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Abstract. We build and analyze a mathematical model of a system for biogas upgrading: an
absorption column connected to a microalgae culture. The construction of the model is based on a
chemical engineering approach and classical models of microalgae cultures. In our analysis, we prove
the existence and uniqueness of solutions of a boundary value problem describing the absorption
column. Some properties of this solution are also proved. Then, we use these results to study the
long-term behavior of the mathematical model describing the coupled system. We state sufficient
conditions for the existence of a globally attracting steady state characterized by the presence of
microalgae. Finally, we find numerically the steady states of the system to test the efficiency of the
system for purifying biogas.
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1. Introduction. An absorption column (AC) is a vertical tower that provides
contact between two phases and matter transfer can happen between both phases.
There are different types of ACs, such as the bubble columns, where the contact is
between a rising flow of gas (as bubbles) and a downstream liquid flow. ACs have many
applications [15, 27]; in particular, bubble columns are used to purify biogas [1]. Bio-
gas is a biocombustible produced from anaerobic digestion, the composition of which is
mainly carbon dioxide and methane [19]. Many of the commercial applications of bio-
gas, such as replacement of natural gas, require increasing the calorific value removing
carbon dioxide. This process is normally referred to as biogas upgrading. The removed
carbon dioxide can be used as a carbon source for photosynthetic organisms such as
microalgae [6, 7]. Consequently, biogas upgrading can be done using an AC con-
nected to a photobioreactor (PBR) with microalgae [20, 22, 32] (see Figure 2). Thus,
microalgae capture carbon dioxide by photosynthetic growth. In addition to biogas
upgrading, this system allows the production of microalgal biomass, which can be used
as feed, food, or even biofuel [31, 35]. Nonetheless, biogas absorbs part of the oxygen
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produced through photosynthesis. This may induce the formation of explosive mix-
tures [18]. Indeed, most international standards restrict oxygen content in treated
biogas. As a consequence, the system must be carefully designed and operated to
maximize carbon dioxide removal while limiting oxygen transfer. Mathematical mod-
els are of great help for such a challenge.

In this work, we build and analyze a mathematical model of an AC coupled with a
microalgae culture to study its long-term behavior. The model is based on a chemical
engineering approach for describing the AC [21] and on classical models for describing
microalgae cultures [5] featuring the main factors explaining biogas upgrading (physi-
cal phenomena) and microalgae growth (biological phenomena). Since the biogas and
the liquid are injected at the bottom and at the top of the column, respectively, the
AC is described by a boundary value problem (BVP). BVPs may present multiplicity
or even nonexistence of solutions (see, for example, [4]), which may indicate a problem
in model formulation. Our first result states the existence and uniqueness of solutions
of this BVP. In our approach, we use the shooting method [3] and classical results of
the theory of differential equations such as the comparison method [8]. The results
associated to the BVP serve to analyze the coupled system and to set up a result for
the persistence of microalgae. To state this result, we use the theory of monotone
dynamical systems [29] and the theory of persistence [30].

As an application of our results, we determine numerically the globally attractive
steady states of the coupled system to estimate the oxygen and carbon dioxide content
in the treated biogas under different conditions that were considered experimentally
in [20].

The paper is organized as follows. In section 2 we state the mathematical model
for the AC and we present the results related to the existence and uniqueness of
solutions. In section 3, we present the mathematical model for the coupled system
and we study its asymptotic behavior in section 4. Finally, in section 5, we test
numerically the capacity of the coupled system for biogas upgrading.

2. Modeling an absorption column. Consider an AC as described by
Figure 1 (see Table 1 for nomenclature), with a gas feed stream at the bottom, whose
composition is carbon dioxide and methane, and with a liquid feed stream at the top

Fig. 1. Scheme of the AC.
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774 MARTINEZ ET AL.

Table 1
Parameters and variables of the models for the AC (section 2) and for the coupled system

(section 3). Depending on the variable, the subscript A may be O2, CO2, TIC, or HCO - 
3 .

Section 2 Section 3 Definition Typical units
XA - Moles of A per mol of CH4 in the biogas mol/mol
XA,in - XA at the bottom of the column mol/mol
XA,out - XA at the top of the column mol/mol
\rho A - Concentration of A in the liquid phase mol/L
\rho A,in SA Concentration of A at the top of the column (sec. 2) or in the PBR (sec. 3) mol/L
\rho A,out S0

A Concentration of A at the bottom of the column (sec. 2) or as supply in the
PBR coming from the column (sec. 3) mol/L

GS - Superficial flow rate of the amount of moles of CH4 in the gas phase mol/d/m2

F F Liquid flow rate in the column or circulation flow rate in the coupled system L/d
FS - Superficial liquid flow rate in the column m/d
(kLa)A - Gas-liquid transfer coefficient of A d - 1

S - Cross-sectional area of the column m2

\rho \ast A - Saturation concentration of A mol/L
P0 - Pressure inside the column atm
- D Dilution rate d - 1

- SA,in PBR supply concentration of A mol/L
- X Microalgae concentration in the PBR g/L
- Iin Incident irradiance on the PBR \mu molm - 2 s - 1

- V Volume of the PBR m3

- L Depth of the PBR m

with carbon dioxide and oxygen. Experimental studies have shown negligible methane
exchanges during biogas upgrading [26]. We consider the following assumption.

A 2.1. Between the gas phase and the liquid phase, there are only two possible
exchanges: carbon dioxide and oxygen.

Assumption A 2.1 implies that methane concentration in the gas phase is constant
along the column and the gas could have oxygen in its composition at the top of the
column. Considering A 2.1 and following [34], we define XCO2

as the amount of moles
of CO2 in the gas phase per mole of CH4,

XCO2
:=

xCO2

1 - xCO2
 - xO2

,(2.1)

where xCO2
and xO2

stand for the molar ratios in the gas phase of CO2 and O2,
respectively. Similarly, we define XO2 as the amount of moles of O2 in the gas phase
per mole of CH4,

XO2
:=

xO2

1 - xCO2
 - xO2

.(2.2)

Absorption of CO2 decreases the pH in the liquid phase. In the context of biogas
upgrading with microalgae, experimental results in [20] show that the pH (not con-
trolled) in a microalgae culture remains lower than 8. Thus, if we assume that in the
liquid stream the pH is lower than 8, we can neglect the presence of carbonate CO2 - 

3

[10]. This motivates the following assumption.

A 2.2. In the liquid phase, inorganic carbon is only found in the form of carbon
dioxide (CO2) and bicarbonate (HCO - 

3 ). Then, the following reversible reactions are
considered:

CO2 +H2O \leftrightharpoons H+ +HCO - 
3 ,(2.3)

H2O \leftrightharpoons H+ +OH - ;(2.4)

these are in chemical equilibrium.
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Reactions (2.3) and (2.4) are considered in equilibrium because the AC operates at a
timescale of hours [20] (hydraulic retention time), while reactions (2.3) and (2.4) occur
at timescales of 10 s and 10 - 7 s, respectively. The pH varies along the column due to
CO2 transfer. The following assumption is useful when considering such variations
[33].

