Ω. By [9, Theorem 1.1.1
(iii)], this implies that mn →m strongly in L2([0, T ]× Ω). Using this in (3.22), we see that also

ˆ T

0

ˆ

Ω

|h|2dxdt =
ˆ T

0

ˆ

Ω

|h|2dxdt,

and thus also hn → h strongly in L2([0, T ]×Ω). This allows us to conclude that (3.19) holds (and
hence point (iii) in Definition 2.1). The energy inequality (2.1) follows from passing to the limit in
the energy inequality for the approximations {(un,wn,mn,hn)}n. The weak time continuity of
(u,w,m) follows from (3.15) combined with [32, Lemma 1.4, Chapter III]. To see that h is weakly
continuous in time, we first note that by elliptic regularity (see e.g. [11, Theorem 6.33]), since φt
solves ∆φt = − divmt,

‖φt‖Wp,s+1 ≤ C ‖mt‖Wp,s ,

for some s < 0 and hence since ht = ∇φt, we obtain

‖ht‖Wp,s ≤ C ‖mt‖Wp,s ≤ C,
for some s < 0 small enough. This combined with h ∈ L∞(0, T ;L2(Ω)) yields h ∈ Cw([0, T ];L

2(Ω))
by [32, Lemma 1.4, Chapter III].

�

4. Convergence to the equilibrium τ → 0

We now proceed to proving Theorems 1.4 and 1.5. For convenience, we recall the statement of
Theorem 1.4:

Theorem 4.1. Denote Uτ := (uτ ,wτ ,mτ ,hτ ), hτ = ∇ϕτ a weak solution of system (1.1) for
a given τ > 0. Then as τ → 0, a subsequence of {Uτ}τ>0 converges in L2([0, T ]× Ω) to a weak
solution of (1.11).

Proof. From the energy balance (2.1), we get that the Uτ = (uτ ,wτ ,mτ ,hτ ) satisfy the following
uniform bounds for given τ > 0, and fixed time horizon T > 0,

‖uτ‖L∞(0,T ;L2(Ω)) + ‖uτ‖L2(0,T ;H1(Ω)) ≤ C, (4.1a)

‖wτ‖L∞(0,T ;L2(Ω)) + ‖wτ‖L2(0,T ;H1(Ω)) ≤ C, (4.1b)

‖hτ‖L∞(0,T ;L2(Ω)) ≤ C, (4.1c)

‖ϕτ‖L∞(0,T ;H1(Ω)) ≤ C, (4.1d)

‖mτ‖L∞(0,T ;L2(Ω)) ≤ C, (4.1e)

τ−1/2 ‖mτ − κ0hτ‖L2((0,T )×Ω) ≤ C. (4.1f)
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The first two bounds (4.1a) and (4.1b) combined with (3.15), imply using the Aubin-Lions
lemma

uτ → U, wτ →W, in Lp((0, T )× Ω), 1 ≤ p < 6,

up to a subsequence, for some limiting functions U,W ∈ L∞(0, T ;L2(Ω))∩L2(0, T ;H1(Ω)). The
third, forth and fifth bound (4.1c), (4.1d) and (4.1f), imply, using the Banach-Alaoglu theorem,

mτ
⋆
⇀M, hτ

⋆
⇀ H, weak* in L∞(0, T ;L2(Ω)),

ϕτ
⋆
⇀ Φ, weak* in L∞(0, T ;H1(Ω)),

(4.2)

for limiting functions M,H ∈ L∞(0, T ;L2(Ω)) and Φ ∈ L∞(0, T ;H1(Ω)). Moreover, ∇Φ = H,
because ∇ϕτ = hτ and both quantities converge weak*. Using the sixth a priori bound (4.1f) and
combining it with the weak* convergence (4.2), we obtain for any test function ψ ∈ L2([0, T ]×Ω),

∣∣∣∣∣

ˆ T

0

ˆ

Ω

(κ0H−M) · ψ dx
∣∣∣∣∣ =

∣∣∣∣∣ limτ→0

ˆ T

0

ˆ

Ω

(κ0hτ −mτ ) · ψ dx
∣∣∣∣∣

≤ lim
τ→0
‖κ0hτ −mτ‖L2 ‖ψ‖L2 ≤ C lim

τ→0
τ1/2 = 0,

hence κ0H = M in L2([0, T ]× Ω).
Using (4.2) to pass to the limit in the weak formulation of equation (1.1f), we get for test

functions ψ ∈ L1(0, T ;H1(Ω))
ˆ T

0

ˆ

Ω

ha · ∇ψdxdt =
ˆ T

0

ˆ

Ω

(hτ +mτ ) · ∇ψdxdt→
ˆ T

0

ˆ

Ω

(H+M) · ∇ψdxdt, (4.3)

hence in the limit
ˆ T

0

ˆ

Ω

ha · ∇ψdxdt =
ˆ T

0

ˆ

Ω

(H+M) · ∇ψdxdt,

for any test function ψ ∈ L1(0, T ;H1(Ω)). In particular, we can use Φ as a test function and get
(using ∇Φ = H),

ˆ T

0

ˆ

Ω

ha · ∇Φ dxdt =
ˆ T

0

ˆ

Ω

(H+M) ·H dxdt =

ˆ T

0

ˆ

Ω

(1 + κ0)|H|2 dxdt. (4.4)

On the other hand, we could choose ψ = ϕτ as a test function in (4.3), and pass to the limit
τ → 0:
ˆ T

0

ˆ

Ω

ha ·∇Φ dxdt←
ˆ T

0

ˆ

Ω

ha ·∇ϕτ dxdt =

ˆ T

0

ˆ

Ω

(hτ+mτ )·hτdxdt→
ˆ T

0

ˆ

Ω

(H+M) ·H dxdt.

(4.5)

where (H+M) ·H is the weak limit of (hτ +mτ ) · hτ . Combining (4.4) and (4.5), we get
ˆ T

0

ˆ

Ω

(H+M) ·H dxdt := lim
τ→0

ˆ T

0

ˆ

Ω

(hτ +mτ ) · hτdxdt =

ˆ T

0

ˆ

Ω

(1 + κ0)|H|2dxdt, (4.6)

Note that

(1 + κ0) ‖hτ‖2L2((0,T )×Ω) =

ˆ T

0

ˆ

Ω

(
|hτ |2 + hτ ·mτ

)
dxdt+

ˆ T

0

ˆ

Ω

hτ (κ0hτ −mτ ) dxdt,

therefore∣∣∣∣∣(1 + κ0) ‖hτ‖2L2((0,T )×Ω) −
ˆ T

0

ˆ

Ω

(
|hτ |2 + hτ ·mτ

)
dxdt

∣∣∣∣∣ =
∣∣∣∣∣

ˆ T

0

ˆ

Ω

hτ (κ0hτ −mτ ) dxdt

∣∣∣∣∣

≤ ‖hτ‖L2 ‖mτ − κ0hτ‖L2 ≤ C
√
τ,

and ∣∣∣∣∣(1 + κ0) lim
τ→0
‖hτ‖2L2((0,T )×Ω) −

ˆ T

0

ˆ

Ω

H · (H+M)dxdt

∣∣∣∣∣



GLOBAL WEAK SOLUTIONS OF THE ROSENSWEIG SYSTEM 17

=

∣∣∣∣(1 + κ0) lim
τ→0

ˆ T

0

ˆ

Ω

|hτ |2dxdt− lim
τ→0

ˆ T

0

ˆ

Ω

hτ · (hτ +mτ )dxdt

∣∣∣∣

=

∣∣∣∣∣ limτ→0

ˆ T

0

ˆ

Ω

hτ · (κ0hτ −mτ )dxdt

∣∣∣∣∣

≤ lim sup
τ→0

∣∣∣∣∣

ˆ T

0

ˆ

Ω

hτ · (κ0hτ −mτ )dxdt

∣∣∣∣∣

≤ lim sup
τ→0

ˆ T

0

ˆ

Ω

|hτ | |κ0hτ −mτ | dxdt

≤ C lim sup
τ→0

√
τ = 0.

So combining this with (4.6), we get

lim
τ→0
‖hτ‖2L2((0,T )×Ω) =

ˆ T

0

ˆ

Ω

|H|2dxdt.