A 2.3. The liquid phase is not electrically charged (electroneutrality), i.e., the
concentration of anions balanced by the number of charges must equalize the concen-
tration of cations balanced in the same manner.

The following assumptions A 2.4--A 2.8 are taken from classical models of ab-
sortion column [21].

A 2.4. Each phase is in piston flow, which means that there is no axial mixing
in the column but complete radial mixing. Complete radial mixing implies that fluid
properties, including velocity, are uniform across any plane perpendicular to the flow
direction.

A 2.5. The temperature and the pressure are constant along the column.

A 2.6. The operation of the column is at steady state.

A 2.7. The two-film model is applicable [17].

A 2.8. The liquid flow rate is constant throughout the column; that is, the mass
transfer from one phase to the other does not affect the rate of flow for the liquid
phase (the ``dilute-system assumption"").

The concentration of any species A in the liquid phase is denoted by \rho A (mol/L).
An important variable in our model is the concentration of total inorganic carbon
(TIC) in the liquid medium, denoted by \rho TIC . The TIC is formed by bicarbonate
(HCO - 

3 ) and carbon dioxide (CO2). Thus,

\rho TIC = \rho CO2
+ \rho HCO - 

3
.(2.5)

We note that \rho TIC is not affected by the chemical reaction (2.3). Indeed, the produc-
tion of one mol of HCO - 

3 implies the consumption of one mol of CO2, and vice versa.
Thus, when doing mass balance equations, it is more convenient to work with \rho TIC

instead of \rho CO2 . Let us denote by F the total liquid volumetric flow rate (L/d) and
by GS the amount of moles of CH4 in the gas phase per day per cross-sectional area
of the tower. The continuity equation in the liquid phase and the overall material
balance along the column for each species (TIC and O2) give the following system of
differential equations (for more details see [34]):

F

S

d\rho TIC

dz
= Gs

dXCO2

dz
,

F

S

d\rho TIC

dz
= (kLa)CO2

(\rho CO2
 - \rho \ast CO2

),

F

S

d\rho O2

dz
= Gs

dXO2

dz
,

F

S

d\rho O2

dz
= (kLa)O2

(\rho O2
 - \rho \ast O2

),

(2.6)

where (kLa)CO2
and (kLa)O2

are gas-liquid transfer coefficients depending on the
hydrodynamic conditions and the diffusivities. S is the cross-sectional area of the
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column. \rho \ast CO2
and \rho \ast O2

are the saturation concentrations that can be obtained from
Henry's law and the definition of the variables XCO2

, XO2
, i.e.,

\rho \ast CO2
= HCO2

P0xCO2
= HCO2

P0
XCO2

1 +XCO2
+XO2

,(2.7)

\rho \ast O2
= HO2P0xO2 = HO2P0

XO2

1 +XCO2
+XO2

,(2.8)

where HCO2 and HO2 are the Henry's constants and P0 is the pressure that, from
A 2.5, is constant along the column. In the following we will write FS instead of F/S.

System (2.6) has four differential equations and five state variables. Based on
assumptions A 2.2 and A 2.3, we can write \rho CO2

in terms of \rho TIC . Indeed, from
assumption A 2.2, we get the equations

KC =
\rho H+\rho HCO - 

3

\rho CO2

and KW = \rho H+\rho OH - ,(2.9)

where KC and KW are the acid dissociation constants. From assumption A 2.3, we
have that

\rho H+ + Z = \rho OH - + \rho HCO - 
3
,(2.10)

where Z is the inert charge imbalance, defined as the sum of cation concentrations
minus anion concentrations not affected by the process, multiplied by their respective
valency. Apart from Z, all the concentrations (five variables) involved in (2.5), (2.9),
and (2.10) are not constant along the column. We must write \rho CO2

only in terms of
\rho TIC and constant terms. By (2.5), (2.9), and (2.10), we get

KC\rho CO2

(\rho TIC  - \rho CO2)
+ Z =

KW (\rho TIC  - \rho CO2
)

KC\rho CO2

+ \rho TIC  - \rho CO2
.(2.11)

The following proposition shows that for any value of \rho TIC , there is a unique value
of \rho CO2

satisfying (2.11).

Proposition 2.9. Assume that (2.11) holds. Then, there is a unique continuous
function \phi : \BbbR +  - \rightarrow \BbbR + such that \rho CO2

= \phi (\rho TIC). The function \phi satisfies

0 < \phi \prime (\rho TIC) \leq 1 and \phi (\rho TIC) \leq \rho TIC for all \rho TIC \geq 0,(2.12)

and lim\rho TIC\rightarrow \infty \phi (\rho TIC) = \infty .

Proof. From (2.11), we can easily solve \rho TIC as a function of \rho CO2
, that is,

\rho TIC = \varphi (\rho CO2
), where

\varphi (\rho CO2) = \rho CO2

\Biggl( 
1 +

Z +
\sqrt{} 
Z2 + 4KW + 4KC\rho CO2

2(b+ \rho CO2)

\Biggr) 
(2.13)

with b = KW /KC . We claim that \varphi : [0,\infty )  - \rightarrow [0,\infty ) is a homeomorphism. Indeed,
we compute

\varphi \prime (\rho CO2
)

(2.14)

= 1 +
bZ
\bigl( 
Z +

\sqrt{} 
Z2 + 4KC(\rho CO2

+ b)
\bigr) 
+ 2KC(b+ \rho CO2

)(2b+ \rho CO2
)

2(b+ \rho CO2)
2
\sqrt{} 

Z2 + 4KC(\rho CO2 + b)
\geq 1.
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Then, \varphi is strictly increasing and hence injective. Now, we note that

\varphi (0) = 0 and lim
\rho CO2

\rightarrow \infty 
\varphi (\rho CO2

) = \infty .

Thus \varphi ([0,\infty )) = [0,\infty ) and \varphi is surjective. Finally, since \varphi is continuous, we conclude
the claim. We will denote the inverse of \varphi by \phi . Thus, \rho CO2

= \phi (\rho TIC). Since
\varphi (\rho CO2

) \geq \rho CO2
, it follows that \phi (\rho TIC) \leq \rho TIC . It remains to prove the first

inequality of (2.12). By the inverse function theorem [24] and (2.14), we obtain

0 < \phi \prime (\rho TIC) =
1

\varphi \prime (\phi (\rho TIC))
\leq 1.(2.15)

Remark 2.10. Note that \phi depends on Z. In some cases, it is convenient to specify
the dependence of \phi on Z writing \phi (\rho TIC ;Z) instead of \phi (\rho TIC).

Proposition 2.9 shows that \phi is strictly increasing and Lipschitz and that \rho TIC is
not lower than \rho CO2

. Natural boundary conditions for system (2.6) are (see Figure 1)

\rho TIC(h) = \rho TIC,in, XCO2(0) = XCO2,in,(2.16)

\rho O2(h) = \rho O2,in, XO2(0) = XO2,in.(2.17)

Thus, we have a BVP formed by system (2.6) and the boundary conditions (2.16)--
(2.17).

In the context of biogas purification, the injected biogas in the column usually
has a neglected concentration of oxygen; therefore we assume that XO2,in = 0. Since
a small amount of oxygen is transferred from the liquid to the gas, we neglect XO2 in
the expression for \rho \ast TIC , that is,

\rho \ast CO2 = HCO2
P0

XCO2

1 +XCO2

.

In this way, we obtain the following two-dimensional ODE for the TIC, which is
decoupled from the equations for the oxygen:

ffl

dXCO2

dz
=

(kLa)CO2

Gs

\biggl( 
\phi (\rho TIC) - HCO2

P0
XCO2

1 +XCO2

\biggr) 
,

d\rho TIC

dz
=

(kLa)CO2

Fs

\biggl( 
\phi (\rho TIC) - HCO2

P0
XCO2

1 +XCO2

\biggr) 
.

(2.18)

Our first theorem states the existence and uniqueness of solutions for the BVP (2.16)--
(2.18) and gives some properties of the solutions. The proof is given at the end of
this section.

Theorem 2.11. BVP (2.16)--(2.18) has a unique nonegative solution ( \=XCO2 ,
\=\rho TIC) satisfying \=XCO2

(0) = XCO2,in and \=\rho TIC(h) = \rho TIC,in. Given \rho \ast CO2,in
= HCO2

P0
XCO2,in

1+XCO2,in
, we have

(a) if \phi (\rho TIC,in) < \rho \ast CO2,in
, then \rho TIC,out > \rho TIC,in and XCO2,out < XCO2,in,

(b) if \phi (\rho TIC,in) = \rho \ast CO2,in
, then \rho TIC,out = \rho TIC,in and XCO2,out = XCO2,in,

(c) if \phi (\rho TIC,in) > \rho \ast CO2,in
, then \rho TIC,out < \rho TIC,in and XCO2,out > XCO2,in.
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Moreover,

0 \leq \partial \rho TIC(0)

\partial \rho TIC,in
\leq 1.(2.19)

Theorem 2.11 not only states the existence of solutions for the BVP (2.16)--
(2.18) but determines if any concentration increases, decreases, or stays steady passing
through the column.

Now, let ( \=XCO2 , \=\rho TIC) be the unique nonnegative solution of (2.16)--(2.18). Then,
we have the following equation for the oxygen:

dXO2

dz
=

(kLa)O2

Gs

\biggl( 
\rho O2

 - HO2
P0

XO2

1 +XO2
+ \=XCO2

\biggr) 
,

d\rho O2

dz
=

(kLa)O2

Fs

\biggl( 
\rho O2

 - HO2
P0

XO2

1 +XO2
+ \=XCO2

\biggr) 
.

(2.20)

The following theorem is analogous to Theorem 2.11, but for BVP (2.17)--(2.20).

Theorem 2.12. BVP (2.17)--(2.20) has a unique nonegative solution ( \=XO2
, \=\rho O2

)
satisfying \=XO2

(0) = 0 and \=\rho O2
(0) = \rho O2,in. We have that

(a) if \rho O2,in = 0, then \rho O2,out = 0 and XO2,out = 0,
(b) if \rho O2,in > 0, then \rho O2,out \leq \rho O2,in and XO2,out \geq 0.

Moreover,

0 \leq \partial \rho O2
(0)

\partial \rho O2,in
\leq 1.(2.21)

From Theorem 2.12 (case (b)), a part of oxygen in the liquid phase may be
transferred to the gas phase. For the inorganic carbon, Theorem 2.11 shows that
depending on the input concentrations, the amount of CO2 in the biogas could increase
(case (c)), which is not desirable for biogas upgrading.

Equations (2.19) and (2.21) are relevant when coupling the model of the
AC with that of a microalgae culture where \rho TIC,in corresponds to the concentra-
tion of TIC moving from the culture to the column, and \rho TIC(0) corresponds to
an input concentration in the culture coming from the column. Thus, the term
R = F (\rho TIC(0) - \rho TIC,in) can be seen as a ``circulation term,"" and it must be included
in the mass balances of the microalgae culture. From (2.19), we obtain that

\partial R

\partial \rho TIC,in
\leq 0.(2.22)

This property is necessary in section 3 for studying the number of steady states of
the coupled system. We can also see that

R \leq \beta h(2.23)

with \beta = LHCO2P0
(kLa)CO2

Fs
> 0. Indeed, from the second equation in (2.18), we have

that d\rho TIC

dz \geq  - \beta /L. Integrating both sides of this inequality on the interval [0, h]
gives (2.23).

We end this section with the proof of Theorems 2.11 and 2.12.

D
ow

nl
oa

de
d 

03
/1

4/
20

 to
 1

28
.2

50
.1

44
.1

44
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

ABSORPTION COLUMN CONNECTED TO A PHOTOBIOREACTOR 779

Proof of Theorem 2.11. We will denote XCO2
and STIC by x and y, respectively.

The BVP (2.16)--(2.18) can be put in the following form:

dx

dz
= \alpha [g(y) - f(z, x)],

dy

dz
= g(y) - f(z, x),(2.24)

x(0) = x0, y(h) = y1, h > 0,

with \alpha > 0, x0, y1 \geq 0 appropriate constants, f : [0, h]\times \BbbR +  - \rightarrow \BbbR and g : \BbbR +  - \rightarrow \BbbR 
defined by

g(y) = k1\phi (y) and f(z, x) = k2
x

1 + x
,(2.25)

with \phi defined in Proposition 2.9, and k1, k2, again, two appropriate positive con-
stants. Then, we first have to prove the following: For any x0, y1 \geq 0, the BVP (2.24)
has a unique solution (\=x, \=y). Moreover

(a) if g(y1) = f(x0), then \=x(h) = x0 and \=y(0) = y1,
(b) if g(y1) < f(x0), then \=x(h) > x0 and \=y(0) < y1,
(c) if g(y1) > f(x0), then \=x(h) < x0 and \=y(h) > y1.
For this purpose, we define g and f for negative values of x and y in the following

way: g(y) :=  - g( - y) and f(z, x) :=  - f(z, - x) for all z \in [0, h] and x, y \in [0, - \infty ).
Now, replacing dy

dz in the first equality in (2.24) and integrating, we obtain

x(z) = x0 + \alpha (y(z) - y(0)).(2.26)