Hence

lim
τ→0
‖hτ −H‖2L2 = lim

τ→0
‖hτ‖2L2 − 2 lim

τ→0

ˆ T

0

ˆ

Ω

hτ ·Hdxdt+ ‖H‖2L2

= −2 lim
τ→0

ˆ T

0

ˆ

Ω

hτ ·Hdxdt+ 2 ‖H‖2L2

= 0,

the last equality follows from the weak convergence of {hτ}τ>0. Therefore a subsequence of
{hτ}τ>0 converges in fact strongly in L2. Using this and the a priori bound (4.1f), we also get
strong convergence of a subsequence of {mτ}τ>0:

lim
τ→0
‖mτ − κ0H‖L2 ≤ lim

τ→0
‖mτ − κ0hτ‖L2 + lim

τ→0
‖κ0hτ − κ0H‖L2 = 0.

This allows us to pass to the limit in all the terms in the weak formulation of (1.1) and obtain
that a subsequence converges, as τ → 0, to a weak solution of (1.11). For the last term in (1.1a),
we use Lemma 2.3. In equation (1.1d), we multiply everything by τ before passing τ → 0 in the
weak formulation. �

4.1. Convergence when the solution of the limiting system is smooth. When the solution
of the limiting system (1.11) is smooth, which is the case for short times and smooth data and
in two space dimensions for smooth enough data (this is shown in Appendix A), one can show a
convergence rate in τ for the approximate solutions of (1.1):

Theorem 4.2. If the solution of (1.11) satisfies U,W ∈ L∞(0, T ; Lip(Ω)), H = ∇Φ ∈ L2(0, T ;H1(Ω)),
∂tH ∈ L2([0, T ]× Ω); and the initial data for (1.1) and (1.11) satisfy

‖u0 −U0‖2L2(Ω) + ‖w0 −W0‖2L2(Ω) + ‖m0 −M0‖2L2(Ω) ≤ Cτ,
then the solutions Uτ of (1.1) converge as τ → 0 to the solution of the limiting system (1.11) at
the rate:

‖uτ −U‖L2(Ω) (t) + ‖wτ −W‖L2(Ω) (t) + ‖mτ −M‖L2(Ω) (t)

+ ‖hτ −H‖L2(Ω) (t) + ‖∇(uτ −U)‖L2([0,t]×Ω) + ‖∇(wτ −W)‖L2([0,t]×Ω) ≤ C
√
τ(1 + exp(Ct)).

Proof. To prove this theorem, we will use the relative entropy method that was introduced by
Dafermos [5, 6] and DiPerna [7] in the context of hyperbolic systems of conservation laws, see
also [4]. To this end, we define the following relative entropy functional,

E(Uτ |U0) := E(Uτ )− E(U0)− dE(U0)(Uτ − U0), (4.7)

where the energy E is defined in (2.2). The integral of E(Uτ |U0) over Ω measures the distance
in L2 of the solution Uτ := (uτ ,wτ ,mτ ,hτ ) of (1.1) from the solution U0 := (U,W,M,H) of
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the limiting system (1.11). For notational convenience, we will omit writing the dependence of
uτ ,wτ ,mτ and hτ on τ and write Uτ := (u,w,m,h), while we denote the solution of the limiting
system by U0 := (U,W,M,H). dE(U0) is the derivative of E with respect to all variables, that
is, dE(U0) = (U,W, µ0

κ0
M, µ0H). Some basic algebra shows that E(Uτ |U0) can be written as

E(Uτ |U0) =
1

2

(
|u−U|2 + |w −W|2 + µ0

κ0
|m−M|2 + µ0|h−H|2

)
, (4.8)

or

E(Uτ |U0) := E(Uτ ) + E(U0)− dE(U0)Uτ , (4.9)

From the energy (in)equality (2.1) and Remark 2.2, we obtain

ˆ

Ω

(E(Uτ (t)) + E(U0(t))) dx+

ˆ t

0

ˆ

Ω

(D(Uτ ) +D(U0)) dxds

≤
ˆ

Ω

(E(Uτ (0)) + E(U0(0))) dx+ µ0

ˆ t

0

ˆ

Ω

∂sha(H+ h)dxds. (4.10)

Then we note that, since Uτ ∈ Cw([0, T ];L
2(Ω))

ˆ

Ω

dE(U0(t))Uτ (t)dx−
ˆ

Ω

dE(U0(η))Uτ (η)dx = − lim
ε→0

ˆ T

0

ˆ

Ω

dE(U0(s))Uτ (s)∂sθε(s)dxds,

where θε = 1[η,t] ∗ ωε is a regularized version of the indicator function of the interval [η, t],

where η ≥ ε > 0 is a small number, ωε(s) := 1
εω(s/ε) is a symmetric, nonnegative, smooth,

compactly supported on [−1, 1] mollifier with
´

ω(s)ds = 1. Hence, we can compute an expression

for
´ T

0

´

Ω
dE(U0(s))Uτ (s)∂sθε(s)dxds using the weak formulations of the equations for Uτ , see

Definition 2.1, points (ii) and (iii), and the strong formulation (1.11) for U0 since it is assumed to
be sufficiently regular. We have

ˆ T

0

ˆ

Ω

dE(U0(s))Uτ (s)∂sθε(s)dxds =
ˆ T

0

ˆ

Ω

(
Uu+Ww+

µ0

κ0
Mm+ κ0Hh

)
∂sθε(s)dxds

=

ˆ T

0

ˆ

Ω

u(∂s(Uθε)−Usθε)dxds

︸ ︷︷ ︸
(a)

+

ˆ T

0

ˆ

Ω

w(∂s(Wθε)−Wsθε)dxds

︸ ︷︷ ︸
(b)

+
µ0

κ0

ˆ T

0

ˆ

Ω

m(∂s(Mθε)−Msθε)dxds

︸ ︷︷ ︸
(c)

+µ0

ˆ T

0

ˆ

Ω

h(∂s(Hθε)−Hsθεdxds

︸ ︷︷ ︸
(d)

Using (1.1a) and (1.11a), we compute:

(a) =

ˆ T

0

ˆ

Ω

[2ν∇u : ∇U+ 2νr (curlu curlU− curlUw − curluW)] θεdxds

+ µ0

ˆ T

0

ˆ

Ω

h[(m+ h) · ∇]Uθεdxds

+

ˆ T

0

ˆ

Ω

(u−U)[(U − u) · ∇]Uθεdxds.

Equations (1.1c) and (1.11c) yield:

(b) =

ˆ T

0

ˆ

Ω

[2c1∇w : ∇W + 2c2 divW divw+ 8νrwW − 2νr (curlUw + curluW)] θεdxds

− µ0

ˆ T

0

ˆ

Ω

(m× h) ·Wθεdxds+

ˆ T

0

ˆ

Ω

(w −W)[(U − u) · ∇]Wθεdxds.
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From (1.1d) and (1.11d), we obtain

(c) =
µ0

κ0

ˆ T

0

ˆ

Ω

[
−m(u · ∇)M − (w ×m) ·M+

1

τ
(m − κ0h)M

]
θεdxds

− µ0

ˆ T

0

ˆ

Ω

Hsmθεdxds.

Finally, using (1.1e), (1.1f), (1.11e) and (1.11f), we get,

(d) = −µ0

ˆ T

0

ˆ

Ω

∂sha(h+H)θεdxds+ µ0

ˆ T

0

ˆ

Ω

m(u · ∇)Hθεdxds

+ µ0

ˆ T

0

ˆ

Ω

hMsθεdxds−
µ0

τ

ˆ T

0

ˆ

Ω

(m− κ0h)Hθεdxds+ µ0

ˆ T

0

ˆ

Ω

(w ×m) ·Hθεdxds

Combining (a)− (d), sending ε→ 0 and using M = κ0H (equation (1.11d)), we obtain
ˆ

Ω

(dE(U0(t))Uτ (t)− dE(U0(η))Uτ (η))dx = −2
ˆ t

η

ˆ

Ω

[ν∇u : ∇U+ c1∇w : ∇W + c2 divW divw] dxds

− νr
ˆ t

η

ˆ

Ω

(2 curlu curlU− 4 curlUw − 4 curluW + 8wW) dxds

− µ0

ˆ t

η

ˆ

Ω

h[(m+ h) · ∇]Udxds

−
ˆ t

η

ˆ

Ω

(u−U)[(U − u) · ∇]Udxds

−
ˆ t

η

ˆ

Ω

(w −W)[(U− u) · ∇]Wdxds

+ µ0

ˆ t

η

ˆ

Ω

(m× h) ·Wdxds+ µ0

ˆ t

η

ˆ

Ω

Hs(m− κ0h)dxds

+ µ0

ˆ t

η

ˆ

Ω

∂sha(h+H)dxds.