Replacing (2.26) in (2.24), we obtain the one-dimensional problem\left\{   
dy

dz
= G(z, y, y(0)),

y(h)= y1,
(2.27)

where G : [0, h]\times \BbbR 2  - \rightarrow \BbbR is given by

G(z, y, \gamma ) = g(y) - f(z, x0 + \alpha (y  - \gamma )).(2.28)

We have that g(0) = 0, limy\rightarrow \infty g(y) = \infty , and g is strictly increasing. This implies the
existence of \gamma \ast \geq 0 such that g(\gamma \ast ) = k2

x0

1+x0
or equivalently G(z, \gamma \ast , \gamma \ast ) = 0. Thus,

we can easily verify that G satisfies the hypotheses of Lemma A.1 in the appendix;
then the problem (2.27) admits a unique solution \=y. Let us define \=x(z) := x0 +
\alpha (\=y(z) - \=y(0)). If \=x and \=y are nonnegative, then (\=x, \=y) form a solution of (2.24). Let
us assume that y1 < \gamma \ast . Since G does not depend on z, by Lemma A.1, \=y is strictly
decreasing. Since \=y(h) = y1 \geq 0, we conclude that \=y cannot be negative. If y1 \geq \gamma \ast ,
again from Lemma A.1, we have that \=y is not smaller than \gamma \ast \geq 0 for any z. Thus,
\=y is nonnegative. With respect to \=x, if there is a z\ast \in [0, h] such that \=x(z\ast ) = 0,
from (2.24), it follows that d\=x(z\ast )/dz = \alpha \^g(\=y(z\ast )) \geq 0. Thus, \=x cannot be negative,
and hence (\=x, \=y) is a solution of the BVP (2.24). The uniqueness of this solution
follows from the uniqueness of \=y. Now, we prove the properties of the solution: (a) If
g(y1) = f(x0), then y1 = \gamma \ast . From Lemma A.1, \=y(z) = y1. (b) If g(y1) < f(x0), then
y1 < \gamma \ast . From Lemma A.1, it follows that \=y(z) and \=x(z) (see, the definition of \=x) are
strictly increasing, which implies (b). The proof of (c) is similar to that of (b).
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780 MARTINEZ ET AL.

Now, it remains to prove that \=y(0) is differentiable by y1 and

0 \leq \partial \=y(0)

\partial y1
\leq 1.

Indeed, since f, g \in C1[0,\infty ) and

\partial 

\partial y
G(z, y, \gamma ) +

\partial 

\partial \gamma 
G(z, y, \gamma ) = g\prime (y) > 0,

from Lemma A.2 we conclude that \=y(0) is differentiable by y1 and 0 \leq \partial \=y(0)/
\partial y1 \leq 1.

Proof of Theorem 2.12. The proof follows the same idea of that of Theorem 2.11.
In (2.24), take x0 = 0 and f and g as

g(y) = k1y and f(z, x) = k2
x

1 + x+ \beta (z)
,(2.29)

where \beta : [0, h]  - \rightarrow [0,\infty ) is an appropriate continuous function and k1, k2 two
positive appropriate constants.

3. Modeling a column absorption connected to a microalgae culture.
Consider the system described by Figure 2 (see Tables 1 and 2 for nomenclature).
The left side corresponds to an AC and the right side to a PBR with a microalgae
culture. In this system, the flow of liquid (F ) in the AC comes from the PBR and then
returns to the PBR, so that microalgae use the absorbed carbon dioxide from biogas
as a substrate and release oxygen to the environment. Given that column dynamics is
faster than microalgae growth, we assume that the column operates at steady state.

Fig. 2. Scheme of the AC connected to a microalgae culture showing transfers in the AC and
the conversion of carbon dioxide into oxygen in the PBR.
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Table 2
Parameters for numerical simulation of (3.4)--(3.5). YCO2

and YO2
are theoretical values

assuming that one mole of CO2 gives one mole of biomass (with 0.5 gC/g biomass) and one mole
of O2.

Parameter Definition Value Unit Remark

\mu max Maximal growth rate of microalgae 1.68 d - 1 [13] C. vulgaris
KI Light half-saturation 107 \mu molm - 2 s - 1 [13] C. vulgaris
k Microalgae specific attenuation coefficient 0.1245 m2 g - 1 [12] C. vulgaris
Kbg Background turbidity 7.2 m - 1 [13]
KCO2 CO2 half-saturation 0.3 \mu mol L - 1 [23] C. vulgaris
YCO2

Carbon dioxide yield coefficient 24 g /mol CO2 See caption
YO2 Oxygen yield coefficient 24 g /molO2 See caption

(KLa)
P
CO2

CO2 volumetric mass transfer coefficient (PBR-environment) 96 d - 1 [20]

(KLa)
P
O2

O2 volumetric mass transfer coefficient (PBR-environment) 86.4 d - 1 [20]

S\ast 
CO2 Concentration of saturation in dissolved CO2 7.36 \mu mol L - 1 [9]

S\ast 
O2 Concentration of saturation in dissolved O2 2.8199\times 10 - 4 mol L - 1 [9]

DCO2 Diffusivity of CO2 in the liquid 2.41\times 10 - 9 m2 s - 1 [16]
DO2 Diffusivity of O2 in the liquid 2.0\times 10 - 9 m2 s - 1 [16]

 - log10(KC) Dissociation constant for CO2 6.352 [11]
 - log10(KW ) Dissociation constant of H2O 14 [11]
HCO2 Henry constant for CO2 0.03344 mol L - 1 atm - 1 [25]
HO2

Henry constant for CO2 0.0012 mol L - 1 atm - 1 [25]

Thus, we can describe the AC with the BVP presented in section 2 (see (2.18) and
(2.20)).

The PBR is operating in continuous mode and constant stirring is keeping the
concentrations homogeneous in the medium. The PBR is illuminated with an irradi-
ance Iin. In real applications, the PBR is illuminated with sunlight [26]. This may
lead to a very complicated analysis of the model. Thus, we consider constant irradi-
ance as in the lab-scale system in [20]. Light penetrating the culture decreases as it
passes through the culture due to absorption and scattering by algal cells and other
substances. We assume that light intensity decays exponentially with depth according
to the Lambert--Beer law, i.e., at a distance z from the illuminated surface, the light
intensity is

I(z,X) = Iine
 - z(kX+Kbg), z \in [0, L],(3.1)

where X is the microalgae concentration, k is the specific light attenuation coefficient
of microalgae, Kbg is the background turbidity, and L is the depth of the PBR. We
assume that microalgae growth depends on the availability of light and CO2. Thus, by
using the Monod model for both limitations, we can describe the growth of microalgae
at a distance z from the illuminated surface by

\mu z(\cdot ) = \mu max
SCO2

KCO2
+ SCO2

I(z,X)

I(z,X) +KI
(3.2)

with \mu max the maximal specific growth rate, SCO2
the CO2 concentration in the

PBR, and KI and KCO2 half saturation constants. Following [13], we define \mu as the

average of the local growth rates along the depth, i.e., \mu (\cdot ) = 1
L

\int L

0
\mu z(\cdot )dz. A simple

computation gives

\mu (\cdot ) = \mu max

(kX +Kbg)L
ln

\biggl( 
KI + Iin

KI + Iout(X)

\biggr) 
SCO2

KCO2 + SCO2

(3.3)

with Iout(X) = Iine
 - (kX+Kbg)L.

D
ow

nl
oa

de
d 

03
/1

4/
20

 to
 1

28
.2

50
.1

44
.1

44
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

782 MARTINEZ ET AL.

Based on [5, 14, 13], the microalgae growth is represented by the following system
of differential equations:

dX

dt
= \mu (\cdot )X  - DX,

dSTIC

dt
=  - 1

YCO2

\mu (\cdot )X +D(STIC,in  - STIC)(3.4)

+ (KLa)
P
CO2

(S\ast 
CO2

 - SCO2
) +

F

V
(S0

TIC  - STIC),

dZ

dt
= D(Zin  - Z).

Here, STIC denotes the concentration of TIC in the PBR, STIC,in is the input nutrient
concentration (into the PBR), andD > 0 is the dilution rate. The quantity S\ast 

CO2
is the

concentration of saturation in dissolved CO2 and (KLa)
P
CO2

is a transfer coefficient.

The term (KLa)
P
CO2

(S\ast 
CO2

 - SCO2
) represents a liquid-gas transfer between the PBR

and the atmosphere. S0
TIC represents the TIC concentration in the liquid at the

bottom of the column given by the solutions of the BVP (2.16)--(2.18). F
V (S0

TIC  - 
STIC) is a circulation term and it represents the TIC exchange with the AC.

To find the oxygen concentration evolution, we solve the following differential
equation coupled to (4.5):

dSO2

dt
=

1

YO2

\mu (\cdot )X +D(SO2,in  - SO2
) + (KLa)

P
O2

(S\ast 
O2

 - SO2
) +

F

V
(S0

O2
 - SO2

).

(3.5)

Here, SO2
denotes the concentration of oxygen in the PBR and SO2,in is an

input concentration of oxygen (into the PBR). The quantity S\ast 
O2

is the concentra-

tion of saturation in dissolved O2 and (KLa)
P
O2

is a transfer coefficient. The term

(KLa)
P
O2

(S\ast 
O2

 - SO2
) represents a liquid-gas transfer between the PBR and the at-

mosphere. S0
O2

represents the concentration of O2 in the liquid at the bottom of the

column given by the solutions of BVP (2.17)--(2.20). F
V (S0

O2
 - SO2

) is a circulation
term and represents the O2 exchange with the AC.

We assume that assumptions A 2.2 and A 2.3 are true in the aqueous medium
inside the PBR. This implies that SCO2 equals to \phi (STIC , Z(t)) with \phi defined in
Proposition 2.9. In the following section, we discuss the long-term behavior of so-
lutions of (3.4)--(3.5). In particular, we prove that (3.4)--(3.5) admits at most one
steady state with a positive microalgae concentration. We denote it by E1. We give
sufficient conditions for the existence of E1 and we argue that starting with a positive
initial microalgae concentration any solution of (3.4)--(3.5) approaches asymptotically
to E1.

4. Asymptotic behavior of the coupled system. In this section, we study
the dynamics of the system (3.4)--(3.5). From now on, we assume that (3.4)--(3.5)
admits a globally unique solution for any nonnegative initial condition and we write

G(STIC , Z) = (KLa)
P
CO2

(S\ast 
CO2

 - \phi (STIC , Z)) +
F

V
(S0

TIC  - STIC)(4.1)

and

H(S, SO2
, Z) = (KLa)

P
O2

(S\ast 
O2

 - SO2
) +

F

V
(S0

O2
(STIC , SO2

, Z) - SO2
).(4.2)
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As shown in section 2, the term R := F (S0
TIC  - STIC) is strictly decreasing with

respect to STIC (see (2.22)) and bounded by a positive constant (see (2.23)), while \phi 
is strictly decreasing in STIC (see Proposition 2.9). Thus, G is strictly decreasing in
STIC and bounded by a positive constant G0. As for G, we can argue thatH is strictly
decreasing in SO2 . Since SCO2 = \phi (STIC , Z), we can write \mu (\cdot ) = \mu (X,STIC , Z).

From the third equation in (3.4), it follows that

Z(t) = Z(0)exp( - Dt) + Zin(1 - exp( - Dt)).(4.3)

From (4.3), Z(t) approaches asymptotically Zin. Replacing Z in (3.4) by Zin

and dropping the equation for Z, we get the following two-dimensional autonomous
system:

dX

dt
= \mu (X,STIC , Zin)X  - DX,

dSTIC

dt
=  - 1

YCO2

\mu (X,STIC , Zin)X +D(STIC,in  - STIC)(4.4)

+ G(STIC , Zin).

As a first result, we prove that (4.4) admits a unique steady state characterized
by the absence of microalgae.

Lemma 4.1. (4.4) has a unique washout steady state (0, STIC,0).

Proof. We search for the solution of the following equation:

0 = D(Sin  - STIC) +G(STIC , Zin) = f(STIC).(4.5)

Since G is strictly decreasing in STIC , f is strictly decreasing. Thus, (4.5) admits at
most one solution. Since f is continuous, f(0) > 0, and limSTIC\rightarrow \infty f(STIC) =  - \infty ,
the existence of solutions follows.

The following theorem shows that (4.4) admits a globally attracting steady state
with a positive microalgae concentration.

Theorem 4.2. Let (X,STIC) be a solution of (4.4) satisfying STIC(0) \geq 0 and
X(0) > 0, and let STIC,0 be the TIC concentration in absence of microalgae given
by Lemma 4.1. Then, if \mu (0, STIC,0, Zin) > D, (4.4) has a unique steady state
(X1, STIC,1) with X1 > 0 and it is the limit of (X,STIC) as t \rightarrow \infty .

Proof. We will simplify the notation by writing S and \gamma instead of STIC and
1

YCO2
, respectively (and logically S0 instead of STIC,0). Let (X,S) be a solution of

(4.4) with initial conditions S(0) \geq 0 and X(0) > 0 and let us define V := S + \gamma X.
Since \mu (X, 0) = 0 and G(0, Zin) > 0, it holds that X(t), S(t) \geq 0 for all t \geq 0. Then
0 \leq \gamma X(t) \leq Z(t) for all t \geq 0. Now, we note that V satisfies

dV (t)

dt
= D(Sin  - V ) +G(V (t) - \gamma X(t), Zin) \leq D(Sin  - V ) +G(0, Zin).(4.6)

This shows that V , X, and S are bounded. We claim that the limit set of (X(0), S(0))
is a single steady state in \BbbR 2. Indeed, we note that (V,X) is a solution of the system

dV

dt
= D(Sin  - V ) +G(V  - \gamma X,Zin),

dX

dt
= (\mu (X,V  - \gamma X,Zin) - D)X.