(4.11)

This holds for any η > 0. Using the weak continuity of Uτ and U0 and the integrability properties,
we can pass η → 0. Subtracting the result from (4.10), we get

ˆ

Ω

E(Uτ |U0)(t)dx +

ˆ t

0

ˆ

Ω

ν|∇(u−U)|2dxds+ µ0

κ0τ

ˆ t

0

ˆ

Ω

|m− κ0h|2dxds

+

ˆ t

0

ˆ

Ω

(
c1|∇(w −W)|2 + c2| div(w −W)|2 + νr|2(w−W)− curl(u−U)|2

)
dxds

≤
ˆ

Ω

E(Uτ |U0)(0)dx − µ0

ˆ t

0

ˆ

Ω

Hs(m− κ0h)dxds

+

ˆ t

0

ˆ

Ω

(u−U)[(U − u) · ∇]Udxds +
ˆ t

0

ˆ

Ω

(w −W)[(U− u) · ∇]Wdxds

+ µ0

ˆ t

0

ˆ

Ω

h[(m+ h) · ∇]Udxds − µ0

ˆ t

0

ˆ

Ω

(m × h) ·Wdxds.

Let us denote

D(Uτ |U0) := ν|∇(u −U)|2 + µ0

κ0τ
|m− κ0h|2 + c1|∇(w −W)|2

+ c2| div(w −W)|2 + νr|2(w −W)− curl(u−U)|2.
Then the previous identity becomes
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ˆ

Ω

E(Uτ |U0)(t)dx +

ˆ t

0

ˆ

Ω

D(Uτ |U0)(s)dxds

≤
ˆ

Ω

E(Uτ |U0)(0)dx+

ˆ t

0

ˆ

Ω

(u−U)[(U − u) · ∇]Udxds
︸ ︷︷ ︸

I1

+

ˆ t

0

ˆ

Ω

(w −W)[(U− u) · ∇]Wdxds

︸ ︷︷ ︸
I2

−µ0

ˆ t

0

ˆ

Ω

Hs(m− κ0h)dxds
︸ ︷︷ ︸

II

+ µ0

ˆ t

0

ˆ

Ω

h[(m + h) · ∇]Udxds
︸ ︷︷ ︸

III

−µ0

ˆ t

0

ˆ

Ω

(m × h) ·Wdxds

︸ ︷︷ ︸
IV

. (4.12)

We start by bounding the terms I1 and I2.

|I1| ≤
ˆ t

0

ˆ

Ω

|u−U|2|∇U|dxds ≤ ‖∇U‖L∞ ‖u−U‖2L2([0,t]×Ω) ,

and

|I2| ≤
ˆ t

0

ˆ

Ω

|u−U||w −W||∇W|dxds ≤ ‖∇W‖L∞ ‖u−U‖L2([0,t]×Ω) ‖w −W‖L2([0,t]×Ω)

≤ 1

2
‖∇W‖L∞

(
‖u−U‖2L2([0,t]×Ω) + ‖w −W‖2L2([0,t]×Ω)

)
.

Using Young’s inequality and the regularity of the limit functions (U,W,H), we bound term II
as follows (notice that it indeed follows that Ht ∈ L2(Ω) as long as ∂tha ∈ L2(Ω)):

|II| ≤ µ0

ˆ t

0

ˆ

Ω

|m− κ0h||Hs|dxds

≤ µ0

8κ0τ

ˆ t

0

ˆ

Ω

|m− κ0h|2dxds+ 4τµ0κ0

ˆ t

0

ˆ

Ω

|Hs|2dxds.

The second term on the right hand side is of order Cτ since Ht ∈ L2(Ω).
Assuming for the moment that all the involved functions are smooth, we rewrite term III as

follows (the general case follows by approximation, for example one can mollify all the variables
and because the magnetostatic equation (1.1f)/(1.11f) is linear, the mollified variables solve a
mollified equation):

III = µ0

ˆ t

0

ˆ

Ω

(h [(m+ h) · ∇]U) dxds

= µ0

ˆ t

0

ˆ

Ω

[
h · ([(m− κ0h) · ∇]U) + (1 + κ0)h · ([h · ∇]U)

]
dxds

= µ0

ˆ t

0

ˆ

Ω

(h−H) · ([(m− κ0h) · ∇]U) dxds+ µ0

ˆ t

0

ˆ

Ω

H · ([(m − κ0h) · ∇]U) dxds

+ µ0(1 + κ0)

ˆ t

0

ˆ

Ω

([h · ∇](Uh)) dxds

= µ0

ˆ t

0

ˆ

Ω

(h−H) · ([(m− κ0h) · ∇]U) dxds− µ0

ˆ t

0

ˆ

Ω

U · ([(m− κ0h) · ∇]H) dxds

+ µ0

ˆ t

0

ˆ

Ω

[(m− κ0h) · ∇] (HU)dxds + µ0(1 + κ0)

ˆ t

0

ˆ

Ω

([h · ∇](Uh)) dxds

= µ0

ˆ t

0

ˆ

Ω

(h−H) · ([(m− κ0h) · ∇]U) dxds− µ0

ˆ t

0

ˆ

Ω

U · ([(m− κ0h) · ∇]H) dxds

+ µ0

ˆ t

0

ˆ

Ω

ha · ∇(HU)dxds − µ0(1 + κ0)

ˆ t

0

ˆ

Ω

[h · ∇] (HU)dxds
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+ µ0(1 + κ0)

ˆ t

0

ˆ

Ω

([h · ∇](Uh)) dxds

= µ0

ˆ t

0

ˆ

Ω

(h−H) · ([(m− κ0h) · ∇]U) dxds− µ0

ˆ t

0

ˆ

Ω

U · ([(m− κ0h) · ∇]H) dxds

+ µ0(1 + κ0)

ˆ t

0

ˆ

Ω

([h · ∇](U(h −H))) dxds

= µ0

ˆ t

0

ˆ

Ω

(h−H) · ([(m− κ0h) · ∇]U) dxds− µ0

ˆ t

0

ˆ

Ω

U · ([(m− κ0h) · ∇]H) dxds

+ µ0(1 + κ0)

ˆ t

0

ˆ

Ω

([(h−H) · ∇](U(h−H))) dxds

= µ0

ˆ t

0

ˆ

Ω

(h−H) · ([(m− κ0h) · ∇]U) dxds− µ0

ˆ t

0

ˆ

Ω

U ([(m− κ0h) · ∇]H)dxds

+ µ0(1 + κ0)

ˆ t

0

ˆ

Ω

(h−H) · ([(h−H) · ∇]U) dxds

where we also used in the third equality that, since h = ∇ϕ and divU = 0,
ˆ

Ω

U · [(h · ∇)h]dx =

ˆ

Ω

U · [(∇ϕ · ∇)∇ϕ]dx =

3∑

i,j=1

U(i)∂jϕ∂j∂iϕdx

=
1

2

3∑

i,j=1

U(i)∂i|∂jϕ|2dx = −
ˆ

Ω

divU|∇ϕ|2dx = 0.

(4.13)

and equation (1.11f) in the second last equality, and (4.13) with h replaced by (h−H) in the last
equality. Hence

III = µ0

ˆ t

0

ˆ

Ω

h [(m+ h) · ∇]Udxds

= µ0

ˆ t

0

ˆ

Ω

(h−H) · ([(m − κ0h) · ∇]U) dxds

︸ ︷︷ ︸
III1

−µ0

ˆ t

0

ˆ

Ω

U · ([(m− κ0h) · ∇]H) dxds

︸ ︷︷ ︸
III2

+ µ0(1 + κ0)

ˆ t

0

ˆ

Ω

(h−H) · ([(h−H) · ∇]U) dxds

︸ ︷︷ ︸
III3

(4.14)

We observe that in this last identity (4.14) all terms are bounded when h,m ∈ L2([0, t]× Ω) and
U,H ∈ L∞(0, T ; Lip(Ω)) and hence it holds in our situation by approximation of all quantities
with smooth functions. We continue to bound the terms III1, III2 and III3: For the first term,
III1, we use Young’s inequality and then Hölder’s inequality:

|III1| ≤
µ0

8κ0τ

ˆ t

0

ˆ

Ω

|m− κ0h|2dxds+ 2µ0κ0τ ‖∇U‖2L∞

ˆ t

0

ˆ

Ω

|h−H|2dxds.