(4.7)
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The Jacobian matrix associated to (4.7) is

J(V,X) =

\left[    \star  - \gamma 
\partial 

\partial S
G(V  - \gamma X,Zin)

\partial 

\partial S
\mu (X,V  - \gamma X,Zin)X  \star 

\right]   .

It is clear that (4.7) is cooperative (i.e., the off-diagonal terms of the Jacobian
matrix are nonnegative). Furthermore, solutions of (4.7) are asymptotically bounded
in a compact subset of \BbbR 2

+. From Theorem 2.2 of Chapter 3 in [29] for two-dimensional
systems, the limit is a single equilibrium, and the claim is proved.

The Jacobian matrix J(X,S) of the system (4.4) is\left[    
\partial \mu (X,S,Zin)

\partial X
X + \mu (X,S,Zin) - D

\partial \mu (X,S,Zin)

\partial S
X

 - \gamma 

\biggl( 
\partial \mu (X,S,Zin)

\partial X
X + \mu (X,S,Zin)

\biggr) 
 - \gamma 

\partial \mu (X,S,Zin)

\partial S
X  - D +

\partial 

\partial S
G(S,Zin)

\right]    .
At the washout steady state, the Jacobian matrix is

J(0, S0) =

\left[  \mu (0, S0, Zin) - D 0

 - \gamma \mu (0, S0, Zin)  - D +
\partial 

\partial S
G(S0, Zin)

\right]  .

The eigenvalues are  - D + \partial 
\partial SG(S0, Zin) < 0 and \mu (0, S0, Zin)  - D > 0, hence the

washout is a saddle point which can be reached only if X(0) = 0. Consequently,
(X,S) cannot converge toward it, and then there is another steady state (X1, S1)
with X1 > 0 the limit of (X,S). This is the unique steady state in \BbbR 2

+ different from
the washout. Indeed, assume that there exists another steady state (X2, S2) with
X2 > 0. We can assume that S1 < S2. Since \mu (X1, S1, Zin) = \mu (X2, S2, Zin), we have
X1 < X2. Consequently

\varphi (S1) = \gamma DX1 < \gamma DX2 = \varphi (S2),

and we get the contradiction S1 > S2. Thus, any solution (X,S) to (4.4) with
X(0) > 0 approaches (X1, S1) and the proof is completed.

The following theorem is an extension of Theorem 4.2.

Theorem 4.3. Let (X,STIC , Z) be a solution of (3.4) satisfying S(0), Z(0) \geq 0,
and X(0) > 0, and let STIC,0 be the TIC concentration in absence of microal-
gae given by Lemma 4.1. If \mu (0, STIC,0, Zin) > D, then (X,STIC , Z) converges to
(X1, STIC,1, Zin), with (X1, STIC,1) given by Theorem 4.2, as t \rightarrow \infty .

Proof. We recall (3.4) with the notation used in the proof of Theorem 4.2. By
defining the variable V = \gamma X+S we can prove that the solutions of (3.4) are bounded
(see the proof of Theorem 4.2). Let Y := \BbbR 3

+ and let \Phi : \BbbR + \times Y  - \rightarrow Y be the
autonomous semiflow defined by \Phi (t, y0) = y(t) with y(t) = (X(t), S(t), Z(t)) the
unique solution of (3.4) satisfying y(0) = y0 := (X0, S0, Z0) \in Y . Let \omega (y0) be
the omega limit set of y0. The proof of the theorem consists in proving that if
y0 \in (0,\infty )\times \BbbR 2

+, then \omega (y0) = \{ E1\} with E1 := (X1, S1, Zin).
Since Z(t) converges to Zin as t \rightarrow \infty , \omega (y0) \subset \Gamma := \BbbR 2

+ \times \{ Zin\} . The set \Gamma is
invariant and, from Theorem 4.2, any solution starting on \Gamma approaches either E0 :=
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(0, S0, Zin) or E1. Thus, \omega (y0) contains E0 or E1. The characteristic polynomial
of the Jacobian evaluated at E1 is p(\lambda ) =  - (\lambda +D)det(A  - \lambda I) with I the identity
matrix of 2\times 2 and A given by

A =

\left[   X1
\partial 

\partial X
\mu (X1, S1, Zin) X1

\partial 

\partial S
\mu (X1, S1, Zin)

 - \gamma \mu (X1, S1, Zin)  - \gamma 
\partial 

\partial S
\mu (X1, S1, Zin) - D  - \partial 

\partial S
G(S1, Zin)

\right]   .

We can easily verify that the trace and the determinant of A are negative and positive,
respectively. Thus, all the roots of p are negative. Consequently, E1 is locally stable.
Thus, if \omega (y0) contains E1, then \omega (y0) = \{ E1\} . Thus, we have to prove that

E0 /\in \omega (y0) for any y0 \in (0,\infty )\times \BbbR 2
+.(4.8)

To prove this, we use the theory of persistence presented in the book [30] (we refer
the reader to [30] for review of the definitions presented in the rest of the proof). We
introduce the persistence function \rho : Y  - \rightarrow \BbbR +; \rho (y) = X. From the uniqueness of
solutions of (3.4), it follows that

\rho (\Phi (t, y0)) = 0 for all t \in \BbbR + if and only ifX0 = 0.(4.9)

Then, we define

Y 0 := \{ y0 \in Y ; \rho (\Phi (t, y0)) = 0\} = \{ 0\} \times \BbbR 2
+.

From (4.9), we also conclude that \Phi (t, (0, S0, Z0)) = (0, S(t), Z(t)) with (S,Z)
the unique solution of

dS

dt
= D(Sin  - S) +G(S,Z),

dZ

dt
= D(Zin  - Z),

(4.10)

satisfying S(0) = S0 and Z(0) = Z0. It is not difficult to see that any solution of
(4.10) approaches asymptotically to the steady state (S0, Zin). Therefore, we have
that

\Omega :=
\bigcup 

y0\in Y 0

\omega (y0) =
\bigcup 

S0,Z0\in \BbbR +

\omega (0, S0, Z0) = \{ (0, S0, Zin)\} .

It is clear that \Omega is compact, invariant, isolated, and acyclic in Y 0.
According to Theorem 8.17 [30], if \Omega is weakly \rho -repelling (i.e., there is no y \in Y

such that \rho (y) > 0 and \Phi (t, y) \rightarrow \Omega as t \rightarrow \infty ), then \Phi is uniformly weakly \rho -persistent
(i.e., there exists \delta > 0 such that lim supt\rightarrow \infty \rho (\Phi (t, y)) > \delta if \rho (y) > 0). To prove
that \Omega is weakly \rho -repelling, it is enough to show that W s(\Omega ) \subset Y 0, with W s(\Omega ) the
stable manifold of \Omega . The Jacobian matrix of (3.4) evaluated at the washout steady
state is

J =

\left[    
\lambda 1 0 0

 - \gamma \mu (0, S0, Zin) \lambda 2
\partial 

\partial Z
G(S0, Zin)

0 0 \lambda 3

\right]    
with \lambda 1 = \mu (0, S0, Zin) - D, \lambda 2 =  - D+ \partial 

\partial SG(S0, Zin), and \lambda 3 =  - D the eigenvalues
of J . We have \lambda 1 > 0, and \lambda 2, \lambda 3 < 0; therefore W s(\Omega ) is a locally two-dimensional
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manifold. Since Y 0 has dimension 2, we conclude that W s(\Omega ) \subset Y 0. Thus, \Phi is
uniformly weakly \rho -persistent.

Now we define \sigma = \rho o\Phi : \BbbR + \times Y  - \rightarrow \BbbR +. It is clear that \sigma (t, y0) = X(t). It
follows that \sigma is continuous, and from the uniqueness of solutions for (3.4), it holds
that if X0 > 0, then \sigma (t, (X0, S0, Z0)) > 0 for all t \geq 0. The assumptions of Theorem
4.5 in [30] are satisfied, and we conclude that \Phi is uniformly \rho -persistent, that is,
there exists \delta > 0 such that

lim inf
t\rightarrow \infty 

\rho (\Phi (t, y0)) \geq \delta , for all y0 \in Y ; \rho (y0) > 0,

which is equivalent to

lim inf
t\rightarrow \infty 

X(t) \geq \delta , if X(0) > 0.(4.11)

Since (4.11) implies (4.8), the proof is completed.

We end this section studying (3.5). Replacing the state variables (X,STIC , Z) by
(X1, STIC,1, Zin) in (3.5), we obtain the one-dimensional equation

dSO2

dt
= f(SO2

)(4.12)

with

f(SO2
) =

1

YO2

\mu (X1, STIC,1, Zin)X1 +D(SO2,in  - SO2) +H(STIC,1, SO2 , Zin).

Since f is strictly decreasing and continuous, f(0) > 0, and limS\rightarrow \infty f(S) =  - \infty ,
(4.12) has a unique steady state SO2,1.

Theorem 4.4. Let (X,STIC , Z, SO2
) be a solution of (3.4)--(3.5) with initial con-

ditions STIC(0), Z(0), SO2
(0) \geq 0, and X(0) > 0, and let STIC,0 be the TIC con-

centration without microalgae given by Lemma 4.1. If \mu (0, STIC,0, Zin) > D, then
(X,STIC , Z, SO2

) converges toward E1 := (X1, STIC,1, Zin, SO2,1), with (X1, STIC,1)
given by Theorem 4.2, as t \rightarrow \infty .

Proof. Let (S,X,Z, SO2
) be a solution of (3.4)--(3.5) with X(0) > 0. Theorem 4.2

shows that (X,S,Z) approaches asymptotically to the steady state (X1, STIC,1, Zin).
Thus, the omega limit set of this solution is contained in the set \Omega := \{ X1\} \times \{ S1\} \times 
\{ Zin\} \times \BbbR +. \Omega is a positively invariant set with respect to (3.4)--(3.5) and any solution
of (3.4)--(3.5) starting in \Omega approaches to E1. Thus, E1 belongs to the omega limit
set of (S,X,Z, SO2

). If E1 is locally stable, then the omega limit set of (S,X,Z, SO2
)

is equal to \{ E1\} and the proof is completed. We omit the proof of the local stabil-
ity of E1 since it is very similar of that of the local stability of E1 in the proof of
Theorem 4.3.

5. Application to capacity of the coupled system for biogas upgrading.
We evaluate numerically the capacity of the system AC-PBR for upgrading biogas at
the steady state E1. The geometry of the system and flow rates are taken from [20].
Column dimensions are 2.2m height and 0.02m diameter (S = 3.1416 \times 10 - 4m2).
The biogas is injected at a rate of G = 7.9Ld - 1. Note that Gs in (2.6) is obtained
from GS = xCH4

G\rho G/S, with xCH4
the molar fraction of CH4 in the gas phase

(0.72) and \rho G the molar density of the gas. We will assume that \rho G = 0.0446mol L - 1

(density of an ideal gas at 25\circ C and 1 atm). The pressure inside the column is taken
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Fig. 3. Biogas composition after passing through the column and microalgae concentration at
different steady states reached for different flow liquid rates.

as P0 = 1.1064 atm (average). The PBR has a volume of 75L and a depth of 0.15m.
The dilution rate is 0.06 d - 1 and the incident light is Iin = 100\mu molm - 2 s - 1.

The feed medium has pH 7 and concentrations SO2,in = 3 \times 10 - 4 mol L - 1 and
STIC,in = 1.7\times 10 - 3 mol L - 1. Thus, Zin = 1.4\times 10 - 3 mol L - 1. Microalgae parame-
ters are obtained from literature and summarized in Table 2. Gas-liquid transfer co-

efficients in the column are assumed to be correlated by (kLa)CO2 = (kLa)O2

\sqrt{} 
DCO2

DO2
,

with DCO2
and DO2

the diffusivities of CO2 and O2, respectively [16]. The value of
(kLa)O2

is 45 d - 1.
Figure 3 shows the composition of the biogas and the microalgae concentration at

steady state for different circulation flow rates. The effect of liquid speed (< 0.03m/s)
on (kLa)O2 is insignificant for industrial applications [27]. Steady state is obtained
by integrating (3.4)--(3.5) for 100 days with the solver ode23t of MATLAB. In each
iteration, the BVP associated to the AC is solved by bvp4c in MATLAB [28].

By [20], the liquid flow rate is a critical parameter. As the liquid flow rate
increases, the percentage of CO2 in treated biogas decreases while the percentage
of O2 increases. This suggest that to keep both concentrations below a certain level,
intermediate values of the liquid flow rate must be chosen. With respect to the biomass
concentration, as in [20], it remains low and almost the same for all the values of the
liquid flow rate.

6. Conclusion. We built a mathematical model of an innovative system for
purifying biogas: an AC connected to a microalgae culture. The model consists of a
system of ordinary differential equations coupled to a BVP. We proved the existence
and uniqueness of solutions of the BVP and we found some properties of the solutions.
For the coupled system, we determined sufficient conditions for the existence and
global attractivity of a steady state characterized by the presence of microalgae.