Using Young’s inequality, we also bound the second term, III2 by

|III2| ≤
µ0

8κ0τ

ˆ t

0

ˆ

Ω

|m− κ0h|2dxds + 2τµ0κ0

ˆ t

0

ˆ

Ω

|U|2|∇H|2dxds.

For the third term, we use again Hölder’s inequlity

|III3| ≤ µ0(1 + κ0) ‖∇U‖L∞

ˆ t

0

ˆ

Ω

|h−H|2dxds.

Combining the three, we get

|III| ≤ µ0

4κ0τ

ˆ t

0

ˆ

Ω

|m− κ0h|2dxds+ 2τµ0κ0

ˆ t

0

ˆ

Ω

|U|2|∇H|2dxds
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+ µ0 ‖∇U‖L∞ (2κ0τ ‖∇U‖L∞ + 1 + κ0)

ˆ t

0

ˆ

Ω

|h−H|2dxds. (4.15)

To bound term IV, we note that since h× h = 0, we can rewrite it as

IV = −µ0

ˆ t

0

ˆ

Ω

W · ((m− κ0h)× h) dxds.

Using Hölder and Young’s inequality, we can bound it as follows:

|IV| ≤ µ0 ‖W‖L∞ ‖m − κ0h‖L2([0,t]×Ω) ‖h‖L2([0,t]×Ω)

≤ µ0

8τκ0
‖m− κ0h‖2L2([0,t]×Ω) + 2µ0τκ0 ‖h‖2L2([0,t]×Ω) ‖W‖

2
L∞ .

Thus, under the assumption that U,W ∈ L∞(0, T ; Lip(Ω)) and H ∈ L2(0, T ;H1(Ω)), ∂tH ∈
L2([0, T ]× Ω), the evolution of the relative entropy, (4.12), is bounded as follows:

ˆ

Ω

E(Uτ |U0)(t)dx +

ˆ t

0

ˆ

Ω

D(Uτ |U0)(s)dxds

≤
ˆ

Ω

E(Uτ |U0)(0)dx + C

ˆ t

0

ˆ

Ω

|u−U|2dxds+ C

ˆ t

0

ˆ

Ω

|w −W|2dxds

+ C

ˆ t

0

ˆ

Ω

|h−H|2dxds+ µ0

2κ0τ

ˆ t

0

ˆ

Ω

|m− κ0h|2dxds+ Cτ. (4.16)

Defining D̃(Uτ |U0) by

D̃(Uτ |U0) := ν|∇(u −U)|2 + µ0

2κ0τ
|m − κ0h|2 + c1|∇(w −W)|2

+ c2| div(w −W)|2 + νr|2(w −W)− curl(u−U)|2,
this becomes
ˆ

Ω

E(Uτ |U0)(t)dx +

ˆ t

0

ˆ

Ω

D̃(Uτ |U0)(s)dxds

≤
ˆ

Ω

E(Uτ |U0)(0)dx+ C

ˆ t

0

ˆ

Ω

E(Uτ |U0)(s)dxds + Cτ. (4.17)

Now using Grönwall’s inequality for A(t) :=
´

Ω E(Uτ |U0)(t)dx, we obtain
ˆ

Ω

E(Uτ |U0)(t)dx ≤
(
ˆ

Ω

E(Uτ |U0)(0)dx+ Cτ

)
exp(Ct).

Using this in (4.17), we can also bound D̃(Uτ |U0):
ˆ t

0

ˆ

Ω

D̃(Uτ |U0)(s)dxds ≤
(
ˆ

Ω

E(Uτ |U0)(0) + Cτ

)
(C + exp(Ct)).

Therefore, if the initial data satisfy

‖u0 −U0‖2L2(Ω) + ‖w0 −W0‖2L2(Ω) + ‖m0 −M0‖2L2(Ω) ≤ Cτ,
then, since

∆(ϕ0 − Φ0) = − div(m0 −M0),

and hence by the Lax-Milgram theorem,

‖h0 −H0‖L2(Ω) = ‖∇ϕ0 −∇Φ0‖L2(Ω) ≤ ‖m0 −M0‖L2(Ω) ≤ C
√
τ ,

we have that
ˆ

Ω

E(Uτ |U0)(0)dx ≤ Cτ.
Therefore

ˆ

Ω

E(Uτ |U0)(t)dx +

ˆ t

0

ˆ

Ω

D(Uτ |U0)(s)dxds ≤ Cτ(1 + exp(Ct)),

which proves Theorem 1.5. �
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Appendix A. Regular solutions of limiting system in 2d

The goal of this section is to apply the arguments from the proof of regularity and uniqueness
of the 2D Navier-Stokes equations, see for example [32], to system (1.11) to show it has a unique
regular solution if the spatial dimension is 2 and the initial data and f are sufficiently smooth.
First we notice that from (1.11d), equations (1.11e)–(1.11f) become

∆Φ(t, x) = 0, (t, x) ∈ [0, T ]× Ω;
∂Φ

∂n
=

1

1 + κ0
ha · n, (t, x) ∈ [0, T ]× ∂Ω;

ˆ

Ω

Φ dx = 0,

and so Φ is completely decoupled from U and W. Hence if ha and the domain are sufficiently
smooth, then by the trace theorem (see e.g. [17, Thm 2.5.3]) and elliptic regularity, the unique Φ
is also smooth. Moreover, the source term in (1.11a) can be rewritten as

µ0(M · ∇)H =
µ0κ0
2
∇
(
|H|2

)
,

and added to the pressure. Hence it remains to show that the solution (U,W) of the system

Ut + (U · ∇)U− (ν + νr)∆U+∇P̃ = 2νr curlW, (A.1a)

divU = 0, (A.1b)

Wt + (U · ∇)W − c1∆W − c2∇ divW + 4νrW = 2νr curlU, (A.1c)

where P̃ = P − 1
2µ0κ0|H|2, is regular, which is very similar to showing regularity and uniqueness

of the 2D Navier-Stokes equations. We add an outline of the proof here for completeness and
because there is some coupling between the two equations involved.

Theorem A.1 (Uniqueness of solutions in 2d). Let the spatial dimension d = 2. Then the solution
(U,W) of (A.1) with initial data U0 ∈ L2

div(Ω) and W0 ∈ L2(Ω) is unique and continuous as a
function from [0, T ] into L2(Ω).

Proof. The regularity follows as in the proof of [32, Theorem III.3.2]: From the equations (A.1)
and Lemma III.3.4 in [32], it follows that ∂tU, ∂tW ∈ L2(0, T ;H−1(Ω)). Then [32, Lemma III.1.2]
implies that U and W are almost everywhere equal to continuous functions from [0, T ] to L2

div(Ω)
and L2(Ω) respectively, that is, U ∈ C([0, T ];L2

div(Ω)), W ∈ C([0, T ];L2(Ω)). Moreover,

d

dt
‖U(t)‖2L2 = 2〈∂tU,U〉,

d

dt
‖W(t)‖2L2 = 2〈∂tW,W〉, (A.2)

where 〈·, ·, 〉 denotes the duality pairing between H1
0 and its dual H−1. We assume that (U1,W1)

and (U2,W2) are two solutions of (A.1). Then the difference (U,W) := (U1 −U2,W1 −W2)
satisfies

Ut + (U1 · ∇)U1 − (U2 · ∇)U2 − (ν + νr)∆U+∇P = 2νr curlW,

divU = 0,

Wt + (U1 · ∇)W1 − (U2 · ∇)W2 − c1∆W − c2∇ divW + 4νrW = 2νr curlU,

(A.3)

with initial condition U(0, ·) = 0 and W(0, ·) = 0 and P := P̃1 − P̃2. We take the a.e. in t the
inner product of these equations with U and W respectively and use (A.2) to obtain

d

dt

(
‖U(t)‖2L2 + ‖W(t)‖2L2

)
+2ν ‖∇U‖2L2+2c1 ‖∇W‖2L2+2c2 ‖divW‖2L2+2νr ‖curlU− 2W‖2L2

= −2
ˆ

Ω

[(U1 · ∇)U1 − (U2 · ∇)U2] ·U dx− 2

ˆ

Ω

[(U1 · ∇)W1 − (U2 · ∇)W2] ·W dx
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= −2
ˆ

Ω

[(U · ∇)U2] ·U dx− 2

ˆ

Ω

[(U · ∇)W2] ·W dx.

We bound the two terms on the right hand side using Ladyshenskaya’s inequality (see e.g. Lemma III.3.3
in [32]) and Young’s inequality:

∣∣∣∣2
ˆ

Ω

[(U · ∇)U2] ·U dx

∣∣∣∣ ≤ C ‖U‖
2
L4 ‖∇U2‖L2

≤ C ‖U‖L2 ‖∇U‖L2 ‖∇U2‖L2

≤ ν

2
‖∇U‖2L2 +

C

ν
‖U‖2L2 ‖∇U2‖2L2 .

Similarly,

∣∣∣∣2
ˆ

Ω

[(U · ∇)W2] ·W dx

∣∣∣∣ ≤ C ‖W‖L4 ‖U‖L4 ‖∇W2‖L2

≤ C ‖U‖1/2L2 ‖∇U‖1/2L2 ‖W‖1/2L2 ‖∇W‖1/2L2 ‖∇W2‖L2

≤ ν

2
‖∇U‖2L2 +

C

ν
‖U‖2L2 ‖∇W2‖2L2 + c1 ‖∇W‖2L2 +

C

c1
‖W‖2L2 ‖∇W2‖2L2 ,

and hence

d

dt

(
‖U(t)‖2L2 + ‖W(t)‖2L2

)
+ ν ‖∇U‖2L2 + c1 ‖∇W‖2L2 +2c2 ‖divW‖2L2 +2νr ‖curlU− 2W‖2L2

≤ C

ν
‖U‖2L2

(
‖∇U2‖2L2 + ‖∇W2‖2L2

)
+
C

c1
‖W‖2L2 ‖∇W2‖2L2 .

Using that ‖∇U2‖2L2 , ‖∇W2‖2L2 ∈ L1([0, T ]) and then applying Grönwall’s inequality, we obtain

‖U(t)‖2L2 + ‖W(t)‖2L2 ≤
(
‖U(0)‖2L2 + ‖W(0)‖2L2

)
exp

(
C

ˆ t

0

(‖∇U2(s)‖2L2 + ‖∇W2(s)‖2L2)ds

)
,

and hence since U(0) = W(0) = 0, that U(t) = W(t) = 0. �

To show the regularity of the solutions, we will consider a Galerkin approximations of the
functions U and W, show uniform estimates in terms of the number of basis functions and then
pass to the limit in the approximation to see the same holds for the limiting functions. Therefore,
let {aj}∞j=1 ⊂ L2

div(Ω) be a smooth basis of orthogonal eigenfunctions of the Stokes operator with

eigenvalues {λj}∞j=1, satisfying · · · ≥ λj+1 ≥ λj ≥ λj−1 ≥ · · · ≥ λ1 > 0 and

ˆ

Ω

ai · ajdx = δij , ν

ˆ

Ω

∇ai : ∇ajdx = λiδij , (A.4)

where δij is the Kronecker delta. In addition, let {dj}∞j=1 be a smooth basis of orthogonal eigen-

functions of the operator (c1∆+ c2∇ div) in H1
0 (Ω) satisfying

ˆ

Ω

di · djdx = δij ,

ˆ

Ω

(c1∇di : ∇dj + c2 div di div dj) dx = ξiδij , (A.5)

where {ξj}∞j=1 are the eigenvalues of the operator. We denote by UN and WN the functions

UN =

N∑

j=1

αj,N (t)aj , WN =

N∑

j=1

βj,N (t)dj ,
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where αj,N and βj,N satisfy the equations, for j = 1, . . . , N ,

d

dt

ˆ

Ω

UN · ajdx+

ˆ

Ω

(UN · ∇)UN · ajdx+ (ν + νr)

ˆ

Ω

∇UN : ∇ajdx = 2νr

ˆ

Ω

curlWN · ajdx

d

dt

ˆ

Ω

WN · djdx+

ˆ

Ω

(UN · ∇)WN · djdx+ c1

ˆ

Ω

∇WN : ∇djdx+ c2

ˆ

Ω

divWN div djdx

= −4νr
ˆ

Ω

WN · djdx+ 2νr

ˆ

Ω

curlUN · djdx.
(A.6)

Using (A.4) and (A.5), this can be simplified to

d

dt
αj,N (t) +

N∑

k,ℓ=1

αk,N (t)αℓ,N (t)

ˆ

Ω

(ak · ∇)aℓ · ajdx+
(
1 +

νr
ν

)
λjαj,N (t)

= 2νr

N∑

k=1

βk,N (t)

ˆ

Ω

curl dk · ajdx
(A.7)

d

dt
βj,N (t) +

N∑

k,ℓ=1

αk,N (t)βℓ,N (t)

ˆ

Ω

(ak · ∇)dℓ · djdx+ ξjβj,N (t) + 4νrβj,N (t)

= 2νr

N∑

k=1

αk,N (t)

ˆ

Ω

curlak · djdx.
(A.8)

Equations (A.7)–(A.8) is a nonlinear, locally Lipschitz, system of ODEs with initial data

α0
j,N =

ˆ

Ω

U0 · ajdx, β0
j,N =

ˆ

Ω

W0 · djdx,

and therefore a solution exists on some time interval [0, tN ]. The existence on the full time
interval [0, T ] follows as in the case of the Navier-Stokes equations by deriving a uniform in time
bound on the αj,N and βj,N which results in an energy inequality for UN and WN and yields
UN ,WN ∈ L∞(0, T ;L2(Ω)) ∩ L2(0, T ;H1

0(Ω)) uniformly in N . Passing to the limit N → ∞
and using the uniform apriori estimates, one concludes existence of limiting functions U and W

solving (A.1).
The regularity follows from the following lemmas:

Lemma A.2. Let the initial data U0 and W0 ∈ H2(Ω) and divU0 = 0. Then

∂tU, ∂tW ∈ L∞(0, T ;L2(Ω)) ∩ L2(0, T ;H1(Ω)).

Proof. In the Galerkin formulation (A.6), we multiply by α′
j,N (t) and β′

j,N (t), add the resulting
equations and sum over j:

‖∂tUN (t)‖2L2 + ‖∂tWN(t)‖2L2 = (ν + νr)

ˆ

Ω

∆UN∂tUN + c1

ˆ

Ω

∆WN∂tWNdx

+ c2

ˆ

Ω

∇ divW∂tWN −
ˆ

Ω

(UN · ∇)UN · ∂tUNdx−
ˆ

Ω

(UN · ∇)WN · ∂tWNdx

+ 2νr

ˆ

Ω

curlWN · ∂tUNdx− 4νr

ˆ

Ω

WN∂tWNdx+ 2νr

ˆ

Ω

curlUN · ∂tWNdx.

We estimate the right hand side at t = 0:

‖∂tUN (0)‖2L2 + ‖∂tWN (0)‖2L2 ≤ C
∥∥∆U0

N

∥∥
L2 ‖∂tUN (0)‖L2 + C

∥∥∇2W0
N

∥∥
L2 ‖∂tWN(0)‖L2

+ C
∥∥U0

N

∥∥
L4

∥∥∇U0
N

∥∥
L4 ‖∂tUN (0)‖L2 + C

∥∥U0
N

∥∥
L4

∥∥∇W0
N

∥∥
L4 ‖∂tWN (0)‖L2

+ C
∥∥curlW0

N

∥∥
L2 ‖∂tUN (0)‖L2 + C

∥∥W0
N

∥∥
L2 ‖∂tWN (0)‖L2 + C

∥∥curlU0
N

∥∥
L2 ‖∂tWN (0)‖L2 .
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Hence, using Ladyshenskaya’s inequality, and
∥∥U0

N

∥∥
H2 ≤ C ‖U0‖H2 ,

∥∥W0
N

∥∥
H2 ≤ C ‖W0‖H2 , we

obtain

‖∂tUN (0)‖L2 + ‖∂tWN(0)‖L2 ≤ C
∥∥U0

N

∥∥2
H2 + C

∥∥W0
N

∥∥2
H2 ≤ C(‖U0‖2H2 + ‖W0‖2H2 ). (A.9)

Therefore ∂tUN (0), ∂tWN (0) ∈ L2(Ω) uniformly in N .
Next, we differentiate the equations (A.6) in time and use ∂tUN and ∂tWN respectively as test

functions:

1

2

d

dt

(
‖∂tUN‖2L2 + ‖∂tWN‖2L2

)
+ ν ‖∇∂tUN‖2L2 + c1 ‖∇∂tWN‖2L2 + c2 ‖div ∂tWN‖2L2

= 2νr

ˆ

Ω

curl∂tWN · ∂tUNdx− νr ‖curl ∂tUN‖2L2 − 4νr ‖∂tWN‖2L2

−
ˆ

Ω

(∂tUN · ∇)UN · ∂tUNdx−
ˆ

Ω

(UN · ∇)∂tUN · ∂tUNdx

−
ˆ

Ω

(∂tUN · ∇)WN · ∂tWNdx−
ˆ

Ω

(UN · ∇)∂tWN · ∂tWNdx

+ 2νr

ˆ

Ω

curl ∂tUN · ∂tWNdx

= −νr ‖curl∂tUN − 2∂tWN‖2L2 −
ˆ

Ω

(∂tUN · ∇)UN · ∂tUNdx

−
ˆ

Ω

(∂tUN · ∇)WN · ∂tWNdx.