Based on our theoretical results, we determined numerically the steady states
of the coupled system. We showed that the circulation flow between the AC and
the reactor with microalgae has a strong impact on the capacity of the system for
purifying biogas.D
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Appendix A.
Consider the following problem:\Biggl\{ 

dy

dz
= G(z, y, y(0)),

y(h) = y1,
(A.1)

The following lemma gives conditions over G such that the problem (A.1) admits
a unique solution.

Lemma A.1. Assume that G : [0, h]\times \BbbR 2  - \rightarrow \BbbR has the following properties:
(a) the initial value problem (IVP)\Biggl\{ 

dy

dz
= G(z, y, \gamma ),

y(0) = y0,
(A.2)

admits a unique solution for any \gamma , y0 \in \BbbR , which exists for all z \in [0, h],
(b) G is Lipschitz in \gamma ,
(c) there exists \gamma \ast \in \BbbR such that G(z, \gamma \ast , \gamma \ast ) = 0 for all z \in [0, h],
(d) G is strictly increasing in \gamma .

Then, (A.1) admits a unique solution. Moreover, if \=y(z; y1) is the solution of (A.1)
satisfying \=y(h; y1) = y1, then \=y(z; \gamma \ast ) = \gamma \ast , and \=y(z; y1) \in [\gamma \ast , y1] (resp., \=y(z; y1) \in 
[y1, \gamma 

\ast ]) for all z \in [0, h] if y1 > \gamma \ast (resp., if y1 < \gamma \ast ).
In the case that G does not depend on z, then \=y(z; y1) is monotone: increasing if

y1 > \gamma \ast and decreasing if y1 < \gamma \ast .

Proof. For any \gamma \in \BbbR , we denote by \theta (z; \gamma ) the unique solution of (A.2) with
y0 = \gamma .

Claim 1. For any z \in [0, h], \theta (z; \cdot ) (\theta as a function of \gamma ) is continuous and strictly
increasing on \BbbR . Indeed, let \gamma 1, \gamma 2 \in \BbbR . Since G is Lipschitz in \gamma , we have

| \theta (z; \gamma 1) - \theta (z; \gamma 2)| \leq | \gamma 1  - \gamma 2| +
\int z

0

| G(z, y, \gamma 1) - G(z, y, \gamma 2)| ,

\leq (1 + LGh)| \gamma 1  - \gamma 2| 

with LG the Lipschitz constant of G. Then \theta (z; \cdot ) is Lipschitz in \gamma and hence con-
tinuous in \gamma . For the second result, we will denote by \theta (z; \gamma , \gamma \prime ) the unique solution
of the differential equation dy/dz = G(z, y, \gamma ) with initial condition y(0) = \gamma \prime , which
exists for all z \in [0, h]. Assume that \gamma 1 < \gamma 2; then G(z, y, \gamma 1) < G(z, y, \gamma 2) for all
y \in \BbbR . By the standard comparison theorem, it follows that \theta (z; \gamma 1, \gamma 1) < \theta (z; \gamma 1, \gamma 2).
From a uniqueness argument, it follows that \theta (z; \gamma 1, \gamma 2) < \theta (z; \gamma 2, \gamma 2). Combining the
last two inequalities for \theta , we conclude that \theta (z; \gamma 1) < \theta (z; \gamma 2), and hence \theta (z; \gamma ) is
strictly increasing in \gamma .

Claim 2. We have that \theta (z, \gamma \ast ) = \gamma \ast and that \theta (z, \gamma ) > \gamma (resp., \theta (z, \gamma ) > \gamma )
for all z \in [0, h] when \gamma > \gamma \ast (resp., \gamma < \gamma \ast ). Indeed, from (c) we have that
G(z, \gamma \ast , \gamma \ast ) = 0 for all z \in [0, h], from where it follows that \theta (z, \gamma \ast ) is constant and
equals to \gamma \ast . Let \gamma > \gamma \ast (resp., \gamma < \gamma \ast ). Since G is strictly increasing in \gamma , for any
z \in [0, h] we have

d\theta (z, \gamma )

dz
| \theta =\gamma \ast = G(z, \gamma \ast , \gamma ) > G(z, \gamma \ast , \gamma \ast ) = 0 (resp., d\theta (z,\gamma )

dz | \theta =\gamma \ast < 0).(A.3)

Thus, the region [\gamma \ast ,\infty ) (resp., ( - \infty , \gamma \ast ]) is positively invariant and the claim is
proved.
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Now, define the function \varphi : \BbbR  - \rightarrow \BbbR as \varphi (\gamma ) := \theta (h, \gamma ). It remains to prove that
there is a unique \gamma \prime \in \BbbR such that \varphi (\gamma \prime ) = y1. Indeed, from Claim 2, \varphi (\gamma \ast ) = \gamma \ast ,
\varphi (\gamma ) > \gamma when \gamma > \gamma \ast and \varphi (\gamma ) < \gamma when \gamma < \gamma \ast . This implies that \varphi is surjective.
From Claim 1, it follows that \varphi is continuous and strictly increasing. Thus, \varphi is a
homeomorphism and we conclude the existence and uniqueness of \gamma \prime .

If G does not depend on z, (A.3) implies (in a first order autonomous differential
equation) that \theta (z, \gamma ) is a strictly increasing (resp., strictly decreasing) function for
all z \in [0, h]. This completes the proof.

Lemma A.2. Assume that for any z \in [0, h], G(z, \cdot ) \in C1(\BbbR 2) and

\partial 

\partial y
G(z, y, \gamma ) +

\partial 

\partial \gamma 
G(z, y, \gamma ) > 0.

Assume also that for any y1 \in \BbbR (A.1) admits a unique solution \=y(z; y1). Then,
\=y(0; y1) is differentiable by y1 and

0 \leq \partial \=y(0; y1)

\partial y1
\leq 1.(A.4)

Proof. For any \gamma \in \BbbR , we will denote by \theta (z; \gamma ) the unique solution of the IVP
(A.2) with y0 = \gamma . Following the proofs of Theorems 12.2 and 12.4 in [2], it can be
shown that w(z) := \partial 

\partial \gamma \theta (z, \gamma ) exists for all z \in [0, h] and it satisfies the variational
equation

dw(z)

dz
=

\partial 

\partial y
G(z, \theta (z, \gamma ), \gamma )w(z) +

\partial 

\partial \gamma 
G(z, \theta (z, \gamma ), \gamma ) = F (z, w(z))(A.5)

with the initial condition w(0) = 1. We have F (z, 1) > 0 and hence w(z) is greater
than 1 for all z \in (0, h]. Now, let \=y be a solution of the problem (A.1). We have
that \theta (h, \=y(0)) = y1. By taking the derivative with respect to y1 on both sides of this
expression we get

\partial \theta (h, \=y(0))

\partial \=y(0)

\partial \=y(0)

\partial y1
= 1.(A.6)

The proof follows from the fact that w(h) = \partial \theta (h,\=y(0))
\partial \=y(0) \geq 1.
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