The first term on the right hand side is nonpositive, so it remains to bound the other two terms.
We use again Ladyshenskaya’s and Young’s inequality:

∣∣∣∣
ˆ

Ω

(∂tUN · ∇)UN · ∂tUNdx

∣∣∣∣ ≤ ‖∂tUN‖2L4 ‖∇UN‖L2

≤ ‖∇∂tUN‖L2 ‖∂tUN‖L2 ‖∇UN‖L2

≤ ν

4
‖∇∂tUN‖2L2 +

C

ν
‖∂tUN‖2L2 ‖∇UN‖2L2 ,

and similarly,

∣∣∣∣
ˆ

Ω

(∂tUN · ∇)WN · ∂tWNdx

∣∣∣∣ ≤ ‖∂tWN‖L4 ‖∂tUN‖L4 ‖∇WN‖L2

≤ ‖∇∂tUN‖1/2L2 ‖∂tUN‖1/2L2 ‖∇∂tWN‖1/2L2 ‖∂tWN‖1/2L2 ‖∇WN‖L2

≤ C ‖∇∂tUN‖L2 ‖∂tUN‖L2 ‖∇WN‖L2

+ C ‖∇∂tWN‖L2 ‖∂tWN‖L2 ‖∇WN‖L2

≤ ν

4
‖∇∂tUN‖2L2 +

C

ν
‖∂tUN‖2L2 ‖∇WN‖2L2

+
c1
2
‖∇∂tWN‖2L2 +

C

c1
‖∂tWN‖2L2 ‖∇WN‖2L2 .

Therefore,

1

2

d

dt

(
‖∂tUN‖2L2 + ‖∂tWN‖2L2

)
+
ν

2
‖∇∂tUN‖2L2 +

c1
2
‖∇∂tWN‖2L2

≤ C

ν
‖∂tUN‖2L2

(
‖∇UN‖2L2 + ‖∇WN‖2L2

)
+
C

c1
‖∂tWN‖2L2 ‖∇WN‖2L2

≤ Cν,c1

(
‖∂tUN‖2L2 + ‖∂tWN‖2L2

)(
‖∇UN‖2L2 + ‖∇WN‖2L2

)
.
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Since ‖∇UN‖2L2 + ‖∇WN‖2L2 ∈ L1([0, T ]), we can use Grönwall’s inequality together with (A.9)
to conclude that

sup
t∈[0,T ]

(
‖∂tUN‖2L2 + ‖∂tWN‖2L2

)
+

ˆ T

0

(
‖∇∂tUN‖2L2 + ‖∇∂tWN‖2L2

)
dt ≤ C.

This bound holds uniformly in N , and hence after passing N →∞ also for U and W. �

Using this, we can prove the following lemma:

Lemma A.3. Let the initial data U0 and W0 ∈ H2(Ω) and divU0 = 0 and assume that the
domain Ω is at least of class C2. Then

U,W ∈ L∞(0, T ;H2(Ω)).

Proof. We write equations (A.1) in the variational form

(ν + νr)

ˆ

Ω

∇U(t) : ∇ψ1dx =

ˆ

Ω

g1(t)ψ1 dx,

ˆ

Ω

(c1∇W(t) : ∇ψ2 + c2 divW(t) divψ2) dx+ 4νr

ˆ

Ω

W(t) · ψ2dx =

ˆ

Ω

g2(t)ψ2dx,

(A.10)

for any ψ1 ∈ H1
div(Ω), ψ2 ∈ H1

0 (Ω), where g1, g2 are given by

g1(t) = 2νr curlW(t)− ∂tU(t)− (U(t) · ∇)U(t),

g2(t) = 2νr curlU(t) − ∂tW(t)− (U(t) · ∇)W(t).

The left hand sides in (A.10) are elliptic bilinear forms, and the right hand sides satisfy, using
Lemma A.2 and the calculations in equations (3.102) in [32, Chapter III],

∂tU, ∂tW ∈ L∞(0, T ;L2(Ω)) ∩ L2(0, T ;H1(Ω)),

curlU, curlW ∈ L∞(0, T ;L2(Ω)) ∩H1(0, T ;L2(Ω)),

(U · ∇)U, (U · ∇)W ∈ L∞(0, T ;L4/3(Ω)),

and hence g1, g2 ∈ L∞(0, T ;L4/3(Ω)). Using Proposition I.2.2 in [32] for U and elliptic regularity
theory for W, we obtain that U,W ∈ L∞(0, T ;W 2,4/3(Ω)). Hence by the Sobolev embedding, we
obtain that U,W ∈ L∞([0, T ]× Ω). As in the proof of Theorem III.3.6 in [32], we can use this
to obtain a better estimate on the convection terms and get g1, g2 ∈ L∞(0, T ;L2(Ω)) and hence
U,W ∈ L∞(0, T ;H2(Ω)). �

Higher order regularity follows from iterating this procedure and assuming that U0,W0 are
regular enough:

Lemma A.4. Assume U0,W0 ∈ H3(Ω) with divU0 = 0 and that the domain Ω is sufficiently
smooth. Then

∂tU, ∂tW ∈ L∞(0, T ;H1(Ω)).

Proof. From Lemma A.2 and A.3, we have that

U,W ∈ L∞(0, T ;H2(Ω)), ∂tU, ∂tW ∈ L∞(0, T ;L2(Ω)) ∩ L2(0, T ;H1(Ω)).

We consider again the Galerkin approximation (A.6). We denote PN the projection onto the
linear space spanned by the eigenfunctions {a1, . . . , aN} and by QN the projection onto the space
spanned by the eigenfunctions {d1, . . . , dN}. The projections satisfy

‖PNv‖2L2(Ω) ≤ ‖v‖
2
L2(Ω) , ‖∇PNv‖2L2(Ω) ≤ ‖∇v‖

2
L2(Ω)

‖QNv‖2L2(Ω) ≤ ‖v‖
2
L2(Ω) , ‖∇QNv‖2L2(Ω) + ‖divQNv‖2L2(Ω) ≤ ‖∇v‖

2
L2(Ω) + ‖div v‖

2
L2(Ω) .

(A.11)

Then the Galerkin formulation (A.6) can be written as

∂tUN = −PN ((UN · ∇)UN ) + (ν + νr)PN∆UN + 2νrPN curlWN ,

∂tWN = −QN ((UN · ∇)WN ) + c1QN∆WN + c2QN∇ divWN − 4νrWN + 2νrQN curlUN .
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and hence taking the gradient in both equations and estimating the L2-norms at t = 0, us-
ing (A.11), we obtain

‖∇∂tUN (0)‖L2(Ω) ≤
∥∥∇PN

(
(U0

N · ∇)U0
N

)∥∥
L2 + (ν + νr)

∥∥∇PN∆U0
N

∥∥
L2 + 2νr

∥∥∇PN curlW0
N

∥∥
L2

≤
∥∥∇

(
(U0

N · ∇)U0
N

)∥∥
L2 + (ν + νr)

∥∥∇∆U0
N

∥∥
L2 + 2νr

∥∥∇ curlW0
N

∥∥
L2

≤
∥∥∇U0

N

∥∥2
L4 +

∥∥U0
N

∥∥
L∞

∥∥∇2UN

∥∥
L2 + (ν + νr)

∥∥∇3U0
N

∥∥
L2 + 2νr

∥∥∇2W0
N

∥∥
L2

≤ C
(∥∥U0

N

∥∥
H3 +

∥∥W0
N

∥∥
H2

)
≤ C (‖U0‖H3 + ‖W0‖H2) ,

and similarly,

‖∇∂tWN (0)‖L2(Ω) ≤
∥∥∇QN

(
(U0

N · ∇)W0
N

)∥∥
L2 + c1

∥∥∇QN∆W0
N

∥∥
L2 + c2

∥∥∇QN∇ divW0
N

∥∥

+ 2νr
∥∥∇QN curlU0

N

∥∥
L2 + 4νr

∥∥∇W0
N

∥∥
L2

≤ C
∥∥∇

(
(U0

N · ∇)W0
N

)∥∥
L2 + C

∥∥∇∆W0
N

∥∥
L2 + C

∥∥∇∇ divW0
N

∥∥
L2

+ C
∥∥∇ curlU0

N

∥∥
L2 + 4νr

∥∥∇W0
N

∥∥
L2

≤ C
∥∥∇U0

N

∥∥
L4

∥∥∇W0
N

∥∥
L4 + C

∥∥U0
N

∥∥
L∞

∥∥∇2W0
N

∥∥
L2 + C

∥∥∇3W0
N

∥∥
L2

+ C
∥∥∇2U0

N

∥∥
L2 + 4νr

∥∥∇W0
N

∥∥
L2

≤ C (‖U0‖H2 + ‖W0‖H3 ) ,

and hence

‖∇∂tUN (0)‖L2 + ‖∇∂tWN(0)‖L2 ≤ C (‖U0‖H3 + ‖W0‖H3) .

Next we multiply the Galerkin formulations (A.6) by the eigenvalues λj and ξj respectively and
differentiate in time:

d

dt

ˆ

Ω

∂tUN ·∆ajdx+

ˆ

Ω

(∂tUN · ∇)UN ·∆ajdx+

ˆ

Ω

(UN · ∇)∂tUN ·∆ajdx

= (ν + νr)

ˆ

Ω

∆∂tUN ·∆ajdx+ 2νr

ˆ

Ω

curl∂tWN ·∆ajdx,

d

dt

ˆ

Ω

∂tWN · (c1∆+ c2∇ div)djdx+

ˆ

Ω

(∂tUN · ∇)WN · (c1∆+ c2∇ div)djdx

+

ˆ

Ω

(UN · ∇)∂tWN · (c1∆+ c2∇ div)djdx

= c1

ˆ

Ω

∆∂tWN · (c1∆+ c2∇ div)djdx+ c2

ˆ

Ω

∇ div ∂tWN · (c1∆+ c2∇ div)djdx

− 4νr

ˆ

Ω

∂tWN · (c1∆+ c2∇ div)djdx+ 2νr

ˆ

Ω

curl ∂tUN · (c1∆+ c2∇ div)djdx.

Then we multiply by α′
j,N and β′

j,N respectively and sum over j = 1, . . . , N ,

d

dt

ˆ

Ω

|∂t∇UN |2dx−
ˆ

Ω

(∂tUN · ∇)UN ·∆∂tUNdx −
ˆ

Ω

(UN · ∇)∂tUN ·∆∂tUNdx

= −(ν + νr)

ˆ

Ω

|∆∂tUN |2dx− 2νr

ˆ

Ω

curl∂tWN ·∆∂tUNdx,

d

dt

ˆ

Ω

(
c1|∂t∇WN |2 + c2|∂t divWN |2

)
dx−

ˆ

Ω

(∂tUN · ∇)WN · (c1∆+ c2∇ div)∂tWNdx

−
ˆ

Ω

(UN · ∇)∂tWN · (c1∆+ c2∇ div)∂tWNdx+

ˆ

Ω

|(c1∆+ c2∇ div)∂tWN |2dx

= −4νr
ˆ

Ω

(
c1|∂t∇WN |2 + c2| div ∂tWN |2

)
dx− 2νr

ˆ

Ω

curl ∂tUN · (c1∆+ c2∇ div)∂tWNdx.
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Adding the two equations and rearranging, we get

1

2

d

dt

(
‖∇∂tUN‖2L2 + c1 ‖∇∂tWN‖2L2 + c2 ‖div ∂tWN‖2L2

)
+ (ν + νr) ‖∆∂tUN‖2L2

+ ‖(c1∆+ c2∇ div)∂tWN‖2L2 + 4c1νr ‖∇∂tWN‖2L2 + 4c2νr ‖div ∂tWN‖2L2

=

ˆ

Ω

[(∂tUN · ∇)UN + (UN · ∇)∂tUN ] ·∆∂tUNdx

+

ˆ

Ω

[(∂tUN · ∇)WN + (UN · ∇)∂tWN ] · (c1∆+ c2∇ div)∂tWNdx

− 2νr

ˆ

Ω

curl ∂tUN · (c1∆+ c2∇ div)∂tWNdx− 2νr

ˆ

Ω

curl∂tWN ·∆∂tUNdx.

(A.12)

The terms on the right hand side can be estimated as follows (using Ladyshenskaya’s inequality):

∣∣∣∣
ˆ

Ω

[(∂tUN · ∇)WN ] · (c1∆+ c2∇ div)∂tWNdx

∣∣∣∣ ≤ ‖∂tUN‖L4 ‖∇WN‖L4 ‖(c1∆+ c2∇ div)WN‖L2

≤ 1

4
‖(c1∆+ c2∇ div)WN‖2L2 + C ‖∂tUN‖2L4 ‖∇WN‖2L4

≤ 1

4
‖(c1∆+ c2∇ div)WN‖2L2 + C ‖∂tUN‖L2 ‖∂t∇UN‖L2 ‖∇WN‖L2

∥∥∇2WN

∥∥
L2

≤ 1

4
‖(c1∆+ c2∇ div)WN‖2L2 + C ‖∂tUN‖2L2 + C ‖∂t∇UN‖2L2 ‖∇WN‖2L2

∥∥∇2WN

∥∥2

L2 .

Similarly,
∣∣∣∣
ˆ

Ω

[(UN · ∇)∂tWN ] · (c1∆+ c2∇ div)∂tWNdx

∣∣∣∣ ≤ ‖UN‖L∞ ‖∂t∇WN‖L2 ‖(c1∆+ c2∇ div)WN‖L2

≤ 1

4
‖(c1∆+ c2∇ div)WN‖2L2 + C ‖UN‖2L∞ ‖∇∂tWN‖2L2 .

and replacing WN by UN , also
∣∣∣∣
ˆ

Ω

[(∂tUN · ∇)UN ] ·∆∂tUNdx

∣∣∣∣ ≤ ‖∂tUN‖L4 ‖∇UN‖L4 ‖∆∂tUN‖L2

≤ ν

4
‖∆∂tUN‖2L2 +

C

ν
‖∂tUN‖2L4 ‖∇UN‖2L4

≤ ν

4
‖∆∂tUN‖2L2 +

C

ν
‖∂tUN‖L2 ‖∂t∇UN‖L2 ‖∇UN‖L2

∥∥∇2UN

∥∥
L2

≤ ν

4
‖∆∂tUN‖2L2 +

C

ν
‖∂tUN‖2L2 +

C

ν
‖∂t∇UN‖2L2 ‖∇UN‖2L2

∥∥∇2UN

∥∥2
L2 .

and
∣∣∣∣
ˆ

Ω

[(UN · ∇)∂tUN ] ·∆∂tUNdx

∣∣∣∣ ≤ ‖UN‖L∞ ‖∆∂tUN‖L2 ‖∇∂tUN‖L2

≤ ν

4
‖∆∂tUN‖2L2 +

C

ν
‖∇∂tUN‖2L2 ‖UN‖2L∞ .

The remaining two terms can be estimated as

2νr

∣∣∣∣
ˆ

Ω

curl∂tUN · (c1∆+ c2∇ div)∂tWNdx

∣∣∣∣ ≤
1

4
‖(c1∆+ c2∇ div)∂tWN‖2L2 + Cν2r ‖∇∂tUN‖2L2

and

2νr

∣∣∣∣
ˆ

Ω

curl ∂tWN ·∆∂tUNdx

∣∣∣∣ ≤
ν

4
‖∆∂tUN‖2L2 +

Cν2r
ν
‖∇∂tWN‖2L2
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Hence, we can upper bound in equation (A.12)

1

2

d

dt

(
‖∇∂tUN‖2L2 + ‖∇∂tWN‖2L2

)
+
ν

4
‖∆∂tUN‖2L2 +

1

4
‖(c1∆+ c2∇ div)∂tWN‖2L2

≤ C ‖∂t∇UN‖2L2 ‖∇WN‖2L2

∥∥∇2WN

∥∥2

L2

+ C ‖∂tUN‖2L2 + C ‖∂t∇UN‖2L2 ‖∇WN‖2L2

∥∥∇2WN

∥∥2
L2

+ C ‖UN‖2L∞ ‖∇∂tWN‖2L2 +
C

ν
‖∂tUN‖2L2 +

C

ν
‖∂t∇UN‖2L2 ‖∇UN‖2L2

∥∥∇2UN

∥∥2
L2

+
C

ν
‖∇∂tUN‖2L2 ‖UN‖2L∞ + Cν2r ‖∇∂tUN‖2L2 +

Cν2r
ν
‖∇∂tWN‖2L2 .

(A.13)

Thanks to Lemmas A.2 and A.3, the right hand side can be bounded uniformly in t ∈ [0, T ] by

Cν,νr ,c1

(
‖∇∂tUN‖2L2 + ‖∇∂tWN‖2L2

)
+ Cν,νr ,c1 ,

and an application of the Grönwall inequality and letting N →∞ yields the result. �

Lemma A.5. Assume U0,W0 ∈ H3(Ω) with divU0 = 0. Then

U,W ∈ L∞(0, T ;H3(Ω)).

Proof. We proceed as in Lemma A.3 and write the equations in the form (A.10). From Lemma A.3,
we already get that

curlW, curlU, (U · ∇)U, (U · ∇)W ∈ L∞(0, T ;H1(Ω)).

Lemma A.4 additionally yields that

∂tU, ∂tW ∈ L∞(0, T ;H1(Ω)).

Hence g1(t), g2(t) ∈ H1(Ω) for almost every t. Thus Proposition I.2.2 in [32] and elliptic regularity
imply that

U,W ∈ L∞(0, T ;H3(Ω)).

�

Remark A.6. One could iterate this further to achieve even more regularity of U and W under
the assumption that the domain and the initial data are smooth enough.

Remark A.7. Notice that this implies that U,W ∈ L∞(0, T ; Lip(Ω)). In addition, U, W,
H = ∇Φ satisfy an energy balance with equality:

1

2

d

dt

ˆ

Ω

(
|U|2 + |W|2 + µ0(1 + κ0)|H|2

)
dx

+

ˆ

Ω

(
ν|∇U|2 + c1|∇W|2 + c2| divW|2 + νr| curlU− 2W|2

)
dx = µ0

ˆ

Ω

∂thaHdx.

In a very similar way, one can prove uniqueness and regularity of solutions locally in time for the
three dimensional case (see also [32, Theorem III.3.11] and [1]). We state the result here without
proof:

Theorem A.8. Let d = 3 and assume U0,W0 ∈ H3(Ω) with divU0 = 0 and that the domain Ω
and the boundary data ha are sufficiently smooth. Then there exists T ∗ > 0 such that the solution
of (1.11) satisfies

∂tU, ∂tW, ∂tH ∈ L∞(0, T ∗;H1(Ω)) ∩ L2(0, T ∗;H2(Ω)) and U,W,H ∈ L∞(0, T ∗;H3(Ω)).
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Appendix B. Adaptions needed to prove existence of weak solutions in [2] for
chosen boundary conditions

The goal of this section is to explain the adaptions that have to be made in the proof of existence
of weak solutions for (3.1) to accommodate the boundary conditions

hσ · n = (ha −mσ) · n, on [0, T ]× ∂Ω, (B.1)

for the magnetizing field hσ and the natural boundary conditions

divmσ = 0, curlmσ × n = 0, on [0, T ]× ∂Ω, (B.2)

for the magnetization mσ instead of

hσ · n = 0, on [0, T ]× ∂Ω,
and

mσ · n = 0, curlmσ × n = 0, on [0, T ]× ∂Ω, (B.3)

respectively, as in [2]. With boundary conditions (B.2), the solution mσ(t) is sought in the space
K as defined in (3.3) instead of

K0 = {v ∈ L2(Ω) | div v, curl v ∈ L2(Ω), v · n = 0, on ∂Ω} = {v ∈ H1(Ω) | v · n = 0 on ∂Ω},
as in [2]. The reason why we need to do this, is that in the Galerkin approximation for the
existence proof in [2, pp. 336–343], one would like to take the approximation of hσ as a test
function in the weak formulation for the approximation of mσ to obtain an energy inequality.
With boundary conditions (B.1), the approximation of hσ is not in the space K0 and hence not
a valid test function. By changing the function space for mσ to K, hσ and its approximations
become a valid test function.
K equipped with inner product

〈q1, q2〉 :=
ˆ

Ω

q1 · q2 dx+

ˆ

Ω

div q1 div q2 dx+

ˆ

Ω

curl q1 · curl q2 dx.

is a Hilbert space and has a subspace

N := span{v ∈ H1(Ω) | v = ∇ψ, for some ψ ∈ H2(Ω)}K ⊂ K.
Let N⊥ be the orthogonal complement of this subspace. We can find a smooth orthonormal
basis {∇ηj}∞j=1 of N and a smooth orthonormal basis {θj}∞j=1 of its complement K⊥ such that

{∇ηj}∞j=1 ∪ {θj}∞j=1 is an orthonormal basis of K. The boundary conditions (B.2) are natural and
incorporated in the weak formulation for the magnetization mσ instead of the function space as in
the case of the boundary condition mσ ·n = 0. Indeed, for a smooth vector field v satisfying (B.2)
and a test function q ∈ K, it holds

−
ˆ

Ω

∆v · qdx =

ˆ

Ω

curl v · curl qdx+

ˆ

Ω

div v div qdx−
ˆ

∂Ω

(curl v × n) · qdS −
ˆ

∂Ω

div vq · ndS

=

ˆ

Ω

curl v · curl qdx+

ˆ

Ω

div v div qdx,

and hence the correct weak formulation of (3.1d) is (3.7), the same as for boundary conditions (B.3)
except that in the case of (B.3), the test functions should be taken in the space K0.

In the Galerkin approximation for the existence proof ([2, p. 337]), one then instead defines
mσ

n and hσ
n, the approximations at level n, by

mσ
n =

n∑

j=1

γnj (t)θj +

n∑

j=1

γnj+n(t)∇ηj , hσ
n = ∇ϕσ

n, with ϕσ
n =

n∑

j=1

δnj (t)ηj ,

where ηj and θj are as in the orthonormal bases of N and N⊥ and γnj and δnj are defined from
the conditions (j = 1, . . . , n)

d

dt

ˆ

Ω

mσ
n · ∇ηj dx+

ˆ

Ω

[(uσ
n · ∇)mσ

n] · ∇ηj dx+ σ

ˆ

Ω

divmσ
n∆ηj dx



32 R.H. NOCHETTO, K. TRIVISA, AND F. WEBER

=

ˆ

Ω

(wσ
n ×mσ

n) · ∇ηj dx−
1

τ

ˆ

Ω

(mσ
n − κ0hσ

n) · ∇ηj dx,

d

dt

ˆ

Ω

mσ
n · θj dx+

ˆ

Ω

[(uσ
n · ∇)mσ

n] · θj dx + σ

ˆ

Ω

curlmσ
n : curl θj dx+ σ

ˆ

Ω

divmσ
n div θj dx

=

ˆ

Ω

(wσ
n ×mσ

n) · θj dx−
1

τ

ˆ

Ω

(mσ
n − κ0hσ

n) · θj dx,

mσ
n(0, ·) = m0,n;

ˆ

Ω

∇ϕσ
n · ∇ηj dx = −

ˆ

Ω

(mσ
n − ha)∇ηj dx;

where m0,n is the orthogonal projection of m0 in L2(Ω) onto the space spanned by {∇ηj}nj=1 ∪
{θj}nj=1.

Then one proceeds as in the existence proof in [2]. The only other difference is that since
{mσ

n}n ⊂ K instead of H1(Ω), one needs to use the Div-Curl Lemma (see e.g. [9, Theorem
5.2.1]) to obtain that the space K is compact in L2(Ω) (instead of Rellich’s theorem as for the
embedding H1(Ω) ⊂⊂ L2(Ω)) and then apply the Aubin-Lions Lemma with this space to obtain
strong convergence in L2 of a subsequence of {mσ

n}n to some limiting function mσ.
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